Personal Computer

MZ-600

OWNER’S MANUAL

O D F G H i K . ;
=T

SHARP.

Personal Computer

MZ-800©

Owner’s
Manual

(© SHARP CORPORATION

NOTICE

This manual has been written for the MZ-800 personal computers and the BASIC
interpreter (1Z2-016) which is provided with the MZ-800.

(1)

All system software for the MZ-800 computers is supported in software packs
(cassette tape, etc.) in file form. The contents of all system software and
the material presented in this manual are subject to change without prior
notice for the purpose of product improvement and other reasons, and care
should be taken to confirm that the file version number of the system soft-
ware used matches that specified in this manual.

(2) All system software for the Sharp MZ-800 personal computer has been de-

(3)

veloped by the Sharp corporation, and all rights to such software are reserved.
Reproduction of the system software or the contents of this book is pro-
hibited.

This computer and the contents of this manual have been fully checked for
completeness and correctness prior to shipment; however, if you should en-
counter any problems during operation or have any questions which cannot
be resolved by reading this manual, please do not hesitate to contact your
Sharp dealer for assistance.

Not withstanding the foregoing, note that the Sharp Corporation and its
representatives will not assume responsibility for any losses or damages in-
curred as a result of operation or use of this equipment.

Preface

Congratulations on purchasing the MZ-800 computer. Your MZ-800 is a compact personal computer,
featuring 640 x 200 dot addressable graphics, 16-colour display, and a programmable sound genera-
tor (PSG) which can generate 3-tone chords over 6 octaves. One of the excellent features of the MZ-800
is that it contains hardware which makes it compatible with the MZ-700 series computer. This makes
it possible for you to use most of the existing programs for the SHARP MZ-700 series computers on
your MZ-800.

This manual is written both as a guide to the MZ-800 and a BASIC reference manual. The manual
is constructed as follows.

Chapter 1 describes how to unpack, handle, and setup your MZ-800, and what to do if a problem occurs.
Chapter 2 describes how to turn on the power, load the BASIC interpreter, and turn off the power.

Chapter 3 explains the BASIC interpreter. This chapter also shows you how to write a simple pro-
gram, edit it, save it on a cassette tape and load it back into memory.

Chapter 4 describes the functions of the keyboard keys. This chapter also describes how to operate
the data recorder and handle tapes.

Chapter 5 presents the background knowledge you need to be able to write programs.
Chapter 6 describes the BASIC commands and statements.

Chapter 7 describes the hardware configuration of the MZ-800 and 1/0 port control. It also describes
peripheral devices and how to connect them.

Chapter 8 explains the monitor program, which allows you to *“*bypass’® BASIC and directly access
the MZ-800"s memory.

Chapter 9 explains the MZ-700 mode of the MZ-800.

Make sure that you read the handling and setup instructions before turning on the computer’s power
switch. Read this manual thoroughly to get the most out of your MZ-800 computer.

CONTENTS

Chapter 1 Introduction
1.2 Handling ...

R

1.3 A D DCATAIICE . . . v rvsnmnsrrmmn merrsnnmmmees n s rons s n s nmsms me s sy s s n Firm s s AR ELn 8 SR R R
1.4 Setup .. i T mmmEmn—————
1.5 In Case -:}t‘ E.'!ui'f‘v::ultz,r

Chapter 2 Start Up

2.1 Power-on.
2.2 Power- nff
2.3 Running the Demunstratmn ngram

Chapter 3 Basic Operation

3.1 Introduction .. e e, S P S snCo iy W brnlitn S i shepmmeslim oo ;
3.2 QGetting to kncw the Keybﬁard

3.3 Wrhng 4 SIMple PrOZLa «...ccoeviieinesrsssomssrnassssssnnsnnsmansns
3.4 Editing Programs

T CrIVINNR B W ORI G oo e o i A A B i
o6 Loadingg & PrOSIaIL s st s Lo s s R b s S s n R R R F A A B A

Chapter 4 Keyboard and Data Recorder
4.1 Keyboard......cixerasarransas
4.2 Data Recorder

EEssaEEEEREEE

Chapter 5 Programming Concepis

5.1 Multi-statement Lines and Line NUmbers......cccccviimsriisssnsmssanssssnsssnisasssanass
5.2 Mumertic Data and String Datf....ccisiereimrmervansnssrnsnsivansesssisnnsrrmnssssssnussinnns
D N i e e s e
I o T) S
B ATTAY WA aBIES it s o e b e 2 R S A
Sh eI | L s i i a T S a R dre
Lt] o] [R S s s s s e el et s i e
AT IPMMINICT IO s oo s w0 o A b e A

O Sereet oOT A es i e i S e

Chapter 6 MZ-800 BASIC Commands and Statemenis

6.1 Commands..

6.2 Fundamenta] Statements
6.3 File Control Statemenlsccocvrrrmrrrrnsnmsssrnissrssannasnsiansnmsnssssss

6.4 QGraphics Control StAtEMENEScuiuimiioniiis suvssnsssarissssransnsssssnssivmisisssinssssinsussss

6.5 Music Control Statements ..

E R T

6.6 Printer Control Statements.............
6.7 Machine Language Control Slattmcms s

6.8 Error Processing Statements ...

EEAAEEESSA ARSI FEF S IEEFR AR R AR E R R

R

EEERAAEEEEAARE EBERE A

L T R T T T T TR TR T

L T T T T T R T

. 1-2
venns 1-4

SR—

. 1-10

EEsaEEEEssARE R B

. 2-2
. 2-3
crannasnssane B

s 2
o
54
5-5
5-6
5-10
T,

EEdEEERGAEERE R R R
EEE R E RS

. 6-3

.. 6-36
6-68
.. 6-84
.. 6-87

SEpEmEmsEsEEE EE B R R RS

Chapter 7 Hardware

B 1 T T T [|
Tl Y S rh N R EURI NN oo v A M N R R
T.1.2 System switch SeEUNES . i i v s s T
T.1.3 170 POt CONETOL... . .ccmemrecieeresannarrasnssrnsnnsrsnssmsssssnnanssssnsssnsnnnensssmnnsssnsansssns J=th

T PO AL TIBVIBEE o v s e s s S S B B s A R s T
Tedi ¥ Stamdard InkerTaoes s i s A s G R R R s R
7.2.2 Expansion L/0 COMMBCLON ..iuuiiriiiauiiisissianiosssssiassssssssssssssssnsssssnsssasssnesssnnnrns =0
7.2:3 RAM file board (MEZ-1R18)......ccoisemmmmminnussiniiissnnssnsss sanmsnsinssiisnsninsnuisns geil)
Tl T . s i ST R R e e e s T
B 11 L L e R 4
7.2.6 Optional grapluc MBIV IMZTRES Lo aunmisisinmmmains simivimyesiaviiim vassivissassau:. Toll
7.2.7 External cassette tape recorder (for MZ-811 unl}.r} 7-18

Chapter 8 Monitor

8.1 General .

8.2 ROM Mumtur and BASIC M-::-mtor R T A e e e e R ek SRR BTN
8.3 Starting the ROM MONItor......cuvmmesnemmminssmsssissnssesessniasssenssissssssssnnsossanseassssnnans -4
B4 Mbonltor-Commandl ..o st i R e R e s S s e B
B.5 BASIC MoOMIEOT ouvsrrresrsssransorsnsessnsssnsssssssnssssnssssssssnssssssensasenssssssassssarsnssransnnnsss B0
8.6 BASIC Monitor Cnmmands 5 S S S iR K N S R s NS T i T

Chapter 9 MZ-700 Mode
0.1 TSI I TIOUF P T OET IS & v w6 e i W i acpm wmm
9.2 Summary of MZ-700 BASIC Commands and Statements,
Frinctions and O pEEaONE s it i n i S o S S b s el B e S e =S

Appendixes
Appendix A

ZZrR="mTopoTmmgogow

Display Control in the MZ-800 Modec.cvevrenrsrnmrinrissnsnrssrssrsssansnses A2

Programmable Sound Generator.......c.ccoovsismmmnisssssasasssssasssssnsassnosassssses B

Beserved Wonds..cnnimmnseaiinmianmi e e hiahsimmeibnvas s 10
Console Control Codes B e 1S BEUREABP I UCNNC e LIRSS . < 7
Restrictions on Using FIII: IKD Cummands and Statements PROEEPI 1=l £
Monitor Subroutines............ e T o . |
Making Backup Copy af the BASIC lnterprt:tn:r T P A D00 e S P M -) b
Optional Colour Plotter-Printer MZ-1P16cccccviiiiiviiiinnininiciaiessnianne.. A-18
Colour Plotter-Printer Control Codescccivieeimmnssesimssssnissssrsrssssrssnass S=21
Code Tables....... D e e s e e
Error Messages Generated h}r the: Mﬂmmr.“....”.......H. aen e AN
Error Messages Generated by BASIC... . A-27
IndEx A-ZB‘
P PIEENOITL. i i s m AR A R R A A s s A

=
Rk
¥ild
aAll#

del i
=4
T

L

X
T

& 1 !._.L

o e R

dmemd goy i Fo= 0 moill o s

i s u e - =

il ™ ki dCh

D e bR i 4
— ey e 1 W TR BT
e i S —— LY
; . et O
= i — B “mnn [
e s bl 1Y

= o= SdkamecyfEl waamwyRd Lo b
IR T SR T G0 I S
I e JilnEe’ A9 I

- Puinhe ¥ iy
X !-,Ily't‘l_ﬂlihl'll“l-'

kS B R Ny ey S = E

mirendd ¥ iy 5
Hfd' L
= e sy -l.-g--h'l R
— e/ T wih p'“ X
P B i W L
o —--ﬂ-..n—..i i
— A a . .--l FRIL L Ci]

dlel RN § by
LA A L T B
A --uu.:r-*- P PR TR o
) = mseeivies cahod

i) smid
Eofd Ry o e 7 it A = oy
= pen ey e e syriEn’

R Lk STES

e e T I

g el e el aelaly e

s 4% i ™ v el Foensier
I SRS TSR RIS [

e ke L
SRR PRSP D
EEal e b w) el wmedl ¥
- - . - o e gl B
- e N #

T e e

Chapter 1 Introduction

This chapter describes how to handle and set up the MZ-800 computer system. Read this chapter carefully
before turning on the power switch.

1.1 Unpacking

Remove the MZ-800 from the packing carton and check that you have the following items.

Cassette (containing the MZ-800
Computer BASIC interpreter program,
& demaonstration program for
the MZ-B00 BASIC interprater,
the MZ-700 BASIC interpreter,
and demonstration programs for
the MZ-700 BASIC interpratar)

Power cabla

Monitor cable

!
NS
e Definable kay labal

Store the carton and packing materials away in a safe place, so that you can reuse them if you have
to transport the computer in the future.

ot
&

1-2

1.2 Handling

1) This computer uses many precision parts. Do not use or store it in extremely hot or cold condi-
tions, or under conditions where the temperature changes rapidly.

2) Do not use or store the computer in damp or dusty places, and avoid exposing it to corrosive chem-
icals or gases.

3) Do not block the ventilation holes or place large objects nearby that will disrupt ventilation.

4) Do not subject the computer to shock or vibration.

5) Do not expose the computer to direct sunlight.

6) Do not allow water or other liquid to enter the cabinet. Using the computer when it is wet is very
dangerous, and will damage the computer’s electronics.

7) Do not disassemble the cabinet unless you are installing options as instructed by documents from
SHARP.

8) Radios and TV sets may pick up interference from RF (radio frequency) noise generated by the
computer. Keep such equipment (other than that you may be using as the computer’s display unit)
well away from the computer.

9) When peripheral devices are connected, the display image may jitter. If this problem occurs, change
the layout of your system’s equipment.

10) Do not place any object other than the optional plotter/printer (MZ-1P16) on the cabinet.

11) After turning off the power switch, unplug the power cable by grasping the plug molding, not
the cable.

12) Make sure that you turn off the power switch when you not using the computer. After turning
off the power switch, wait at least 10 seconds before turning it on again, otherwise the system
may not operate properly.

13) Use a dry soft cloth to clean the unit. Do not use a wet cloth or volatile fluids such as alcohol
or benzene. Discolouration or deformation of the cabinet may result if this precaution is ignored.

14) If you notice any abnormal condition such as an extremely high temperature, an abnormal odour,
or smoke, stop what you are doing and quickly turn off the power then unplug the power cable.

MZ-811 and MZ-821

One of the models described in this manual may not be available in some countries.

This manual explains two personal computer models: the MZ-811 and the MZ-821. Differences
between these two computers are as follows.

Model name MZ-811 MZ-821
Data recorder Optional Standard
Ordinary cassette recorder Connectable | Not connectable

When the optional MZ-1T04 data recorder is installed on the MZ-811, it becomes equivalent

to the MZ-821. Procedures for installing the data recorder are described in the MZ-1T04 in-
struction manual.

The explanations in this manual are based on the MZ-821.
However, the explanations on pages 7-3 and 7-18 apply only to the MZ-811.

1-3

1.3 Appearance

(Front view)

Data recorder

Definable function keys

Main keyboard Power lamp

Cursor control kays

Ingert and delate keys

1-4

{Rear view)

Channel control

B/W-colour switch

Composite signal output jack

RGBI signal output connector

Expansion slot compartment cover

Resat switch

Power cable socket

— ——

&

BT
o

Printer connector

Cassatte tape recorder jacks
{Thesa jacks are not used.)

System switch Power switch

Joystick connectors

RF signal output jack yohmenonirh

Printar powaer jack

[Nata: Iif this jack is short-circuited,
the memory contants will be lost.)

1.4 Setup

To operate your MZ-800 computer, you must first set up the system. To do this, you will need to con-
nect a display unit to see what the computer is doing. SHARP supplies several types of display units
for the MZ-800 computer, or you can use an ordinary home TV set providing it can receive the VHF
band. The minimum configuration your computer can operate with is shown below:

The following explanation shows the setup procedure for a typical system.

(1) Using a TV set
To use a TV set as the display unit, use the monitor cable provided with your MZ-800.

1) Disconnect all antenna cables from the TV set. (If they are left connected, RF interference generat-
ed by the computer will be radiated from your TV antenna, which may interfere with neighboring
TV sets.)

2) Insert the monitor cable pin plug into the RF pin socket on the rear of the MZ-800. Connect the
other end of the cable to the 75-ohm UHF antenna terminal on your TV set.

1-6

750 UHF
antanna terminal

3) If the TV set is a colour unit, position the B/W-colour switch on the MZ-800 to COLOR, otherwise
position the switch to B/W.

“

4) Tune the channel selector on your TV set to a vacant channel between 33 and 39.
5) Turn on the TV set then turn on the MZ-800. As shown in the figure below, adjust the channel
control trimmer so that the following image is clearly displayed on the TV screen.

Make ready CMT
Please push key
C: Cassette tape

M: Monitor
Notes:
* The image quality on your TV set will not be as good as that obtained from a monitor supplied
by SHARP.

* Part of the image may not be displaved on some TV sets, and this is most likely due to how the
TV controls are set up. In such cases, consult your dealer.

» If the UHF antenna terminal does not use a pin jack, use a monitor cable with a pin plug at one
end and the correct connector for your TV set at the other end. The monitor cable impedance must
be 75 ohms, to match the impedance of the RF socket of your TV.

* No audio signal is output from the RF socket, therefore adjust the volume control of the TV set
to minimum,

(2) Using the MZ-1D19 colour display unit

1) Plug the square connector of the connection cable provided with the MZ-1D19 into the connector
on the rear panel of the display unit.

2) Plug the DIN connector of the connection cable into the RGB connector on the rear panel of the
MZ-800.

MNote:
A colour TV set which has an RGB input terminal can also be connected to the RGB connector of
the MZ-800. Prepare the monitor cable as described in the instruction manual for the TV set.

1-8

(3) Using a green display unit (MZ-1D04)

Insert the pin plug of the green display unit cable into the composite signal output jack on the rear
panel of the MZ-800.

S —

—

Lf

Position the B/W-colour switch to B/W.

E¥=n

VIDEO

MNote:

A colour TV set with a video input terminal can be connected to the composite signal output jack
of the MZ-800. The monitor cable provided with the MZ-800 can be used for this connection.

1-9

1.5 In Case of Difficulty

If you have any problems with your MZ-800 either now or in the future, read this section first then
if mecessary contact your dealer.

The following table lists possible problems and checks you can make.

Problem Poinis to check

Image quality is poor. # [s the monitor cable connected correctly?

Is the selected TV channel the same as the channel control setting on the
MZ-8007 (See page 1-7.)

* Is the B/W-colour switch selected correctly?

Mothing is displayed. ® |5 the power switch of the display switched ON?

* Is the display unit power cable plugged into an AC outlet?

The program will not stop. * Tostop a BASIC program, press and hold the |_SH1_FT—| key, then press the
| BREAK | key.

* To stop a machine language program or the monitor program, press the
RESET switch on the rear panel.

The program cannot be loaded | » [s loading method for the program correct? The loading method differs
from the cassette. for machine language programs and BASIC programs. Use the monitor
L command to load a machine language program and the LOAD state-
ment to load a BASIC program.

Other problems * Press the RESET switch on the rear panel to restart MZ-800 operation.

1-10

Chapter 2 Start Up

2.1 Power-on

To start up your MZ-800 computer, first turn on the MZ-800, then turn on the display unit and any
other connected peripheral devices power switch.

Turn on the equipment in the following order.
1) The MZ-800 computer
2) The expansion unit (MZ-1U06)

3) Peripheral devices (such as the printer)

You will sce the following message on the screen of the display unit.

Make ready CMT
Please push key

C: Cassette tape
M: Monitor

Remove any slack from the cassette tape (see page 4-7). Press the | EJECT | button on the MZ-800 data
recorder, Then insert the cassette with the side marked **BASIC 1Z-016"" facing upwards.

Close the cassette compartment cover by hand. Press the key on the main keyboard. (Pressing the
|E] key starts the monitor. See Chapter 8.) The screen display will change as follows:

[Make ready CMT

Press the | PLAY | button on the data recorder. The screen display will change as follows:

(IPL is looking for a program

The following message is then displayed.

[IPL is loading MZ-12016

Wait for several minutes, then the following display will appear on the screen. The tape stops auto-

i

BASIC interpreter 1Z-016 VX. XX
Copyright (C) 1984 by SHARP CORP.

XXXXX bytes free
Ready

[
L Cursor (blinking)

This display indicates that the BASIC interpreter has been loaded into memory and the MZ-800 is
ready to accept BASIC commands. This display is called the *‘initial’’ frame.

2.2 Power-off

When you switch the MZ-800 off, all programs and data stored in memory will be lost. Therefore,
execute a SAVE operation prior to powering the computer off. (Chapter 3 describes how to save data
onto the cassette tape.) To power off the MZ-800,finish any BASIC operations you may have started,
then check the screen to make sure "*Ready” is displayed and the cursor is blinking. Switch OFF the

power switch.

Turn off the equipment in the following order.
1) Peripheral devices (such as the printer)

2) The expansion unit (MZ-1U06)

3) The MZ-800 computer

MNote:
Do not power off the MZ-800 while the data recorder is operating (turning).

2-3

2.3 Running the Demonstration Program

The cassette provided with your MZ-800 contains a demonstration program, which can be executed
by typing in the following after loading BASIC and advancing the tape until the counter reads 170.

RUN “CMT:"

When the screen display below appears:

RUN “CMT:"”
+ PLAY

Press the | PLAY | button.

The demonstration program will now be executed. To stop the program, press the and

BREAK | keys at the same time. Press the button after the tape has stopped.

Note:
The tape will still move after the demonstration program has started.

® Accessory Tape
The accessory tape which is provided with the computer contains the following files.

Side A
YMZ-1Z016"covvvvvnrnee... MEZ-800 BASIC Interpreter (12-016)
HSOPENING B00'.............. Demonstration program for MZ-800 BASIC
“OPENING DATA™ Data for demonstration program
Side A label " BASIC
_5\.‘
A
WAl SRS I
Side B
“S-BASIC™.....cooovnninnnnnnnn. MZ-700 BASIC Interpreter (1Z2-013)
“OPENING"
MUSIE [****** Demonstration programs for MZ-700 BASIC

“COLOR PLOTTER”"|

Side B label ‘BASIC -
12013 /T
! #L _\\Hl |
17 T
SHARPE. S £ 20

2-4

Chapter 3 Basic Operation

3.1 Imntroduction

Your MZ-800 has been encoded with a set of instructions that allow it to perform a variety of opera-
tions, such as accepting a command entered by you from the keyboard. This set of instructions is called
the monitor program or simply the *“monitor”’, and is stored in ROM (*). Any computer needs input
from a human being to know what operation to perform next. After you power on the MZ-800 the
monitor program makes the MZ-800 wait for you to input a command. Depending on the key you
press, the monitor allows you to perform one of the monitor commands, or reads a larger set of in-
structions from an external memory device, such as the data recorder, and places it in RAM (*).

*: ROM and RAM are memory devices which store information for the computer. The ROMs (Read
Only Memory) contain memory which can be read but cannot be changed or removed, even if the
power is turned off. The RAMs (Random Access Memory) however, contain memory which can
be both read and written. The MZ-800 uses ROM for storing the monitor program, and RAM for
temporarily storing the BASIC interpreter, BASIC programs and data, and other information. The
BASIC interpreter is explained in this chapter, while the monitor will be explained in detail in Chapter
8.

All the commands you input to your computer must be translated into the computer’s own language,
called machine language. Machine language consists of a collection of binary digits, which makes it
extremely difficult for most people to understand. Luckily however, you need not worry about learn-
ing to understand machine language, since the BASIC interpreter does this for you. BASIC is a “‘high-
level” language system which is similar to English and much easier for us as human beings to under-
stand than machine language. The BASIC interpreter reads instructions written by you in BASIC and
interprets them into the MZ-800's machine language.

If you press the key when the initial frame is displayed, the monitor loads the BASIC interpreter
into RAM from the cassette, the BASIC interpreter then begins operating. (‘‘Load’’ means that infor-
mation is read from one memory device, e.g., the cassette, and is placed in another memory device,
e.g., the RAM.) Instructions written in BASIC are called commands or statements. The BASIC inter-
preter displays the following frame after the BASIC interpreter has been loaded.

BASIC interpreter 1Z2-016 VY. XX
CopyrightiC) 1984 by SHARP CORP.

XK KX bytes free
Ready

[]
L (iinking)

This display indicates that you can use the computer interactively, i.e., when you type in a command,
the computer responds. If you type an incorrect command, the computer will answer with an error
message.

Each command evokes only one response from the computer, and multiple commands are difficult
to connect in a sequence. Because of this, you cannot get the computer to perform complicated opera-
tions in the interactive mode. The solution to enable the computer to perform complicated task, is
to write a program and store it in RAM. A program is a series of statements which are automatically
interpreted by the BASIC interpreter. A program which can be interpreted by the BASIC interpreter
is called a BASIC program.

3.2 Getting to Know the Keyboard

Follow the start-up procedure described in Section 2.1, vour MZ-800 is ready to accept commands
typed in from the kevboard.

-

BASIC interpreter 1Z-018 VX. XX
Copyright(C) 1984 by SHARF CORP.

KAX X Xbytes free
Ready
[
{blinking)

The blinking block-shaped marker you can see on the screen is called the cursor. When you press any
character key on the main keyboard, the cursor will move the right, with the typed character appearing
in the previous cursor position.

Press other character keys, and the characters will appear in the order in which you type them. The
cursor is always positioned to the immediate right of the character typed last. Next, press the key marked

““CR” located on the right side of the main keyboard. You will see the message ‘‘Syntax error’ ap-
pears on the next line.

-

BASIC interpreter 1Z2-016 VX. XX
Copyright(C) 1984 by SHARP CORP.

AXXXXbytes free
Ready
ASDFGJJ
Syntax error
Ready
m

The message ““‘Syntax error’’ indicates that the computer cannot understand what you have just typed.
This is because the computer only recognizes commands from the BASIC programming language.
(Remember the BASIC interpreter?). BASIC will be explained more fully in Chapter 6, while **Syntax
error’’ and other error messages are listed in Appendix L. At the moment, this and the following exer-
cises don’t require you to know anything about BASIC. Now, type the following sentence from the
main keyboard.

PRINT “ABC"

After the closing quotation mark, press the key. The characters *“ABC"" will appear below the
sentence you just typed. The computer displays these characters in reply to the BASIC command you
entered. The command was the word ““PRINT”’, which instructs the computer to redisplay the charac-
ters typed between the quotation marks.

Words in the BASIC language vocabulary which instruct the computer to perform an operation (such
as PRINT) are called commands or statements.

3-3

3.3 Writing a Simple Program

Start up the BASIC interpreter following the procedures described in Section 2.1.

-

BASIC interpreter 1Z-016 VX . XX
CopyrightiC)} 1984 by SHARP CORP.

XXX X Xbytes free
Ready
m
{blinking)

Type the following characters.

10 CLS

Press the key. CLS is a statement which erases all the characters from the screen. However, the
computer does not act on the statement immediately as in the interactive mode. This is because we
are now writing a program, which causes the BASIC interpreter to store the statement in memory rather
than execute it immediately. After you input the statement, the cursor blinks at the beginning of the
line below **10 CLS"" as shown below:

10 CLS
| |

When a number precedes a statement, the BASIC interpreter stores the statement in memory. The number
preceding the statement is called the line number, and when many statements are stored in memory,
the line numbers indicate the order in which the statements are interpreted and performed by the com-
puter. Type the following characters then press the key.

RUN
All characters will disappear from the screen. RUN is a command which orders the BASIC interpreter
to interpret into machine language instructions all the statements stored in memory. The statements

are interpreted in ascending order of the line numbers and given to the computer. The CLS statement
is still in memory. You check this by typing the following:

LIST (CR|

indicates the key has to be pressed. The following display appears:

LIST
10 CLS
Ready

3-4

Type in the following.

20 PRINT “SAMPLE PROGRAM’* | CR |
30 PRINT “MZ-800" CR|
40 END CR|

You already know that in this program the PRINT statement will redisplay the characters between
guotation marks in lines 20 and 30. The END statement informs the BASIC interpreter of the end
of program. Type in RUN and press the key, the screen will then reappear as shown below.

Note:

From now on, you will frequently see the phrase ““Enter a command or statement”’ (e.g., ““Enter the
RUN command’’). This actually means ‘“Type in a command or statement, and press the key".
You should remember this.

SAMPLE PROGRAM
MZ-800

Ready
[]

Enter the LIST command to display the whole program.

o~

SAMPLE PROGRAM

MZ-800

Ready

LIST

10 CLS

20 PRINT ““SAMPLE PROGRAM'’
30 PRINT “"MZ-800"

40 END

Ready

[|

Enter the following command.
NEW |CR|

Then clear the screen by entering the CLS statement.
CLS |CR

Now enter the LIST command.

LIST [CR]

3-5

The program can no longer be listed, since the NEW command erased the program from memory.
Entering the NEW command allows you to now write a new program in memory. Enter the following
program.

10 INPUT “A=""A
20 INPUT “B="";B
30C=A+B

40 PRINT “A+B="";C
50 END

This program will calculate the sum of the two values A and B input from the keyboard. Two new
statements are used in this program. These are the INPUT statement and the LET statement (LET
is represented by the equal ** ="' symbol on line 30).

The INPUT statement on line 10 reads whatever number (don’t type characters) you type in from the
keyboard and assigns it as the value of A. The INPUT statement on line 20 reads a second number
typed in from the keyboard and assigns it as the value of B. The LET statement on line 30 calculates
the sum of values A and B and assigns the result as the value of C. At the moment in our program,
the letters A, B, and C each represent a numeric value. When letters of the alphabet are assigned values
like this, they are called “*variables’’. Enter the RUN command after typing in the above program.
The screen will change as follows:

10 INPUT “A=""A
20 INPUT “B="";B
30C=A+B

40 PRINT “A+B="",C
50 END

RUN [CA]
A=

Type in any number and press the key. The message ““B="" will be displayed following the above.
A=35/[CR]
B=

Type in another number and press the key. The sum of A and B will now be displayed as fol-
lows.

A=35
B=23|CR
A+B= 58

The program shown here is very simple. If you like, you can write your own programs by combining
some of the commands and statements which are explained in Chapter 6.

You may be confused by the words **statement’ and “*command”’. Both commands and statements
control operation of the computer. The distinction between commands and statements is thatcommands
are generally entered without line numbers and are executed immediately after they are entered. State-
ments however, are included in a program and are only executed when the program is started by the
RUN command.

In practice, most commands and statements can be used both with or without line numbers, so the
distinction between them is more traditional than qualitative.

3-6

3.4 Editing Programs

The BASIC interpreter makes it possible for you to edit a program which is in memory. Therefore,
if you type in any incorrect character during programming, you can correct it easily.

You can edit any portion of a program when that part of the program is displayed on the screen. The
program can be displayed by the LIST command. The cursor can be moved in any direction by the
cursor control keys (marked with arrows) you can change or delete the character in the same location
as the cursor, or insert characters before the character in the same location as the cursor.

The keys which allow you to edit programs are as follows.

: Moves the cursor one character position right.
: Moves the cursor one character position left,

: Moves the cursor one line up.
: Moves the cursor one line down.

: Moves the character on which the cursor is located and all characters following it on the same
line to the right by one character position, and inserts a space at the cursor position. This
makes it possible to insert any character at the cursor position. To insert more than one charac-
ter, press the key the required number of times,

If the end of a program line reaches the right end of the display while inserting blanks with
thl: key, you cannot insert any more blanks. In this case, press the key and
execute the LIST command. The new program listing will include a row of blanks following
the line, allowing you to insert more blanks.

: Deletes the character at the location to the left of the cursor position and moves all characters
following it on the same line to the left by one character position.

|SHIFT | + |INST|(CLR)

: Clears the screen. (*‘ [SHIFT| + [INST|” is another way of saying ‘‘press and hold the
SHIFT[kcy, then press the [INST | key™'.)
|SHIFT | + |DEL | (HOME)
: Moves the cursor to the upper left corner of the screen.

Type in again the program shown in Section 3.3, but with the following intentional mistakes:

10 CLS

20 PRINT ""SIMPLE PROGRAM"
30 PINTT “MZ-800"

40 END

To edit and correct the above program, the program must be listed on the screen. To do this, execute
the LIST command.

(1) Replacing a letier
SIMPLE on line 20 should read SAMPLE. Move the cursor to the position of character [by using

the cursor control keys, then press the key. After changing I to A, press the key, and the
cursor will be returned to the beginning of line 30.

(2) Inserting a letter

Move the cursor to I in PINTT and press the key. Press the @ key to insert R between the
characters P and I.

(3) Deleting a letter
Move the cursor to the second T in PRINTT and press the key to delete it.
Press the key, and the cursor will move to the beginning of line 40.

37

(4) Adding a line
A new line can be added to any portion of the program. For instance, if we want to insert a line be-
tween line 10 and line 20, move the cursor to the beginning of the new line below line 40. Type “‘15

REM Editing sample

10 CLS

20 PRINT ““SAMPLE PROGRAM"
30 PRINT “*MZ-800"

40 END

15 REM Editing sample

You may have noticed that until we added line 15, all the line numbers have been in increments of
10. There is no real technical reason for doing this other than the fact that increments of 10 leave space
for extra lines to be inserted if you want to change the program later on, and increments of 10 are
easy to remember. With this in mind, line number 15 could have just as easily been any other number
between 11 and 19 inclusive, but **15" is convenient since it still allows even further lines to be added
if later program changes are made.

Enter the CLS command, then enter the LIST command to confirm that the new line is now inserted
between lines 10 and 20.

LIST

10 CLS

15 REM Editing sample

20 PRINT "“"SAMPLE PROGRAM"’
30 PRINT ““MZ-800""

40 END

(5) Deleting lines
Any program line can be deleted by using the DELETE command. To delete lines 15 and 20, type:

DELETE 15— 20
Enter the LIST command. The program listing should appear as follows:

10 CLS
30 PRINT ““MZ-800"
40 END

Typing a line number and pressing the [CR | key also deletes the line.

(6) Renumbering
Enter the RENUM command to return all the line numbers to increments of 10. (RENUM can also
be specified to increment the line numbers by any other value.)

HENU

LIST

10 CLS

20 PRINT “"MZ-800""

30 END

3-8

(7) AUTO command

The AUTO command is a convenient feature which allows the computer to automatically generate/
line numbers for you, in increments of 10 or the specified value. For details, see Chapter 6.

Remember to press the key after you finish editing each line; otherwise the editing changes
for that line will not be entered into memory. Secondly, make sure that you move the cursor to the
line below the last line of the program before typing RUN.

3.5 Saving a Program

When vou turn the power switch off, any programs you may have typed will be lost. To reuse a pro-
gram in a later session, you must save it onto any external storage device such as a cassette. The proce-

dure for saving a program onto a cassette is described below.

* Using a new cassette:

1) Open the cassette compartment cover on the MZ-800 and insert the cassette. Close the cover, then
press the counter reset button to reset the counter to ‘000",

Counter reset button

2) Type the following.
SAVE "'CMT:TEST"

This command instructs the computer to save the program in memory onto the cassette in the data
recorder (the data recorder is indicated in the SAVE statement by CMT:). The program is saved
with the name “TEST”.

3) The next message to be displayed is ““ # RECORD.PLAY"'. When you see this message, press the
button.

4) When the message ‘““Ready’’ appears on the screen and the tape stops, press the | STOP | button, Write
down the program name ““TEST"" and the counter value at the end of the program on the cassette
label.

* Using a cassetie which contains programs:

When using a cassette which already contains programs, the counter value for the end of the program
preceding the program you want to save must be known; otherwise your new program may become
lost somewhere on the tape.

1) Insert the cassette into the data recorder and rewind the tape by pressing the | REWIND | button.

2) Press the counter reset button to reset the counter to “‘000°°.

3-10

3) Press the button. Stop the tape by pressing the | STOP | button when the counter value for
the end of the preceding program nears.

4) Press the button to begin saving the program onto the cassette.

5) Perform steps 2 to 4 of the procedures described above for a new cassette.

6) When the program has been saved, note down the counter value, then run the tape an extra 2 or
3 counter revolutions and press the button. When saving programs onto a cassette with exist-

ing programs, there is a possibility that the existing programs may be destroyed when the above
procedures are performed. Therefore, it is recommended that you use a new cassette to save a program.

3-11

3.6 Loading a Program

The cassette provided with your computer contains a demonstration program, and vou can also pur-
chase commercially available programs. To use these programs, plus ones you may have written, you
must load them off the cassette and into the computer’s memory. The procedure for loading program
is described below,

1) Insert the cassette which contains the program into the data recorder. Rewind the tape to the coun-
ter value of the program preceding the program you want if necessary.
2) Enter the following command to load the program into memory.
LOAD “CMT: <name of program>"'
For example, to load the program ““TEST",

LOAD “CMT:TEST"

3) When the message “* #PLAY"’ appears, press the | PLAY |button on the data recorder.

4) Press the button when the tape stops.

5) To execute the program ‘“TEST’’ now that it has been loaded, enter the RUN command when the
message “*Ready” is displayed on the screen.

Ready

RUN

3-12

Chapter 4 Keyboard and Data
Recorder

4.1 Keyboard

4.1.1 Keyboard modes
The MZ-800 keyboard operates in one of the following modes:

e Normal mode: Normally used to input the alphabetic characters, numbers and symbols. This mode
is automatically set when the BASIC interpreter is started or the MZ-800 is reset.
e Shift lock mode: In this mode, all keys excepting q through [F5 | operate in the SHIFT mode. This
mode is entered when |SHIFT | + |ALPHA |is pressed. Pressing +

again resets the shift lock mode.

* Graphics mode: Used to input special graphic characters.

Three types of cursor are used to indicate the current keyboard mode.

B : Normal mode cursor
@ : Shift lock mode cursor
__ ¢ Graphics mode cursor

4.1.2 Keys

The keyboard has many keys and their functions are as follows:

10 00 O O 0 O TR

Space bar

42

(1) Character keys
These keys are used to input letters, numerals and graphic characters.

Some character keys are marked with two different characters. These characters are input when the key
is pressed in each of the input modes described above.

ﬂ'._'i‘-_u.‘

MNormal mode character
E| . sgn
+[3]: “#”

A

Graphics mode characters

EIEN |

In the normal mode: when a character key is pressed, either the uppercase type for the letter marked
on the keytop or the lower character on the keytop is input. When the character key is pressed together
with the key, either the lowercase type for the letter marked on the keytop or the upper character
on the keytop is input.

In the graphics mode: each character key can be used to input either of two different graphic charac-
ters. When a character key is pressed by itself, the graphic character which is input is that shown on
the left side of the corresponding keytop in the figure below. When it is pressed together with the
key, the graphic character which is input is that shown on the right side of the keytop in the figure.

Pressing [1 |,[=1,[=],[1], [CLR] or [HOME] in this mode inputs [l . Sl . 151 . 1 . & or [.

DqﬂmuﬁﬂﬂDBE@EEE@EEBDEGE@EE
0o|zs|ss/pojoojonpajnojosErNEEn[ze)
v#wawolomzaodea=eorygonEo
AL e VAl T e s P AN T By

These graphic symbols are not printed on the keys. However, adhesive labels on which graphic sym-
bols are printed are included with the MZ-800. You may find it convenient to stick the labels to the
front of each key, as shown in the two figures.

(2) Special keys
These keys are used to control the computer and set the input mode for the character keys. The special

keys are shaded in the figure below.

I A

| s)
22 L]
:.:?' -{_{f‘f{? :.-1' 5 o, 7 e ¥ 7 W ¥ o e 7 vjy “ffy Al
/800 QDRDRREE 7
?:_r'-" f{i? / ry \ ¥ v ; = By ,
w =

The functions of the special keys are as follows.

CR : This key is used to enter the line containing the cursor into the computer. Although characters
typed by the character keys are displayed on the screen, the computer ignores them until the

key is pressed.

SHIFT | : This key operates keys in the shift mode while it is being held down.
GRAPH | : Pressing this key switches the keyboard to the graphics mode.
ALPHA | : Pressing this key returns the keyboard to the normal mode.

BREAK | . This key is used to input an ESC code.

+ [BREAK
ESC

: These keys are used to stop a program during execution or to stop cassette operation.
: Advances the cursor to the next tab stop position on the display screen.

CTRL | : Pressing a character key while this key is being held down will enter a control code. For
details of the control codes, see Appendix D.

L
] = | [e I

(3) Editing keys
The editing keys are used for making additions, changes, or deletions in programs. These are keys
located on the right-hand side of the computer. See Section 3.4 for the function of each key.

(4) Definable keys

lim =] 1) e
[’n [2 JI[8 JI[kM W_J]]

Immediately after the BASIC interpreter has started operating, the following functions are assigned
to the definable keys. You can change the functions of these keys by using DEFKEY statement. See
Chatper 6.

“RUN s + CHR$ (13)
: LIST L

F3] : “"AUTOL"

“RENUM "

: “r.:m.unu

: “CHR$("

: DEF _KEY("

: “CONT"

: “SAVE,, "

= LORD

CEEEE

n
e
=

H

w|[w][en
Il || x
HHH
|||
+ + + + +

w
T
5
)

Note:
CHRS (13) is the code for the key and “‘_’" represents a space.

* Installing definable key labels

You may find it convenient to insert the labels provided for the definable keys on which you write
the assigned characters into the label holders located above the definable keys.

The labels can be inserted into this holder by pulling open the transparent label cover.

(5) Auto repeat function

The auto repeat function causes input from the last key pressed to be repeated if that key is held down
longer than a certain period. The keys for which the auto repeat function is effective are those shaded
in the figure below.

x./ G, ; 7 Ty _’.
,.-)‘"_/” ’/)‘Méﬁééif 7 W
fff.f v"j_}}ff -W'E-' e jKﬁ %:ﬁ,ﬁf S /f{, fyj}y
7

o f Wy / P |l' s ;

;ﬂ%g Eﬁﬁ(,ﬁ:;‘%{f’ff:; 7 ?:’4} ?}/jﬁﬁff%ﬁi é: ;5?”&;;;% %ﬁ Vﬂ“
f{ ’-‘.fz/'”ffﬂ%/ﬁ: }/{ i ?”I’f% i /”/ff}f %%35;4!?#).:ff
) *w”ww iy ’w 0 .f;f*w,/,. " -,w;f;ﬁf;mw i
lowrry f{;’; / ff;fw} I 5;54@%) s)

.rr.w/ "

‘-

\.

\
q

4-5

4.2 Data Recorder

1) Hardware
The MZ-800 is equipped with a data recorder.

R pennAr
e
i

.-';E/f!fjr_ ..ff..".?, /’f

The function of each button is as follows.

PLAY : Pressing this button plays the tape, to load a program or data from the cassette into
Memory.

RECORD | : Pressing this button saves a program or data from memory onto the cassette.
: Pressing this button fast forwards the tape.
REWIND | : Pressing this button rewinds the tape.

STOP/EJECT | : Pressing this button stops the tape or ejects the tape when it is at a stop.
Counter reset button :
Pressing this button resets the counter to **000"",

Note:
Th¢|FFWD and | REWIND | buttons are not automatically released when the tape end is reached. Be
sure to press the |STOP | button when the tape end is reached.

2) Tape handling
* Any commercially available cassette tape can be used with the MZ-800. However, it is recommend-

ed that you use quality cassette tape produced by a reliable manufacturer.
* Use normal type tapes.

* Avoid using C-120 type cassette tapes.
* Use of C-60 or shorter cassette tapes is recommended.

* Be sure to remove slack from the tape by using a pencil or similar object before inserting the tape
into the data recorder.

Slack

Slack

» Keep a record of the program name and the counter values for the beginning and end of each pro-
gram after it has been saved.

* Do not store cassetie tapes near a TV set or speaker system which generates a magnetic field.

e Protecting programs./data from accidental erasure
To prevent data from being accidentally erased, remove the record lock-out tab from the cassette with

a screwdriver or similar object. This will then make it impossible for the button to be pressed
accidentally, thereby preventing erasure of valuable data or programs.

Remove the record lock-out tab
with a screwdriver,

Tab for side A

Tab for side B

4-7

Chapter S Programming Concepts

This chapter describes fundamental concepts which will allow you to program the MZ-800 in BASIC.
The information included in this chapter is essential to realizing the full potential of BASIC.

5.1 Multi-statement Lines and Line Numbers

As described in Chapter 3, a program consists of one or more program lines. Although each line of
the examples in Chapter 3 contains only one statement, a program line can contain two or more state-
ments, providing each statement is separated from each other by a colon (:). A program line which
contains two or more statements is called a multi-statement line.

Example:
10 CLS:PRINT “"MULTI=STATEMENT'":END

Each program line begins with a line number. Line numbers can be any number between 1 and 65535.
It is not necessary to specify line numbers consecutively, in fact, it is advisable to assign line numbers
in increments of ten so that you can insert additional lines during program editing.

5.2 Numeric Data and String Data

Data handled by the computer is categorized into numeric data and string data. Broadly speaking,
numeric data represents quantity or magnitude, whereas string data represents characters.

(1) Numeric data

The MZ-800 BASIC allows you to use numeric data in either decimal or hexadecimal notation. However,
data in either notation is converted to binary form by the computer so that it can be stored in memory
or used for calculations.

Decimal notation is probably the most familiar numbering system to you, and uses numerals from 0 to 9.
Hexadecimal notation uses numerals from 0 to 9, then characters A to F to represent the values from
10 to 15. With this system, the number of significant digits required to express numbers increases by
one each time the magnitude of the number being expressed increases by a factor of 16, Hexadecimal
numbers are indicated by prefixing ““$"" to the character as follows.

$41=4x16'+1x 16"=65
$FA=15%x16"+10x 16°=250

Complements result for hexadecimal numbers greater than $7FFF.
For example, value resulting from $8000 is — 32768 and that resulting from $FFFF is — 1.

(2) Siring data

All characters are represented by numeric codes in the computer. These numeric codes are based on
the ASCII code system. In this system, characters are represented by the numbers 0 to 255 or $00 to
SFF. For example, the character ““A" is represented by 65 (decimal) or $41 (hexadecimal).

5-3

5.3 Constants

(1) Numeric constants

MNumeric constants are positive or negative numbers. They can be represented in either their ordinary
form or an exponential form. Numeric constants must lie within the range 107® to 10°® (1E—38 to
1.7014118E + 38), and the maximum number of significant digits is 8. If the value of a constant is out
of the range, the result of operation is not assured.

Ordinary integers and decimal numbers are represented in their normal form as follows.

123

-123.4

+12

The ““+' sign may be omitted for positive numbers.

Very large or small numbers are represented in the exponential form. In this form, a number is represented

by a number representing the mantissa, E, and a number representing the exponent. Use of “E" in
the exponential form is shown below.

1.23E+2

This represents 1.23 x 10x 10= 123

-1.2E=-1

This represents — 1.2+ 10= =0.12

The **+'* sign may be omitted for positive numbers. The mantissa must be less than 10 and greater
than — 10 and the exponent must be an integer between —38 and + 38.

(2) String constants

A string constant is a set of characters enclosed in quotation marks (** '). The maximum number
of characters in a string constant depends on the effective line length, but the total maximum number
of characters of string data permitted is 255. Examples of string constants are as follows.

iJAECIJ
12345
““MZ-800""

Note:
Quotation marks are not required in DATA statements. (See Chapter 6.)

5-4

5.4 Variables

Variables are locations in memory which are used to hold values during program execution. You must
give a specific name to each variable when writing a program. Values held by these variables may be
arbitrarily changed during program execution.

There are three types of variables handled by MZ-800 BASIC: numeric variables, string variables and
system variables.

(1) Numeric variables

Numeric variables can hold only numeric data. The name of each variable may be composed of any
number of characters, but only the first two characters actually identify the variable. For example,
AB and XYZ are different variables, but ABC and ABD are handled as the same variable.
Lowercase letters cannot be used for variable names.

The first character must be a letter from A to Z, but the second and the following characters may
be any letter of the alphabet or numbers; however, special characters such as @ and # cannot be used.
No reserved words (see Appendix C.) may be used as the names of a variable. For example, PRINT
and C@ cannot be used as the names of variables.

Each numeric variable contains 0 until some value is given.

(2) String variables

A string variable can hold only string data, and its name can be assigned in the same manner and with
the same limitations as the name of a numeric variable. The only difference is that it is always followed
by a dollar sign ().

Each string variable may contain a maximum of 255 characters of string data. Each string variable
includes only null characters until some stirng data is given.

(3) System variables
There are special variables called system variables, which are defined and used by the BASIC inter-
preter. The following table lists the system variables.

System variable Explanation

TIS Contains a 6-digit number which is the time from a 24-hour built-in clock.
For example, the value ‘*192035"" indicates that the clock reads 19:20:35.
The clock is always set to 00:00:00 when the power is turned on.

SIZE Indicates the amount of free memory area which can be used for BASIC programs and
data.

ERN When an error occurs, this variable contains the corresponding error number.

ERL When an error occurs, this variable contains the line number of the error.

CSRH Contains the column position at which the cursor is located.

0=CSRH =39 (40 column screen mode)
0=CSRH =79 (80 column screen mode)

CSRY Contains the line number at which the cursor is located.
0=CSRV=24
POSH Contains the X-coordinate of the graphics position pointer.
— 16384 = POSH = 16383
POSY Contains the Y-coordinate of the graphics position pointer.
— 16384 = POSV = 16383

5-5

5.5 Array Variables

An array is an arrangement of variables of the same data type, which are referred to by a common
name. Each variable of an array is identified by the common name, which is composed of a string
formed in the same manner as a variable name and followed by subscripts enclosed within parenthese,
e.g., A(X) and B$(x,y). An array with one subscript (such as A(X), B$(1) or P(100)) is called a one-
dimensional array, while that with two subscripts (such as A(x,y), B$(1,3) or P(50,25)) is called a two-
dimensional array. To use array variables in a program, the common name and the number of varia-
bles included in the array must be declared before they are used. For details see the explanation of
the DIM statement in Chapter 6.

e Note Concerning Computational Error

Computational error must always be taken into consideration whenever a computer is used,
The reason for this is that, although computational error can be reduced by increasing the number
of digits of numerical data which are handled, not even a computer can handle an infinite number
of digits. Further, the more digits are involved in any given calculation, the greater the amount
of time which is involved in completing it.

Therefore, it is important to be aware of the sources of error and to construct programs so
that error is minimized. (For example, use the sequence **5%6/3" instead of *“5/3%6".)

Take the following into account when doing calculations in BASIC (1Z016) for the MZ-800.

(1) Rounding error

Rounding error is the error which results when the number of digits to the right of the decimal
place exceed the number of effective digits which can be handled. For example, when the num-
ber 2/3 is calculated, the true result is 0.666666666. . . (where the number of 6s is infinite).
However, if the number of effective digits is 8, the result will be rounded to 0.66666667.

(2) Error resulting upon conversion to binary form

Although numbers are ordinarily input in decimal format, they are internally converted to bi-
nary form for calculation.

According, a binary number with an infinite number of digits may result upon conversion even
if the original decimal number only has a few digits. For example, when the decimal number
0.1 is converted to binary form, the result is 0.00011001100. . . . Since this must be rounded
for calculation, a certain amount of error results.

(3) Increase in relative error due to subtraction

When one number is subtracted from another, the relative size of the error in the result will
be greater than that in the original numbers. This is illustrated in the example below, where
the digits which include error are marked with a dot (.). An error of +1 in the number 100012
corresponds to an error percentage of about 0.001%; however, relative error is much greater
after subtraction, since 11 +1 corresponds to a relative error of about 10%.

100012
—1100001
11

{4) Error due to approximation

With a computer, exponentiation, trigonometric calculations, and logarithmic calculations are
done using approximation; in consequence, a certain amount of approximation error results
when such calculations are done.

5-6

5.6 Expressions

An expression is any combination of variables and constants which is combined with operators. Oper-

ators are symbols which perform mathematical or logical operations. The types of expressions han-
dled by the MZ-800 BASIC are as follows.

Arithmetic expressions
String connective expressions
Relational expressions
Logical expressions

(1) Arithmetic expressions

An arithmetic expression consists of arithmetic operators, numeric constants, numeric variables and
numeric functions. It calculates a numeric value from an operation(s) performed by the operator. (The
numeric functions will be explained later in this chapter.)

The table below lists the arithmetic operators arranged in order of operational priority.

Arithmetic operator Operation Example
() Gives the highest priority to enclose operations. X + Y)
t Creates an exponentiatial value X1Y
- Converts the sign of a value -X
*, / Multiplication, devision X=Y X/Y
+, - Addition, subtraction X+Y.X-Y

When an arithmetic expression includes operations of the same priority, they are performed in sequence
from left to right.

(2) String connective expressions

String connective expressions are used to combine two or more data strings into a single string. A string
connective expression consists of string constants, string variables, string functions and the operator
4" (The string function will be explained later in this chapter.)

Example:
CABCT +VDERT tiiiiain “ABCDEF"”
JIAJJ +"B'-+"'l:"_,‘.._.,,,,.“‘, (‘ABC'I!

(3) Relational expressions

Relational expressions are used to compare two values and ascribe a logical value of either true (—1)
or false (0) to the expression according to the result of the comparison. The result is used to make
a decision regarding subsequent program flow. A relational expression can consist of constants, varia-
bles, arithmetic expressions, string connective expressions and relational operators.

The table below lists the relational operators.

Operator Comparison Example

= Equal to X=Y

< Less than X<Y

= Greater than X=Y
< =, =< | Less than or equal to X<=Y, X==<¥
>=, => | Greater than or equal to | X>=, X=>Y
<>, =< | Not equal to X<>Y, X><¥

Note:

The relational values of character data are based on the characters’ ASCII codes.

(4) Logical expressions

A logical expression expresses the Boolean sum or product of true or false values (=1 or 0)
given by relational expressions. A logical expression is formed of logical values, relational ex-
pressions and logical operators. The following table lists the logical operators.

Operator Meaning Example
NOT Logical negation NOT X
AND Logical product X AND Y

OR Logical sum XoORY
XOR Exclusive OR XoXOR Y
Note:

Spaces indicated by .. must be included.

3-8

5.7 Files

A file is a program or a set of data which is output to or input from a peripheral device (such as a
data recorder). A file is identified by a file descriptor, which consists of a name (called the file name)
preceded by the name of the peripheral device (called the device name).

" < device name >:<file name>""

For example:
CMT:DEMO ...oeevvnverrnrnrnns The file named DEMO is output to or input from the data recorder.
RAM:TEST..oicoviansvvusnnives The file named TEST is output to or input from the RAM file board.

(1) File name
A file name can consist of up to 16 alphanumeric characters.

(2) Device name
The following table lists the device names which are used by the MZ-800 BASIC.

Device name Device
CMT: Data recorder
RAM: Optional RAM file board
CRT: Display device
LPT: Printer
RS51:)
RS2: RS5-232C interface ports

5-9

5.8 Functions

(1) Numeric functions
Mumerical functions such as SIN and COS perform arithmetic operations on given numeric expres-

sions then return the result. The MZ-800 is provided with the following numerical functions.

ABS(X) — Absolute value
Returns the absolute value of numeric expression X.
Example: A=ABS(X). When X=29, A=2.9; when X=-5.5, A=5.5.

SGN(X) — Sign

Returns 1, — 1, or 0 according to whether numeric value X is greater than, less than, or equal to 0,
respectively.

Example: A=5GN(X). When X=0.4, A=1; when X=-1.2, A=-1.

INT(X) — Integer
Returns the largest integer which is less than or equal to X.
Example: A =INT(X). When X=3.87, A=3; when X=0.6, A=0; when X=-3.87, A=—4.

SQR(X) — Square root
Returns the square root of X. The value specified for X must be greater than or equal to 0.
Example: A=SQR(X). When X=4, A=2,

EXP(X) — Exponential
Returns the value of the natural base e to the power of X.
Example: A=EXP(X)

Trigonometric Functions

SIN(X)

Returns the sine of X, where X is an angle in radians.

Use the following expression to obtain the sine of an angle in degrees.
SIN (X +x/180)

Example: A =SIN(X)

COS(X)

Returns the cosine of X, where X is an angle in radians.

Use the following expression to obtain the cosine of an angle in degrees.
COS (X * x/180)

Example: A=COS (X)

TAN(X)

Returns the tangent of X, where X is an angle in radians.

Use the following expression to obtain the tangent of an angle in degrees.
TAN (X = x/180)

Example: A=TAN(X)

ATN(X)

Returns the arc tangent of X in radians. The value returned is within the range —x/2 to #/2.
Use the following expression to obtain the arc tangent of X in degrees.

ATN (X)* 180/w

Example: A=ATN(X)

5-10

LOG(X) — Common logarithm

Returns the common logarithm of X (log;eX), where X must be greater than 0.
Example: A=LOG(X)

LN(X) — Natural logarithm
Returns the natural logarithm of X (log.X), where X must be greater than 0.
Example: A =LN(X)

PAI(X) — Circular constant

Returns the value which is X times pi.
(PAI(1)=7=13.1415927)

Example: A=PAI(X) or A=x*X

RAD(X) — Radian
Converts the numeric value X from degrees into a value in radians.
Example: A=RAD(X)

(2) Character functions
A character function processes character strings. The MZ-800 BASIC supports the following charac-
ter functions. In the examples below, character variable A$ contains the character string ““ABCDEFG"'.

LEFTS(x$,n)

x$: character string

n: numeric value (from 0 to 255)
Returns a string consisting of the left n characters of string X$.
Example: BS = LEFT$(A$,2) produces string “*AB”’

MIDS$(x$,m,n)

x$: character string

m: numeric value from 1 to 255

n: numeric value from 0 to 255
Returns a string consisting of n characters following the mth character from the beginning of string x§.
Example: BS =MID$(AS,3,3) produces string ‘“CDE™.

RIGHTS(xS$,n)
x8: character string
n: numeric value (from 0 to 255)
Returns a string consisting of the right n characters of string x$.
Example: BS =RIGHTS$(AS,2) returns a string consisting of the right 2 characters of string A$. There-
fore, variable BE is returned as the string “'FG"".

Functions used with the PRINT statement

TARB(n)
n: numeric value

Moves the cursor to the (n+ 1)th character position from the left end of the current line.
This function is ignored when n is less than the current cursor location.
Example: PRINT “A’":;TAB(3);**ABC"

A ABC

0123 435 + column positions which are not displayed.

String ‘ABC’ is displayed from column 3.

3-11

SPCin)
n: numeric value
Returns a string of successive spaces, the length of which is expressed by n.,
Example: PRINT “A":SPC(3);"*ABC"
A ABC
0 123456 + column positions which are not displayed.

[

3 spaces

(3) Numeric value/character string conversion functions
The following functions convert a numeric expression into a character string or vice versa.

STRS(n)
n: numeric value
Converts numeric value n into a character string.
(A hexadecimal value is preceded by $.)
Examples: A$=STR$(-12)
The character string ““ — 12" is returned as AS.
B$=STR$(70%33)
The character string ““2310"" is returned as BS.
C$ = STR$(1200000 * 5000)
The character string **6E + 09" is returned as C§.
Note:
A positive integer displayed or printed is preceded by a single space which indicates that the plus sign
(+) is valid but has been omitted. However, this space is deleted when the integer is converted into
a string by the STRS function.

VAL(xS$)
x%: character string
Converts a character string into a numeric value.
Example: A=VAL (**123"")
The string “*123"" is converted into the numeric value 123.
A=VAL (“SFF")

A string ““$FF" is converted into the numeric value 255.

ASC(x$)
x$: character string
Returns the numeric value which is the ASCII code for the first character of string X8§.
Examples: X =ASC(*A"")
Returns the numeric value 65, which is the ASCII code for character “*A’’.
Y =ASC(**SHARP")
Returns the numeric value 83, which is the ASCII code for the first character of
the string “SHARP",

5-12

CHRS(n)
n: numeric value (greater than 32)
Returns the character whose ASCII code is integer expression n.
When a space is to be displayed, use PRINT “_."" or PRINT SPC(1).
Examples: A$=CHRS(65)
Returns “‘A’", which has an ASCII code of 65.
PRINT CHRE(107)
Displays the graphics character “E”, which has an ASCII code of 107. Multiple
ASCII codes can be specified as follows:
A% = CHRS§(65,66,67,68)

LEN(xS)
x$: character string
Returns the number of characters in string x3.
Example: A=LEN("ABC"")
Returns the number 3, which is the number of characters in string ““ABC"".

(4) Random number functions

RNDi(n)
n: numeric value
This function returns a pseudo random number for a given numeric value,

* Pseudo random numbers are generated from values between 0.00000001 and 0.99999999,

* When the numeric value specified is greater than 0, the function gives the next pseudo-random number
in the current sequence.

When the numeric value is less than or equal to 0, RND generates a new pseudo-random number
set whose initial value is determined by the value specified for X, and gives the first number of
the new set. This makes an operation such as a simulation with random numbers repetitive.

Example:
To generate a random number which is an integer from N to M, use the following formula:

INT(RND(X) % (M—N+ 1} +N)

The following program draws a number of circles. The radius of the circles and the coodinates are
given by the random number.

10 FOR A=1TO 100
20 B=RND(1)* 320
30 C=RND(1)* 200
40 D=RND(1)*= 100
B0 E=INTIRND(1)* 4}
60 CIRCLE [E,0|B,C.,D
70 NEXT A

80 END

(5) Joystick functions

STICK(f)

f: numeric value

Returns an integer from 1 to 8 which indicates the state of the joystick lever or the cursor control keys
on the keyboard. The numeric value f specifies the device from which the data is read, as shown below.

0: Cursor contorl keys of the keyboard

1: Joystick 1

2: Joystick 2
The relationship between the integer and the direction in which the joystick lever is pushed (or the
cursor control keys are pressed) is as follows:

K
7€ >3 = —]s
g

4 —

B
' 5

Cursor control key

When the keyboard is selected by specifying 0 as f, integers 2, 4, 6, and 8 are returned when two cursor
control keys are pressed at the same time, as shown below.

|

2: [1] and [=]
4: || and
6: [L] and [<]
8: [«] and [1]
STRIG(f)

f: numeric value
Returns an integer 0 or 1 which indicates the state of the joystick button or the space bar on the key-
board. When the space bar on the keyboard or the joystick button is pressed, 1 is returned and when
they are not pressed, 0 is returned. The integer value f specifies the device as follows:
0: Keyboard space bar
1: Joystick 1 button
2: Joystick 2 button

The following program uses STICK and STRIG functions. It draws a vertical, horizontal or inclinded
line when a cursor key is pressed, and clears the screen when the space bar is pressed.

5-14

10 INIT “CRT:M1"*

20 A =STICK(0):B=STRIG(0)
30 ON A GOSUB 200,300,400,500,600,700,800,900
40 IF X<0 THEN X=0

50 IF X>319 THEN X=319
60 IF ¥Y<0O THEN Y =0

70 IF ¥Y>199 THEN Y=199
80 SET XY

90 IFB=1 GOTO 10

100 GOTO 20

200 Y=Y — 1:RETURN

300 X=X+1:¥=Y - 1:RETURN
400 X =X+ 1:RETURN

500 X=X +1:Y=Y + 1:RETURN
600 Y =Y + 1:RETURN

700 X=X-1 Y=Y+ T:RETURN
800 X=X —1:RETURN

900 X=X-1:¥=Y - 1:RETURN

5-13

5.9 Screen Coordinates

Screen coordinates are used to specify the screen position in which characters and graphic data are
to be displayed by display commands. Such coordinates are expressed in terms of a horizontal position
and a vertical position. Character display positions are specified using character coordinates, and graphic
display positions are specified using graphic coordinates.

* Character coordinates

(0.0} (39,00 0.0 (79,00

10,24) {39, 24) 10,24) [79,24)
With 40 character line mode With 80 character line mode

®* Graphic coordinates

(0,00 218,00 (0,0 (639,0)

10,199) 319,189) {0,199) (639,199}
320 x 200 mode 640 = 200 mode

The ranges of both character coordinates and graphic coordinates vary according to mode. The mode
is specified with the INIT command.

Chapter 6 MZ-800 BASIC Commands
and Statements

This chapter explains the MZ-800 BASIC (1Z-016) commands and statements. These commands and
statements are functionally divided into the following eight groups.

#® Fundamental commands

* Fundamental statements

* File control statements

® Graphics statements

* Music control statements

* Printer control statements

* Machine language control statements
Error processing statements.

The commands and statements for the MZ-700 mode are summarized in Chapter 9.

Format MNotations
The following rules apply to specification of commands, statements, and functions.

Angle brackets **< >"" indicate items which must be specified by the user.
Items in square brackets *‘[]’* are optional.

Items in { } are mutually exclusive; and only one of the items shown can be included when the state-
ment is executed.

... indicates that the item preceding ... may be specified repeatedly.

6.1 Commands

AUTO

| Format J AUTO [<starting line number >][, < increment >]

] Abbreviated Format |
A.

| Explanation | The AUTO command automatically generates program line numbers during entry
of BASIC program statements.
The default setting of both parameters is 10.

[Example | (Example 1)
AUTO [CR]]
10 i
)3 _CR |
M CR
(Example 2)
AUTO 300,5 [CR]
A0 sl | CR |
305 [crl
;U PR

Example 2 automatically generates program line numbers, incrementing by 5 start-
ing at line 300.

{(Example 3)

AUTO 100

100 CR |

;' pR— [CR |

120

Example 3 generates program line numbers with an increment of 10, starting at line
100.

(Example 4)

AUTO, 20

10 ...

2 v T

1o (R

Example 4 generates program line numbers with an increment of 20, starting at line 10.
Note:

The AUTO command is terminated by pressing [SHIFT] and [BREAK] .

6-3

DELETE

| Format I DELETE [<starting line number> [—] <ending line number>]
DELETE <line number >

[Abbreviated Format |

D.
[Explanation r Deletes program lines from < starting line Inumber > to <ending line number > .
| Example | DELETE 150—350[CR]..... Deletes all program lines from 150 to 350.
DELETE —100 Deletes all program lines up to line 100.
DELETE 400— Deletes all program lines from 400 to the end of the
program.
DELETE 150 wevvrreere... Deletes line 150.
LIST
| Format] LIST [/P] [<starting line number >] [—] [<ending line number >]
| Abbreviated Format |
L.

| Explanation | The LIST command lists on the display screen all or part of the program lines con-
tained in the BASIC text area of the memory.
Output of the program listing to the display screen can be temporarily interrupted
by pressing the space bar; listing is then resumed when the space bar is pressed again.
To terminate the listing, press the |SHIFT | + |BREAK | keys.
The program listing can be output to the printer by entering LIST/P.

| Example | LIST T ————— Lists the entire program.
LIST —30|CR | Lists all lines of the program up to line 30.
LIST 30— [CRK | Lists all lines of the program from line 30 to the end.
LUST 30—80 [CA]...cociunnnsn Lists all lines of the program from line 30 to line 50,
LIST 30 [CR] Lists line 30 of the program,

6-4

SEARCH

| Format | SEARCH [/P]<text data>
| Abbreviated Format |
SE.

| Explanation | The SEARCH command searches the BASIC program in memory for lines which
contain the character string specified in <text data> and displays any found lines
on the screen. When specifying a double quotation mark (**) in <text data>, use
CHR$(34).
Display of matching lines can be suspended by pressing the SPACE bar. Pressing
the SPACE bar again will resume display. To terminate the SEARCH command,
press |SHIFT| + [BREAK |. The /P option directs the output of the SEARCH

command to the printer.
| Example | SEARCH "ABC' Searches for then displays on the screen the program

lines that contain the character string “ABC".
SEARCH ""PRINT'" + CHR$(34) + A" + CHR$(34) Searches for program lines

that contain PRINT “A™.

RENUM
| Format l RENUM [<new line number >] [, <old line number>] [, <increment>]
| Abbreviated Format [

REN.

| Explanation | The RENUM command renumbers the lines of a BASIC program. When this com-

mand is executed, note that line numbers referenced in branch statements such as

GOTO, GOSUB, ON~GOTO, and ON ~GOSUB are also reassigned.

| Example | 1Ty LB G ——————— Renumbers the lines of the current program in
memory so that they start with 10 and are incremented
in units of 10,

RENMUM 100 Renumbers the lines of the current program in
memory so that they start with 100 and are increment-
ed in units of 10.

RENUM 100,50,20............ Renumbers lines of the current program in memory,
which starts at line number 50. Line number 50 is
renumbered to 100, and subsequent line numbers are
incremented in units of 20,

(Before renumbering) (After renumbering)
B0 A=1 100 A=1

60 A=A+1 I> 120 A=A+1

70 PRINT A 140 PRINT A

100 GOTO 60 160 GOTO 120

Note:

When specifying the new and old line numbers, the new line number specified must
be larger than the old line number. Note that an error will result if execution of
this command results in the generation of a line number which is greater than 65535.

6-5

NEW

Format]

| Explanation |

Example J

NEW

The NEW command deletes programs in the BASIC memory area and clears pro-
gram work areas such as the variables and arrays. When the BASIC area is limited
with the LIMIT statement, the NEW command deletes only the programs in the
BASIC area; it does not delete machine-language programs.

10 INPUT A

20 PRINT A

30 END

When the above program is in memory, executing NEW will delete the program.
(Confirm the deletion by using the LIST command.)

NEW ON

Format

1 Explanation

Example |

NEW ON

Expands the BASIC program area by deleting part of the BASIC interpreter which
is relating to the plotter printer control. This command can be used only when the
optional printer (MZ-1P16) is not used. This command deletes programs in the BASIC
memory area.

NEW ON. e vrnens Expands the BASIC program area.

CLR

Format _|

I Explanation]

Example]

CLR

The CLR command clears all variables and cancels all array definitions. All numer-
ic variables are cleared to 0, all string variables are cleared to null strings (** **) and
arrays are eliminated entirely by nullifying all previously executed DIM statements.
Therefore, DIM statements must be reexecuted to redefine the dimensions of any
required arrays before the arrays can be used again.

The CLR command also cancels all function definitions made with the DEF FN
statement; therefore, it is necessary to reexecute DEF FN statements to redefine such
functions before they can be used again.

The CLR command can not be included in a FOR ~ NEXT loop or subroutine.
10 A=12

20 B% = "parasol’’

30 PRINT A,B3%

40 CLR

50 PRINT A,B%

60 END

The CLR statement on line 40 clears variable A to zero and B3 to nulls.

CONT

Format

CONT

| Abbreviated Format |

| Explanation |

See also

C.

The CONT command is used to resume execution of a program which has been

interrupted by pressing [SHIFT| + |BREAK|or by a STOP statement in the

program. When the message **Ready’” is followed by a period (.), the CONT com-
mand can be used. Examples of situations in which the CONT command can and

cannot be used are shown in the table below.

Program continuation possible

* Program execution stopped by
pressing | SHIFT | + [BREAK | .

* Program execution stopped by a
STOP command.

Program continuation not possible

* Before a RUN command has been
executed.

* ‘“‘Ready” is displayed due to an
error occurring during program
execution.

* When cassette operation has been

interrupted by pressing +
[BREAK).

* When program execution has stopped
during execution of a MUSIC
statement.

» After program execution has stopped
and “Ready" is displayed after
execution of the END statement.

STOP

6-7

RUN

l

Format

|

RUN [<starting line number >]

| Abbreviated Format |

[Explanation 1

I

Example

R.

The RUN command executes the current program in the BASIC text area of memory.
If the program is to be executed starting at the first program line, simply enter RUN
and press the key. If execution is to begin with a line other than the lowest line
number, type in RUN, <starting line number >, then press the key. When this
command is executed with no < starting line number > specified, the BASIC inter-
preter clears all variables and arrays before passing control to the BASIC program.

RUMN......................... Executes the program from the beginning.
RUN 200................... Executes the program starting at line 200.

6-8

6.2 Fundamental Statements

CLS

| Format] CLS

| Explanation | The CLS statement clears.the entire screen irrespective of the screen boundaries es-
tablished by the CONSOLE command.

| Example | L0 G e R Clears the entire screen.
| Seealso | CONSOLE

CONSOLE
l Format] CONSOLE [<starting line>, <number of lines>]
| Abbreviated Furmat]

CONS.

| Explanation | The CONSOLE command specifies the size of the scrolling area; i.e., the area which
is cleared by specifying the CLS statement or pressing the [SHIFT | and | CLR | keys.
This command becomes invalid after a PLOT ON command has been executed.
Specify an appropriate value for the <number of lines> when editing; that is the
< number of lines> must not be too small because it is harder to perform screen
editing within a small scroll area.

< starting line>

& Scrolling “'ﬂ“ } <number of lines>

| Example | CONSOLE 0,25 or CONSOLE .. Scrolls the entire screen.
CONSOLE B,15.....c00iiiiiniins Scrolls the area between lines 5 and 15, inclusive.

6-9

CURSOR

| Format | CURSOR <X-coordinate>, < Y-coordinate>
| Abbreviated Format |
Cu.
| Explanation | The CURSOR statement moves the cursor to a specified position on the screen. It

can be used together with the PRINT and INPUT statements to display characters
at any desired location. The value of the <X-coordinate > must fall within the range
for the screen mode specified in the INIT statement. The value of the
< Y-coordinate > must be an integer from 0 to 24. If the value specified for either
X or Y is other than an integer, it is converted to one by truncating the decimal
fraction before the cursor is moved.

| Example | 10 CURSOR S8, 10............. Moves the cursor to point (8,10). After this statement

is executed, when a PRINT or INPUT statement is
executed the display will start at this point.

o 8 38

1 am.m

24

=< 40-character screen mode >

| See also | TAB, SBEC

6-10

REM

Format |

l Explanation |

Example |

REM (remark)

REM is a non-executable statement which is specified in a program line to cause
the BASIC interpreter to ignore the remainder of that line. Since REM statements
are non-executable, they may be included at any point in the program without af-
fecting the program’s execution. REM statements are generally used to make a pro-
gram easier to read, or to add explanatory notes to a program.

10 REM # % % MZ =800 * * %

LET

| Format | LET <variable> = <expression>

| Explanation | The LET statement assigns the value (numeric or string) specified by < expression>
to the variable or array element specified by < variable> . As shown in the example
below, LET may be omitted.

| Example | 10A=10 10 LET A=10
20 PRINT A 20 PRINT A
30 END 30 END

The two programs above produce exactly the same result.

10 LET N=32
This statement assigns 32 to variable N.

10 LET A=A+5
This statement adds 5 to variable A,

10 LET B$=""SUNDAY"
This statement assigns character string “SUNDAY"’ to character variable BS.

A=1[CR]

This is an example of a command in the direct mode. 1 is assigned to variable A.

The following are examples of incorrect use of the LET statement.

20 LET A$=A+B.............. This is invalid because different types of variables

(string and numeric) have been specified on either
sides of the **="" sign.

20 LET LOGILK)=LK+1 Invalid because the left side of the statement is not
a numeric variable or array element.

6-11

STOP

[

Format

STOP

| Abbreviated Format |

| Explanation |

Example

|

See also

S.

Temporarily stops program execution, displays the line number at which execution
stops, then waits for the entry of executable commands in the direct mode.

The STOP statement is used to temporarily interrupt program execution, and may
be inserted at as many points and locations in the program as required. Since exe-
cution of the program is only interrupted temporarily, the PRINT statement can
be used in the direct mode to check the values stored in variables, after which exe-
cution can be resumed by entering CONT .

10 READ AB

20 X=Ax%B

30 STOP

40 Y=A/B

50 PRINT X.Y

60 DATA 15,6

70 END

RUN

Break in 30

Ready. < This period indicates that the program can be continued by CONT.

MNote:
Unlike the END statement, no files are closed by the STOP statement.

CONT

6-12

END

| Format |

| Explanation |

END

The END statement terminates program execution and returns the BASIC inter-
preter to the command mode for input of direct mode commands. When this state-
ment is executed, ““Ready’” is displayed to indicate that the BASIC interpreter is
ready. After the END statement has been executed, execution cannot be resumed
by executing the CONT command even if there are executable statements on pro-

gram lines following the END statement.

Note:

All open files are closed when the END statement is executed.

Differences between the STOP and END statements

Screen display Files Resumption of execution
STOP | Break in »x % % X Open files are | Can be resumed by executing
Ready. not closed. CONT.
END | Ready Open files are | Cannot be resumed.
closed.

6-13

FOR~NEXT

Format

J

FOR <control variable > = <initial value> TO < final value>
[S'{'El‘r:: increment >

NEXT <control variable >

| Abbreviated Format]

| Explanation |

Example

)

F.~N.

The FOR ~ NEXT statements repeat the instructions between the FOR and NEXT
variables the specified number of times.

10 A=0

20 FOR N=0 TO 10 STEP 2

30 A=A+1

40 PRINT “N="":N,

50 PRINT "A="";A

60 NEXT N

(1) In the program above, 0 is assigned to N as the initial value.

(2) Next, lines 20 through 50 are executed and the values of variables A and N dis-
played.
(3) In line 60, the value of N is increased by 2, after which the BASIC interpreter

checks to see whether N is greater than 10, the final value. If not, lines follow-
ing line 20 are repeated.

When the value of N exceeds 10, the program leaves the loop and the subsequent
instructions (on lines following line 60) are executed, The program above repeats
the loop 6 times.

If STEF <increment > is omitted from the statement specification, the value of
< control variable > is increased by 1 each time the loop is repeated. In the pro-
gram above, omitting STEP2 would result in 11 repetitions of the loop.

FOR N=0 TO 10 STEP 2

Initial value Final value Increment
of N for N for N

NEXT N
FOR ~NEXT loops may be nested within other FOR ~ NEXT loops. When doing

this, inner loops must be completely enclosed within outer ones, and not overlap.
Also, separate control variables must be used for each loop.

6-14

I

Example

|

10 FOR X=1TO 9
20FOR ¥Y=1TO 9—
30 PRINT X=*Y; Inner loop
40 NEXT Y Outer loop
50 PRINT
60 NEXT X
70 END

10 FOR A=1T0O 3
20 FOR B=1TO 5—

30FORC=1TO 7
110 NEXT CJ }

120 NEXT B——+— [110 NEXT C,B,A

130 NEXT A

When loops C, B, and A all end at the same point as in the example above, one
MEXT statement may be used to indicate the end of all the loops.

Incorrect example:
FOR J=1TO 10
EFDH J=K TOK+5

MEXT J

Different control variables must be used in each loop.

FOR I=1TO 10
FOR J=K TO K+5%
NEXT |

NEXT J

Loops may not overlap each other.

Note:

The syntax of BASIC does not limit the number of levels to which loops may be
nested; however, space in the memory is required to store return addresses for each
level, so the number of levels is limited by the amount of free memory space available.
The CLR and LIMIT statements cannot be used within a FOR ~ NEXT loop.

6-15

LABEL

Format

LABEL ** <label name>""

| Abbreviated Format]

| Explanation |

Example

See also

LA.

The LABEL statement defines a label. Labels are used to define the destination to
which program execution will transfer from the GOTO or GOSUB statement. Proper
use of labels in vour program will substantially improve program readability.

10 PRINT *"SAMPLE"

20 GOSUB ""ABC''

30 PRINT ""END’’

40 END

100 LABEL ""ABC™

110 PRINT "'LABEL SAMFLE"

120 RETURMN

Line 100 defines the label ““ABC'" as the destination of the GOSUB statement on
line 20. After the GOSUB statement on line 20 is executed, control is transferred
to the subroutine starting at line 100.

GOTO
GOSUB

GOTO

| Format | GDTD{ <line number > }

<label =

I Abbreviated Format [

| Explanation |

Example

[

See also

I

G.

The GOTO statement unconditionally transfers program execution to the line number
specified in <line number> or <label>. If <line number> or <label> points
to a line which contains executable statements (statements other than REM or DATA
statements), execution resumes with that line; otherwise, execution resumes with
the first executable statement following <line number> or <label>.

10 N=1

20 PRINT N

30 N=N+1

40 GOTO 20 v e smnvan sssninis Transfers program execution to line 20,
50 END

Since execution of the program shown above will continue indefinitely, stop it by

pressing the [SHIFT] and keys together (this may be done at any time to
stop execution of a BASIC program). To resume execution, execute the CONT

command.

Note:
The line number specified in a GOTO statement may not be for a line inside a
FOR ~NEXT loop.

LABEL

GOSUB
6-16

ON~GOTO

1 Format | ON <numerical expression> GOTO {-::liru: number> [, <line number>] }

< label > [, <label>] ...

| Abbreviated Format |

| Explanation |

l

Example

See also

ON~G.

The ON -~ GOTO statement branches execution to one of the line numbers follow-
ing GOTO, depending on the value of <numeric expression>. The value of
< numeric expression > indicates which of the line numbers following GOTO will
become the branch destination. Therefore, if <numeric expression> is 1, execu-
tion branches to the first line number in the list; if <numeric expression> is 2,
execution branches to the second line number in the list, etc. For example:

100 ON A GOTO 200,300,400,500
Destination when

Ais 1 = line 200
A is 2 = line 300
Ais 3 = line 400
A is 4 = line 500

10 INPUT"'NUMBER"";A

20 ON A GOTO 50,80,70

30 GOTO 10

50 PRINT “XXX'" : GOTO 10
60 PRINT "YYY" : GOTO 10
70 PRINT “ZZZ" . GOTO 10
RUN

NUMBER 1

XXX

NUMBER 2

oYY

NUMBER

If a decimal number such as 1.2 is specified, the decimal fraction is truncated be-
fore the statement is evaluated.

Note:

When the value of <numeric expression> in an ON ~GOTO statement is greater
than the number of line numbers specified following GOTO, execution continues
with the next line of the program. This also applies if the value of <numeric
expression > is less than 1 or negative.

Further, if the value of < numeric expression> is a non-integer, the decimal frac-
tion is truncated to obtain an integer value before the statement is evaluated.

GOTO
ON GOSUB

6-17

GOSUB ~RETURN

[Format | GOSUB | <line number >
<label>
RETURN
| Abbreviated Format |
GOS. ~RE.

| Explanation |

Example

The GOSUB statement transfers program control to a subroutine identified with
< label > or beginning at the line number specified in <line number>. After the
subroutine has been executed, control is returned by the RETURN statement to the
line following the GOSUB statement.

A subroutine is a set of statements that may be used more than once in a program.
One subroutine may call another subroutine which may call still another subrou-
tine. Nesting of such subroutines is limited only by the available memory space.
Each called subroutine must have a RETURN statement at the end.

10 INPUT A, B)
20 GOSUB 100
30 B=C

40 GOSUB 100
50 PRINT C

60 END

100 C=A12+B
110 RETURN

» 10 — 60 Main program

} 100 — 110 Subroutine

6-18

ON~GOSUB

Format

ON <numeric expression> GOSUB | <line number > [, <line number>] ... }
<label> [,<label>] ...

] Abbreviated Format |

I Explanation 1

Example

ON~ GOS.

The ON ~GQOSUB statement branches program execution to the subroutine indi-
cated by one of the line numbers following GOSUB, depending on the value of
< numeric expression>. The operation of this statement is basically the same as
with the ON ~GOTO statement, but all branches are made to subroutines. Upon
return from the subroutine, execution resumes with the first executable statement
following the ON~ GOSUB statement which made the call.

Let us try using the ON ~GOSUB statement in a scheduling program. The most
important point to note in the following program is that, a subroutine call is made
at line 180, even though line 180 itself is part of a subroutine (from line 170 to 190)
which in turn is called by line 90. Subroutines can be nested to many levels in this
manner.

10 AS="" ENGL "":B$=" MATH *':C$=""FREN "

20 Ds="" SCI ":E$="" MUS ":F§=" GYM "
30 G%=" HIST ":Hs$=" ART ": |$="" GEOG “
40 Js=" BUS ":K$="H RM ":CLS

50 INPUT "“WHAT DAY?'";X$

60 FORZ=1TO 7:¥$=MID$(""SUNMONTUEWEDTHUFRISAT", 1 +3%(Z-1),3):
IF ¥Y$=X$ THEN X=2

70 NEXT 2

80 FOR Y=0TO 4: PRINT TAB(B+6#*Y),¥+1;

90 NEXT Y: PRINT

100 ON X GOSUB 180,120,130,140,150,160,170

110 PRINT: GOTO &0

120 PRINT ""MON **;A$;B$,;D%;G$;K$:RETURN

130 PRINT “*TUE '*;BS;ES;HS;HS;DS:RETURN

140 PRINT “"WED '";C%;C%;I$;A%;F$:RETURN

150 PRINT “THU "';B$;D$;F$;G$;E$:RETURN

160 PRINT "“FR1 '";AS$;D%;1$,C%;C5:RETURN

170 PRINT “"SAT '",B$,G%;D%;K$:RETURN

180 FOR ¥=1TO 6

190 ON ¥ GOSUB 120,130,140,150,160,170

200 PRINT:NEXT Y

210 RETURN

6-19

IF~THEN ~ :ELSE

| Format | IF !-::re]atinnal expression::-} THEN

< logical expression>

[:ELSE ’

[Abbreviated Format |

< line number >

< statement >]]
<label >

IF~TH.~:EL.

| Explanation |

< statement >
< line number >

< label >

the next program line after the IF ~THEN statement.

{(When ELSE is not used)

3

IF ~THEN ~ :ELSE statements are used to control branching of program execu-
tion according to the result of a logical or relational expression. When the result
of such an expression is true, statements following THEN are executed. If a line
number is specified following THEN, program execution jumps to that line of the
program.

If the result of the logical or relational expression is false, statements following ELSE
are executed. If a line number is specified following ELSE, program execution jumps
to that line.

If :ELSE is omitted and the result of expression is false, execution continues with

(When ELSE is used)

YES
THEN
If a hine numbaer | If a statemaent If a line number | If a statement
ar labal ks iz spacified, it s or labal is in specified, it is
specified. exacuted. spocified. exeouted,
Expcution jumps Afterwards, pro- Exscution jumps Afterwards, pro-

to the specified
line or labal,

gram execution
advances 1o the
naxt lina.

—

To next line

6-20

to the specified gram execution

line or labal, advances 1o the
naxt lina.

e —
ELSE

It & line number | If @ statement

or label is is specified, it is

specified. executed.

Exgcution jumps Afterwards, pro-

1o the spacified
line or labal.

gram execution
advances to tha
niaxt line.

1M IFC<1THEN C=3 :ELSE C=C-1
This statement assigns 3 to C if C is less than 1; otherwise, assigns C-1 to C.

10 IF C< =D THEN 150 :ELSE END
This statement causes jump to line 150 if C is not equal to D; otherwise, ends pro-
gram execution.

10 IF As=""ABC'" THEN A% =A%+ ""DEF"
This statement assigns ‘‘ABCDEF"’ to AS if A$ contains ““ABC"’; otherwise, the
program proceeds to the next line.

Note:

(Precautions on comparison of numeric values with BASIC 1Z-016)

Numeric values are represented internally with binary floating point representation;
since such values must be converted to other forms for processing or external dis-
play (such as in decimal format with the PRINT statement), a certain amount of
conversion error can occur.

For example, when an arithmetic expression is evaluated whose mathematical result
is an integer, an integer value may not be returned upon completion of the opera-
tion if values other than integers are handled while calculations are being made.
Be aware of this and take it into consideration when evaluating relational expres-
sions using “="",

This need is illustrated by the sample program below, which returns FALSE after
testing for equality between 1 and 1/100# 100.

10 A=1/100% 100

20 IF A=1 THEN PRINT “TRUE"':ELSE PRINT "‘FALSE"
30 PRINT "A=""A

40 END

RUN

FALSE

A= 1

The fact that both “FALSE’" and ““A=1"" are displayed as the result of this pro-
gram shows that external representation of numbers may differ from the number's
internal representation in the computer.

6-21

IF~GOTO

Format

IF | <relational expression> | GOTO | <line number >
<logical expression> [L <label >

| Abbreviated Format |

| Explanation]

l

Example

See also

IF~G.

The IF ~ GOTO statement sequence evaluates the condition defined by <relational
or logical expression >, then branches to the line number specified in < line number >
or <label> if the condition is satisfied. As with the IF~THEN sequence,
IF ~GOTO is used for conditional branching. When the specified condition is satis-
fied, the program execution jumps to the line number specified in <line number >
or < label =, If the condition is not satisfied, execution continues with the next line
of the program. (Any statements following IF ~ GOTO on the same program line
will be ignored.)

10 T=0:N=0

20 INPUT ""VALUE="";X

30 IF X=999 GOTO 100

40 T=T+X:N=N+1

50 GOTO 20

100 PRINT o o s o o % % % % % % "'

110 PRINT "'TOTAL:"";T

120 PRINT “"NO. ENTRIES:"";N

130 PRINT “"AVERAGE:"";TIN

140 END

The above example gives the total and average of input values, If 999 is input, pro-
gram execution is terminated.

GOTO
IF~THEN ~ :ELSE
IF ~GOSUB

b-22

IF~GOSUB

< label >

| Format | IF { < relational expression ::-} GOSUB { < line number > }

< logical expression >

| Abbreyiated Format |

| Explanation |

[Example

See also

IF ~ GOS.

The IF ~ GOSUB statement evaluates the condition defined by <relational or logi-
cal expression>. If the condition is satisfied, the program execution branches to
the subroutine beginning on the line number specified in <line number> or
< label > . Upon completion of the subroutine, execution returns to the first executa-
ble statement following the calling IF ~ GOSUB statement. Therefore, if multiple
statements are included on the line with the IF ~ GOSUB statement, execution returns
to the first statement following IF ~ GOSUB.

10 INPUT “ X= *:X

20 IF X<0 GOSUB 100:PRINT “X<0"

30 IF X=0 GOSUB Z00:PRINT “X=0"

40 IF X>0 GOSUB 300:PRINT "“"X>0"

B0 PRINT “" s o o o ok o ok o ok o ok o ok ok ok ok o ok ook "'
60 GOTO 10

100 PRINT " * PROGRAM LINE 100 **:RETURN
200 PRINT ** * PROGRAM LINE 200 ‘“:RETURN
300 PRINT ** = PROGRAM LINE 300 "*:RETURN

GOSUB ~RETURN
IF ~ THEN ~:ELSE
IF ~GOTO

6-23

PRINT

| Format | PRINT [<palette code>] <data> [[;}{:data}]...

| Abbreviated Format |

| Explanation |

l

Example

|

See also

?

The PRINT statement displays data on the screen. < palette code> specifies the
palette code for the colour of the text on the screen. If this code is omitted, the
palette code specified in the colour statement is assumed.

When a semicolon is used to delimit iwo <data> items, it causes them to be dis-
played with no extra space. A comma, on the other hand, causes 10-character tabu-
lations to be performed between the printout of each <data> item. If no <data>
item is specified, this command performs a line feed.

MNumeric data is displaved by this statement in one of two formats: real number
format or exponential format. Numeric values in the range from 1 x 10%to 1 x
10® are displayed in real number format; those beyond this range are displayed in
exponential format.

10 PRINT [2] ""ABC'";123 ... Displays the text data ‘““ABC’’ and numeric data 123
with no space in the colour corresponding to palette
code 2.

20 PRINT [3] "*ABC*",123 ... Displays the text data ““ABC’* and numeric data 123
with a 10-character tabulation between them. The
colour assigned to palette code 3 is used.

Note:

Some special uses of the PRINT statement are shown below.

PRINT ‘&l ** Clears the entire screen and moves the cursor to the home position
the upper left corner of the screen).

PRINT “|f] ”’ Moves the cursor to the home position without clearing the screen.

PRINT “Jll >’ Moves the cursor one column to the right.

PRINT “f@l"* Moves the cursor one column to the left.

PRINT “Jjfj’’ Moves the cursor up one line.

PRINT “‘Jl}’’ Moves the cursor down one line.

To enter special characters for cursor control, press the [GRAPH | key; this changes

the form of the cursor to **__"". Next, press an edit key, | CLR |, HOMEf i |?| :

<], 1], or[1]. After entering the special character, press the key

to return to the normal mode.

COLOR
PAL

6-24

PRINT USING

| Format | PRINT[{palettecude}]USlNG"-:t'urmatstring}";{data}[{;}ﬂ‘-‘.data:ﬁ]...

*

| Abbreviated Format |
? USL

[Explanation] The PRINT USING statement displays data on the screen in a specific format. This
statement should be entered using the same format as the PRINT statement, except
for the specification of < format string > . < format string > consists of formatting
characters which specify the format in which data is to be displayed, as described
in the examples below.

(1) Formaiting characters for numeric values
(a) #
A “‘sharp” symbol is used to represent each digit position. If the number
to be displayed has fewer digits than positions specified, the number will
be right-justified in the field.

10 A=123

20 PRINT USING “# # # #';A
RUN

w123

(b) .
A period indicates the position in which the decimal point is to be displayed.
The number of # signs to the right of the decimal point specifies the num-
ber of decimal places to be displayed.

10 A=12

20 PRINT USING " # # #.# #'".A
RUN

:12.00

(© .,
A comma placed at every third # sign in the < format string > parameter
indicates the position in which a comma is to be displayed. Numbers will
be displayed right-justified.
10 A=6345123
20 PRINT USING “# ## & ## 8" A
RUN
6,345,123

6-25

(d) + and -

A plus (+) or minus {—) sign may be included at the end of < format
string > to specify that the sign of the number is to be displayed in that
position instead of a space. For instance, PRINT USING “# # # # +'";A
or PRINT USING “# # # # —'";A will cause the sign to be displayed im-
mediately after the number. (PRINT USING ** # # # # — '’ causes a minus
sign to be displayed following the number if the number is negative; if the
number is positive, only a space is displayed in that position.) Furthermore,
a plus sign may be specified at the beginning of a format string to indicate
that the number’s sign is to be displayed in the position regardless of whether
it is positive or negative.

PRINT USING “####+"",=-13

i 13-

PRINT USING “+ # ## #'°;25

Lis +25

Note:

Although a minus sign will be displayed if one is specified at the beginning
of the format string, it will have no relationship to the sign of the number.

(e) *=*

M

Specifying a pair of asterisks at the beginning of the format string indi-
cates that asterisks are to be displayed in the positions of leading zeros.

10 A=123

20 PRINT USING “» % # # # #°":A
RUN

® k%123

£f

Specifying a pair of pound signs at the beginning of the format string indi-
cates that a pound sign is to be displayed in the position immediately to
the left of the number.

10 A=123

20 PRINT USING "EE# # # #'",A
RUN

o £123

55

Specifying a pair of dollar signs at the beginning of the format string indi-
cates that a dollar sign is to be displayed immediately to the left of the
number.

10 A=456

20 PRINT USING "“SS# & ##'" A

RUN

i 3456

6-26

(h) 1111
Four exponential operators may be included at the end of a format string
to control the display of numbers in exponential format.
10 A=51123
20 PRINT USING " # & # # #1111 A
RUN
v 5.112E+04

In this case, the first number sign is reserved for display of the sign of the
number.

(i) Extended list of operands
A list of variables may be specified following a single PRINT USING state-
ment by separating them from each others with commas or semicolons. When
this is done, the format specified in < format string> is used to display
all resulting values.

10 A=5.3: B=6.9: C=7.123

20 PRINT USING “"# #.# & #"";, |A;B,C
A.B.C

RUN

w 5.300 ., 6.900 , 7.123

The result is the same regardless of whether semicolons or commas are used
to separate variables.

(2) Formatting characters for string values

@)!
An exclamation mark in < format string > specifies that only the first charac-
ter in the given string is to be displayed.
10 A$=""CDE"
20 PRINT USING *"I'";A%
RUN
C

Ampersands with n spaces between them specify that the first 2+ n charac-
ters in the specified string are to be displayed. If the string is shorter than
the field defined by <&, &>, it will be left-justified in the Ffield
and padded with spaces on the right. If the string is longer than the field,
the extra characters will be ignored.

10 As="ABCDEFGH"

20 PRINT USING "& &' AS
RUN

ABCDEF

10 As=""XY"
20 PRINT USING "& &' AS
RUN

KYI_I LJLd

6-27

(3)

(4)

String constant output function

When any character other than those described above is included in the for-
mat string of a PRINT USING statement, that character is displayed together
with the value specified following the semicolon.

10 A=123

20 PRINT USING "DATA# # # #'" A

RUMN

DATA , 123

Separating the USING clause

Usually, the keywords PRINT and USING are specified adjacent to eath other;
however, it is possible to use them separately within the same statement.
10A=-12:B=14 :C=12

20 PRINT A;B; USING “"# ## #',C

RUN

-12 L 14 4y 12

In the above example, line 20 consists of a normal PRINT statement and a
USING clause.

6-28

INPUT

Format

INPUT [<message>;]<variable> [, <variable>] ...

I Abbreviated Format I

| Explanation |

Example

I.

The INPUT statement reads data entered during program execution and assigns it
to <wvariable>.

When an INPUT statement is encountered during program execution, execution stops,
a question mark appears, and the cursor blinks to indicate that the program is wait-
ing for data. If <message> is specified, the message is displayed instead of the
question mark. After data is typed in from the keyboard and is pressed, the
data is assigned to < wvariable>, then program execution resumes. The types of the
data and <wvariable> must be the same, Character constants can be entered without
double quotes. In such cases, any leading or trailing spaces are ignored. However,
if leading or trailing spaces or commas are to be included in the constant, enclose
the entire character string in double quotes.

10 INPUT ABS....coooiiiaiann Allows data to be entered and displays 7. When you
have entered the data, the program assigns the first
item to variable A and the second item to variable BS.

20 INPUT "A=""; A........... Displays message ‘A ="" and waits for data to be
typed in.

GET

l

Format

|

| Explanation |

Example

GET < variable>

The GET statement checks whether any key on the keyboard is being pressed, and
if s0, assigns the key value to the variable specified in < variable>. The variable
will be left empty (0 for a numeric variable or null for a string variable) if no keys
are pressed.

With numeric variables, this statement allows a single digit (from 0 to 9) to be en-
tered; with string variables, it allows a single character to be entered. Any non-numeric
value entered for a numeric variable will be ignored.

10 GET A%: IF A$="""" THEN 10
20 PRINT A$
30 END

This program displays a character entered from the keyboard if the character is
printable.

6-29

DIM

] Format |

] Explanation |

[Example |

DIM < variable > (< subscript >)[, < variable > (< subscript >)] ...
DIM < variable > (<subscript >, < subscript >)[, < variable > (< subscript >,

< subscript>)] ...

The DIM statement declares arrays with from one to four dimensions and reserves
space in the memory for the number of dimensions declared (DIM: DIMENSION).
Up to two alphanumeric characters beginning with an uppercase character can be
specified for <wvariable> as the array name, and subscripts of any value may be
specified to define the size of dimensions; however, the number of dimensions which
can be used is limited in practice by the amount of free memory space available.
Different names must be used for each array which is declared; for example, the
declaration DIM A(5),A(6,3) is illegal. Execution of a DIM statement sets the values
of all elements of the declared arrays to 0 (for numeric arrays) or nulls (for string
arrays). Therefore, this statement should be executed before values are assigned to
arrays.

If the DIM statement is executed on an array which has previously been declared,
and if the newly declared dimensions are greater than the existing array, an error
results.

All array declarations are nullified by execution of a CLR statement or a NEW
statement.

10 DIM A(3) Declares 1-dimensional numeric array A with 4
elements.
!ﬁ(ﬂ} A(DIARYA(I)

3+ 1=4 clements

20 DIM B5I12,:3).ccvusiniimininns Declares 2-dimensional string array B with 12
elements.

B$(0,0) | B$(0,1) | B$(0,2)
B%(1,0) | B%(1,1) | B%(1,2)
B$(2,0) | B$(2,1) | B$(2,2)
B$(3,0) | BS(3,1) | B$(3,2)
(24+1)x(3+1)=12 elements

10 DIM A(2)

20 FOR J=0TO 2

30 INPUT A(J)

40 NEXT J

50 PRINT A(O), Al1), A(2)
60 END

Three array variables (A(0), A(1), and A(2)) are used in this example. The program
inputs three numbers into these variables, then displays these numbers.

6-30

READ ~DATA

Format |

READ <variable> [, <variable>] ...

§

DATA <constant> [, <constant>] ...

| Abbreviated Format |

| Explanation |

Example J

REA.~DA.

Like the INPUT and GET statements, the READ statement is used to submit data
to the computer for processing. However, unlike the other two statements, data is
not entered from the keyboard, but is instead held in the program itself with DATA
statements. More specifically, the function of the READ statement is to read suc-
cessive items of data into variables from a list of values which follows a DATA
statement. When doing this, there must be a one-to-one correspondence between
the variables of the READ statements and the data items specified in the DATA
statements. Quotation marks can be omitted for string data in DATA statements.
However, they cannot be omitted for null strings and strings including spaces.

(Example 1)
10 READ A,B,C.D
20 PRINT A;B;C;D
30 END
40 DATA 10,100,50,60
RUN
10 100 50 60
In this example, the values specified in the DATA statement are read into variables
A, B, C, and D by the READ statement, then the values of those variables are dis-
played.

(Example 2)

10 READ X35,A1,25
20 PRINT X$%:A1.25
20 END

40 DATA A,1.C

As shown by the example above, string data included in DATA statements does
not need to be enclosed in quotation marks.

RUN

A 1C

The READ statement in this example picks successive data items from the list specified
in the DATA statement, then substitutes each item into the corresponding variable
in the list following the READ statement.

6-31

I

See also

(Example 3)

10 DIM A(2)

20 READ AI0),A(1),Al2)
30 PRINT A{O)ALT);A(2)
40 END

50 DATA 3,45

RUN

345
The READ statement in this program substitutes the numeric values following the

DATA statement into array elements A(0), A(1), and A(2), then the PRINT state-
ment in line 30 displays the values of those array elements.

(Example 4)
10 READ A
20 READ B
30 DATA X

The example above is incorrect because firstly a numeric variable is specified by
the READ statement on line 10, but the value specified following the DATA state-
ment is a string value, and secondly there is no data which can be read by the READ
statement on line 20,

RESTORE

6-32

RESTORE

| Format

RESTORE [[<line number>|]
| <label > J

[Abbreviated Format |

| Explanation |

| Example

l

| See also

RES.

When the RESTORE statement is executed with no line number or only a line num-
ber of 0 specified, it causes the BASIC interpreter (when READ statements are en-
countered) to read the lists of data items from the beginning of the DATA statement
with the smallest line number. If either < line number> or <label> is specified,
this statement causes the BASIC interpreter to start reading data items in the DATA
statement specified by the <line number > or <label> parameter or the subse-
quent DATA statement having the smallest line number.

10 DATA “"PERSONAL COMPUTER"
20 DATA ""MZ-800"

30 READ As,Bs

40 PRINT A$;BS

50 RESTORE 20

60 READ C$

70 PRINT C#%

80 RESTORE

90 READ Ds

100 PRINT D%

110 END

RUN

PERSONAL COMPUTER MZ-800
MZ-800

PERSONAL COMPUTER

READ ~DATA

6-33

DEF FN

Format

]

| Explanation |

Example

I

DEF FN < function name > (<variable >)= <numeric expression>

The DEF FN statement is used to define user function. Such functions consist of
combinations of functions which are intrinsic to BASIC. The < function name>
is an uppercase letter.

DEF FNA(X)=2#%X12+3#%X+ 1 Defines 2X% + 3X + 1 as FNA(X).
DEF FNE(V)=1/2%M=%V12 Defines 1/2MV? as FNE(V).

(incorrect definitions)
10 DEF FNEK{X)=SIN(X/3 + w/4), FNL{X)=EXP{ - X12/K)
<eveere... Only one user function can be defined by a
single DEF FN statement.
10 DEF FNDIX)=FNB{X)/C + X....... Any functions which have been defined with
DEF FN cannot be used in another DEF FN.

Find the kinetic energy of a mass of 5.5 kg when it is imparted with initial accelera-
tions of-3.5 m/s?, 3.5 %2 m/s?, and 3.5x3 m/s°.

10 DEF FNEIVI=1/2 % M#\V12

20 M=56.5:¥=35

30 PRINT FNEIV), FNE(V = 2}, FNE(V * 3)

40 END

MNote:
All user function definitions are cleared when the CLR or NEW statement is executed.

6-34

TRON

| Format | TRON[/P]
| Abbreviated Ft}rmat]
TR.

| Explanation | The TRON command traces the execution of the program. Once a TRON command
is executed, line numbers of program lines are printed on the screen, enclosed in
brackets ([1), as they are executed by the BASIC interpreter. The /P option directs
the output of the TRON command to the printer.

| Example | 10 DEF FNA(X,Y)=X#*Y
20 READ A1,A2,A3,A4
30 W=FNA(A1,A2):GOSUB 100
40 W=FNA(A2,A3):GOSUB 100
50 W= FNA(A3,A4):GOSUB 100
60 DATA 4,5,6,7
70 END
100 IF W> 20 THEN PRINT’ABCD"’
110 RETURN

Enter TRON before running this program.
RUN
[101{201(301[100][1101(401(100JABCD

[110][501(100JABCD
[1101(601(70]

Line numbers of program lines are printed as they are executed so you can keep
track of how program execution proceeds. To terminate tracing, enter the TROFF

command.
See also i TROFF
TROFF
| Format | TROFF
| Abbreviated Format |
TROF.
| Explanation l The TROFF command disables the trace function.
| Seealso | TRON

6-35

DEF KEY

| Format |

| Explanation |

| Example |

DEF KEY(<key number =)= ** < character string>""

Character strings can be assigned to any of the ten function keys to allow the strings
to be entered at any time, simply by pressing a single definable function key.
Function key numbers 1 to 5 are entered just by pressing the corresponding func-
tion key at the top left corner of the keyboard, while keys 6 to 10 are entered by
pressing the SHIFT key together with the corresponding function key. The func-
tion key number (1 to 10) is specified in <key number >, and the string or com-
mand which is to be assigned to the key is specified in <character string> exactly
as you want it to appear. <character string> can be up to 15 characters long in-
cluding spaces.

Execution of the DEF KEY statement cancels any existing function key definition.

10 DEF KEY(1)=""SHARP"'\\ooooiii, Defines key [F1]as SHARP.
20 DEF KEY(2)=“RUN‘'+CHR$(13) Defines key [F2] as RUN [CR].
Note:

CHR3$(13) is the ASCII code for CR, which can be specified together with the string
assigned to a definable function key to the same effect as you actually press the

key.

KEY LIST

] Format |

KEY LIST

J Abbreviated Format]

| Explanation |

| Example

K.L.

The KEY LIST command displays a list of the character strings assigned to the defina-
ble function keys.

KEY LIST

DEF KEY(1)=""RUN _ " +CHR%(13)
DEF KEY{ 2)=""LIST ..""

DEF KEY(3)=""AUTO "
DEF KEY(4)=""RENUM "'
DEF KEY(5/=""COLOR "
DEF KEY| B)=""CHR%("

DEF KEY(7)="'DEF _, KEY("
DEF KEY(8)="CONT"

DEF KEY(9)=""SAVE Lu"
DEF KEY{10)="LOAD "
Ready

The list above shows the initial settings for the definable keys.

Note:
*¢ 7" indicates a space.

6-36

INIT

Format

! Explanation |

Example

(1) INIT “RAM:[<number of bytes>]"

(2) INIT “LPT: (M| 0)] [. Sn] [, CR code]”
1
2
(3) INIT “RS { 1 }: < monitoring code >, <initialization code > [,<end code>]"
2

(4) INIT “CRT:[M <mode>][,B<block code>]"
The INIT command defines the initial settings and modes for external devices.

(Format 1)

In this format the INIT command initializes the optional RAM file board (MZ-1R18)
and allocates the amount of memory space specified in < number of bytes> to this
file, with the remaining memory space reserved for the printer buffer. <number
of bytes > must be within the range 30010 to $FFFF. When <number of bytes >
is omitted, the current setting for the RAM file area is assumed. The ““OK? [Y/N]"’
message appears when this command is executed. Typing Y sets up the RAM file
area as shown below. Typing N causes BASIC to display a “*Break’ message and
return to the command mode.

Either the RAM file board or the printer buffer function may become unavailable
if the memory space assigned to it is too small.

INIT “"RAM:$FFFF"

This statement initializes the RAM file board and allocates the maximum amount
of memory space to RAM files,

40000]
A System area #m System area
RAM file area RAM file area
$CFFF
$D0O00
Printer buffer area
$FFFF L
After INIT 'RAM:$FFFF"" Initial setting
has been executed. (After INIT' 'RAM: 5CFFF"

has been executed.)

6-37

|_ Example

{(Format 2)
In this format the INIT command specifies the printer and the mode in which the
printer buffer is to be used.

[M] indicates the printer buffer mode.

MO0: Direct mode (The buffer is initialized.)

M1: Spool mode (The buffer is initialized.)

M2: Direct mode (If the spool mode is active, this mode is entered after any exist-
ing contents of the buffer have been printed out.)

The M1 and M2 options are invalid if no RAM file board is installed.

An error will be generated if image print code 0BH + 0BH* is sent to the MZ-80P5(K)
printer in the spool mode. To recover from this type of error, reenter the desired
command after executing INIT “LPT: M2, Printing can be stopped in the spool
mode by pressing the and [N] keys simultaneously.

* H indicates that the preceding number is in hexadecimal.

[S] specifies the printer type.

S0: MZ-1P16

S1: MZ-80P5(K)

S2: Printer which converts print data into ASCII codes
S33: Code through

The following codes are converted as shown during execution of PRINT/P state-
ment when S0 or S1 is specified in the INIT statement.

CHRS ($11) or i is converted to $09.
CHRS ($12) or i} is converted to $0B.
CHRS3 (515) or B} is converted to $0F.
CHRS ($16) or @ is converted to $0C and $0A.

< CR code > must be specified when a code other than 0DH is to be used as the
CR code.

INIT “LPT: M1, S1”

The above example specifies that part of the RAM file area is to be used as the
printer buffer and sets the printer buffer spool mode. The printer to be used is an
MZ-80P5(K).

¢ The printer buffer

When data is output to the printer, the computer waits until all data has been printed
before going on to do other processing. However, since the speed of data printout
is much slower than the computer’s processing speed, the computer spends a great
amount of time simply waiting for the printer to become ready. However, if data can
be output to a special holding memory for temporary storage, and that memory will
automatically forward tie data to the printer as it becomes ready, the computer will
not have to wait and can be used for other tasks while the printer is printing. Such
a special memory is referred to as a printer buffer,

With the MZ-800, part of the memory in the RAM file [MZ-1R18] option can be
used as a printer buffer. Printer buffer operation is enabled when M1 (the spool mode
is specified with format 2 of the INIT command, and is disabled when MO0 or M2
(the direct mode) is specified.

6-38

| Example

l

(Format 3)
In this format the INIT command sets up the RS-232C interface mode.

< Monitoring code > {High active)

[7][s][s]a]a]2]1]0]

—Enables receive DCD monitoring.

Enables send DCD monitoring.

Enables send CTS monitoring.
Mot usad. Normally set to Q.

Enmables send RTS OFF.

Enables send all characters monitoring.

< Initialization code > {High active)
[7 E|EI4I3I2JII[G
Il

—_— Parity

00: No parity
01: Odd parity
10: No parity
11: Even parity

umber of stop bits
00: Not used.

01: 1 stop bit

10: 1+ 1/2 stop bits
11: 2 stop bits

Mot used. Mormally set to 0.

Length of receive or send characters
0: 7 bits/CHR
1: 8 bits/CHR

< End code>
A number from 0 to 255 (500 - $FF)

When exchanging data between two MZ-800 units, prepare a cable connecting the
RS-232C terminals as shown below.

Signal name | Pin number Pin number | Signal name
TXD 2 2 TXD
RXD 3 >< 3 RXD
RTS 4 4 RTS
CTS 5 5 CTS
DTR 6 6 DTR
DCD 7 7 DCD

Ground 1, 8 1, 8 Ground

Use both units in the terminal mode. (Refer to the manual for the RS-232C interface.)

6-39

< Flow chart>

Sender

RTS ON

Send buffer
empty?

""""" 1hbit 7

]

1

All eharactors I

sent? :

1

1

________ =]

Send 1 byte.

o """":bitﬁ

[}

]

RTS OFF 1

]

e e [H

Receiver

DTR ON

Reception
error?

Received
character
valid?

Receive 1 byte.

DTR OFF

End

The following programs transfer the contents of A$ between the two MZ-800s:

[Program for sender]
10 INIT"*RS1:%00,38C""
20 As$=""0123456789"
30 WOPEN#1,"'RS1:""
40 PRINT #1,A%

50 CLOSE#1

60 END

[Program for receiver]
10 INIT**RS1:$00,$8C"’
20 ROPEN #2,"'RS1:"
30 INPUT # 2 A%

40 PRINT AS

50 CLOSE# 2

60 END

{(Format 4)
In this format the INIT command sets up the display settings. <mode> specifies
the resolution of the screen and the number of colours as follows.

Mode Resolution |Characters per line Colours
1 320 x 200 dots 40 4 colours
2 | 320 x 200 dots 16 colours

Foreground and back-
- ground colours

4 640 x 200 dots 4 colours

3 640 x 200 dots

MNote:

Optional graphic memory (MZ-1R235) is required to set mode 2 or 4.
When a TV set is used as the display unit, sufficient resolution will not
be obtained in mode 3 or 4.

< block code> specifies the colour pallete block number.

See Appendix A for more information on display control.

BYE

| Format | BYE
I Abbreviated Fﬂrmatl
B.

| Explanation | The BYE command returns control of the computer from the BASIC interpreter
to the monitor program in RAM.
See chapter 8 for details of the monitor program.

BOOT

| Format | BOOT

[Explanation | The BOOT command initiates an initial program load (IPL). This command places
the computer into the same state as when the computer is first powered on.

| Example | BOOT....................... Reloads the system program into memory.
WAIT
| Format | WAIT <numeric data>
| Abbreviated Format |
w.

| Explanation | The WAIT statement suspends program execution for the time specified in <numeric
data>. The time must be specified in milliseconds (1/1000 seconds).
| Example | WAIT100........cccoovvrirnn. Suspends program execution for 0.1 (100/1000)
second.

6.3 File Control Statements

DIR

1

Format

]

Explanation

DIR[/P][RAM]

The DIR command displays the names of files on the RAM file board.
Specifying DIR/P sends the contents of the directory to the printer.

The optional MZ-1R18 RAM file board is required for this command to be valid.
RAM may be omitted when the RAM file board is specified in the DEFAULT state-
ment or it is logged as the default device.

The device specified in the DIR command becomes the default device.
Each filename is followed by one of the following three file types.
BTX: BASIC program files

BSD: BASIC sequential data files or program files written in ASCII format
OBJ: Machine-language files

| Example | DIRRAM.....o...ccoooevvriinnnn Displays a directory of the RAM file board files.
| Seealso | DEFAULT

RUN

| Format |

RUN [*[<device name> :] < filename>"'[, | A}]]
R

I Abbreviated Format !

I Explanation]

Example

R.

Erases the existing programs in the BASIC program area and clears the program
work area, then loads the program specified with < filename > into the BASIC pro-
gram area from the device indicated with <device name>. Then, this command
executes the program from its beginning.

< device name > may be omitted when the default device or the device specified
in the DEFAULT statement is to be used. When all parameters are omitted, this
command does not erase the program in the BASIC program area.

To load and execute a program which has been saved in the form of BSD file writ-
ten in ASCII codes, specify the A option.

Specifying the R option makes it possible to load an OBJ file in the same manner
as IPL.

The file types which can be loaded are BTX, BSD and OBJ.

RUMN “"CMT:PROG' Loads BTX file “PROG" from the cassette
tape and executes it.
RUN ""CMT:DATA" A Loads BSD file “DATA*’ from the cassette

tape and executes it.

LOAD

Format

LOAD *““[<device name>:] <filename>"" [,A]

| Abbreviated Format |

| Explanation |

l

Example

LO.

The LOAD command loads a specified program into memory from an external
storage device.

< filename> must have the same name as when the file was first saved. This
parameter is mandatory. <device name > must be CMT or RAM. This parameter
may be omitted when the default device or the device specified in the DEFAULT
statement is to be used. Add the A option when loading a program file which is
saved in ASCII format. Note that reading ASCII format files takes more time than
binary format files.

Only BASIC text files and machine language programs can be loaded with this com-
mand. When the file to be loaded is a BASIC text file, the current program is cleared
from the BASIC text area when the new program is loaded.

Note:

When loading a machine language routine to be linked with a BASIC program, the

LIMIT statement must be executed to reserve an area in memory for the machine

language program. Further, the applicable machine language program file is executed

as soon as loading is completed if the loading address is inside that area. (In this

case, the BASIC text is not erased.)

The LOAD command can be used within a program to load a machine language

program file.

LOAD “CMT:HELLO' Loads a file named ‘“HELLO" from the data
recorder.

Procedure for loading a program file

iLﬂ'ﬁ.D‘ 'CMT: < filename >"" |CA 1 Key in

4

| APLAY | Screen display
Press the |PLAY | button Data recorder aperation
| Found " < filename>"" I Screen display (the names of program files found are displayed.)

4

[Loading ** < filename > ** l Screen display

+

Ready Screen display

SAVE

Format

SAVE “[<device name>:] <filename>" [,A]
< device name> must be CMT or RAM.

| Abbreviated Format |

LEpranatiun |

Example

SA.

The SAVE command assigns a file name to the BASIC program in the computer’s
memory and saves it onto an external storage device.

The <device name: > parameter can be omitted when specifying a device that has
already been specified in a DEFAULT statement, or is the current default device.
The <filename> parameter is required and must always be specified.

The SAVE command saves the BASIC program text in the ASCII format if the
< A > option is specified. In this case, the BASIC interpreter attaches BSD to the
file name as the file type. The types of the files that can be saved with the SAVE
command are BTX and BSD.

SAVE "CMT:PROG" Saves the program in memory on cassette tape with
a file name of “PROG"’. The file type of the saved
program is assumed to be BTX.

SAVE ""CMT:DEMO"",A........ Saves the program in memory on cassette tape in AS-
CII format with a file name of ‘*“DEMO”’. The file
type of the saved program is assumed to be BSD.

Note:

The SAVE command saves only the BASIC program text (i.e., the program text
displayed by executing the LIST command); it does not save any machine language
program in the machine language area.

When using SAVE, make a note of the tape counter reading for future reference.

Procedure for saving a program file

|5A‘u’E”CMT:-:filanum} = Key in
| .i.FtEED:J.PLAY i Screen display
l Press the :H:dﬁﬂ_"huttnn. | Data recorder operation
| Writing * :anama:r" j Screen display
H:v l Screen display

VERIFY

| Format | VERIFY “[CMT]: <filename>"

| Abbreviated Format I
L&

[Explanation | The VERIFY command compares the program in memory with the program writ-
ten on cassette to confirm that the program has been properly saved. ““Ready’’ is
displayed if both programé are the same and **CMT:Illegal data error”’ is displayed
if they are different. In the latter case, save the program again.

Any ASCII file cannot be verified.
This command is valid only for cassette files.

| Example | VERIFY ""CMT:NAME"........ Compares file “NAME’’ on the cassette with the pro-
gram in memory,

Procedure for verifying a program file

| VERIFY ' <filename>" [ck] | Keyin
’ X PLAY | Screen display
I Press the [PLAY | button. Data recorder operation
|_ Found “ < filename ="" I Screen display (the names of program files found are displayed.)
| Verifying ' < filename>"" | Screan display
I Ready I CMT:lllegal data error Screen display
Ready
Werify An arror is detected.
completed. If this message is displayed, retry to save the program file again.

DELETE

| Format | DELETE “[RAM:] < filename>"’
| Abbreviated Fnrmat]
D.

| Explanation | The DELETE command deletes the file specified in <filename>. The optional
MZ-1R18 RAM file board is required for this command to be valid.

] Example | DELETE ""RAM: SAMPLE" ... Deletes a file named “*SAMPLE" on the RAM file
board.
RENAME
| Format | RENAME “[RAM:] <old filename>"", *“ <new filename>"'
| Abbreviated Formati
RENA.

| Explanation | The RENAME command renames a given file. To rename a file, specify the old
and new file names in that order. An error will occur if the new file name specified
matches that of an existing file on the RAM file board.
RAM may be omitted if the RAM file board is set as the default device or has al-
ready been specified in a DEFAULT statement. The optional MZ-1R18 RAM file
board is required for the RENAME command to be valid.

| Example | RENAME ""RAM: OLDPROG", "“"NEWPROG"
This example changes the name of a file on the RAM file board from “OLDPROG"
to “NEWPROG".

6-48

CHAIN

Format

CHAIN “*[<device name>:] <filename>"
< device name > must be CMT or RAM.

I Abbreviated Format |

Explanation

1

Example

|

CH.

The CHAIN statement transfers execution from the current program to another
program in a file. The CHAIN statement can also open a file. Executing a CHAIN
statement has the same effect as executing the RUN command in a program except
that CHAIN passes variables and arrays from the current program to the called
program.

< device name > may be omitted when the default device or the device specified
in the DEFAULT statement is to be used.

10 A=1
20 B=2
30 CHAIN “"CMT:PROG™
40 END

In this sample program, control is passed on line 30 to the program, from file
“PROG" on the cassette. The values of variables A and B, 1 and 2, are passed
to the called program.

6-49

MERGE

Format

MERGE [*‘[<device name>:] < filename>""][,A]
< device name > must be CMT or RAM.

| Abbreviated Format |

| Explanation |

| Example |

M.

The MERGE command merges the program specified in the < filename> into the
program currently in memory.

<device name > may be omitted when the default device or the device specified
in the DEFAULT statement is to be used.

If lines from the file have the same line numbers as those in the program in memory,
the lines from the file overwrite the corresponding lines in memory.

To merge a BSD file (program) saved in ASCII format, add the A option at the
end of the statement.

(Program in memory) (Program on cassette tape)

""PROG"’
10B=2 10 A=1
30 PRINT B 20 PRINT A
50 END 40 END

When these programs are merged together with the MERGE **CMT: PROG" state-
ment, the merged program will look like this:

10 A=1

20 PRINT A

30 PRINT B

40 END

50O END

Confirm the resulting program by using the LIST command.

6-50

WOPEN #

| Format | WOPEN# <logical number>, ““[<device name>:] < filename>"’
< logical number > must be an integer from 1 to 127.
< device name > must be CMT, RAM, or RSn.

| Abbreviated Format i
WO. #

| Explanation | The WOPEN # statement opens a BSD file for output. It also assigns a logical number
and name to the file.
< device name > may be omitted when the default device or the device specified
in the DEFAULT statement is to be used. Specifying RSn as <device name > causes
output to be sent to the RS8-232C device.

Example | 10 WOPEN#1, "CMT:DATA" Opens a file under the name ““DATA for out-
put and assigns logical number 1 to that file.
10 WOPEN #1, ""RS1:""............. After this statement is executed, all output from
PRINT #1 statements is sent to the R§-232C
port.

10 WOPEN #2, ""DATA™
20 FOR Z=1TO 99

30 PRINT #2, £

40 NEXT Z

50 CLOSE #2

60 END

The above sample program writes numbers 1 to 99 into the specified file.
| Seealso | PRINT#, ROPEN#, CLOSE #

PRINT #

| Format | PRINT# <logical number>, <data> [, <data>] ...

| Abbreviated Format |
74

| Explanation | The PRINT # statement writes data sequentially to the file that is opened for out-
put with a WOPEN # statement.
< logical number > must be the file number used in the WOPEN # statement.
< data> may be numeric or alphanumeric.

| Example | 10 WOPEN#1, "CMT:DATA2"
20 PRINT#1, 1, 2, 3
30 CLOSE#1
40 END

This sample program writes numeric data 1, 2, and 3 into file ““DATA"’. The file
has the logical number 1 and is opened for output.

| Seealso | WOPEN#, CLOSE#

6-51

ROPEN #

1

Format

ROPEN # <logical number>, “‘[<device name>:] <filename>"’
< logical number> must be an integer from 1 to 127.
< device name> must be CMT, RAM, or RSn.

| Abbreviated Format]

| Explanation |

Example

See also

RO. #

The ROPEN # statement opens a file for input. The ROPEN # statement assigns
< logical number > to the file designated by <device name> and <filename>.
< device name > may be omitted when the default device or the device specified
in the DEFAULT statement is to be used. **RSn:'’ specified in <device name>
designates the R5-232C interface as the input device from which data is to be read.

10 ROPEN#1, ""CMT: DATA' Opens a BSD file named **DATA" on the
cassette.

10 ROPEN#1, ""RS1:"".............. Sets the RS-232C port as the device from which
all data specified in the INPUT # 1 statements
is to be read.

10 ROPEN#2, ""DATA™"
20FOR Z=1TO 99
30 INPUT #2,A

40 PRINT A

50 NEXT Z

60 CLOSE #2

70 END

The above program reads and displays the contents of the file created by the sam-
ple program given for the WOPEN # statement.

INPUT#, WOPEN#, CLOSE #

6-32

INPUT #

| Format | INPUT# <logical number>, <variable> [, <variable>] ...
| Abbreviated Format |
I#

| Explanation i The INPUT # statement sequentially reads data items from the file opened for in-
put with the ROPEN # statement and assigns them to program variables. < variable >
may be an array element. <logical number > is the same number used as when the
file was first opened for input by the ROPEN# statement.
As with the READ ~ DATA statement pair, an error may be generated if data
and variable types disagree. The end of file can be tested by using the EOF # func-
tion if the specified file is on the RAM file board.

I Example 10 ROPEN #2, ""DATAZ2"
20 INPUT#2, A, B, C
30 PRINT A, B, C
40 CLOSE#2
50 END

This sample program reads numeric data from the file opened for input under logi-
cal number 2 and assigns the data to numeric variables A, B, and C.

| Seealsec | ROPEN#, CLOSE#, EOF#
EOF(#)
| Format | EOF(# <logical number>)
| Abbreviated Format |

EQO. #

I Explanation | The EOF(#) function is used to find the end of a file. This function signals an end-
of-file condition when all data in the file has been read. The value — 1 (true) is returned
after the end of the file is encountered. EOF(#) is invalid when reading data from
CMT.

The EOF(#) function is generally used with the IF statement and placed after an
INPUT # statement.

| Example | 10 ROPEN#3, "DATA"
20 INPUT#3, A
30 IF EOF(#3) THEN END
40 PRINT A
50 GOTO 20

The above program reads data items sequentially from the file named “DATA"
and displays them on the screen until the end of the file is encountered.

| Seealso | INPUT#

6-33

CLOSE #

[Format | CLOSE[# < logical number>]

| Abbreviated Format |
CLO. #

[Explanation] The CLOSE statement closes the file opened under the specified logical number.
The logical number assigned to the file is released after execution of the CLOSE
statement.

A CLOSE operation on a file opened for output causes the output buffer to be
flushed. A CLOSE operation with no logical number specified closes all open files
and releases all logical numbers.

| Example | 10 CLOSE#1.................... Closes the file existing as logical number 1.
10 CLOSE......................... Closes all open files.

| Secalso | WOPEN#, ROPEN#

KILL #

| Format | KILL[# <logical number>]

| Abbreviated Format |
KL #

| Explanation | TheKILL # command aborts the writing of data into the file opened under the speci-
fied logical number. A KILL # command with no logical number aborts all current
writing processing, closes all open files, and releases the logical numbers.

| Example | KiILESR. owmummimmmien Aborts the writing of data to the file opened under
logical number 3 and releases the logical numbers as-
signed to that file.

| Seealso | WOPEN#, PRINT#

6-54

DEFAULT

| Format | DEFAULT "' <device name>: "'
| Abbreviated Format |
DEF.

| Explanation | The DEFAULT statement defines the device names to be assumed when the < device
name>> parameier is omitted in input/output statements.

— Specify device names as follows:
CMT........ Data recorder (Default)
BRAM........ RAM file board
LPT......... Printer

RS I 1{ RS-232C interfaces
12

| Example | DEFAULT "CMT: "
After this statement is executed, the data recorder becomes the default device

whenever the < device name>> parameter is omitted in input/output statements for
external devices.

6-55

6.4 Graphics Control Statements

COLOR

!

Format

COLOR [<palette code> [, <mode>]

| Abbreviated Format |

| Explanation |

Example

See also

COL.

The COLOR statement specifies the < palette code> and optional <mode> that
are used by the PRINT, PRINT USING, and graphics statements SET, RESET,
LINE, BLINE, BOX, CIRCLE, PAINT, PATTERN, and SYMBOL.

<mode> specifies the type of logical operation performed on the colours. When
<mode> is specified as 0, the old colours in superimposed sections are over-painted
by new colours. When this parameter is specified as 1, the old and new colours are
logically ORed. The mode parameter does not apply however to the RESET and
BLINE statements (see Appendix A).

10 INIT "CRT:M1""

20 COLOR 3,0

30 FOR J=0 TO 10 STEP 2

40 SET 100,J

50 NEXT J

60 END

This program plots dots at points (100, 0) and (100,2) through (100,10) in colours
associated with palette code 3 and in superimpose mode 0.

Appendix A.

6-56

PAL

! Format |

| Explanation |I

PAL <palette code>,<colour code>

The PAL statement matches a palette code and colour codes to each other. Both
the palette and colour code parameters can have a value from 0 to 15, In colour
modes other than the 16-colour mode, the user can select two or four palette codes
at a time and can select 16 colours. In the 16-colour mode, the user can set up a
palette block with the INIT command and select four palettes for that block, again
enabling selection of 16 colours. The default (initial) values of the palette and colour
codes are given below.

(1) 2-colour mode

Palette code

Colour code

0
1

0 Black
15 Light white

(2) 4-colour mode
The table below shows the relationship between the palette and colour codes
that is established when BASIC is started.

Palette code Colour code
0 0 Black
1 1 Blue
2 2 Red
3 15 Light white

You can select four colour codes out of a possible 16 colour codes.

(3) 16-colour mode
The default palette code values are identical to those in colour mode. In this
mode, colours are fixed for each palette block (see the ““INIT Statement’’ for
palette blocks).
n: Palette block number

n |Colour code Colour n | Colour code Colour
0 0 Black 2 8 Grey
1 Blue 9 Light blue
2 Red 10 Light red
3 Magenta 11 Light magenta
1 4 Green 3 12 Light green
5 Cyan 13 Light cyan
[Yellow 14 Light yellow
T White 15 Light white
Note:

When a palette block is changed with the INIT statement in the 16-colour mode,
the palette code settings are initialized. See Appendix A for details of colour codes
and pallette codes.

6-57

SET

[Format I

[Explanation I

SET [< colour specification>] < X-coordinate>, <Y-coordinate>
< colour specification> = [<palette code>][, <mode>]

The SET statement sets a dot on the screen at the point specified by < X-coordinate >
and <Y-coordinate> in the specified colour. <X-coordinate> and <Y-
coordinate > are numerical expressions (i.e., numeric constants, variables, or ex-
pressions). They can have values from the following ranges:

— 16384 = < X-coordinate> = 16383
— 16384 = <Y-coordinate> = 16383

(= 16384, - 16384)

Example !

I See also

Wirtual area

{=X) (0,00 (639,0) (+X1

Display area

640 x 200 dot
mode

e (639,198)

(+¥]

(16383,16383)

Although you can specify X- and Y-coordinates in the virtual area, BASIC displays
only the shaded area in the above figure. <palette code> can specify the colour
of the dot to be plotted. <mode> must be either 0 or 1. When 0 is specified, the
dot is displayed in the colour specified by < palette code >, irrespective of the cur-
rent palette code value. When 1 is specified, the dot is displayed in the colour deter-
mined by ORing the current palette code with the < palette code > specified in the
SET statement.

When < colour specification> is omitted, the dot is displayed in the colour speci-
fied by the last COLOR statement.

10 SETI3,0] 100,50........... Turns on a dot at coordinates (100,50) in the colour
associated with the palette code 3, superimpose mode
0.

RESET

6-58

RESET

| Format

|

| Explanation |

| See also

RESET [<colour specification>] < X-coordinate>, <Y-coordinate >

< colour specification> = < palette code> , <superimpose mode>

The RESET statement changes the colour of a dot on the screen at the point speci-
fied by < X-coordinate> and <Y-coordinate> according to the rule shown be-
low. <X-coordinate> and < Y-coordinate> are numerical expressions (i.e., numeric
constants, variables, or expressions). They can have values in the following ranges:
-16384 < < X-coordinate> =<16383

— 16384 = <Y-coordinate> = 16383

Their range of values is the same as that for the SET statement. <palette code>

specifies the palette code for the colour of the dot to be reset. <mode> must be
either 0 or 1. See Appendix A for more information.

SET

6-59

LINE

|_ Format |

| Explanation |

Example |

See also J

LINE [<colour specification>] <X-coordinate>, <Y-coordinate>,
< X-coordinate », < Y-coordinate> [, <X-coordinate>, <Y-coordinate>] ...
< colour specification> = [<palette code>][,<mode>]

The LINE statement draws line(s) connecting given points in the specified colour.
< X-coordinate > and < Y-coordinate> are numerical expressions (i.e., numeric
constants, variables, or expressions). Their range of values is the same as that for
the SET statement. The < colour specification> parameter is identical to that of
the SET statement. If this parameter is omitted, the colour specification made in
the COLOR statement is assumed. If coordinates outside the display area are speci-
fied, the line is clipped off at the boundary of the display area.

10 LINE [2,0]110,20,260,180,380,60
20 END

The above program draws lines that connect from points (10,20), (260,180), to (380,
60) in the colour previously specified from palette code 2 in superimpose mode 0.

10 INIT"CRT:M1"

20 FOR X1=0TO 319 STEP 3
30 LINE 159,99,X1,0

40 NEXT X1

50 FOR Y1=0 TO 199 STEF 3
60 LINE 159,99,319,Y1

70 NEXT Y1

80 FOR X2=319 TO O STEP -3
90 LINE 159,99,X2,199

100 NEXT X2

110 FOR ¥2=199 TO O STEP -3
120 LINE 159,99,0,Y2

130 NEXT Y2

140 END

The above program draws dotted lines (every three dots) from the center of the screen
(159,99) to the corners of the screen.

BLINE, SET

BLINE

| Explanation]

See also

BLINE [<colour specification>] <X-coordinate>, <Y-coordinate>,
< X-coordinate >, <Y-coordinate> [,<X-coordinate>, < Y-coordinate>]...
< colour specification> = <« palette code> , <superimpose mode >

The BLINE statement changes the colour of line(s) connecting given points on the
screen according to the rule shown below. < X-coordinate> and < Y-coordinate>
are numerical expressions (i.e., numeric constants, variables, or expressions). Their
range of values is the same as that for the SET statement. The < colour specifica-
tion > parameter is identical to that of the RESET statement. If this parameter is
omitted, the colour specification made in the COLOR statement is assumed. If coor-
dinates outside the display area are specified, only the line segment within the dis-
play area is deleted. See Appendix A for more information.

LINE, RESET

BOX

1

Format

| Explanation |

[

Example

l

See also

|

BOX [< colour specification>] < X-coordinate 1>, <Y-coordinate 1>,
< X-coordinate 2>, <Y-coordinate 2> [, <palette code>]
< colour specification> = [<palette code>][, <superimpose mode>]

The BOX statement uses two pairs of coordinates as the location of the opposing
corners of the box. <X-coordinate> and < Y-coordinate > are numerical expres-
sions. Their range of values is the same as that for the SET statement.

The <colour specification > parameter is identical to that of the SET statement.
If this parameter is omitted, the colour specification mode in the COLOR state-
ment is assumed.

The last < palette code> parameter specifies that the box must be painted in the
specified colour. When this parameter is omitted, only the borders are drawn.

10 INIT""CRT:M1"

20 CLS

30 BOX [2,0]120,20,60,860,2
40 END

This program draws a rectangle on the screen and paints it in colour previously speci-
fied from palette 2.

SET

6-61

CIRCLE

[Format]

CIRCLE [<colour specification>] <X-coordinate>, <Y-coordinate>,
<radius> [,[<aspect>] [,<start>,<end>][,0]]
< colour specification> = [<palette code>][, <superimpose mode>]

| Abbreviated Format |

| Explanation |

Example

See also |

CI.

The CIRCLE statement draws an ellipse (circle) or arc (fan). The meanings of the
< colour specification > parameter are identical to those of the SET statement. When
this parameter is omitted, the values specified by the COLOR statement are assumed.
< X-coordinate> and < Y-coordinate> give the coordinates of the center of the
circle and <radius> the radius of the circle. Their ranges of values are as follows:

— 16384 = <coordinates> = 16383
0 = <radius> = 16383

The area in which the circle can be actually displayed is determined by the INIT
command. :

< aspect> affects the ratio of the X-radius to the Y-radius. When < aspect> is
less than 1, the <radius> specified becomes the X-radius. If aspect is greater than
1, then <radius> becomes the Y-radius. The default value of <aspect> is 1.
The <start> and <end> angle parameters specify where drawing of an ellipse
is to begin and end. These parameters must be given in radians. When omitted, an
ellipse (circle) is drawn. When the O parameter is specified with <start> and
<end >, a fan is drawn, that is, an arc is connected to the center point with lines,
When O is omitted, an arc only is drawn.

10 INIT"CRT:M1"*

20 CIRCLE[1,01100,100,80,0.5

30 GOSUB 80

40 CIRCLE[2,0)50,130,60,0.5,0,%/4,0
50 GOSUB 80

60 CIRCLE 159,99,50

70 END

80 GET AS:IF AS="""" THEN 80

90 RETURN

The above program draws an ellipse, and, if any key is pressed, it draws an arc,
then a circle.

SET, GET

6-62

PAINT

| Format I

[Explanation]

| Example |

PAINT [<palette code>] <X-coordinate>, <Y-coordinate>,
< boundary colour> [, <boundary colour>] ...

The PAINT statement fills in an area on the screen with the colour specified by
< palette code>.

When < palette code> is omitted, the palette specified in the COLOR statement
is assumed.

You can select the <boundary colour > from 16 colours. The range of values that
< X-coordinate> and < Y-coordinate> can have is determined by the INIT
statement.

Unless the area is completely surrounded by the specified border colour (called the
closed loop state), painting will occur beyond that area. Painting will be suppressed
if the specified X- and Y-coordinates lie on the border or in an area that has already
been painted with the specified colour.

Figures are all drawn in dots, so when lines and curves are drawn in a small area,
small closed loops may result. When this happens, painting will not occur unless
coordinates falling inside the closed loop are specified.

10 INIT"CRT:M1"*

20 CLS

30 CIRCLE[2]160,100,50
40 PAINT[1]160,100,2
50 END

The above program paints the area surrounded by a border using palette code 2
with a colour specified by palette code 1, starting at point (160,100).

6-63

PATTERN

Format

! Explanation]

[Example

See also

PATTERN [<colour specification>] <numeric data>, <text data>
<colour specification> = [<palette code>][, <superimpose mode >]

The PATTERN statement defines a graphics pattern in the specified colour. The
meanings of the < colour specification> parameter are identical to those of the SET
statement. When this parameter is omitted, the parameters in the COLOR state-
ment are assumed.

The pattern to be drawn can be specified using <numeric data> and <text data>.
<numeric data> (+1 to £ 24) represents the number of stacked 8-bit dot pattern
rows, and <text data> represents the individual dot pattern rows.

Drawing of the pattern is controlled by the position pointer. The number of dot
pattern rows specified by <numeric data> are displayed from bottom to top if
< numeric data > is positive and from top to bottom if it is negative. After the speci-
fied number of dot pattern rows are drawn, dot pattern lines 8 bits (I character)
to the right of the current column are displayed. <text data> must be specified
using ASCII codes which correspond to the binary representation of dot pattern rows.

| V4 V4 Vi

{Binary number) o1o0101T 11
1 JL i

5 7 =+ 57 (hexadecimal)
—+ CHR&($57) or W™

10 POSITION 100,100........ Sets up the position pointer.
20 PATTERMI[Z,0]16," ABCDEF"'
30 END

The above program draws the graphics pattern shown below in a colour from palette
2.

Binary Hexadecimal
or Character representation

~01000110 =48 —=“F"
~0D1000101 =45 — “g"
+~0D1000100 —44 = ‘D"
-01000011 =43 —=*gC"
~01000010 —42 —*p"
01000001 —41 —=“A"

Position pointer before execution

Line 20 above can be replaced by the following line:
20 PATTERNI[2,0]6,CHR%(541,542,543,544,445,546)
POSITION

POSITION

Format

POSITION < X-coordinate >, <Y-coordinate >

| Abbreviated Format |

| Explanation |

Example

[

See also

|

POS.

The POSITION statement sets the position pointer to a given point on the screen.
The position pointer points to the position on the screen where the dot pattern speci-
fied in a subsequent PATTERN statement is to be displayed. The range of values
of the <X-coordinate> and < Y-coordinate> parameters is the same as that of
the SET statement.

10 POSITION 100,50
20 A$=""ABCDEFGH"

30 PATTERNI1,0]-8,A%
40 END

The POSITION statement on line 10 sets the position pointer to (100,50) where ex-
ecution of the subsequent PATTERN statement begins.

PATTERN

SYMBOL

Format

SYMBOL [<colour specification >] < X-coordinate >, <Y-coordinate>,
< text data> [, <horizontal magnification >]*[, < vertical magnification >]*
[,<angle code>]

< colour specification> = [< palette code>][, <superimpose mode>]

| Abbreviated Format |

i Explanation]

Example

SY.

The SYMBOL statement draws a graphics pattern of a given size at a given angle.
When this statement is encountered, BASIC positions the lower left corner of the
graphics pattern represented by <text data> at point (X-coordinate, Y-coordinate),
rotated by <angle code>, and magnified by a factor of <horizontal magnifica-
tion> and/or <vertical magnification>.

The meanings of the <colour specification > parameter are identical to those of
the SET statement. When this parameter is omitted, the parameters in the COLOR
statement are assumed.

The range of values that < X-coordinate> and < Y-coordinate > can have is iden-
tical to that specified in the SET statement. <horizontal magnification> and
< vertical magnification> are integers from 1 to 255 and default to 1.

When <angle code > is specified, the pattern is rotated counterclockwise with respect
to the upper left corner of the pattern at point (X-coordinate, Y-coordinate) by the
angle specified by <angle code>. The reference position of the pattern remains
unchanged after the rotation. The relationship between angle codes and angles is
given below.

Angle code | Angle Rotated by 90°
0 0° | Default)
1 o0°
2 180°
2 ETD (X, Y)

10 SYMBOL [1] 40,0, ""MZ-800", 5,5,0
20FOR J=1TO 3

30 SYMBOL [J] J#80,100, “A" J+2,J+2,J
40 NEXT J

50 SYMBOL [1] 280,199, ""MZ-800", 5,5,2

POINT

Format

Explanation I

[Example

]

POINT (< X-coordinate >, < Y-coordinate>)

The POINT function returns the palette code that is defined at the given point on
the screen. The range of values that < X-coordinate> and < Y-coordinate> can
have is set by the INIT statement.

10 INIT"CRT:M1""

20 SETI[3,01100,100
30 A=POINT(100,100)
40 PRINT A

50 END

RUMN

3

Ready

The statement on line 10 assigns the point (100,100) to palette code 3. The POINT
function therefore returns a palette code of 3.

6.5 Music Control Statements

MUSIC

| Format |

MUSIC <notel of melodyl >[; <notel of melody2>]
[;<notel of melody3>][, <note2 of melodyl =]
[;: <note2 of melody2>][; <note2 of melody3>] ..

] Abbreviated Formati |

l Explanation]

MU.

The MUSIC statement generates through the MZ-800 speaker the melody or sound
effects specified by the character string or string variable of its argument.
Three parts of a melody can be played at the same time. In the melody specification
that follows the keyword MUSIC, where 2 melody is a sequence of notes, semico-
lons are used to separate individual parts, and commas are used to separate one
melody from another. Each note is specified as follows:

< octave specification> < note name> <duration>

(@

(i)

‘ =sEC =D EF =

Octave specification

The basic octave of a melody is specified in the format “On’* where n is a number
in the range 0 to 6. The plus sign (+) makes the following notes played one
octave higher than the basic octave, while the minus sign (—) causes notes to
be played one octave lower. If neither sign is specified, the basic octave is as-
sumed. Plus and minus signs are illegal in a melody in which the basic octave
is set to O6 and OO0, respectively.

Note specification
The symbols used to specify notes within each octave are as follows:

CDEFGAB#R

The relationship between the 8-note scale (do, re, mi, fa, so, la, ti, do) and
these symbols are shown below. The sharp symbol (#) is used to raise a note
by a half step. A note can be lowered a half step by attaching a # symbol to
a note one step lower than that desired. For example, B flat is represented as
A. Silent intervals are specified with “R"’.

JLLLL,

| I‘I[I H

E F

D

—— Rest

Example

(iii) Duration specification
The duration specification determines the length of the specified note. Dura-
tions from 1/32 to 1 are specified as numbers from 0 to 9 as shown below.
(When R is specified, the length of the silent interval is determined.)

I e T e Rl Tl o= o

Dotted Dotted Dotved Dotted
1/32 rest 1716 rest 1/16 rest 1/8 rest 1/8 rest 1/4 rest 1/4 rest 1/2 rest 172 rasy TWDOle rest

$ Pl bk i #

Dotred Dattad Dol
1132 note 1/16 note 3 0 1/8 note | o1 n'u“ 1/4 note 1!4“::m 1/2 note Fﬁ“::w Whole note
@] 1 2 3 4 5 5] 7 a8 9

The following program plays **Oh! Susanna’’, composed by Stephen Foster:

10 TEMPO 6

20 A15=""02G1A1B3+ D3+ D3+ E3+ D3B3G4A1B3B3A3G3A6G1A1IB3 +
D3+ D3+ E3+ D3B3G4A1B3B3A3A3GER3""

30 A25=""G1ATG3B3B3 + C3B3G3G4G1G3G3G3G3E6GTATG3B3BA +
C3B3G3GAG1G3G3E3E3GHR3"

40 MUSIC A13;A2%

50 END

The following options can be defined in the <melody> specification:

n=integer Default D L
value value Hption

On Oto 6 2 Sets the current octave, The frequency of A is
440Hz if n=2.

Nn 0to 83 Specifies the note directly through the cor-
responding note number rather than through the
octave number and note name. The values of n
are listed in the table on the following page.
Values NO to N8 means rest.

Tn 1to7 4 Sets the tempo in the same way as the TEMPO
statement.

Vn Oto 15 15 Sets the sound volume. The volume is maxi-
mum when n=15 and no sound is generated
when n=0.

Sn 0to7 8 Sets the envelope pattern (sound waveform).
For the values of n, see the figures for enve-
lopes on the following page.

Mn 1 to 255 255 Always used with the S parameter to specify the
rate at which the envelope pattern is to change.

| =approx. The rate is maximum when n=1 and decreases.
10m/s The slope of the envelope becomes slower as the
value of n increases. Values of Mn which are
too large may generate inaudible sound depend-
ing on the envelope pattern.
Ln Oto 9 5 Sets the length of the note.

Mote numbers (MNn)

Octave

0 1 213 | 4|8]
Note

do 12 | 24 | 36 | 48 | 60 | 72
do# 13 |25 |37 |49 |61 | 73
re 14 | 26 | 38 | 50 [62 | 74
re# 15 |27 |39 | 51 | 63| 75
mi 16 |28 | 40 | 52 | 64 | 76
fa 17 |29 | 41 | 53 [65 | 77
faf 18 | 30 | 42 | 54 | 66 | 78
50 19 |31 |43 |55 (67 (79
so# 20 | 32 | 44 | 56 | 68 | 80
la 9121 |33 |45 |57 |69 |81
la# 10 | 22 | 34 | 46 | S8 | 70 | 82
ti 11 |23 |35 |47 | 59|71 | 83

Envelope patterns (Sn)

Envelope pattern
n (x-axis represents time;
y-axis represents volume.)

f%//”////%’/////////

////////////////

X-axis represents time in the units specified in Mn.

The MUSIC statement causes music data to be buffered and the sounds to be gener-
ated independently of computer processing. This makes it possible to change the
display on the screen while playing music. However, this function also prevents the
music from being stopped with the [SHIFT | and | BREAK | keys or being played out
to the display. The following commands are provided to control the starting and
stopping of musical sound:

MUSIC STOP:
MUSIC WAIT:

MUSIC INIT:

Stops sound generation.

Suspends program execution until the entire series of notes have
been played.

Initializes the music and noise setting to “‘O2V15L5T4S8M255"".
(See the table on the previous page.)

6-70

TEMPO

| Format | TEMPO <numeric expression >
[Abbreviated Format I
TE.

| Explanation | The TEMPO statement sets the tempo with which music is played by the MUSIC
statement. The setting for tempo may range from 1 to 7. The default setting is 4.
TEMPO 1: Slowest tempo,
TEMPOQ 4: Medium tempo,
TEMPO 7: Fastest tempo

SOUND

| Format | SOUND <pitch>,<duration>
SOUND = (<register>,<data>)

| Abbreviated Format |
50.

| Explanation | The SOUND statement generates sounds as specified by <pitch> and <duration>.

(i) <pitch>
< pitch > specifies the pitch of the sound. The pitch codes and the corresponding
musical notes are listed in the table below.

Octave
011 213 | 4| 5|6
Mote

do 12 | 24 | 36 | 48 | 60 | 72
do# 13 |25 |37 |49 | 61 | 73

re 14 | 26 | 38 | 50 | 62 | 74
re i 15 |27 |39 | 51 | 63 |75

mi 16 | 28 | 40 | 52 | 64 | T6

fa 17 | 29 | 41 | 53 | 65 | 77
fa # 18 | 30 | 42 | 54 | 66 | 78

50 19 | 31 |43 | 55 | 67 | T9
so# 20 | 32 | 44 | 56 | 68 | 8O

la 9|21 |33 |45]| 57|69 | 81
la # 10 | 22 | 34 |46 | 58 | 70 | 82

ti 11 (23|35 |47 | 5|71 | 83

The frequency of note la in octave 2 is 440 Hz.

6-71

(i) <duration>
< duration > specifies in units of 1/100 seconds the length of the tone generat-
ed by this statement. < duration > must be a numeric expression from 0 to 65535.
The SOUND = (< register>,<data>) statement is used to directly control
the sound generator (Programmable Sound Generator) LSI. The PSG can gener-
ate three tones and one noise. The PSG register table is shown below.

ﬁ:ﬁ:ﬁi Data
] Tone 0 Frequency Integer from 1 to 2" — 1
1 Tone 0 Volume Integer from 0 to 15 (see note)
2 Tone 1 Frequency Same as register 0
3 Tone 1 Volume Same as register 1
4 Tone 2 Frequency Same as register 0
5 Tone 2 Volume Same as register 1
[MNoise Frequency Noise data
7 MNoise Volume Same as register |

The PSG can generate either synchronous or white noise. The type of noise
to be generated can be specified by sending 1-byte of data to PSG port $F2.
See Appendix B for control of PSG.

NOISE

Format

NOISE <melody> [, <melody>]...
<melody> = { t} < note name > [< duration > |

| Abbreviated Format |

1 Explanation

I Example

NO.
The NOISE statement generates white noise as specified by the <melody n>

parameiers. The meanings of the <melody n> parameters are identical to those
of the MUSIC statement.

This statement can generate two parts of noises simultaneously. The parameters
specifying these two must be separated by a semicolon (;). Any two consecutive melo-
dies must be separated by a comma (,).

10 NOISE **C3D1""," E3F1"’
The above NOISE statement generates two parts of white noises simultaneously.

6-72

6.6 Printer Control Statements

PTEST
| Format | PTEST
| Abbreviated Format |
PTE.
| Explanation | The PTEST command causes the printer to print squares in black, blue, green, and
red in that order to check the colour specification, quantity of pen ink, and so on.
0 1 2 3 + Value specified in PCOLOR
(Black) (Blue) (Green) (Red)
This command is valid only in the text mode.
PMODE
| Format | PMODE [TN
TL
TS
GR

| Abbreviated Format |

[Explanation |

PM.

The PMODE command specifies the operating mode for the colour plotter-printer.
PMODE TN

The PMODE TN command returns the printer to the text mode from the graphics
mode, and sets the character size to 40 characters per line (the initial setting).

PMODE TL

The PMODE TL command returns the printer to the text mode from the graphic
mode, and sets the character size to 26 characters per line.

PMQDE TS

The PMODE TS command returns the printer to the text mode from the graphic
mode, and sets the character size to 80 characters per line.

PMODE GR

The PMODE GR command switches the printer from the text mode to the graphics
mode. When switching to this mode, the BASIC program being executed must make
a note of the character size being used immediately before the mode change is made.
Doing this allows the program to return to the text mode when the 5
key is pressed or a STOP command is encountered.

6-73

##% CHARACTER MODE ##%*
SARE FE-g82 80 character mode (TL)

SHARFP MZ~-808 40 character mode (TIN)

SHARFP MZ-8PR 26 character mode (TS)

The PMODE GR command turns any command used in the graphics mode executable
and sets the X and Y axes on the printer. The current pen location is initially set
as the origin (0, 0). The origin can be moved to any location if it is within the range
of the printable area. Printing beyond the forms may damage the pen and cause
printer trouble.

Y =999 (Max.} ¥ =999 (Max.)
£y /'_\t_y l__/—

2z

H g

e]

& o

Current g 2
P lasetion | 0.0} (480,0 s ~%. | ~240 240 +x | ©
c

§ §

g 2

& a

=l W /\/-J
Y = - 998 (Min.) BT |

-¥
Y = - 999 (Min.)

X and Y axes after the origin is moved X and Y axes after execution of

to the center. (PMOVE 240, - 240: HSET) a PMODE GR command. The X-axis

is drawn from 0 to 480 and the Y-axis
from —999 to 999,

* Printer modes
The modes of printer operation and commands which can be used with different modes
are as shown in the table below.
Mode selection
Mode nd Commands usable
Text mode PMODE TN PTEST * LIST/P
40 characters/line PCOLOR * HCOPY
PSKIP PLOT
Text mode PMODE TL PAGE
26 characters/line * PRINT/P
Text mode PMODE T3 * PRINT/P USING
80 characters/line
Graphic mode PMODE GR PLINE HSET
RLINE GPRINT
PMOVE AXIS
RMOVE PCIRCLE
PHOME PCOLOR
Note:
Commands marked with an asterisk (*) can be used with a dot printer (MZ-80 P5(K));
other commands can only be used with a plotter printer.

6-74

PCOLOR

| Format | PCOLOR [0

1
2
3

| Abbreviated Format |
PC.

The PCOLOR command specifies the colour to be used for the printout of charac-
ters or graphics. This command can be entered in either the text mode or graphics
mode. The available colours and the corresponding colour numbers are lisied below.

0: Black

1: Blue

2: Green

3: Red
| Example | 10PCOLOR 1...coccccvvuvnnnnnn Sets the pen colour to blue.
PSKIP
I Format] PSKIP <number of lines>
| Abbreviated Fcrrmatl

PS.

] Explanation] The PSKIP command feeds the paper by the specified <number of lines > forward
when the specified value is positive and feeds it by the specified <number of lines >
backward when the value is negative. <number of lines> must be an integer from
—20 to 20. This statement is valid only in the text mode.

| Example | 1OPSKIP 12....cccceevvnvernnnn. Feeds the paper 12 lines forward.
ZEPSRIP =B nnnnaun Feeds the paper 6 lines backward.
PAGE
| Format | PAGE <number of lines>
| Abbreviated Format |
PA.

| Explanation | The PAGE command specifies the number of lines per page. <number of lines >
must be an integer from 1 to 72. The PAGE command also sets the current page
position as the first line of the page. This statement can only be executed in the

text mode.
|_ Example] 10 PAGE 20 Sets the number of lines per page to 20. With this set-
ting, the printer will space 20 lines when a form feed
is performed.

6-75

PRINT/P

| Format | PRINT/P <data> [{i}{data::a]

| Abbreviated Format F

| Explanation |

Example

/P

The PRINT/P statement submits output data to the printer in almost the same for-
mat as the PRINT statement would to the screen. Either the separators *,”" and
;" or the TAB function in this statement have the same effect as that in the PRINT
statement. Various functions supported by the printer can be used by sending print
control codes in the following format:

PRINT/P CHR$ (control code)

10 PRINT/P ""ABCD"'.......... Prints “*ABCD".
10 PRINT/P CHR$(50A) Causes a line feed.
Note:

To execute PRINT/P statements containing control code [Jfil or [l successively, you
must specify them on separate lines or delimit them with colons (:). BASIC may
interpret control codes concatenated with connectors (+) as a single code sequence
and cause a print malfunction.

linvalid] PRINT/P """ + " HIH 40"

BASIC will interpret this statement as PRINT/P ‘[[lJl}* +40". nstead,
specify the following:

[Valid] PRINT/P i} : PRINT/P " Il 40"

PRINT/P USING

| Format | PRINT/P [<palette code>]USING**format string’’; <data> [{;}-ﬁdata}]m

| Abbreviated Format |

| Explanation |

I

See also

7/P USL

The same as the PRINT USING statement excepting that the output device is the
printer.

PRINT USING

6-Th

PLINE

Format

PLINE [% <line type>,] x1,y1 [, x2,¥2, ..., xi,yi]

| Abbreviated Format |

| Explanation |

l

Example

|

PLI.

The PLINE statement draws a solid or dotted line from the current pen location
to the location indicated by absolute coordinates (x1,y1), then draws a line from
that point to the location indicated by absolute coordinates (x2,y2), etc. xi must
be an integer from — 480 to 480 and yi an integer from —999 to 999. <line type >
specifies the type of line to be drawn and must be an integer from 1 to 16. Solid
lines are drawn when <line type> =1 and dotted lines are drawn when <line
type> =2 to 16, where n is 2 number corresponding to a line type. If "o <line type >
is omitted, the previous value of n is assumed. The initial value of <line type>
is 1 (solid line). Lines selectable with <line type> are as follows:

#* %% LINE 1—16 # = *

n= 1

n= 2

= A e e S e
ri= 4 e e e P e AP e R
= O
T B e B e e e el s
By Wi G- e GRE B0k S SR BUhn mERiete ks)
R Bk 0l &F Jadies < OISMINEIE T e TEE o TSN
B O i s s ST TR . AL T .
= T8 sl voAnmRs et ot b - . S
=4 T s i I e o i Gty
R e s
= LB o uceo et e e ol G eres T
PS8 oo e mi=geames wEe—e s LB TS T
B D o o o e e e e i s
r= 16

The PLINE statement is only valid in the graphics mode.

10 PMODE GR
20 PLINE %1, O, O, 200, O, 200, —-200, 0, —200, 0, O
30 END

The above program draws a square with sides 200 units long.

6-77

RLINE

Format

|

[Explanation |

Example

RLINE [% < line type>,] x1,¥1 [, x2,¥2, ..., xi, ¥i]

The RLINE statement draws a line from the current pen location to the location
indicated by relative coordinates (x1,y1), then draws a line from that point to the
location indicated by relative coordinates (x2,y2), etc.

xi must be an integer from — 480 to 480 and yi must be an integer from — 999 to
999, The line styles selectable with <line type> are the same as for the PLINE
statement.

The RLINE statement is only valid in the graphics mode.

10 PMODE GR

20 SQ=INT (120*SQR(3))

30 RLINE %1,240,0,—120,-5Q,-120,50
40 PMODE TN

This program draws a triangle with solid lines.

PMOVE

Format

|

[Explanation i

I

Example

PMOVE <X coordinate>, <Y coordinate >

The PMOVE statement lifts the pen and moves it to the specified location (x,y).
< X coordinate> and <Y coordinate> must be an integer in the range — 480 to
480 and —999 to 999, respectively.

This statement is only valid in the graphics mode.

The following program draws a cross with sides 480 units long:

10 PMODE GR

20 PLINE 0,0,480,0

30 PMOVE 240,240

40 PLINE 240,240,240,-240
50 PMODE TN

Remember to advance the paper before executing this program.

6-78

RMOVE

| Format | RMOVE <X coordinate>,<Y coordinate>
I Abbreviated Format |
RM.

| Explanation | The RMOVE statement lifts the pen and moves it to the location indicated by rela-
tive coordinates (x, y). <X coordinate> can be an integer from —480 to 480 and
<Y coordinate> can be an integer from —999 to 999,
The RMOVE statement is only valid in the graphics mode.

i Example ! 10 PMODE GR
20 PMOVE 240, 0
30 PLINE 240, 0, 360, 120
40 RMOVE -120, 0
50 PLINE 240, 120, 360, 240
60 PMODE TN

The above program draws two oblique lines.
Remember to advance the paper before executing this program.

PHOME
| Format | PHOME
| Abbreviated Format |

FPH.

| Explanation | The PHOME statement returns the pen to the origin. This statement is valid only
in the graphics mode.

| Example | 10 PMODE GR
20 PLINE 240, — 240
30 PCIRCLE 240, — 240, 50

40 PHOME.............covnrnennn. Returns the pen to the home position.
50 PMODE TN

6-79

HSET

| Format | HSET
] Abbreviated Format]
H.
| Explanation] The HSET statement sets the current pen location as the new origin. The most ap-

propriate location for drawing figures can be set as the origin by moving the pen
to the location with a PMOVE statement before specifying a HSET statement. This
statement is only vaid in the graphics mode.

| Example | 10 PMODE GR
20 PMOVE 240, — 240
30 HSET.......cvvviveevvvnnnenn. Sets (240, — 240) as the new origin (0,0).
40 PMOVE 240,0
50 PLINE 240,0,0, — 240, — 240,0,0,240,240,0

60 PHOME
70 PMODE TN

GPRINT

| Format | GPRINT [[<size>,<angle>],] <text data>

| Abbreviated Format |
GP.

| Explanation | The GPRINT statement prints the specified character using the specified size and
angle.
< size> may be any number from 0 to 63. 80 characters can be printed per line
when <size> =0; 40 characters per line when <size> =1; and 26 characters per
line when <size> =2. <angle> indicates the direction in which character lines
are printed. The character is rotated with respect to its lower left corner by the an-
gle specified with <angle>. < angle> must be an integer from 0 to 3. When < size>
and <angle> are omitted, the previous or default settings are assumed. The initial
(default) values are <size> =1 and <angle> =0.
The GPRINT statement is only valid in the graphics mode.

| Example | 10 PMODE GR
20 GPRINT "A™................ Prints ““A"" in the graphics mode.
30 PMOVE 240, - 240
40 GPRINT [2,2],"A" Prints an upside down *“A’’ in the 26 characters/line
50 PHOME mode.
80 PMODE TN

6-80

The following figures show various examples of printout.

<angle> =0
<giza> =0 {ﬂizﬂ}_aﬁ ﬁ ek
A

< <angle>=1
<angle> =3 ~—

<giza> =1 <gize> =4 ﬁ
F*
<angle> =2

<giza>=2 <giza> =5 F%

AXIS
| Format | AXIS <axis>,<pitch>, <repetitions>
| Abbreviated Format |

AX.

[Explanation] The AXIS statement draws the X-axis when <axis> =1, and the Y-axis when
< axis> =0. The number of scale marks specified in <repetitions> is drawn with
the pitch specified in <pitch>.
< pitch > must be an integer from —999 to 999. <repetitions> must be an integer
from 1 to 255.

The AXIS statement is only valid in the graphics mode.

| Example | 10 PMODE GR
20 PMOVE 240, 0
30 AXIS 0,—-10,48
40 PMOVE 0, - 240
50 AXIS 1,10.48
60 PMODE TN

6-81

The above example draws the X and Y axes with scale marks from —240 to 240
at 10 unit intervals.
The coordinates can be used in the same manner as ordinary Cartesian coordinates

after setting the point of intersection of the X and Y axes as the new origin, (X = —240
to 240, Y = —240 to 240)

PCIRCLE

| Format | PCIRCLE <X coordinate>, <Y coordinate>, <radius>,
< starting angle>, <ending angle>, <step angle>
<X coordinate>: —999 to 999
<Y coordinate>: —999 to 999
<radius>: 0 to 999

| Abbreviated Format |
PCI.

[Explanation | The PCIRCLE statement draws a circle, or arc counterclockwise. The circle (arc)

has a <radius> and a <step angle >, with the center at location (x,y), and starts
at <starting angle > and ends at <ending angle> . A complete circle is drawn when
< starting angle> =0, <ending angle > =360, and <step angle> =0.2.
This statement actually draws a polygon, therefore < step angle > must be as small
as possible in order to draw a smooth figure. < starting angle> must be smaller
than <ending angle>. When <step angle> =0, lines connecting the center and
the starting point and the center and the ending point are drawn. The PCIRCLE
statement is only valid in the graphics mode.

| Example | 10 PMODE GR:P=0
20 PMOVE 240, - 240
30 HSET
40 FOR J=240 TO 40 STEF -60
50 PCOLOR P
60 PCIRCLE 0, 0, J, 0, 360, 2
JOP=P+1
80 NEXT J
80 PMODE TN

6-82

LIST/P

i Format | LIST/P [<starting line number >] [—] [<ending line number >]

| Abbreviated Format]
L./P

[Explanation | The LIST/P command lists all or part of the program lines in memory on the printer.
See the explanation of the LIST command for an explanation of procedures for
specifying the range of lines to be printed. Note that, when graphic characters are
included in the program list, most of them will be printed in a different colour as
hexadecimal ASCII codes if the plotter printer is used.
This statement is valid only in the text mode.

HCOPY

| Format | HCOPY

[Abbreviated Format |

| Explanation |

HC.

The HCOPY command copies the contents of the screen onto the printer. This com-

mand is only available for the MZ-80P 5(K) printer and cannot be used for the colour
plotter printer.

PLOT

| Format |

PLDT{DN]i
OFF

[Abbreviated Format I

| Explanation |

PL

The PLOT ON statement makes it possible to use the colour plotter printer as a
display unit. Thus, the MZ-800 can be used without an external display screen.
The PLOT ON statement sets the number of characters printed per line to 80 when
the screen is in the 80-column mode and sets it to 40 when the screen is in the
40-column mode.

This statement is only valid when the colour plotter printer is installed and used
in the text mode. The CONSOLE command is made invalid once a PLOT ON is
executed.

A period **.”’ is printed to represent any character which is not contained in the
colour plotter printer’s character generator. The | INST | ,| DEL |, and | « | keys are
disabled by executing this statement. [CTRL | + [G | can be used to change the colour
of the pen.

The PLOT OFF command cancels the PLOT ON command.

The INIT*“CRT:Mn"* statement also cancels the PLOT ON command.

The printer is set to the 40-character mode if the PLOT ON is executed when the
display is in the 40-character mode; it is set to the 80-character mode if the state-
ment is executed when the display is in the 80-character mode.

6-83

6.7 Machine Language Control Statements

PEEK

| Format |

I Explanation]

I Example]

PEEK <address>

This function returns the contents of the specified address as a decimal number from
0 to 255. <address> may be a decimal number from 0 to 65535 or a 4-digit hex-
adecimal number from $0000 to $FFFF,

The following program displays data stored in the area from 40960 ($3A000) to 40975
($A00F):

10 FOR AD=40960 TO 40975

20 PRINT PEEK (AD)

30 NEXT AD
40 END

POKE

| Format |

| Explanation |

| Example |

POKE <address>, <data>[, <data>] ...

The POKE statement writes a consecutive number of data values starting at the speci-
fied address,

< address > may be a decimal number from 0 to 65535 or a 4-digit hexadecimal
number from 30000 to $FFFF. <datan> may range from 0 to 255 or from $00
to $FF. This statement can write data to any memory location, regardless of the
limit set by the LIMIT statement. Therefore, careless use of this statement can des-
troy the monitor or BASIC interpreter.

POKE $D0DO0O0,85F Uses hexadecimal numbers.
POKE 5324895 Uses decimal numbers.

The two statements above perform the same function.

INP@

[Format |

[Explanation |

INP@ <port number >, <variable>

The INP@ statement reads 8-bit data from the input port specified in < port num-
ber >, converts it into a decimal number and assigns it to <variable>. <port num-
ber> may be in the range 0 to 127 (hexadecimal $00 to $7F). Port addresses 128
to 255 ($80 to $FF) are reserved for optional peripheral devices.

OuUT@

[Format]

| Explanation |

OUT@ < port number >, <numeric expression >

The OUT @ statement converts the decimal number specified in < numeric expres-
sion> (0 to 255) to a binary format and sends it to the output port specified in
< port number >. <port number > may range from 0 to 127 (hexadecimal $00 to
$7F). Port addresses 128 to 255 (hexadecimal $80 to $FF) are reserved for optional
peripheral devices.

Peripheral devices are controlled by data transmitted to 1/0 ports. Consequently,
specifying an illegal number in < port number > may cause peripheral device mal-
function.

USR

| Format |

USR (< address> [, <input string variable>] [, <output string variable>])

| Abbreviated Format |

[Explanation |

U.

The USR function transfers control to a machine language program which starts

at the specified address. As with CALL <address>, control is returned to the state-

ment following the USR function when a return instruction RET or RET cc is en-

countered in the machine language program. <address> must be a decimal or 4-digit

hexadecimal number.

The parameters are loaded into the following registers when the main program trans-

fers control to the machine language program:

DE register: Starting address of <input string variable>> in memory.

B register: length of <input string variable>.

IX register: address of the error processing routine, if declared.

The machine program loads processing results into the following registers when it

returns control to the main program:

DE register: starting address of <output string variable > in memory.

B register: length of <output string variable>.

The following steps are necessary when error processing is required in the machine

language program:

1. Declare an error processing routine in the BASIC program using an ON
ERROR GOTO statement.

2. Write a program segment which loads the A register with the error code and causes
program execution to jump to the address specified in the IX register.

6-85

LIMIT

| Format

LIMIT <address>
LIMIT MAX

| Abbreviated Format |

| Explanation |

r Example

]

LIM.

The LIMIT statement limits the memory space available for use by BASIC,

< address> sets the upper limit of the BASIC area; the area following that address
to $FEFF (65279) are set aside as the user area. The area from $FF00 to SFFFF
is used by the monitor as a work area, so it cannot be used for user programs.
< address > can either be a decimal number or 4-digit hexadecimal number. When
linking a BASIC program with a machine language program or storing special data
in memory, sufficient memory space must be reserved for the user area.

The LIMIT statement must appear at the beginning of the program. The LIMIT
MAX statement releases the limit specified by a LIMIT statement.

LIMIT SCFFF

Limits the BASIC program area to $CFFF and defines the area above that address
as the user area.

Maonitor
BASIC interprater
BASIC program area

%0000 LIMIT $CFFF
User area
$FEFF

LIMIT MAX
Resets the limit established by a previous LIMIT statement.

6-86

6.8 Error Processing Statements

ON ERROR GOTO

Format

ON ERROR GOTO | <line number>
< label >

| Abbreviated Format]

| Explanation |

Example

ON ERR. G.

The ON ERROR GOTO statement causes program execution to branch to <line
number> or <label> if an error occurs. The ERN or ERL system variable can
be used in a trap routine starting at that line to control subsequent processing ac-
cording to the type of error and the line number in which it occurred. Including
a RESUME statement at the end of the error processing routine makes it possible
to return execution to the line at which the error occurred. Executing an ON ER-
ROR GOTO statement cancels the error trap line number defined by the previous
ON ERROR GOTO statement. The error trap line number definition is also can-
celled by executing a CLR statement.

10 ON ERROR GOTO 100
20 INPUT "X=""X

30 PRINT SQR(X)

40 END

100 PRINT *'ERROR™
110 RESUME 20

The program above displays the message “ERROR" and returns to line 20 if an
ErTor occurs.

6-87

RESUME

| Format [

RESUME < line number >
RESUME NEXT
RESUME 0

RESUME

| Abbreviated Format |

| Explanation |

RESU.

The RESUME statement returns control to the main routine from an error process-
ing routine.

The system holds the number of the line on which the error occurred in memory
and returns program execution to that line or to another specified line after the er-
ror is corrected. The RESUME statement may be used in any of the following four
forms:

RESUMEc00000000... TEtUrNS to the error line.

RESUME MEXT returns to the line following the error line.
RESUME <line number> returns to the line specified in < line number > .
RESUME 0 returns to the beginning of the main routine.

Always use a RESUME statement to return to the main program from the error
processing routine,

If RESUME is encountered when no error has occurred, an error occurs.

If RESUME cannot be executed, an error occurs.

6-88

Chapter 7 Hardware

This chapter describes the MZ-800 hardware. It also describes peripheral devices which can be con-
nected to the MZ-800 and how to connect them.

7.1 MZ-800 Hardware

7.1.1 System diagram

Z-804
CPU 3.556 MHz
; L
] - r
v i Printer A +(Mz:s0p5ik)
—_—— Keyboard interface InterTace 372 e Y
! Monochrome | Es
yCRT _;"'}_' rc----71
| S s 1 Cantronics
Composite E"{?"ﬁtﬂ“h stanu:rd printer
. S_— 16 KB Mae T
l'l:ulnur t“ Y C.HT T
\ CAT . L display ER— Enp—— !
\“ = interface | I | __|Data recordar '
= , |VRAM 16 KB Y RAM linterface
o |IMZ-1R25) | 16 KB
.tl_-h"'n‘ | I | R 1
R g &) Cassette !
' - | recorder
o RAM L %
R G4KB i R ey S A
= 1 H
El:'au recorder, *
st 4
mmm——
3 i
! | RAM file |}
— board i 1
i (M2-1R18) !
I i
| FYSS———
1
Programmable
! 24-hour clock gound
genarator
¥ '
i :. PSG
v - A Joystick |
- - A1 interface
b= e o
2 joysticks
General
® purposs — i
= interface slot
1 slot
I
1
P —————
i gptionai i * Standard with the MZ-821 and optional with the MZ-811.
1 device .
I J # # (Can only be used with the MZ-811.

7-2

7.1.2 System switch settings

A 4-switch DIP switch package is located at the rear of the MZ-800. These switches are called the
system switch. The function of each switch is as follows.

Note:
Be sure to turn off the power switch when setting the system switch.

o [
1=t

Switch 1: Mode switch
This switch is used to switch the operating mode between the MZ-700 and MZ-800 modes. Normally,
this switch is OFF. (See Chapter 9 for the MZ-700 mode.)

ON: MZ-700 mode

OFF: MZ-800 mode

ON OFF
Not used —_ —_
Printer MZ Centronics
Operational MZ-700 MZ-800

mode

Switches 2 and 3: Printer interface selection
These switches are used to switch the interface between the MZ printer system and Centronics system.
Both switches must be set to the same position.

ON: MZ printer

OFF: Centronics interface

If your Centronics standard printer does not operate even if both switches are set to OFF, set either
switch to ON.

Switch 4: Not used.

With the MZ-811

When a cassette recorder other than the MZ-1T04 is connected to the MZ-811's cassette tape
recorder jack, this switch is used to switch the head polarity. If programs or data files cannot
be read from the cassette recorder, try changing the setting of this switch.

71-3

i

"n—_’hRESET Option 16 KB
17.73 MHz % VAAM ADR.BUS
VRAM
— ™ ks
[VRAM DATA BUS)
RAM DATA BUSH 15 kB
pocc 0 O I B I Tempo
- 980 f ¢ yugtom 556 i
ic (e e
CSROM (approx.
s 27128)
F I System RAM
@ = 3.547 MH == ——
- z T 64 KB
m
of =
CPU T ADDRESS BUS P Multiplexer %
2 T 1L I T1 1 {H
[: DATA ausl_ ! §
I | 1 A
zsoa [| CONTROL »laus g + | &
.. g w
1 Peripheral 110 BUS || %
H——
et SE Bus driver
- p— i 28 PIO C— re
— W — ouTO - & T'\I_I._:J 2
Eenera S8
JJcursor e _—S|7 8253] Z-80A kel g
it | 8255 EJ PIO .
PA 5 PB[PRINTER DATA BUS
nﬁ: PC2 PA| CTRL BUS | B
PB 1 I VBLN—{PAS | | L g 5
Decoder PSG 76488 I
; ./
KEY STROBE | E
i RiwW System switch
O L) _I :;.._[I | (MZ++Centronics)
Keyboard
AMP SP

Data Recorder

[Busayxg

weISeIp yooig (1)

1pa1100u1 1 wonelado wod Q1 J1 uon

-esado resaydizad 2[qesip 01 10 SUOTIDUNJ[EW JUILYDEW S)B2ID 01 [qIssod s 11 se ‘135N Y1 £q pazijun aIe

neuojur SUImoo) ayL
jonuod uod Q/1 £1°L

1a0ad st uo

*

suod (/] USYM PIsIDIAXS 3q 1SN UONNEY) *A[UO 30UIIIJAI 10] pap

(2) 1/0 port address

The following I/0 port addresses are already assigned to the existing 1/0 devices or are reserved
for peripheral devices which Sharp has planned for the future.

B0 to B3 : Serial I/0 port

CC to CF : GDG (graphic display generator)

DO to D3 : 8255 (data recorder and keyboard control)
D4 to D7 : 8253 (programmable interval timer)

D8 to DF : FDC (floppy disk controller)

E0 to E6 : GDG

F0 to F1 : Joystick inputs

F2 : PSG output

F4 to F7 : QDC

FC to FF : Z-80A PIO (printer)

(3) Programmable clock generator (8253)

The MZ-800 has a built-in programmable interval timer. This timer is used for controlling the built-in
clock and programmable sound generator,

In the MZ-700 mode, memory mapped 1/0 addresses $E004 to $E007 are assigned to this timer, while
in the MZ-800 mode, 1/0 mapped addresses $D4 to $D7 are assigned.

$D4 : counter 0
$DS5 : counter 1

$D6 : counter 2
$D7 : control word register

Counter 0 is used for the programmable sound generator, counter 1 is used internally and coun-
ter 2 is used for interrupting the CPU.

B286.

PC27
DO~D7 &
3 CPU
1 INT

1 g ouT1
D7

AD, A1 >—————-: AD OUTO > VOI
a1

cs CLK1|——— HSYNC
— AD
RD CLKOb———< 1.1MHz
o WHR

(4) Programmable sound generator (76489)

The MZ-800 has a built-in programmable sound generator (PSG) which can generate 3-tone chords
over 8 octaves.

1/0 port address $F2 is assigned to the PSG. For details on controlling the PSG, see Appendix B.

———————> LM 386
(amplifier)
(B253)0UTO >————— AUDIO
CPU WAIT €—— llﬂ:h:amv
(5) Printer interface (Z-80A PIO)
The MZ-800 uses a Z-80A PIO for the printer interface.
I/0 port addresses FC to $FF are assigned to the PIO.
$FC: Control register
$FD: Control register
$FE: Port A
PAD, PAl: printer status (in)
PA4, PAS: system status (in)
PAG6, PAT: printer control (out)
SFF: Port B
Printer data (out)
Z-80A
PIO
DATA BUS DO~D7 —
A0 PA4 VBLN
AD, A1 {>c .
€S, RD, WR CS
RD
WR
ol p—
PA7 —-—Dﬂ—— g
PAT < =
o STATUS

7-6

(6) Keyboard and data recorder controller (8255)
The MZ-800 uses an 8255 to control the keyboard and data recorder.

In the MZ-700 mode, memory mapped 1/0 addresses $E000 to SE003 are assigned to 8255 while in
the MZ-800 mode, 1/O mapped addresses $D0 to $D3 are assigned.

$D0: Port A
PAO to PA3: KEYSTRORBE signals (out)
PA4 to PAS: JOYSTROBE signals (out)
PAT: cursor RST (out)
SDI1: Port B
PBO to PB7: KEYDATA signals (in)
$D2: Port C
PC0: SOUND MASK (out)
PCl: CMTWR (out)
PC2: disable INT (out)
PC3: MOTOR (out)
PC4: SENSE (in)
PC5: CMTRD (in)
PC6: cursor FLSH (in)
PC7: VBLNK (in)
$D3: Control register

8255
DO~D7 > Do
LS145
PAO —
P ———
s M b —
— PA3Z
D7 ia
AD, AT >——C i? FPBO b4

PBT ——

_\
1:_|'-E.| o
[el
Y
KD
il

AY [4
L;

CMT

DFF PC3

7.2 Peripheral Devices

Many optional peripheral devices are available, but some of those explained in this manual may not

be available in your country.
Be sure to turn off the power switches of both the MZ-800 and peripheral device when connecting them.

7.2.1 Standard interfaces
The MZ-800 is equipped with the following interfaces as standard.

* CRT display interface
® Keyvboard interface

* Data recorder interface
* Printer interface

* Joystick interface

7.2.2 Expansion I/0 connector

An expansion I/0 connector is provided inside the computer, which can be accessed by removing the
expansion slot cover from the rear panel. This connector is provided for the connection of an optional
interface or expansion unit. The pin assignment of the expansion 1/O connector is as follows.

Component side| Solder side

1] +5V 2| +5V

j|D2 4| D3

51 D1 6| D4

7|1 D0 8| D5

9 | GND 10| D6

11| ADF 12| D7

13| ADE 14| BUSg

15| ADD 16| Mi '““” e — .
17| ADC 18| WR Errrtrrrerorrroreed
19| ADB 20| RD ; =
21| ADA 22 m Connector

23| AD9 24| MREQ

25| ADS 26| GND

27| ADT 28| HALT

29| AD6 30| IEI

31| ADS 32| NC. N H &

33| AD4 34| RESET

35| AD3 36| EXRESET

37| AD2 38| INT

39| AD1 40| EXWAIT

41| ADO 42| MC. Sauht

43| GND 44| GND

7-8

e [nstallation of an optional interface

1) Remove the expansion slot cover. (Store the cover in a safe place in case you want to remove the
interface in the future.)

Expansion slot cover

2) Insert the interface card into the slot, and slide it along the card guides with the component side
up. Firmly press the card into the expansion 1/0 connector at the rear of the slot.

Interface card

Guide

3) Remove the connector cover from optional slot cover MZ-1X17. Affix the optional slot cover to
the rear panel of the MZ-800.

Slot cover MZ-1X17

%7 Connector cover

For details, see the manual supplied with the interface.

79

7.2.3 RAM file board (MZ-1R18)

The RAM file board is a memory device which can be used in the same manner as floppy disk drives,
except that the contents of memory are lost when the power is turned off. For full details about the
RAM file board, see the manual supplied with the RAM file board.

The installation procedure for the RAM file board is as follows.

(1) Remove the three screws which retain the expansion slot cabinet as shown below. Push the expan-
sion slot cabinet toward the rear of the MZ-800, then lift the rear side of the slot cabinet to remove
it. Unplug the connector which is connected to the main unit by opening the connector latches.

Expansion slot cabinet

(2) Place the expansion slot cabinet upside down on a flat surface to view the two internal connectors.
Insert the RAM file board into the upper connector with the insulating sheet surface facing up-
wards. Be sure to engage the tabs on the board with the hook on the expansion slot chassis (see
the figure below).

Insulating sheet

Tab

7-10

(3) Plug the connector previously unplugged in Step 1 into the connector on the main unit. Replace
the expansion slot cabinet and secure it with the three screws. Close the connector latches to firmly
hold the connector.

Connector latch

37\:_11 = T
/ 'l}—-ﬁ—- '—E_"‘*\Iﬁ:

_y 1

L@ F
____Oif M-

T

Note:
If the cable is trapped between the cabinet and main unit, the expansion slot cabinet cannot be
replaced properly.

7.2.4 Joystick
Joysticks made by Atari Inc., or their equivalents can be used with the MZ-800.

JOYSTICK 1 JOYSTICK 2

1 | FWDA ¢ 1| FWDB
2 | BACKA 2 | BACKB
3 | LEFTA ¢© 3| LEFTB
4 | RIGHTA ~ 4 | RIGHTB
5] +5¥ 5| +5¥
6 | TRGIA 6 | TRGIB
7 | TRG2A 7 | TRG2B
§ | COMA 8 | COMB
9 | GND 9 | GND

1 2

Taan

Connector

The connection procedure is as follows.

1) Remove the joystick connector cover from the rear panel. Store the cover in a safe place in case
you want to disconnect the joysticks in the future,

Joystick connector cover

2) Plug in the cables from the joysticks as shown below.

Joystick 2

7-12

7.2.5 Printers
Various types of printers can be used with the MZ-800, including two SHARP printers.

(1) Plotter-printer MZ-1P16
Connecton procedure is as follows.

1) Set switches 2 and 3 of the system switch to the ON position.
2) Remove the two screws to remove the printer connector cover from the rear panel of the MZ-800.
{Store the cover in a safe place in case you want to disconnect the printer cable in the future.)

Printer connector cover

System switch

3) Plug the printer cable connector into the MZ-800 card edge connector, with the connector key fac-
ing upwards, and fasten the connector to the MZ-800 with the screws.

i1 i

Plottar-printar
[MZ-1P16]

Screws

Printer cable

4) Plug the printer power cable into the plotter power jack on the rear panel of the MZ-800.

7-13

(2) Dot matrix printer MZ-80P5(K)

1) Set switches 2 and 3 of the system switch to the ON position.

2) Remove the two screws to remove the printer connector cover from the rear panel of the MZ-800.
(Store the cover in a safe place in case you want to disconnect the printer cable in the future.)

System awitch Printer connactor cover

3) Connect the printer connector to the MZ-800 printer connector with the MZ-1C25 optional cable.
Remember to refasten the connector to the MZ-800 by using the screws.

Printer cable
[MZ-1C25]

7-14

(3) Other printers

Switching switches 2 and 3 of the system switch OFF allows you to use a printer equipped with a Cen-
tronics interface. However, some commercially available printers which are sold as Centronics stan-
dard printers do not actually comply with the Centronics Standard and therefore cannot be used.

Some printers have character code sets different from that used by the MZ-1P16 or MZ-80P5(K) printer.
These types of printers can be used but may require special programming to allow full utilization of

all the features of the MZ-800.

System switch

Printer interface

Component side Solder side
1 | RDP 2 |GND
3| RDI1 4 |GND
5 |RD2 6 | GND
7| RD3 B | GND
9| RD4 10 | GND
11| RD5 12 | GND
13| RD6 14 | GND
—— 15| RD7 16 | GND
|25 1 17| RD8 18 | GND
26 2 19| IRT 20 | GND
s 21| RDA 22 | GND
23| STA 24 | GND
25| GND 26 | GND

7-15

7.2.6 Optional graphic memory MZ-1R25

An optional MZ-1R25 graphic memory further improves the display capability of the MZ-800. The
set includes two 1Cs which must be installed inside the cabinet. Follow the installation procedure below:

1) Remove screws (a) and detach the data recorder unit and expansion slot compartment cabinet as
indicated by arrows (1) and 2).

2) Unplug connectors A and B.

3) Remove the screws (b).

4) Remove the metal fixtures. '

@

@1’ G
= X3 £ :
o e e

Matal fixturg

5) Press and hold the upper cabinet at the points indicated by the arrows (3), then pull up the upper
cabinet to remove it from the lower cabinet.

Upper cabinget

i i i e i T

Lower cabinat

6) Lift the front of the keyboard as shown below.

Back side of keyboard

7) Two IC sockets are located near the front right corner of the main printed circuit board. Insert
the IC chips into the IC sockets as shown below. Take care that you install the pointing chips in
the correct direction (with the dot or notch over the first pin of the IC facing the center of the com-
puter). Installing the chips in the wrong direction may damage them.

-Back side of keyboard

Printed eircuit board

8) Perform steps 1) to 6) in the reverse order to reassemble the MZ-800.

7-17

7.2.7 External cassette tape recorder (for MZ-811 only)

With the MZ-811, an ordinary audio cassette tape recorder can be used as the data recorder.
Connect the WRITE and READ jacks on the rear panel of the MZ-811 to the MIC and EAR
(or EXT.SP) jacks on the tape recorder, respectively. Use shielded audio cables with 3.5 e jacks
at the computer ends.

Mote the following when using an ordinary cassette tape recorder.

1) The message *‘ & RECORD. PLAY" does not appear when a SAVE command is entered.
Be sure to press the button on the recorder before entering this command. Press
the ! STOP | button to stop the recorder after the message “‘Ready”’ is displayed. The recorder
will not stop until the button is pressed.

2) The message *“ # PLAY' does not appear when a LOAD command is entered. Be sure
to start playing the tape after entering the command. Press the button to stop the
recorder after the message ‘“‘Ready” is displayed. The recorder will not stop until the

STOP | button is pressed.

3) The level and tone controls of the cassette tape recorder must be adjusted to appropriate
levels. Some cassette recorders (e.g., those with an automatic level control) may not be usa-
ble. In such cases, please purchase the MZ-1T04.

4) Programs cannot be loaded unless the head polarity is correct. Try changing the setting of
switch 4 of the system switch to reverse the head polarity if programs cannot be loaded.

5) For any transfer or collation, use the tape recorder that was used for recording. If the tape
recorder for transfer or collation is different from that used for recording, no transfer nor
collation may be possible.

7-18

Chapter 8 Monitor

8.1 General

Although a machine language program is difficult to understand because of the numeric fashion in
which data is presented, it has many advantages, e.g., it runs much faster and requires less memory
space than a BASIC program. Moreover, machine language makes it possible to develop more hardware-
oriented programs, to make fuller use of your computer. You can develop machine language programs
by using the monitor commands.

This chapter describes the function and use for each monitor command.

‘When using a monitor command, note the following points,

*
*

Any monitor command is accepted after the key is pressed.

Any command must be input exactly as it is described in this manual. Do not enter spaces in the
command line.

Single-byte data in a monitor command must be specified with a 2-digit hexadecimal number, and
2-byte (address) data must be specified with a 4-digit hexadecimal number. The ‘0" in the upper
digit must not be omitted.

Filename characters exceeding the limit are ignored.

The entire memory space can be accessed by monitor commands. However, remember that the
presence of even a single error in a program is likgly to result in the destruction of all data stored
in your MZ-800.

8-2

8.2 ROM Monitor and BASIC Monitor

The MZ-800 is provided with two types of monitors; a ROM monitor and a BASIC monitor. The ROM
monitor resides (is located) in ROM, while the BASIC monitor is loaded into RAM when you load
the BASIC interpreter.

The difference between the ROM and BASIC monitors is shown below.

BASIC
ROM monitor BASIC monitor
(resides in ROM) (resides in RAM)

8-3

8.3 Starting the ROM Monitor

When vou turn on the power to the MZ-800, you will see the following screen.

Make ready CMT

Please push key

C: Cassette tape
M: Monitor

Press the key to start the monitor. The screen will then change and appear as follows.

** MONITOR 92-504M = =
*

The asterisk (#) on the second line is called the monitor prompt, and asks you to enter a monitor
command.

The monitor commands are explained in Section 8.4.

To terminate the monitor, turn off the power switch.

8-4

8.4

Monitor Commands

L Command
| Format | L
[Explanation] This command loads a machine language program from the cassette.
When “* $ PLAY” is displayed on the screen, press the button.
| Example] The following example loads a machine language program.
*|
4 PLAY « Press the button on the data recorder.
S Command
| Format | 8
| Explanation | This command saves the specified memory block onto the cassette with specified
filename.
| Example | The following example saves a machine language program stored in addresses $6000

to $60A3 onto the cassette under the filename “MFILE". The address from which
the program is to be executed is $6050.

*S
Filename? MFILE
Top adrs? 6000 [CR |
End adrs? 60A3 [CR |

Exc adrs? 6050
4 RECORD.PLAY

Press the | RECORD | button

B-5

M Command

| Format | M <starting address>
I Explanation] This command modifies the contents of memory, starting at the specified address.

[Example | The following example fills addresses $C000 to $C002 with the value $FF and ad-
dresses $CO010 to $C013 with the value $88.

* MCO00
C000 00 FF
CO01 00 FF
C002 00 FF

€003 00 [SHIFT | + [BREAK
*MCO10

CO10 00 88

CO11 00 88

C012 00 88

€013 00 88

C014 00 [SHIFT] + [BREAK |

To return to the monitor prompt, press |SHIFT| + |[BREAK | .

J Command

| Format | J<address>

| Explanation | This command transfers control to the specified address, by loading the < address >
into the program counter of the CPU.

| Example | The following example transfers control to address $1200.

*J1200 [cR |

G Command

| Format | G < address >

| Explanation | This command calls the specified address.

| Example | The following example calls address $1200.
*(G1200

B-6

D Command

l Format

i Explanation |

[Example

|

D < starting address > <end address >

This command dumps the contents of the specified memory area.

When the <end address> is omitted, 160 bytes from the <starting address> are
displayed.
The dislay format is as follows:

IHI-IHHI IHH HH HH HH HH HH HH HHI IABCDEFGH1

| [
2-digit hexadecimal numbers (8 bytes) Character data (8 bytes)
Starting address

To modify the memory contents, move the cursor to the data to be modified, type
in the new data and press the key.

Note:

The last eight characters indicate the ASCII codes corresponding to eight hexadecimal
numbers. A contorl code is represented by a period (.). To stop the screen display,
press the space bar; to return to the monitor prompt, press while

holding down the key.
The following example dumps the contents of addresses $C000 to $C700.
* DCO00C700

V Command

| Format

| Explanation |

|_ Example

|

Y

This command verifies data saved on the cassette, or checks whether the data saved
on the tape and the data in memory are identical.

When no incorrect data is detected, the message “*OK!"" is displayed. If one or more
bytes that do not match are detected, the message **CHECK SUM ERROR"”’ is dis-
played.

The following example verifies the data of file *“MFILE"" which has been previous-
Iy saved with the S command.

* VMFILE
4 PLAY «——— Press the button.

8-7

B Command

[Format i B

| Explanation I This command specifies that the buzzer in the MZ-800 sounds every time a key is
pressed. If the B command is entered again, the buzzer toggles off and no longer
sounds.

I Example | #B‘

8.5 BASIC Monitor

When the BASIC interpreter is used, the BASIC monitor can be used instead of the ROM monitor.
To call the BASIC monitor, key in the BASIC BYE command. After the prompt ““*** is displayed,
key in a BASIC monitor command.

The BASIC monitor uses memory area $FF00 to $FFFF as its stack area.

All variables for BASIC programs are not changed when the BASIC monitor is called, but they can
be changed by monitor commands.

8-8

8.6 BASIC Monitor Commands

P Command (Print switch)

| Format |

| Explanation |

P

This command outputs the data produced by the D or F command to the printer
or screen depending on whether the current operating mode is the printer mode or
the screen mode. When the BASIC monitor is started, the screen mode becomes
valid. The mode is changed each time the P command is entered.

In the printer mode, if no printer is connected or the printer is off-line, the monitor
prompt (#) is displayed preceded by the message ‘““ERR?".

Check the printer or key in the P command to enter the screen mode.

D Command (Dump)

| Format f

| Explanation |

D < starting address > <end address >

This command displays the contents of the main memory. When the end address
is omitted, the 128 bytes following the starting address are displayed. When the start-
ing address is omitted, the 128 bytes following the last end address are displayed.
The display format is as follows:

:HHHH=IHH HH HH HH HH HH HH HH/ABCDEFGH

Character data (8 bytes)

2-digit hexadecimal numbers (8 bytes)
Starting address

To modify the memory contents, move the cursor to the data to be modified, type
in a 2-digit hexadecimal number or character preceded by a semicolon and press

the key.

Note:

The last eight characters indicate the ASCII code equivalents to the eight hexadecimal
numbers. Control codes are represented by periods (.). To stop the screen display,
press the key, and to return to the monitor prompt, press while
holding down the key.

8-9

M Command (Memory set)

| Format | M<starting address>

| Explanation | This command modifies the contents of the main memory. When the <starting
address > is omitted, modification is made from the address indicated by the cur-
rent pointer. To return to the monitor prompt, press while holding down the
key.
When the M command is entered, the cursor positions itself at the data for the speci-
fied address. The address pointer is incremented by the number of data bytes specified.
Data may be either a 2-digiht hexadecimal or a character preceded by a semicolon.

F Command (Find)

| Format | F<starting address> <end address> <data> <data> ...

| Explanation | This command searches for one or more bytes of data at the specified addresses,
and if found, displays the addresses and data with the format shown for the D com-
mand. To return to the monitor prompt, press | BREAK | while holding down the
SHIFT | key.

G Command (Gosub)

| Format | G<call address>
[Explanation | This command calls the specified address. The stack pointer resides at address SFEFF.

T Command (Transfer)

| Format | T<starting address> <end address> < destination address>

[Explanation | This command transfers data from the specified source address to the specified des-
tination address.

8-10

S Command (Save)

| Format 1

| Explanation |

S <starting address> < end address> <execution address>:
< device name > : < filename >

This command saves data from the specified address onto the specified device. The
execution address is the address to which control is to be transferred when the pro-
gram is loaded by the L command. Filename must be specified after a colon (:).

L Command (Load)

| Format |
| Explanation I

L <starting address > : < device name > : < filename >

This command loads the specified file from the specified device. If the < starting
address > is omitied, the file is loaded to the same address as that specified when
the file was first saved by the S command. If filename is omitted when the device
is CMT:, the first file found is loaded. When the | SHIFT | + | BREAK | key is pressed
or a check sum error occurs during the load operation, the message ““ERR?”’ is dis-
plaved, followed by the monitor prompt.

V Command (Verify)

| Format |
| Explanation |

V < filename >

This command loads the specified file from the cassette and compares it with the
same file still in the main memory. The purpose of this command is to check whether
the file was saved onto the cassette correctly.

If an error is detected, the message ““ERR?”’ is displayed.

R Command (Return)

| Format |

| Explanation |

R

This command returns control to the program from which the monitor was called.
If the stack pointer for the program which called the monitor resides in addresses
$FF00 to SFFFF or if no return address is saved in the stack, control cannot be
returned by the R command. When this happens, warm start the computer with
the G command.

811

o e e B — e) —— s

o . ey o T i ST v e g e l wY _-'
_ lﬂl MH

L T N T o =1 ! Nt _::
T oy S B pd AL Sy ke 117 S gl o -
ersy b sl Ll = it sy Sabsre | st fi Pt = e

I T—— — i - Y I ma—— N - . .

. e 3 Demnes

<l g sowdks # O aihAe et 4 _:__m-t_:_ &

yesm e b ML bk Il o e o mligy iy
vty Celrmey B0 ovdis s Ay i it e of D S
lnl-ll-n‘-'--u_l--!"ﬂ Namrarwry Foam gl Wl s W1 e
B4l) 0 ol w0 Tl i gl e Ll o
il TR s W | R G T

(= BT T ||

o I ool ¥
| oot L Sared
oy dow 3 ety B elene. b sl e A Al e AT i)
afleire aas 11 4) ey Y Dl e T) =t b Lt e RN S i .
e i o ey maid Yrgat aga ol o0
daphad & SR FT Gpaemw ! Saibel o o k- 1
e N I gl S = =8 ft——C e |
] mmn
Ul
Seiling cp b Shlimemr o8 Bndd pE e, o Mo L)) hemmemis anT | aljumin |
s b pleem. seans w b masw dndne i)Y oty s 3
b mamsh D s S (e o7 B sE Bem ser PP
bl Ve 0 05 igpte oxme s g il Ul BV s, B wly of loss
e T o

Vs

Chapter 9 MZ-700 Mode

9.1 Using MZ-700 Programs

Most of the programs for the SHARP MZ-700 series computer can be run on your MZ-800 computer.
However, programs which use joystick MZ-1X03 cannot be used. Please consult your dealer to check
whether the MZ-700 programs vou already have can be used with the MZ-800.

To run on an MZ-700 program on your MZ-800, you must first place the MZ-800 in the MZ-700 mode.
This can be done by switching switch 1 of the system switch on the rear panel ON, then turning on
the power to the MZ-800.

MZ-700 BASIC (1Z-013) is recorded on the beginning of the side of the cassette which is labeled **BASIC
1Z-013".

Three BASIC demonstration programs for the MZ-700 are recorded on the tape following MZ-700
BASIC.

These programs can be executed as follows.

After loading BASIC (1Z-013), advance the tape to one of the values indicated below, then input the
following.

“OPENING”.............. 130
SMUBIC oiininensinins 170
“COLOR PLOTTER.... 190

RUN “CMT:”

When ““ & PLAY" is displayed, press the button.

After the tape stops, press the button. To stop the program, press the | SHIFT | and | BREAK |
keys at the same time.

9-2

9.2 Summary of MZ-700 BASIC Commands and Statements,
Functions and Operations

Commands
LOAD LOAD "‘ABC" Loads BASIC text file ABC from the cassette tape into memory.
SAYE SAVE "“E"” Names the BASIC text currently in the text area “‘E’’ and writes in
to the casseite tape.
RUN RUN Executes the program from the heading of the BASIC text currently
in the text area.
Note:
At the RUN command, all variables become 0 or null immediately
prior to program execution,
RUN 1000 Executes program from statement number 1000,
MERGE MERGE “TEST" Merges program currently in the memory and *“TEST" file in the
cassette tape.
VERIFY VERIFY “'H"' Compares program text currently in BASIC text area and content of
cassette tape file specified by file name ““H",
AUTO AUTO Automatically generates line numbers 10, 20, 30 ... during text
making.
AUTO 200, 20 Automatically generates 200 220, 240 ... in steps of 20, from state-
ment number 200,
AUTO command is released by pressing [SHIFT | + [BREAK | keys.
LIST LIST Displays all lists of BASIC text currently in text area.
LIST=500 Displays list up to statement number 500.
LIST/P LIST/P Display list goes to printer. (TEXT MODE)
RENUM RENUM Changes statement number of the program.
RENUM 100 Renumbers all statements beginning with first statement number 100,
and in steps of 10.
NEW MEW Erases BASIC text currently in text area and clears variable area.
Machine language area specified by LIMIT command-is not cleared.
CONT CONT Continues program execution. In other words, restarts execution from
point of interruption by [SHIFT | + |BREAK | keys or STOP statement
during program. CONT command becomes invalid when, during a
program break, the BASIC text is edited.
BYE BYE Moves system control from BASIC to monitor. (The return from mo-
nitor to BASIC can be made by monitor command “R’.)
KEY LIST KEY LIST Lists, on the CRT display, the definition condition of the definable

function keys.

File control statements

WOPEN 10 WOPEN Opens a data file on cassette tape prior to writing data to it. This
“DATA'" command also assigns name DATA to the data file.

PRINT/T 20 PRINT/T X Writes data to cassette tape in the same format as it would be dis-

played by the PRINT statement.

ROPEN 10 ROPEN Searches for data file DATA on cassette tape and opens that file to
“DATA" prepare for reading data from it,

INPUT/T 20 INPUTIT X Inputs data from a cassette file and passes it to variable X,

CLOSE 30 CLOSE

Closes cassette data files after writing or reading has been completed.

Error processing siatements

ON ERROR ON ERROR GOTO If an error occurs during program execution, this is a sentence saying

GOTO 1000 to jump to statement number 1000,

IF ERN IF ERN =43 THEN If the error number is 43, this is a command to jump to statement
1050 number 1050,

IF ERL IF ERL =350 A command to jump to statement number 1090 if the error statement
THEN 1090 number is 350,

IF (ERN=43)* A command to finish the program if the error number is 43 and the

(ERL =700) THEN error statement number is 700.

END For the BASIC, if an error occurs during the program, the error
number and error statement number will be set, respectively, to varia-
bles ERN and ERL.

RESUME 650 RESUME Transfers control once again to the command generating the error,
700 RESUME Transfers control to the command following the command generating
MEXT the error.

750 RESUME 400 Transfers control to statement number 400,
800 RESUME O Trasnfers control to the program heading.

Substitution statement

LET LET A=X+3 Substitutes sum results of numerical variable X and numerical data 3
to numerical variable A. LET can be omitted.

Input/output and colour control statements

COLOR 10 COLOR,,,2 Changes all screen background colour to red.
20 COLOR 3,2,7 Changes the colour of characters at coordinates (3,2) to white.

30 COLOR 4,2,4,2 Makes the colour of characters at coordinates (4,2) green, and the
bacl:gmund colour red.

PRINT 10 PRINT A Displays the content of numerical variable A on the CRT display.
TAS Displays the content of string variable A% on the CRT display.
100 PRINT [6,5] Writes the “ABC" string in yellow on a light blue background.
{lth!l’
110 PRINT [,4] Writes the **DEF" string in yellow on a green background.
“DEF"
120 PRINT [7,4] Writes the ““GHI" string in white on a green background.
r:GHII‘.I‘
200 PRINT New line if PRINT only.

PRINT USING PRINT USING *““# A designation which lines up decimal point positions by a fixed
#H.HEA decimal point display.

INPUT 10 INPUT A Inputs values relative to variable A from the keyboard,
20 INPUT AS Inputs strings relative to string variable A% from the keyboard.
30 INPUT Before input from the keyboard, the question string data VALUE? is
"“VALUE?":D displayed. The semi-colon is used to separate the string from the

variable.
40 INPUT X, X%, Numerical variables and string variables can be combined by using
Y. Y% the comma (,) to separate them, but it is necessary to match the type
of variable at the time of input.
SET SET 30,15 Illuminates the position of coordinates (30,15).
RESET RESET 30,15 Erases the position of coordinates (30,15).

GET 10 GET N Inputs one numerical character from the keyboard relative to numeri-
cal variable N. If the key is not presced at that time, 0 is input.
20 GETK3$ Inputs one string from the keyboard relative to string variable K3$. If
the key is not pressed at that time, A% becomes vacant.
READ ~DATA 10 READ AB.C Mumerical data 25, —0.5 and 500 are substituted to, respectively, nu-
1010 DATA 25, merical variables A, B and C by execution of the READ-DATA
-0.5, 500 statements at the left.
10 READ H$,H, The first data of the DATA statement, i.e., string data “HEART"’,
54,5 is substifuted for the first variable of the READ statement, i.e., for
30 DATA the string variable HS. Next, numerical data 3 is substituted for the
“HEART™, 3 second variable H, and read-in continues one after the other.
35 DATA
“SPADE", 11
RESTORE 10 READ A,B,C In the example at the left, 3, 6 and 9 are respectively substituted for
20 RESTORE variables A, B and C by the READ statement in statement number
30 READ D,E 10, but, because the RESTORE statement occurs next, the values
100 DATA 3, 6, next substituted for variables D and E by statement number 30's
9,12, 16 READ are, respectively, 3 and 6, not 12 and 15.
700 RESTORE Moves the data read-out pointer in the READ-DATA statement to
200 the heading of the DATA statement in statement number 200.

Loop statements

FOR ~ NEXT

10 FOR A=1TO
10

20 PRINT A

30 NEXT A

The statement number 10 is a command to change variable A and
substitute for values from 1 to 10; the value of the first A becomes

1. Because the value of A is displayed on the CRT screen by state-
ment number 20, the numeral 1 is displayed. Next, the value of A be-
comes 2 by statement number 30, and this loop is repeated. The loop
is repeated in this way until the value of A becomes 10. (At the point
when the loop ends, the value 11 is entered to A.)

MFORB =2T0O
B STEP 3

20 PRINT B

30 NEXT B

A command to change variable B and substitute for values from 2 to
8 in steps of 3 (statement number 10). It is also possible to make the
STEP value negative and make the variable smaller each time.

10FOR A=1TO 3

20 FOR B=10 TO 30— @ (=
IO PRINT A, B E E
40 MEXT B

B0 NEXT

An example of an overlay of the FOR ~ NEXT loops (variables A
and B). Note that B loop is placed inside A loop. Nesting of loops
(doubling, tripling ...) is possible, but the inner loop must be en-
closed within the outer loop. FOR ~ NEXT nesting must not exceed
15 levels.

9-5

Branch statements

GOTO 100 GOTO 200 Jumps to statement number 200 (= movement of program execution).
GOSUB ~ 100 GOSUB 700 Branches to statement number 700 subroutine (calling of subroutine).
RETURN vernesnrassenrennennensss BNAS subroutine execution by RETURN statement, and returns to
B00 RETURN statement following GOSUB command in the main program.
IF ~THEN 10 IF A>20 Jumps to statement number 200 if variable A is larger than 20. Exe-
THEN 200 cutes next statement if A is 20 or less.
B0 IF B=3 THEN Substitutes B+ 3 for variable B if variable B is less than 3. Executes
B=B+3 next statement if B is 3 or greater.
IF ~GOTO 100 IF A>=8B Jumps to statement number 10 if variable A is equal to or greater
GOTO 10 than variable B. Executes next statement if A is less than B.
IF - GOSUB A0 IF A=B=*»2 Branches to statement number 90 subroutine if value of variable A is
GOsuB 90 equal to twice the value of B. If not, executes next statement.
(If there is a multi-statement following a conditional statement, the
ON statement is executed when the condition is not reached, but the
IF statement moves the execution to the next statement number if the
condition is not reached, and the multi-statement is ignored.)
ON-GOTO B0 ON A GOTO Jumps to statement number 70 if variable A is I, to statement num-
70, 80, 90 ber 80 if it is 2, and to statement number 90 if it is 3. The next state-
ment is executed if A is 0 or 4 or more. The INT function is included
in ON, so jumps to statement number 80 if A is 2.7, in the same way
as 2.
ON~GOSUB 90 ON A GOSUB Branches to statement number 700 subroutine if variable A is 1, and

700, 800

to statement number 800 if it is 2. The next statement is executed if
A 15 0 or 3 or more.

Definition statements

DIM 10 DIM A{20) For one-dimensional numerical array variable A(), 21 array variables
become available, from A(0) to A(20).
20 DIM B(78.79] For two-dimensional numerical array variable B(), 6400 array varia-
bles become available, from B(0, 0) to B(79,79).
30 DIM C1%(10) For one-dimensional string array variable C13(), 11 array variables
become available, from C18(0) to C13(10).
40 DIM K#%(7,5) For two-dimensional string array variable K$(), 48 array variables
become available, from K$%(0, 0) to K$(7, 5).
DEF FN 100 DEF FNA (X) Statement number 100 defines X*—X to FNA (X), statement number
=12 -X 110 defines logeX + 1 to FNB (X), and statement number 120 defines
110 DEF FNB (X) log.Y to FNZ (Y).
=L0G (X)+1
120 DEF FNZ (¥) Each function is limited to 1 variable.
=LN {Y)
DEF KEY 15 DEF KEY(1)= The DEF KEY statement of statement number 15 defines the func-

“LIST"+CHR$%

(13)

25 DEF KEY(2)=
"“"LOAD:RUN""
+CHR#%(13)

tion LIST [CR] to function key number 1, and statement number 25
defines the function LOAD:RUN to function key number 2.

9-6

Comment statements and conirol statemenis

REM 200 REM JOB1 REM is a comment statement; ignored when program is executed.
STOP 850 STOP Stops program execution and awaits command. If CONT ecommand
given here, program continues.

END 2000 END Indicates end of program. Executes program end.
CLR 300 CLR All numerical variables and character variables become 0 or vacant
(null); all array variables return to undetermined condition. All DEF
FM statements also become invalid.
CURSOR 50 CURSOR 25, Specifies the position by numerals or variables: form 0 to 39 from
15 the left end in the X axis direction , and 0 to 24 from the top end in
60 PRINT “ABC'" the Y axis direction. For the example at the left, string “ABC" is
displayed from the 26th cursor position from the left end of the
screen and the 16th cursor position from the top end.
CONSOLE 10 CONSOLE 0, The scroll range covers the whole screen.
25, 0, 40
20 CONSOLE 5, Specifies the scroll range form the 5th line to the 15th line.
15
30 CONSOLE 0, Specifies the scroll range from the 5th line to the 3(0th line.
25, 5, 30
40 CONSOLE O, Specifies the scroll range to a 10 10 range.
10, 0, 10
50 CONSOLE 2, Specifies the scroll range to the scroll range shown in the figure
20, 2, 35 below.
0,00 (39,0)
2_ e
(0,24) (39,24)
SIZE ? SIZE Displays the unused size (in bytes) of the BASIC text area.
TI$ 100 TI& = Sets the internal clock to 10:20:30 PM. Time data are expressed as a
222030 6-digit figure within quotation marks,

Music control statements

MUSIC
TEMPO

300 TEMPO 7
310 MUSIC"DE #
FGA"

Tempo 7 (fastest speed) is specified by statement number 300. By
statement number 310, re mi fa# sol la (midrange) are played at tem-
po 7. If there is no TEMPO statement, the music is played at the
tempo of the default value.

300 M1$="C3E
G+CIJ

310 M2$="BGD
_GJ’!

320 M35=
“CBR5"

330 MUSIC M15,
M2%5,M3%

In this example, the melody is substituted to the 3 string variables
and the MUSIC command is executed. When the staff notation is
used, the notes below are played. Note that, because there is o TEM-
PO statement, the playing is at the default value tempo.

P
=

f'lﬂ"

a1l

9-7

Machine language program control statements

INP@ INP@ SEB,A Substitutes data at port number $E8 for variable A.

ouT@ OUT@ $EB,A Outputs variable A to port number 3ES.

LIMIT 100 LIMIT 49151 Limits the area used by the BASIC program to the 49151 address
(BFFF with hexadecimal notation).-

100 LIMIT A Limits the area used by the BASIC program to the address of varia-
ble A.

100 LIMIT $BFFF Limits the area used by the BASIC program to the address BFFF in
hexadecimal notation.A hexadecimal notation is indicated by a “*§"
mark before the notation.

300 LIMIT MAX Returns the area used by the BASIC program to the maximum
MEemory.

POKE 120 POKE 49450, Sets data 175 (decimal notation) to the decimal notation address
175 49450,
130 POKE AD, Sets the value (0 to 255) indicated by variable DA to the address
DA, specified by variable AD.
PEEK 150 A=PEEK Changes the data at decimal notation address 49450 to a decimal
{49450) number, and substitutes for variable A.

160 B=PEEK (C] Changes data entered at the decimal notation address specified by

variable C to a decimal notation, and substitutes for variable B.
USR 500 USR (49152} Moves program control to decimal address 49152, This control mov-

ement has the same function as the machine language CALL com-
mand. As a result, when the RET command (201 at decimal nota-
tion) is in the machine language program, returns to the BASIC
program.

550 USR (AD)

Calls the decimal address specified by variable AD.

570 USR ($C000)

Calls the hexadecimal address C000.

Printer control statement

AXIS Valid in GRAPH mode.
30 AXIS 0, —10, Adds a scale of 48 graduations in increments of 10 to the Y-
48 coordinate axis from the current pen position.
50 ASIX 1, 10, Adds a scale of 48 graduations in increments of 10 to the X-
48 coordinate axis from the current pen position.
CIRCLE Valid in GRAPH mode.
50 CIRCLE 0, 0, Draws a circle (radius 240) from coordinates (0,0).
240, 0, 380,
0,2
GPRINT Valid in GRAPH mode.
30 GPRINT (2,2), Prints the character A upside down at the size of the 26-digit mode
A of the TEXT mode.
HSET 30 HSET Specifies the current pen position to a new starting point. (Valid in
GRAPH mode.)
LINE Valid in GRAPH mode.
10 LINE% 1. 240, Coordinates (240,00, (240, — 240), (0, —240) and (0,0) are connected
0, 240, —240, by a solid line from the current pen position.
0 —-240,0 0

9-8

MODE MODE TN Returns from the GRAPH mode to the TEXT mode (40 characters
per line).
MODE TL Returns from the GRAPH mode to the TEXT mode (26 characters
per line).
MODE TS Returns from the GRAPH mode to the TEXT mode (80 characters
per line).
MODE GR Switches from the TEXT mode to the GRAPH mode (in order to
draw graphs and figures).
MOVE Valid in GRAPH mode,
10 MOVE 150, Moves the pen upward from the current pen position to coordinates
100 (150, 100).
RMOVE Valid in GRAPH mode,
20 RMOVE — 240, Moves the pen upward relatively from the current pen position by
240 — 240 (X direction) and 240 (Y direction).
PAGE Valid in TEXT mode.
10 PAGE 30 Specifies 30 lines per page.
PCOLOR Valid in both TEXT and GRAPH mode.
10 PCOLOR 1 Prints “ABC" to the plotter printer in blue.
20 PRINT/P
“"ABC"
PHOME PHOME Moves the pen upward from the current pen position and returns to
the starting point. (Valid in GRAPH mode).
PLOT PLOT ON Enables use of colour plotter printer as substitution for the display.
(Valid in TEXT mode.)
PLOT OFF Cancels above function.
PRINT/P Valid in TEXT mode.
10 PRINT/P A, A$ Outputs string variable A3 content after the numerical variable A
content to printer.
20 PRINT/P “'H** For form feed of printer.
PRINT/P Outputs format specified data to screen. Format specification is writ-
USING ten after the word USING.
PRINT/P USING Mumerical variable A contents are output to printer within 4 digits,
HEHENA justified right.
RLINE Valid in GRAPH mode.
70 RLINE% 1, Connects specified positions, relatively from current pen position
240, 0, =120, (240,00, (—120,—-5Q) and (- 120,5Q) by solid line.
=50, -120,
50
SKIP Valid in TEXT mode.
10 SKIP 10 Advances the paper 10 lines.
20 SKIP — 10 Rewinds 10 lines.
TEST TEST Checks colour specification and ink amount and dryness. (Valid in

TEXT mode).

99

Arithmetic functions

ABS (X) A=ABS (X) Assigns the absolute value of variable X! to variable A.
Example: A=ABS (2.9)—-A=29
A=ABS (-5.5)—A=55
SGN (X) A=5GN (X) Assigns the numeric sign of variable X to variable A. If the value of
X is negative, — 1 is assigned to A; if X is 0, 0 is assigned to A; and
if X is positive, 1 is assigned to A.
1 (X=>0) Example: 1 is assigned to variable A when
A=i0 X=0 A=8GN (0.4) is executed.
-1 {X<0)
INT (X) A=INT (X) Assigns the greatest integer value to A which is less than or equal to
the value of variable X.
Examples: A=INT (3.87) —A=3
A=INT (0.6) —+A=0
A=INT (=3.87)+A=—-4
SIN (X) A =SIN (X) Assigns the sine of X (where X is in radians) to variable A. If the
value of X is in degrees, it must be converted to radians before this
A =SINi30«PAI1I/180) function is used to obtain the sine. Since 1 degree equals =/180 radi-
ans, the value in radians is obtained by multiplying the number of
degrees by PAI(1)/180. For example, 30° =30+PAI(1)/180 radians.
The same applies to the COS, TAN, and ATN functions.
COs (X) A=COs (X) Assigns the cosine of X (where X is in radians) to variable A.
A=005
(200=PAI1)/180)
TAN (X) A=TAN (X) Assigns the tangent of X (where X is in radians) to variable A.
A =TANY «PALIT)/180)
ATN (X) A=ATN (X) Assigns the arctangent in radians of X (tan"'X) to variable A. The
A=180PAI1 1« ATM) value returned will be in the range from —=/2 to =/2.
SOR (X) A=50R (X) Calculates the square root of X and assigns the result to variable A.
X must be a positive number or 0.
EXP (X) A=EXP (X) Calculates the value of ¢* and assigns the result to variable A.
LOG (X) A=L0OG (X) Calculates the common logarithm of X (logiwe X) and assigns the
result to variable A.
LN (X) A=LN (X) Calculates the natural logarithm of X (log. X) and assigns the result
to variable A.
PAI (X) A =PAI [X) Assigns the value to variable A which is X times the value of «.
RAD (X) A=RAD (X) Converts the value of X (where X is in degrees) to radians and as-

aigns the result to variable A.

9-10

String control functions

LEFT$ 10 A§=LEFT#$ Substitutes string variable X3 (from beginning to Nth character) for

(X%.N) string variable AS. It doesn’t matter whether N is a constant, variable
or numerical formula.

MIDS 20 B$=MID$(X$, Substitutes string variable X$% (from Mth character to N charater) for
M, N string variable B,

RIGHTS 30 C$=RIGHT$ Substitutes string variable X3 (from end to N character) for string
X%, M) variable C3§.

SPC 40 D$=SPC (N) Substitutes N number of spaces for string variable D§.

CHRS 60 F$=CHR%|A) Converse to the ASC function, substitutes ASCII code characters

which are equivalent to the value of real number A for string variable
F%. It doesn’t matter whether A is a constant, variable or numerical
formula.

ASC 70 A=ASC (X$%) Substitutes the value of the ASCII code of the first character of
string variable X§ for variable A,

STRS BO N§=S5STR% (1) Converts to the VAL variable, substitutes the numerical variable [as
if it were a string for string variable N§,

VAL 90 1=WAL [N%) Substitutes the numerical string of string variable N§ as if it were a
number for variable 1.

LEN 100 LX =LEN Substitutes the character length (character number) of string variable

(X5) X8 for variable LX.

110 LS =LEN Substitutes the sum of the character length of string variables X$ and
X$+Y$) Y$ for variable LS.

Tab function

TAB 10 PRINT TAB Displays the value of variable A at the X + 1 character position
(XLA counting from the left edge of the screen.

Arithmetic operations

The calculation priority is of white figures on dark background at left side, but the calculation of figures in
parentheses () has even higher priority.

1 10 A=X1Y Substitutes the X1TY calculation result for variable A. (Note, however,

(power) that an error occurs if Y is not an integral number when X is a nega-
tive number at XTY.)

- 10A=-B 0—B is a subtraction; note that the *“="" of —B is a minus sign.
(minus sign)

* 10 A=X=*Y Substitutes the multiplication result of X and Y for variable A.
{multiplication)

Vi 10 A=X/Y Substitutes the division result of X and Y for variable A.
{division)

+ 10 A=X+Y Substitutes the addition result of X and Y for variable A.
(addition)

- 1M A=X=Y Substitutes the subtraction result of X and Y for variable A.
{subtraction)

5-11

Comparison logic operators

10 IF A=X THEN

If variables A and X are equal, executes commands from THEN
onward.

20 IF As="XYZ"
THEN o uas

If string variable AS content is string XYZ, executes commands from
THEN onward.

> 10 IF A=X THEN If variable A is greater than X, executes commands from THEN
s s s san QUL
< 10 IF A<X THEN If variable A is smaller than X, executes commands from THEN
wmmmammvssnssmemanes OIWAD,
<>or>< 10 IF A<>F If variable A and X are not equal, executes commands from THEN
THEN onward.
>=0r => 10IF A= =X If variable A is greater than or equal to X, executes commands from
THEN THEN onward.
<= or =< 10IF A< =X If variable A is smaller than or equal to X, executes commands from
THEN THEN onward.
* 40 IF (A>X)=({B If variable A is greater than X and variable B is greater than Y, exe-
=>%) THEN cutes commands from THEN onward. s,
+ 5O IF (A>X)+(B If variable A is greater than X or variable B is greater than Y, exe-
=%} THEN cutes commands from THEN onward.
Other symbols
? 200 ?A+B=""; Can be used instead of PRINT. Consequently, statement number 200
A+B and 210 are the same.
210 PRINT “A+B
bt H;A + B
: 220 A=X:BE=X12 A symbol to express punctuation of the command statement: used in
‘7A.B multiple commands. There are 3 command statements used in the
statement number 220 multiple command.
; 230 PRINT"AB'"; Executes PRINT continuously. As a result line number 230, **ABC-
"CD"; "EF"" DEF” is displayed on the screen continuously, with no space.
240 INPUT"X =""; Displays “X="" on screen; awaits data key input of string variable
X5 X5.
' 250 PRINT"”AB"', Executes PRINT with tabulation. For statement number 250, first AB
“CD",""E"" s displayed on the screen, then CD is displayed in the position 10
characters to the right of A, and then E is displayed in the position
10 characters to the right of C.
300 DIM A(20), An example used in punctuation of a variable.
B%(3.6)
LA 330 BS ="M2Z- * indicates a string content
?mn
5 340 C5=""ABC" Indicates a string variable.
+CHR$(3)
500 LIMIT $BFFF Indicates hexadecimal number.
[580 5=5IN The approximate value of pi (3.1415927) is expressed by .
(X * 7/180)

9-12

Appendixes

Appendix A Display Control in the MZ-800 Mode

(1) Graphics memory

The standard MZ-800 supports a display screen of 320 x 200 dots in 4 colours selected from a possible
16 colours, or a monochrome display screen of 640 > 200 dots.

By installing the optional graphics memory (MZ-1R25), the display capability is improved so that a
display screen of 320 x 200 dots can be displayed in 16 colours or a screen of 640 x 200 dots can
be displayed in 4 colours selected from a possible 16 colours.

(2) 40-column mode and 80-column mode (Character display)
The number of character columns per line can be switched between 40 and 80 characters with the INIT
command.

(3) Display modes (Graphics display)
The resolution and number of colours which can be displayed at any one time differs according to
the display mode. The MZ-800's display modes are as follows.

Mode Resolution |Characters per line Colours
320 x 200 dots 40 4 colours
2 |320 x 200 dots 16 colours

Foreground and back-

3 | 640 x 200 dots ground colours

80
4 640 x 200 dots 4 colours

Modes 2 and 4 can be used only when the optional graphic memory is installed. The graphics display
mode is set by the Mn parameter of the INIT command.

For exmaple;
INIT ORI civicii disina v snsivanss Sets mode 1.
NI 2 R M 2 s i s A v s i Sets mode 2.

(4) Colour palette

The colours which can be displayed at one time are selected from the colour palette. The colour palette
allows the selection of 4 colours from a possible 16 colours. The 16 colours which can be displayed
are listed below along with their colour codes.

A-2

Colour code Colour
1] Black
1 Blue
2 Red
3 Magenta
4 Green
5 Cyan
6 Yellow
7 White
8 Gray
9 Light blue
10 Light red
11 Light magenta
12 Light green
13 Light cyan
14 Light yellow
15 Light white
(high brightness white)

In mode 1 or mode 4, palette codes 0 to 3 are used. The initial settings of colour code assignments
to the palette codes are as shown below.

Palette code | Colour code (colour)
0 0 (black)
1 1 (blue)
2 2 (red)
3 15 (light white)

In mode 3, palette codes 0 and 1 are used and the initial settings of colour code assignments are as follows.

Palette code | Colour code (colour)

0 0 (black)
1 15 (light white)

Colour code assignments to the palette codes can be changed with the PAL command.

Ex)
PAL Q4. ..counrsernnnnsnns Assigns colour code 4 (green) to palette code 0.
PAL 2.7 cvvimiasuivvinis Assigns colour code 7 (white) to palette code 2.

(5) Palette usage in mode 2
In mode 2, the initial colour code assignments to the palette codes are as follows.

Palette code | Colour code (colour)
0 (black)

1 (blue)

2 (red)

3 (magenta)

4 (green)

5 (cyan)

6 (yellow)

7 (white)

8 (gray)

9 (light blue)

10 10 (light red)

11 11 (light magenta)
12 12 (light green)

13 13 (light cyan)

14 14 (light yellow)
15 15 (light white)

=

W00 =1 S Lh B b b e

Use of the palette in mode 2 is more complicated. In mode 2, palette codes 0 to 15 are used and they
are divided into four blocks as follows.

Palette block No. 0 1 2 3
Palette code Oto3 | 4to7 |8to 11|12 to 15

The initial setting of the palette block number is 0 and the initial settings of the colour code assign-
ments to the palette codes are as follows.

Palette code | Colour code (colour)
0 0 (black)
1 1 (blue)
2 2 (red)
3 3 (magenta)

The palette block number can be changed by the INIT command.

Ex)
INIT ““CRT:B1" — Changes the palette block number to 1.

The numbers belonging to the current palette block can be used as the palette codes in commands and
statements. Some commands and statements have a parameter which specifies a palette code or colour
code. The numbers belonging to the current palette block number are recognized as the palette codes,
while the other numbers are recognized as the colour codes.

The following example will help you understand the above explanation.

A-4

10 INIT “CRT:M2,B1"" — Mode 2, palette block No.=1

20 PAL 4,12 — Assigns colour code 12 to palette code 4.
30 PAL 5,10 — Assigns colour code 10 to palette code 5.
40 PAL 5,8 — Assigns colour code 8 to palette code 6.
B0 PAL 7.6 — Assigns colour code 6 to palette code 7.

After executing the above program,
LINE [5,0] 10,20,100,50

draws a line in light red. In this case, the first parameter is recognized as a palette code.
LINE [1,0]1 10,20,100,50

Draws the same line in blue. In this case, the first parameter is recognized as a colour code.
INIT ““CRT:BO""

If the above command is executed after execution of the above program, the result is different.
LINE [5,0] 10,20,100,50

Draws the line in cyan. In this case, the first parameter is recognized as a colour code.
LINE [1,0] 10,20,100,50

Draws the line in blue. In this case, the first parameter is recognized as a palette code. When INIT

“CRT:B0" is executed, the palette codes which can be set are changed as shown below.
The initial settings of the colour code assignments are assumed.

Paletie code Palette code
5 0
6 INIT *“CRT:B0" 1
T = 2
b 3

(6) Restoring initial settings

Executing the INIT statement to set a new display mode restores the initial settings of the colour code.
Executing the INIT statement to set a new palette block in the 16-colour mode also restores the initial
settings.

(7) Logical summing of colours
Some graphic statements such as COLOR, SET and LINE use the ““mode’’ parameter.

When the mode parameter is specified as 0, the resultant colour is specified by the palette code parameter.
When the mode parameter is specified as 1, a logical OR operation is performed between the existing
palette code for a dot (on the screen) and the new specified palette code for the same dot, to produce
the resultant colour. For example, if the existing palette code for a dot at (50,50) is 2 and the new
specified palette code is 1, the resultant palette code is 3.

0010 (binary for 2) OR 0001 (binary for 1) — 0011 (binary for 3)

A-S

A table of codes logically ORed is shown below.

=]
k=]

012345678 9101112131415
00012345678 9101112131415
113355779 5111113131515
202323676 71011101114151415
33 3337T7TT7TT1M11111115151515
4456 7456 71213141512131415
505 577557 71313151513131515
6|6 76 76 7 6 71415141514151415
e O A ol e e Tl Qi b 1 e b el T
88 9101112131415 8 9101112131415

9111113131515 9 9111113131515

10110111011 141514151011 1011 14 1514 15
11111111111 151515151111 111115151515
1211213 14151213 14151213 14151213 14 15
13]13131515131315151313151513 131515
14141514 15141514 151415141514 1514 15
15/151515151515151515151515151515 15

This logical operation does not however apply to the RESET and BLINE statements. For these two
statements, the resultant colour is specified by the colour code given by

{(No. of colours which can be specified in the current colour display mode) — 1 — (specified palette
code) } when the mode parameter is 0. For example, when the colour display mode is mode 1 in which
a maximum of 4 colours can be specified, specifying colour palette code 1 results in colour palette
code 2 as follows.

4-1-1=2
When the mode parameter is 1, the resultant palette code is given by the logical OR of the previous

palette code and [(No. of colours which can be specified in the current colour display mode) minus
1 minus (specified palette code)}. For example, specifying palette code 1 when the previous palette

code is 2 results in palette code 2 as follows.

20R 2 — 2

Appendix B Programmable Sound Generator

The MZ-800 has a built-in programmable sound generator (PSG) which makes it possible to generate
3-tone chords over 6 octaves. The PSG is an SN76489AN IC.
The PSG can be controlled by sending data to 1/0 port address $F2.

(1) Description of the PSG
The SN76489AN IC has eight internal registers, and controls three tone generators and one noise

generator.

Block diagram

i{ IE
! ! - Atteliuatm

I ———
: Tone generator O
Tam!

1
1
|
[
|

-+ M - |
g;g;: __ - Attenuator | —] i
| DED:— Tone generator 1 ’_ll—'J—_ :
| D40 Qutput !

D30 *'—'—W +32 amplifi
D20 — Attenuator ; i
D10 Tone generator 2 | Output |
DOC amplfier,

WE O] —
o] = o | |
HERRE —{1e——zars{counter-{] |
v A BVE

A S Noise generator _ _ _ Attenuator | T ™

The internal registers required can be selected by setting bits D4 to D6 in the 1st byte of the output
data. The function of each register is shown below.

D6 | D5 | D4 Function

0 0 0 | Frequency of tone 0

0 0 1 | Sound volume of tone 0
0 1 0 | Frequency of tone 1

0 1 1 | Sound volume of tone 1
1 0 0 | Frequency of tone 2

1 0 1 | Sound volume of tone 2
1 1 0 | Noise control

1 1 1 | Noise volume

(2) Setting the tone frequency
The tone frequency is set with the following 2-bytes of data.

1st byte

D7|D6|D5|D4|D3 |D2|D1|D0O
1 | Reg. select | Frequency 1
(lower four bits)

A7

2nd byte

D7|D6|D5[D4|D3[D2|D1[DO
0 | X | Frequency (high six bits)

Frequency = (3.55 x 10°)/(32 x n) kHz
n is a 10-bit binary number represented by DO to D3 of the 1st byte and DO to D5 of the 2nd byte.
(3) Noise generation

Synchronous noise or white noise can be generated by outputting the following 1-byte data to the [/O
port.

D7|D6|D5|D4|D3|D2|D1|DO
1 | Reg. select | X | | |Frequency

|
Moise type

* The noise type is specified by D2,
0: Synchronous noise
1: White noise

* The noise frequency is set by D0 and D1. The noise frequencies which can be set by D0 and
D1 are as follows.

D1|D0 Frequency
0

0 6.93 (=3.55x10°/512) kHz

0| 1]3.47 (=3.55x10%/1024) kHz

1[0]1.73 (=3.55%10°/2048) kHz

1| 1| Same as that for the sound generated by tone generator #3.
Clock JUUUUTUTUIU UL UL

—-—|1 ! 15 I 1]-——

Swynchr
o B [
[Duty 6.25%)

* When white noise is specified, the output waveform is composed of random patterns and a sound
with virtually the same spectrum as white noise is generated.

* When noise modes 0, 1, 1 are specified, the frequency is given by the following formula and a low
pulse tone can be generated.

f=N32xnx 16

* [f you specify tone 2 output in the noise mode specification, you must turn the output of tone 2 off.

(4) Setting tone volume

p7|D6 D5 | D4 D3 [D2[D1 [DO
1 | Reg. select Attenuation

The tone volume is altered with attenuation.

D3 | D2 | D1 | DO | Attenuation (dB)| | D3| D2|DI1 | DO | Attenuation (dB)
0(0|0)|0 0 1]o0]j0]0 16
00101 2 1joj0|1 18
o(o|1}0 4 1|o0|1]0 20
0j0]1]1 6 118j11]1 22
oj1|0}|0 8 11010 24
0j1]0]1 10 111 |0:1 26
oj1]11|0 12 1 (L1 |0 28
0j1]1]1 14 i I I) o OFF

Appendix C Reserved Words

ABS
AND
ASC
ATN
AUTO
AXIS
BLINE
BOOT
BOX
BYE
CHAIN
CHRS$
CIRCLE
CLOSE #
CLR
CLS
COLOR
CONSOLE
CONT
COs
CSRH
CSRV
CURSOR
DATA
DEF
DEFAULT
DELETE
DIM

DIR
ELSE
END
EOF
ERL
ERN
ERROR

EXP

FN

FOR
GET
GOSUB
GOTO
GPRINT
HCOPY
HSET
IF

INIT
INP@
INPUT
INPUT #
INT
KEY
KEYLIST
KILL #
LABEL
LEFTS
LEN
LET
LIMIT
LINE
LIST
LIST/P
LN
LOAD
LOG
MERGE
MID$
MUSIC
NEW
NEXT
NOISE

NOT

OFF

ON

OR
OuUT@
PAGE
PAI
PAINT
PAL
PATTERN
PCIRCLE
PCOLOR
PEEK
PHOME
PLINE
PLOT
PMODE
PMOVE
POINT
POKE
POSH
POSITION
POSV
PRINT
PRINT #
PSKIP
PTEST
RAD
READ
REM
RENAME
RENUM
RESET
RESTORE
RESUME
RETURN

RIGHT%
RLINE
RMOVE
RND
ROPEN #
RUN
SAVE
SEARCH
SEARCH/P
SET

SGN

SIN

SIZE
SOUND
SPC

SQR
STICK
STOP
STRS
STRIG
SYMBOL
TAB
TAN
TEMPO
THEN
TIS
TROFF
TRON
USING
USR
VAL
VERIFY
WAIT
WOPEN #
XOR

Appendix D Console Control Codes

If the MZ-800's character set, some of the codes are used to control the operation of the computer
as shown below. These control codes can be input to the computer through the keyboard or by using
the PRINT statement (indicated with an asterisk (#*) in the code column).

Control code table

Code (Dec.) Key operation Function

5 lcTrL] + | E] Causes the character keys to input lowercase letters.
6 [CTRL | + [F | Causes the character keys to input uppercase letters.

13 (#) LCTRL | + (M Causes a carriage return. @

16 (#) LcTrL | + [P Deletes the character at the position to the left of the

cursor position.

17 (%) LctrL | + [0 Moves the cursor down one line. [1]

18 (*) [cTRL | + [R] Moves the cursor up one line.

19 (*) +[s] Moves the cursor right one character position.

20 (#) | CTRL | + |l| Moves the cursor left one character position.

21 (*) [etrL] + (U] Moves the cursor to the home position.

22 (*) [cTRL | + [V] Clears the screen.

23 (=) + Places the keyboard in the graphics mode. [GRAPH |

24 (#) letrL | + [X | Inserts a space at the cursor position.

25 (#) + Places the keyboard in the normal mode.

A-12

Appendix E Restrictions on Using File /O Commands
and Statements

The file [/O commands and statements cannot be used for all file devices. The table below shows the
restrictions on some of these devices.

pevice CMT: RAM: CRT: LPT: RS1: and RS2:

Command/ (Data recorder) |(RAM file board)| (Display) (Printer) (R5-232C)

statement

INIT
DEFAULT
DIR

RUN
LOAD
SAVE
DELETE
RENAME
CHAIN
MERGE
WOPEN #
PRINT #
ROPEN #
INPUT #
CLOSE #
KILL #

000000000000 OOO0
X MM XA XXX X XXO0
SO ON MMM MM NN KX XXOO0

COO0000O0OXxO00OXxOX
OO0O00D00DX X X X % XXX 00

O: Can be used.
® : Cannot be used.

Further, for CMT:, and RS1: and RS2, only one file can be opened at any one time.

A-13

Appendix F Monitor Subroutines

The following subroutines are used by the ROM Monitor (9Z-504M). Each subroutine name symboli-
cally represents the function of the corresponding subroutine. These subroutines can be called from

user programs.
Registers saved are those whose contents are restored when control is returned to the calling program.

The contents of other registers are changed by execution of the subroutine.

MName and entry point (hex.) Function Registers saved
CALL LETNL Moves the cursor to the beginning of the next line. All except AF
(0006)
CALL PRNTS Displays a space at the cursor position. All except AF
(000C)
CALL PRNTS Displays the character corresponding to the ASCII code All except AF
{0012) stored in the ACC at the cursor position. See Appendix J

for the ASCII codes. No character is displayed when code
0D (carriage return) or codes 11 to 16 (the cursor control
codes) are entered, but the corresponding function is still
performed (a carriage return for 0D and cursor movement
for 11 to 16).

CALL MSG Displays a message, starting at the position of the cursor. All registers
(0015) The starting address of the arca in which the message is

stored must be loaded into the DE register before calling

this subroutine, and the message must end with a carriage

return code (0D).

The carriage return is not executed.

The cursor is moved if any cursor control codes (11 to 16)

are included in the message.

CALL BELL Briefly sounds tone of la (about 880 Hz). All except AF
(003E)
CALL MELDY Plays a tune according to the music data stored in the All except AF
{0030y memory area starting at the address in the DE register.

The music data must be in the same format as that for the
MUSIC statement of the BASIC, and must end with 0D or
C8.

When the tune is completed, control is returned to the call-
ing program with the C flag set to 0. When play is inter-
rupted with the key. Control is returned with the
C flag set to 1.

CALL XTEMP Sets the music tempo according to the tempo data stored All registers
(0041) in the accumulator (ACC).
ACC « 01 Slowest speed
ACC «~ (4 Middle speed
ACC « 07 Highest speed
Note that the data in the accumulator is not the ASCII
codes for 1 to 7 but the binary codes.
CALL MSTA Generates a continuous sound of the specified frequency. BC and DE
(0044) The frequency is given by the following equation

freq. =895 kHz/nn",
Here, nn' is a 2-byie number stored in addresses 11A1 and

11A2 (n in 11A2 and n’ in 11A1)

A-14

MName and entry point (hex.) Function Registers saved
CALL MSTP Stops the sound generated with the CALL MSTA All except AF
(DO4T) subroutine.
CALL TIMST Sets and starts the built-in clock. The registers must be set | All except AF
(0033) as follows before this routine is called.
ACC + 0 (AM), ACC + 1 (PM)
DE + 4-digit hexadecimal number representing the time
in seconds.
CALL TIMRD Reads the built-in clock and returns the time as follows. All except AF
(003B) ACC « 0 (AM), ACC « 1 (PM) and DE
DE + 4-digit hexadecimal number representing the time
in seconds.
CALL BRKEY Checks whether the and keys are both All except AF
(0D01E) being pressed. The Z flag is set when they are being pressed
simultaneously; otherwise, it is reset.
CALL GETL Reads one line of data from the keyboard and stores it in All registers
(0003) the memory area starting at the address in the DE register.
This routine stops reading data when the key is pressed,
then adds a carraige return code (0D) to the end of the data
read.
A maximum of 80 characters (including the carriage return
code) can be enered in one line.
Characters keyed in are echoed back to the display. Cursor
control codes can be included in the line,
When the [SHIFT | and [BREAK | keys are pressed simultane-
ously, the BREAK code is stored at the address indicated
by the DE register and a carriage return code is sotored in
the following address.
CALL GETKY Reads a character code (ASCII) from the keyboard. All except AF
(001B) If no key is pressed, control is returned to the calling pro-

Special key read with
GETKY

gram with 00 set in ACC.

Mo provision is made to aveid data read errors due to key
bounce, and characters entered are not echoed back to the
display.

When any of the special keys (such as or [CR]) are
pressed, this subroutine returns a code to the ACC which is
different to the corresponding ASCII code as shown below.
Here, display codes are used to address characters stored in
the character generator, and are different from the ASCII
codes.

Special key Code loaded in ACC| Display code
[DEL | 60 C7
[INsT | 61 C8
|ALPHA | 62 C9
\BREAK | 64 CB

CR 66 CD

¥t 11 Cl
[To] 12 2
[= 13 C3
o] 14 C4
[HOME | 15 C5
[Tcir] 16 Cé

Name and entry point (hex.)

Function

Registers saved

CALL ASC
(03DA)

Loads the ASCII character corresponding to the hex-
adecimal number represented by the lower 4 bits of data in
ACC,

All except AF

CALL HEX
(03F9)

Converts the 8 data bits stored in the ACC into a hex-
adecimla number (assuming that the data is an ASCII
character), then loads the hexadecimal number in the lower
4 bits of ACC. The C flag is set to 0 when a hexadecimal
number is loaded in ACC; otherwise, it is set to 1.

All except AF

CALL HLHEX
(0410)

Converts a string of 4 ASCII characters into a hexadecimal
number and loads it in the HL register. The call and return
conditions are as follows,

DE + Starting address of the memory area which con-

tains the ASCII character string.
[E.g.‘ ils!'l illl! Ilhl! l.isl!]

CALL HLHEX ' —DE

CF=0 HL+hexadecimal number (e.g., HL =31A5y)

CF=1 The contents of HL are not guarenteed.

All except AF
and HL

CALL ZHEX
(041F)

Converts a string of 2 ASCII characters into a hexadecimal
number and loads it into the ACC. The call and return con-
ditions are as follows.

DE + Starting address of the memory area which con-

tains the ASCII character string.
{EpEp, il3!‘l IIATS }

CALL 2HEX LDE
CF=0 ACC+hexadecimal number (e.g., ACC=3Ay)
CF=1 The contents of the ACC are not guaranteed,

All except AF
and DE

CALL 77KEY
(09B3)

Blinks the cursor to prompt for key input. When a key is
pressed, the corresponding display code is loaded into the
ACC and control is returned to the calling program.

All except AF

CALL ?ADCN
(OBEY)

Converts ASCII codes into display codes. The call and
return conditions are as follows.

ACC +« ASCII code

CALL ?ADCN

ACC + Display code

All except AF

CALL ?DACN
(0BCE)

Converts display codes into ASCII codes. The call and
return conditions are as follows.

ACC « Display codes

CALL ?DACN

ACC ~ ASCII code

All except AF

CALL ?BLNK
(0DAB)

Detects the vertical blanking period. Control is returned to
the calling program when the vertical blanking period is
entered.

All registers

CALL TDPCT
(0DDC)

Controls display as follows.

All registers

ACC Control ACC Control

C0Owu | Scrolling C6u | Same as the [CLR | key.
Clu | Same as the [T] key. | C7u | Same as the [DEL| key.
C2u | Same as the key. CBu | Same as the [INST | key.
C3u | Same as the key. | C% | Same as the

Cdu | Same as the [~] key. key.

C5u | Same as the CDu| Same as the key.

[FOVE] key.

CALL ?POINT
(OFB1)

Loads the current cursor location into the HL register. The
return conditions are as follows.

CALL ?POINT

HL + Cursor location (binary)

All except
AF and HL

A-16

Appendix G Making Backup Copy of the BASIC
Interpreter

It is possible that you may accidentally damage the tape which contains the BASIC interpreter. When
this happens, you cannot use the computer. To avoid this, make a copy of the BASIC interpreter.
After making the backup copy, store the original tape in a safe place and use the backup copy for
daily use.

Backup procedures are as follows.

1} Prepare a new cassette tape.

2) Turn on the MZ-800 and press the @ key to start the monitor.

3) Load the tape which contains the BASIC interpreter into the data recorder, then enter the follow-
ing monitor command.
* GE807

4) When ““ $PLAY" is displayed, press the button of the data recorder to read the BASIC
interpreter into memory.

5) When the prompt (*) appears, replace the tape with the new one and enter the following monitor
command.

* GESOA
6) When *“ # RECORD.PLAY" is dislayed, press the | RECORD | button of the data recorder to write
the BASIC interpreter to the new tape.

7) When the prompt (*) appears, rewind the tape. Then, enter the following monitor command.

* GESOD
8) When ** # PLAY"' is displayed, press the button to verify the tape contents.
9) When the message ‘““CHECK SUM ER.” is displayed, repeat steps 3 to 8.

When the message ““OK."" is displayed, copying is completed.

A-17

Appendix H Optional Colour Plotter-Printer MZ-1P16

Faper holder (left) Paper shaft Paper holder [right)

Paper guide _LLL | | /f |

Printer cover \

|- Papar cutter

=
)
[[\
/ / \
Reset switch FPaper feed key

Initializes the printer
Pen change switch

(viewed from the top)

Paper inlet

{viewed from the rear)

Note:
A protective sheet is inserted in printer to protect the printer mechanism. Remove the sheet by pressing
the paper feed key (@} before using the printer.

m Loading roll paper

1. Remove the printer cover.

2. Cut the end of roll paper squarely and insert the paper into the paper inlet. (Do not fold or wrinkle
the end of the paper when doing this.)

3. Turn on the MZ-800's power switch and press the @(paper feed) key to feed the paper unitl the
leading edge exposed 3 to 5 cm above the outlet.

4. Insert the paper shaft into the paper roll and mount it to the paper holders.

5. Refit the printer cover so that the end of paper comes out through the paper cutter.

* To remove the roll from the printer for replacement, cut the paper squarely at the paper inlet and
press the ([) key.

##
Insert paper into the Press the @ key to . Replace the printer
paper inlet. feed paper. o cover,

® Roll paper for the plotter printer is available from your nearest SHARP dealer. Do
not use paper other than that specified.

The roll length is 23 to 25 meteres, and the maximum roll which can be loaded is @ 50 mm. The paper
will not feed properly if a roll of greater diameter is used, resulting in poor printer quality.

m Installing/replaceing pens

1. Remove the priner cover and press the PEN CHANGE switch with a ball-point pen or similar ob-

ject; this causes the pen holder to move to the right side of the printer for pen replacement.

2. Press the pen eject lever to eject the pen which is at the top of the holder. When doing this, rest
your finger lightly on top of the pen while pushing the eject lever to prevent the pen from falling
inside the priter.

. Insert a new pen.

. Press the PEN CHANGE switch again to bring another pen to the top of the holder.

. Replace all four pens (black, blue, green and red) in the same manner. When finished, press the
RESET switch.

Execute the BASIC PTEST command to confirm that all colours are printed correctly.

[S

Pan position
detection magneat

m Storing pens

Install the pens only when the printer is used.
When the printer is not used, remove the pens and cap them, then keep them in the refill container;
otherwise, they will be dried up.

..-Clﬁ'*"l ,_\

I | Container cap
];. Pen Pen cap

|
Refill container

Note:
Because the ball-point pens use water-soluble ink and the ink may blur if the printed paper becomes
wet, the paper should be handled with care.

m Replacements for the printer pens (ball-point pens) can be purchased at the same
dealer you purchased the printer from.

* EA-850B (black: 4 pens)
* EA-850C (black, blue, green, red: 4 pens, 1 of each colour)

m Self-test

The plotter-printer has the self-test function. Press and hold the (i) (paper feed) key and turn on the
MZ-800 power, and the self-test starts. It is recommended to perform the self-test after pens have been
replace.

Note:
Be sure to disconnect the interface cable when performing the self-test.

A-20

Appendix I Colour Plotter-Printer Control Codes

1 Control codes used in the text mode

® Text code ($01)
Places the printer in the text mode.

* Graphic code (502)... seessnrrassssnensss Same as the BASIC PMODE statement.
Places the printer in the graphms mﬂde

e Line up (303)... . Same as the BASIC PSKIP statement.
Moves the paper one]ma: in the reverse dzr:cuon The lme counter is decremented by 1

* Pen test (304)... e . Same as the BASIC PTEST statement.

Writes the fﬂ]lﬂwmg patterns to start mk ﬂuwmg frum the pens, then sets scale = 1 (40 chr/line),
colour=20.

Black Blue Grean Red

o Reduction scale ($09) + (309) 4+ (309)
Reduces the scale from 1 to 0 (80 chr/line).

* Reduction cancel (309) + (309) + ($0B)
Enlarges the scale from 0 to 1 (40 chr/line).

* Line counter set ($09) + ($09) + (ASCII)z + (ASCII); + (ASCII)o + ($0D)

i .. Same as the BASIC PAGE statement.
Spcclf‘- the numb:r nf lm:s per page as lﬂd]l‘:&tl‘.ﬂ b}r the 3 ASCII bytes code. The maximum num-
ber of lines per page is 255. Automatically set to 66 when the power is turned on or the system is reset.

* Line feed (30A)... O .. Same as the BASIC PSKIP statement.
Moves the paper one lme in the forward dlractmn The]me counter is incremented by 1.

¢ Magnify scale (30B)
Enlarges the scale from 2 to 1. (26 chr/line)

¢ Magnify scale (30C)
Reduces the scale from 2 to 1.

* (Carriage return (30D)
Moves the carriage to the left side of the paper.
* Back space ($0E)

Moves the carriage one column to the left. This code is ignored when the carriage is at the left side
of the paper.

* Form feed (80F)
Moves the paper to the beginning of the next page and resets the line counter to 0.

s Next colour ($1D)
Changes the pen to the next colour.

A-21

2 Character scale

* The character scale is automatically set to 1 (40 chr/line) when the power is turned on. Afterwards,
it can be changed by control codes and commands.

* In the graphics mode, the scale can be changed within the range 0 to 63.

* The scale is set to 1 when the mode is switched from graphics to text.

3 Graphics mode commands

Command type

In the graphics mode, the computer can control the printer with the foilowing commands.
The words in parentheses are BASIC statements which have the same functions as the graphics mode

commands.

Command name

Format

Function

LINE TYPE

Lp (p=0 to 15)

Specifies the type of line (solid or dotted) and the
dot pitch.
p=0: solid line, p=1 to 15 : dotted line

ALL INITIALIZE

A

Places the printer in the text mode.

HOME (PHONE)

H

Lifts the pen and returns it to the origin (home
position).

INITIALIZE (HSET)

Sets the current pen location as the origin (x=0,
y=0).

DRAW (LINE)

Dx, ¥, ... X0, ¥0
{_méx: ?ém}

Draws lines from the current pen location to
coordinates (x;, v1), then to coordinates (xz, yz),
and so forth.

RELATIVE DRAW JAx, Ay, ..., Axn, Ayn | Draws lines from the current pen location to rela-
(RLINE) | (—999sAx, Ay=<999) tive coordinates (Ax;, Ay,), then to relative coor-
dinates (Axz, Ayz) and so forth.
MOVE (MOVE) Mx, v Lifts the pen and moves it to coordinates (%, v).
(—99=x, y=999)

RELATIVE MOVE RAx, Ay Lifts the pen and moves it to coordinates
{(RMOVE) | (—999=Ax, Ay=999) (Ax, Ay).

COLOR CHANGE Cn (n=0to 3) Changes the pen colour to n.
(PCOLOR)

SCALE SET So (n=0 to 63) Specifies the character scale.

ALPHA ROTATE

OQn(n= 0to 3)

Specifies the direction in which characters are
printed.

PRINT

Pecyezes ... cn (n=22)

Prints characters.

AXIS (AXIS)

Xp, q, r(p=0orl)
(g= —999 to 999)
(r=1 to 255)

Draws an X axis when p=1 and a Y axis when
p=0. g specifies the scale pitch and r specifies the
number of scale marks to be drawn.

A-22

Command format

There are 5 types of command formats as shown below.
1. Command character only (without parameters)
Ay H
2. Command character plus one parameter
L,CS5,Q
3. Command character plus pairs of parameters
D,IJ,M,R
¥ " ig used to separater parameters, and a CR code is used to end the parameter list.
4. Command plus character string
P
The character string is terminated with a CR code.
5. Command plus three parameters
X

. " is used to separate parameters.

Parameter specification

Leading blanks are ignored.

Any number preceded by ‘“—"' is treated as a negtive number.

If the number of digits of a number exceeds 3, only the lower 3 digits are effective.

Each parameter is ended with *“ , ** or a CR code. If other than numbers are included in a parameter,
subsequent characters are ignored until a comma or CR codde is detected.

gl T

Example) D_, ,—135. 21,

T IE

Abbreviated formats

1. Any command can be followed by a one-character command without having to enter a CR code.
E.g) “HDI100, 200"’ CR is valid and is the same as **H"” CR “D100, 200" CR,

2. Any command can be followed by a command with one parameter by separating them with a com-

[41 LE]
.

ma **,
E.g) “L0, S1, QO, C1, D100, 200" CR is valid.
3. A command with pairs of parameters must be terminated with a CR code.

Data change due to mode switching

The following data changes when the printer is switched from the graphics mode to the text mode.
* X and Y coordiantes
Y is set to 0 and the origin is placed at the left side of the printable area.
* Direction of characters
Q is set to 0.
* Character scale
Character scale is set to 1.
* The line type setting is not affected.

A-23

Appendix J Code Tables

m ASCII code table

MSD is an abbreviation for most significant digit, and represents the upper 4 bits of each code. LSD
is an abbreviation for least significant digit, and represents the lower 4 bits of each code. Codes 11u
to 16y are cursor control codes. For example, executing CALL PRINT (a monitor subroutine) with
154 loaded into the ACC returns the cursor to the home position. (** " is not displayed.)

LSD 0000{0001 [0010/0011 0100|0101 |0110(0111|1000{1001 | 1010{1011 11001101 |1110]1111
0 0000 E?[Oi@ﬁfﬂm[zHﬂw | EED
1 ooor B Al H (K H | alll] (| e) e
2 0010 B (2] BRI E]F]|ell[z]|[U) w8 LI
T K 3] (3]] [s] x|B A {wlm] CHI B @
$ &($)[4][o][T]K|& N|~|s)|d 00|50
¥ = (%] (5] [E][V] > &) L&k v A LD D 4
s oo @ [&]|[6][F]|[v]|¥| = U] [=]0EX
7 o1l Yl7llG WOIEEEEDDD@
$ 1000 ()[8]H]|[x] @I EIDN|[h][o]| 1]/IH|™|LD|
> o001 1|9] | N 2 2)| 0 0 [D
A 1010 X L [WIZIPBION Dbl flile] O3 UI|IN|[e
B0 +(| [KI[C)|Hd| N~ Dxlv]| [a]| (B L4| P (€]
C 1100 v] € g‘__@Eld[l]]ElDEDl
D 10 [€R] E_ﬁﬂjmmmﬂu y] (S|EN|
E 1110 >[N (2] A8 70| (2P| [B]| (1] Al |8 2| N
F 111 Z1?lo #@@Z’@A_EDHD@

m ASCII code table

When using the colour plotter-printer, graphics characters other than those shown above cannot be
printed, but the curresponding hexadecimal code is printed in a different pen colour.

sD

LSD 0 1 2 6 7 8 o

;

B c | D E F

4

=
[72]
-

b<3

e

s

4

D
3-|SE | xl & | N |3 >
= |

S| [=Z]| [L | =l
+ x| Neo[se ||

= s |[CO|COPNJ || UT-B WO — (]

AN =TI Mmoo O D] »
N = |/ [X I WA U @
& |

<7D

P
L. |

o
|

~lic] oo

TS

>
QU2 X|T] PO

I\ (Ao
O] L L]l

\ o
&

[

=

A=25

Appendix K Error Messages Generated by the Monitor

[Cassette]

CMT: Loading error
An error occurred during data loading.

CHECK SUM ER.
An error was detected in the check sum for the loaded file.

Make ready CMT:
An attempt was made to access data before the | PLAY i button was pressed, or when no cassette
was inserted in the data recorder.

[MZ disk]

QD: Loading error
An error occurred during data loading.

QD: File mode error
The type of the starting file on the disk set in the drive-at the power-on sequence was not OBJ.

QD: File not found
The specified OBJ file was not found.

QD: Hard err
A hardware error occurred.

Already exist err
A filename which is the same as that specified for the S command had been already cataloged
on the disk.

QD: Write protect
An attempt was made to access a write-protected disk.

QD: Not ready

An attempt was made to access data for the disk when the disk holder was opened or when no
disk was inserted in the drive.

QD: No file space err
Insufficient free space was left when a file was saved by the S command,
QD: Unformat err
The disk to be accessed was unformatted.
QD: Bad disk err
The disk to be accessed was defective.
Make ready QD

An attempt was made to access data when the disk holder was opened or when no disk was set
in the drive.

[Floppy Disk]
FD: Loading error
An error occurred during data loading.

FD: Not master
The disk set in drive-1 was not master disk.

Make ready FD:
An attempt was made to access data when the lever was not locked or when no disk was set
in the drive.

A-26

Appendix L. Error Messages Generated by BASIC

When an error occurs during BASIC operations, either of the following error messages (1) and (2)
is displayed on the screen.

(1) (Type of error) error

(2) (Type of error) error in (Line number)

Message (1) is generated when a command is entered from the keyboard,while message (2) is generated
during program execution,

Error Mo. Message Displayed Description
1 Syntax error A statement does not conform to the syntax rules of BASIC.
2 Overflow error The magnitude of a numeric value exceeds the limits.
3 [llegal data error A numeric value or variable which does not conform to the nu-
meric rules of BASIC was encountered. :
4 Type mismatch error The types of data and variable do not match.
5 String length error The number of characters included in a string exceeds 255,
6 Memory capacity error Insufficient memory space is available for the processing re-
quired.
7 Array def, error An array was to be expanded or undefined array name was
specified.
8 Line-length error The length of a line exceeds the limits.
10 GOSUB nesting error The number of nested GOSUB statements exceeds 15.
11 FOR-NEXT error The number of nested FOR-NEXT statements exceeds 15.
12 DEF FN nesting error The number of nested function definitions using the DEF FN
statement exceeds 6.
13 NEXT error A NEXT statement was encountered without a corresponding
FOR statement.
14 RETURN error A RETURN statement was encountered without a corresponding
GOSUB statement.
15 Un def. Function error | A call was made to an undefined function.
16 Un def. line error A non-existent line number or label was specified.
17 Can't CONT error Program continuation with a CONT statement is impossible.,
18 Memory protection error | An attempt was made to write data in the area reserved for the
BASIC interpreter.

A-27

Error No. Message Displayed Description

19 Instruction error A direct command was included in the program or an indirect
statement was used in the direct mode,

20 Can’t RESUME error A RESUME statement cannot be used.

21 RESUME error An attempt was made to execute a RESUME statement even
though no error occurred.

22 PAL error Palette block number is out of range.

24 READ error A READ statement was encountered without a corresponding
DATA statement.

29 Framing error Framing error

30 Overrun error Overrun error

31 Parity error Parity error

40 File not found error An attempt was made to access a non-existent file.

42 Already exist error An attempt was made to save a file under a filename which al-
ready existed.

43 Already open error An attempt was made to open a file already opened.

44 Mot open error An attempt was made to access, CLOSE, or KILL a file without
opening it.

46 Write protect error An attempt was made to write data to a write-protected file.

51 Too many files error An attempt was made to store more than 32 files in the RAM filg
board.

53 Mo file space error Free space for storing files is insufficient.

58 Dev. name error An invalid device name was specified.

59 Can’t execute error An attempt was made to execute a statement for an invalid
device.

a0 Illegal filename error An illegal filename was specified.

61 Ilegal filemode error A file was accessed in an illegal mode.

63 Out of file error An end of file was encountered during a read operation of the
cassette,

64 Logical number error An error was detected in the logical number.

65 LPT: not ready error The printer is not connected or not on-line, or a malfunction has
occurred in the printer mechanism.

68 Dev. mode error An error was detected in the device mode.

69 Unprintable error An error occurred which does not have a message.

70 Check sum error An error was detected in check sum data.

A-28

Appendix M Index

A AR e o D G B e e i D)
7 e S GOSUB ~RETURN......... 6-18
Y1 . L0, o e masttion cons B
PG g b SN | GERINT. . s arausasisoiv 680
A0 i v i H BOOPY i B8
V| R e HSET .vovcvererermreenerassenes 6-80
B 1 1 e [IF~THEN~:ELSE.......... 6-20
BOOT i d i 690 7 R
BOK «.oveesesmcnssmmssmapansees 61 IF ~GOTO......oerrerrenerers 622
BYE i ini s Tl 1 1 e o e IRl | L 1 |
- CHAIN ..ot iy B0 INBE .o i e BA
i 3 1, S) | INPUT.....cccciiisnrsssncseess 0-29
CIBETR oo A2 BNBTH ©.oicvssiamisioisnss B9
CLOBRE i 654 1) st o SRS ¢ 7
B ocrerereeerrssiatimrmses Bl K KEY LISToovrveverrreen. 6-36
ELE i g BALL ¥ .o covinimimnis s B
COLOR i i i 658 L LARER ki B16
CONSOLEo.veveererernnees 69 LEETSo So11
an) ¢ A N, PR s B4
ORIl ' - e A 1|
CSRELommmurassons 58 LIMIT «.eeeeeeeeereenenne. 6-86
o, R Y, FINE i B0
CIBSOR. ... s B0 o e tpwaie e SRR 1
D DEF FN c..o.ooeevesreeene. 6-34 TIRT/D ... cecmmpumgruspanenes 5283
DEF ERY - siisinviisis 556 i e AR -
DERATHT o R DOAD G s v csinis i G4
DELETE.......cc0crsenens. 64,48 LG yersaxsarseronsumm ey J11
111, g IR - ™M MERSE o e 680
| B § © R e e L MIDE ..o 3=11
E END ..ccvovssannnrrssarssrnssnsss B=13] B o | S 6-68
EOF (#)eevevereeerenereerenes 6-53 N 5 2y A o I -
B e i NEW ON...ocoonieiiinansioniss 66
ERN...overoreeeeerrereresnennres 55 NOISE ...oveeeeeeeeeeenrennn 672
EXP ooveeeeeeeeeenseesnesserss 5-10 BT oo omsnsssssnssiensianas 50
F FOR ~NEXT.......ccoeeuenne.s 6-14

A-29

ON ERROR GOTO
ON~GOSUBcorusunrnse
ON-GOTO

OR....

PATTERN.....ccic0esisannsoss
PUIRCLEcunsvnsnmnsussas
POOLOR . i sivivesss
PHOMB o0 ninsenssnsnnnsmsns
PLEINE oo
PMODE......cccoreansnsnnrane
PMONE hiiianimnio
POIINT o i inmnsamsann annsnns

POSITION.. o mesrinsssnece

PRI i s

PRINT/P

PRINT/P USING
PRINT USING............:
BT vt s

6-76
6-76

.. 6-25

6-75
6-73

.. 3-11
.. 6-31

6-11

.. 6-48

sasne O-39

X § <cC

RESTORE. £..i b b s
RESUME.......cursnsnn

RIGHTS .oiiciivniiinmminian
RLINE....c.coiuenrnecninnnens

ROPEN¥

RUN

SEARCH
BEN i

SGN .

SN D i v
BPE o S
157 L o)
23y (6. cONER L
i) I SN L
T SN Ll
BRI i et s
SYMBOL......cveeveeereeenns
s e, L L L

VERIEY i rorsevmnssmns s
WOPENE ...t
MOR Gy

Appendix N Specifications

CPU
Clock

ZBDA-CPU

3.5469 MHz

Memory

ROM 16K bytes
RAM 64K bytes
VRAM 16K bytes
Can be expanded to 32 K bytes. (option)

Display

I/F : RF, Video,
RGB
Graphic display : 320 = 200 dots
640 = 200 dots

Cﬁwlte

Standard audio cassette tape
Data transfer speed ; 1200 bits/sec.
Data transfer system ; SHARP PWM

_KH layout

ASCII standard main kevboard
Special function keys

Cursor control keys

Cassette tape deck control keys

_E;Iitlng fl;ncﬁun

e B e LN

Cursor control; up, down, left, right, home, clear
Deletion, insertion

Clock function

Built-in

Power supply Local supply rating voltage
Temperature Operating temp; 10° to 35°C
Humidity 20 ~ 80% (no condensation)
Weight MZ-811; 4.0 kg
MZ-821; 4.3 kg i
Dimensions Width : 440 mm
Depth : 305 mm
Height: 109 mm
Accessories Power cable Definable key lavel
Owners manual Graphic key lavel
Cassette
Monitor cable

A-31

= = — T’I - ; — - — -;‘;_ -
LR | ks | |
[ESTS ST " e i

R)
.j‘n
pimle M & T sl e
Ry S

qﬂ-l\w'l-w i s
o R | v WL Y
MRS ST | cmary ey 680

I D= 1HF'-:‘I«LFD£# sl o

gl P

owid Lprmy weigT)

4l'=tt--—.,'.=llwgi1ﬂ--':ﬁ

_— R e e o e ey et et |

TR |
Lr:d‘l‘-lrl

et guityl o L e | Vs vy
YRR T e ¢ 'HF’ - umlenspel |
ey p o YD — ety ety

o ‘Jl”"w L sl
L T A I
--:cj .y -
-ﬁﬂ1:m |
e Sllgs - R i
O L - el
W=l
LR = I

- Y S S i —

lr"

This apparatus complies with requirements of BS B00 and EEC directive
82/499/EEC,

Dieses Geréit stimmt mit den Bedingungen der EG-Richtlinien B2/499/
EWG iiberein.

Cet appareil répond aux spécifications de la directive CCE 82/409/CCE.
Dit apparaat voldoet aan de vereiste EEG-reglementen 82/499/EEG.
Apparatet opfylder kravene i EF direktivet 82/499/EF,

Questo apparecchio & stato prodotto in conformitd alle direttive CEE
82/499/CEE.

SHARP CORPORATION

OSAKA, JAPAN

Primtead in Japan
Gadruckl in Japan
Imgrime au Japon
Stampato in Giappons
C 1984 SHARF CORPORATION
4L 5 6-lTINSE1295ACZIN

	Sharp_MZ-800_Owners_Manual_cover1
	2022-02-19-0001
	2022-02-19-0002
	2022-02-19-0003
	2022-02-19-0004
	2022-02-19-0005
	2022-02-19-0006
	2022-02-19-0007
	2022-02-19-0008
	2022-02-19-0009
	2022-02-19-0010
	2022-02-19-0011
	2022-02-19-0012
	2022-02-19-0013
	2022-02-19-0014
	2022-02-19-0015
	2022-02-19-0016
	2022-02-19-0017
	2022-02-19-0018
	2022-02-19-0019
	2022-02-19-0020
	2022-02-19-0021
	2022-02-19-0022
	2022-02-19-0023
	2022-02-19-0024
	2022-02-19-0025
	2022-02-19-0026
	2022-02-19-0027
	2022-02-19-0028
	2022-02-19-0029
	2022-02-19-0030
	2022-02-19-0031
	2022-02-19-0032
	2022-02-19-0033
	2022-02-19-0034
	2022-02-19-0035
	2022-02-19-0036
	2022-02-19-0037
	2022-02-19-0038
	2022-02-19-0039
	2022-02-19-0040
	2022-02-19-0041
	2022-02-19-0042
	2022-02-19-0043
	2022-02-19-0044
	2022-02-19-0045
	2022-02-19-0046
	2022-02-19-0047
	2022-02-19-0048
	2022-02-19-0049
	2022-02-19-0050
	2022-02-19-0051
	2022-02-19-0052
	2022-02-19-0053
	2022-02-19-0054
	2022-02-19-0055
	2022-02-19-0056
	2022-02-19-0057
	2022-02-19-0058
	2022-02-19-0059
	2022-02-19-0060
	2022-02-19-0061
	2022-02-19-0062
	2022-02-19-0063
	2022-02-19-0064
	2022-02-19-0065
	2022-02-19-0066
	2022-02-19-0067
	2022-02-19-0068
	2022-02-19-0069
	2022-02-19-0070
	2022-02-19-0071
	2022-02-19-0072
	2022-02-19-0073
	2022-02-19-0074
	2022-02-19-0075
	2022-02-19-0076
	2022-02-19-0077
	2022-02-19-0078
	2022-02-19-0079
	2022-02-19-0080
	2022-02-19-0081
	2022-02-19-0082
	2022-02-19-0083
	2022-02-19-0084
	2022-02-19-0085
	2022-02-19-0086
	2022-02-19-0087
	2022-02-19-0088
	2022-02-19-0089
	2022-02-19-0090
	2022-02-19-0091
	2022-02-19-0092
	2022-02-19-0093
	2022-02-19-0094
	2022-02-19-0095
	2022-02-19-0096
	2022-02-19-0097
	2022-02-19-0098
	2022-02-19-0099
	2022-02-19-0100
	2022-02-19-0101
	2022-02-19-0102
	2022-02-19-0103
	2022-02-19-0104
	2022-02-19-0105
	2022-02-19-0106
	2022-02-19-0107
	2022-02-19-0108
	2022-02-19-0109
	2022-02-19-0110
	2022-02-19-0111
	2022-02-19-0112
	2022-02-19-0113
	2022-02-19-0114
	2022-02-19-0115
	2022-02-19-0116
	2022-02-19-0117
	2022-02-19-0118
	2022-02-19-0119
	2022-02-19-0120
	2022-02-19-0121
	2022-02-19-0122
	2022-02-19-0123
	2022-02-19-0124
	2022-02-19-0125
	2022-02-19-0126
	2022-02-19-0127
	2022-02-19-0128
	2022-02-19-0129
	2022-02-19-0130
	2022-02-19-0131
	2022-02-19-0132
	2022-02-19-0133
	2022-02-19-0134
	2022-02-19-0135
	2022-02-19-0136
	2022-02-19-0137
	2022-02-19-0138
	2022-02-19-0139
	2022-02-19-0140
	2022-02-19-0141
	2022-02-19-0142
	2022-02-19-0143
	2022-02-19-0144
	2022-02-19-0145
	2022-02-19-0146
	2022-02-19-0147
	2022-02-19-0148
	2022-02-19-0149
	2022-02-19-0150
	2022-02-19-0151
	2022-02-19-0152
	2022-02-19-0153
	2022-02-19-0154
	2022-02-19-0155
	2022-02-19-0156
	2022-02-19-0157
	2022-02-19-0158
	2022-02-19-0159
	2022-02-19-0160
	2022-02-19-0161
	2022-02-19-0162
	2022-02-19-0163
	2022-02-19-0164
	2022-02-19-0165
	2022-02-19-0166
	2022-02-19-0167
	2022-02-19-0168
	2022-02-19-0169
	2022-02-19-0170
	2022-02-19-0171
	2022-02-19-0172
	2022-02-19-0173
	2022-02-19-0174
	2022-02-19-0175
	2022-02-19-0176
	2022-02-19-0177
	2022-02-19-0178
	2022-02-19-0179
	2022-02-19-0180
	2022-02-19-0181
	2022-02-19-0182
	2022-02-19-0183
	2022-02-19-0184
	2022-02-19-0185
	2022-02-19-0186
	2022-02-19-0187
	2022-02-19-0188
	2022-02-19-0189
	2022-02-19-0190
	2022-02-19-0191
	2022-02-19-0192
	2022-02-19-0193
	2022-02-19-0194
	2022-02-19-0195
	2022-02-19-0196
	2022-02-19-0197
	2022-02-19-0198
	2022-02-19-0199
	2022-02-19-0200
	2022-02-19-0201
	2022-02-19-0202
	2022-02-19-0203
	2022-02-19-0204
	2022-02-19-0205
	2022-02-19-0206
	2022-02-19-0207
	2022-02-19-0208
	2022-02-19-0209
	2022-02-19-0210
	2022-02-19-0211
	2022-02-19-0212
	2022-02-19-0213
	2022-02-19-0214
	2022-02-19-0215
	2022-02-19-0216
	2022-02-19-0217
	2022-02-19-0218
	Sharp_MZ-800_Owners_Manual_cover3
	Sharp_MZ-800_Owners_Manual_cover4
	Prázdná stránka

