
Personal Computer

lllZ·OOlQHID
OWNER' MANUAL

))) J }) J } } }

SHARR

Personal Computer

lllZ·OO(Q) (Q)

Owner's
Manual

© SHARP CORPORATION

NOTICE

This manual has been written for the MZ-800 personal computers and the BASIC
interpreter (lZ-016) which is provided with the MZ-800.

(1) All system software for the MZ-800 computers is supported in software packs
(cassette tape, etc.) in file form. The contents of all system software and
the material presented in this manual are subject to change without prior
notice for the purpose of product improvement and other reasons, and care
should be taken to confirm that the file version number of the system soft­
ware used matches that specified in this manual.

(2) All system software for the Sharp MZ-800 personal computer has been de­
veloped by the Sharp corporation, and all rights to such software are reserved.
Reproduction of the system software or the contents of this book is pro­
hibited.

(3) This computer and the contents of this manual have been fully checked for
completeness and correctness prior to shipment; however, if you should en­
counter any problems during operation or have any questions which cannot
be resolved by reading this manual, please do not hesitate to contact your
Sharp dealer for assistance.
Not withstanding the foregoing, note that the Sharp Corporation and its
representatives will not assume responsibility for any losses or damages in­
curred as a result of operation or use of this equipment.

Preface

Congratulations on purchasing the MZ-80(1 computer. Your MZ-800 is a compact personal computer,
featuring 640 x 200 dot addressable graphics, 16-colour display, and a programmable sound genera­
tor (PSG) which can generate 3-tone chords over 6 octaves. One of the excellent features of the MZ-800
is that it contains hardware which makes it compatible with the MZ-700 series computer. This makes
it possible for you to use most of the existing programs for the SHARP MZ-700 series computers on
your MZ-800.

This manual is written both as a guide to the MZ-800 and a BASIC reference manual. The manual
is constructed as follows.

Chapter 1 describes how to unpack, handle, and setup your MZ-800, and what to do if a problem occurs.

Chapter 2 describes how to turn on the power, load the BASIC interpreter, and turn off the power.

Chapter 3 explains the BASIC interpreter. This chapter also shows you how to write a simple pro­
gram, edit it, save it on a cassette tape and load it back into memory.

Chapter 4 describes the functions of the keyboard keys. This chapter also describes how to operate
the data recorder and handle tapes.

Chapter 5 presents the background knowledge you need to be able to write programs.

Chapter 6 describes the BASIC commands and statements.

Chapter 7 describes the hardware configuration of the MZ-800 and I/O port control. It also describes
peripheral devices and how to connect them.

Chapter 8 explains the monitor program, which allows you to "bypass" BASIC and directly access
the MZ-800' s memory.

Chapter 9 explains the MZ-700 mode of the MZ-800.

Make sure that you read the handling and setup instructions before turning on the computer's power
switch. Read this manual thoroughly to get the most out of your MZ-800 computer .

CONTENTS

Chapter 1 Introduction
I.I Unpacking ... I-2
I .2 Handling I-3
I . 3 Appearance . I-4
1.4 Setup .. 1-6
I .5 In Case of Difficulty .. 1-IO

Chapter 2 Start Up
2.1 Power-on ... 2-2
2.2 Power-off .. 2-3
2.3 Running the Demonstration Program , 2-4

Chapter 3 Basic Operation
3. I Introduction ... 3-2
3.2 Getting to know the Keyboard ... 3-3
3.3 Writing a Simple Program .. 3-4
3.4 Editing Programs 3-7
3.5 Saving a Program .. 3-10
3.6 Loading a Program .. 3-12

Chapter 4 Keyboard and Data Recorder
4.1 Keyboard ... 4-2
4.2 Data Recorder .. 4-6

Chapter 5 Programming Concepts
5. I Multi-statement Lines and Line Numbers ... 5-2
5.2 Numeric Data and String Data ... 5-3
5.3 Constants 5-4
5.4 Variables .. ; 5-5
5.5 Array Variables ... 5-6
5.6 Expressions .. ,5-7
5.7 Files .. 5-9
5.8 Functions ... 5-10
5.9 Screen Coordinates 5-I6

Chapter 6 MZ-800 BASIC Commands and Statements
6.I Commands ... 6-3
6.2 Fundamental Statements ... 6-9
6.~ File Control Statements .. 6-43
6.4 Graphics Control Statements ... 6-56
6.5 Music Control Statements 6-68
6.6 Printer Control Statements .. 6-73
6.7 Machine Language Control Statements .. 6-84
6.8 Error Processing Statements .. 6-87

Chapter 7 Hardware
7.1 MZ-800 Hardware 7-2

7 .1 .1 System diagram ... 7-2
7.1.2 System switch settings 7-3
7.1.3 I/O port control .. 7-4

7 .2 Peripheral Devices ... 7-8
7 .2.1 Standard interfaces .. 7-8
7.2.2 Expansion I/O connector 7-8
7.2.3 RAM file board (MZ-1R18) 7-10
7.2.4 Joystick ... 7-11
7.2.5 Printers 7-13
7.2.6 Optional graphic memory MZ-1R25 .. 7-16
7.2.7 External cassette tape recorder (for MZ-811 only) .. 7-18

Chapter 8 Monitor
8.1 General ... 8-2
8.2 ROM Monitor and BASIC Monitor 8-3
8.3 Starting t~e ROM Monitor .. 8-4
8.4 Monitor Commands 8-5
8.5 BASIC Monitor 8-8
8.6 BASIC Monitor Commands .. 8-9

Chapter 9 MZ-700 Mode
9.1 Using MZ-700 Programs M ••••••••••••••••• • ••••••• • ••••••••••••••••••••••••••••••••••••• 9-2
9.2 Summary of MZ-700 BASIC Commands and Statements,

Functions and Operations ... 9-3

Appendixes
Appendix A Display Control in the MZ-800 Mode .. A-2

B Programmable Sound Generator ... A-7
C Reserved Words A-10
D Console Control Codes A-12
E Restrictions on Using File I/O Commands and Statements A-13
F Monitor Subroutines ... A-14
G Making Backup Copy of the BASIC Interpreter A-17
H Optional Colour Plotter-Printer MZ-1P16 .. A-18
I Colour Plotter-Printer Control Codes .. A-21
J Code Tables A-24
K Error Messages Generated by the Monitor .. A-26
L Error Messages Generated by BASIC ... A-27
M Index ... A-29
N Specification A-31

Chapter 1 Introduction

This chapter describes how to handle and set up the MZ-800 computer system. Read this chapter carefully
before turning on the power switch.

1.1 Unpacking

Remove the MZ-800 from the packing carton and check that you have the following items.

Power cable
Computer

Graphic key label set

Cassette (containing the MZ-800
BASIC interpreter program,
a demonstration program for
the MZ-800 BASIC interpreter,
the MZ-700BASIC interpreter,
and demonstration programs for
the MZ-700 BASIC interpreter)

Owner's manual (this manual)

Store the carton and packing materials away in a safe place, so that you can reuse them if you have
to transport the computer in the future.

1-2

1.2 Handling

1) This computer uses many precision parts. Do not use or store it in extremely hot or cold condi­
tions, or under conditions where the temperature changes rapidly.

2) Do not use or store the computer in damp or dusty places, and avoid exposing it to corrosive chem-
icals or gases.

3) Do not block the ventilation holes or place large objects nearby that will disrupt ventilation.
4) Do not subject the computer to shock or vibration.
5) Do not expose the computer to direct sunlight.
6) Do not allow water or other liquid to enter the cabinet. Using the computer when it is wet is very

dangerous, and will damage the computer's electronics.
7) Do not disassemble the cabinet unless you are installing options as instructed by documents from

SHARP.
8) Radios and TV sets may pick up interference from RF (radio frequency) noise generated by the

computer. Keep such equipment (other than that you may be using as the computer's display unit)
well away from the computer.

9) When peripheral devices are connected, the display image may jitter. If this problem occurs, change
the layout of your system's equipment.

10) Do not place any object other than the optional plotter/printer (MZ-1P16) on the cabinet.
11) After turning off the power switch, unplug the power cable by grasping the plug molding, not

the cable.
12) Make sure that you turn off the power switch when you not using the computer. After turning

off the power switch, wait at least 10 seconds before turning it on again, otherwise the system
may not operate properly.

13) Use a dry soft cloth to clean the unit. Do not use a wet cloth or volatile fluids such as alcohol
or benzene. Discolouration or deformation of the cabinet may result if this precaution is ignored.

14) If you notice any abnormal condition such as an extremely high temperature, an abnormal odour,
or smoke, stop what you are doing and quickly turn off the power then unplug the power cable.

MZ-811 and MZ-821 ------------.

One of the models described in this manual may not be available in some countries.

This manual explains two personal computer models: the MZ-811 and the MZ-821. Differences
between these two computers are as follows.

Model name MZ-811 MZ-821

Data recorder Optional Standard

Ordinary cassette recorder Connectable Not connectable

When the optional MZ-1T04 data recorder is installed on the MZ-811, it becomes equivalent
to the MZ-821. Procedures for installing the data recorder are described in the MZ-1T04 in­
struction manual.

The explanations in this manual are based on the MZ-821.
However, the explanations on pages 7-3 and 7-18 apply only to the MZ-811.

1-3

1.3 Appearance

(Front view)

Data recorder

Definable function keys

Main keyboard Power lamp

Cursor control keys

Insert and delete keys

1-4

(Rear view)

Channel control

B/W-colour switch

Composite signal output jack

RGBI signal output connector

Expansion slot compartment cover

Cassette tape recorder jacks

(These jacks are not used .)

System switch

PRINTER

Printer connector

Joystick connectors

Reset switch

Power cable socket

@

Power switch

RF signal output jack Volume control

1-5

Printer power jack

(Note: If this jack is short-circuited,
the memory contents will be lost.)

1.4 Setup

To operate your MZ-800 computer, you must first set up the system. To do this, you will need to con­
nect a display unit to see what the computer is doing. SHARP supplies several types of display units
for the MZ-800 computer, or you can use an ordinary home TV set providing it can receive the VHF
band. The minimum configuration your computer can operate with is shown below:

Monitor
(TV-set)

The following explanation shows the setup procedure for a typical system.

(1) Using a TV set

To use a TV set as the display unit, use the monitor cable provided with your MZ-800.

1) Disconnect all antenna cables from the TV set. (If they are left connected, RF interference generat­
ed by the computer will be radiated from your TV antenna, which may interfere with neighboring
TV sets.)

2) Insert the monitor cable pin plug into the RF pin socket on the rear of the MZ-800. Connect the
other end of the cable to the 75-ohm UHF antenna terminal on your TV set.

1-6

750 UHF
antenna terminal

\\ /,

..
@ @

RF signal

output jack

3) If the TV set is a colour unit, position the B/W-colour switch on the MZ-800 to COLOR, otherwise
position the switch to B/W.

4) Tune the channel selector on your TV set to a vacant channel between 33 and 39.
5) Turn on the TV set then turn on the MZ-800. As shown in the figure below, adjust the channel

control trimmer so that the following image is clearly displayed on the TV screen.

1-7

Notes:

Make ready CMT

Please push key

C: Cassette tape

M: Monitor

• The image quality on your TV set will not be as good as that obtained from a monitor supplied
by SHARP.

• Part of the image may not be displayed on some TV sets, and this is most likely due to how the
TV controls are set up. In such cases, consult your dealer.

• If the UHF antenna terminal does not use a pin jack, use a monitor cable with a pin plug at one
end and the correct connector for your TV set at the other end. The monitor cable impedance must
be 75 ohms, to match the impedance of the RF socket of your TV.

• No audio signal is output from the RF socket, therefore adjust the volume control of the TV set
to minimum.

(2) Using the MZ-1D19 colour display unit

1) Plug the square connector of the connection cable provided with the MZ-1D19 into the connector
on the rear panel of the display unit.

2) Plug the DIN connector of the connection cable into the RGB connector on the rear panel of the
MZ-800.

Note:
A colour TV set which has an RGB input terminal can also be connected to the RGB connector of
the MZ-800. Prepare the monitor cable as described in the instruction manual for the TV set.

1-8

(3) Using a green display unit (MZ-1D04)

Insert the pin plug of the green display unit cable into the composite signal output jack on the rear
panel of the MZ-800.

11 ,~..,'!)l Is.
RF /r-v1DEO

Position the B/W-colour switch to B/W.

Note:
A colour TV set with a video input terminal can be connected to the composite signal output jack
of the MZ-800. The monitor cable provided with the MZ-800 can be used for this connection.

1-9

1.5 In Case of Difficulty

If you have any problems with your MZ-800 either now or in the future, read this section first then
if necessary contact your dealer.

The following table lists possible problems and checks you can make.

Problem Points to check

Image quality is poor. • Is the monitor cable connected correctly?
• Is the selected TV channel the same as the channel control setting on the

MZ-800? (See page 1-7.)
• Is the B/W-colour switch selected correctly?

Nothing is displayed. • Is the power switch of the display switched ON?
• Is the display unit power cable plugged into an AC outlet?

The program will not stop. • To stop a BASIC program, press and hold the I SHIFT I key, then press the
I BREAK I key.

• To stop a machine language program or the monitor program, press the
RESET switch on the rear panel.

The program cannot be loaded • Is loading method for the program correct? The loading method differs
from the cassette. for machine language programs and BASIC programs. Use the monitor

L command to load a machine language program and the LOAD state-
ment to load a BASIC program.

Other problems • Press the RESET switch on the rear panel to restart MZ-800 operation.

1-10

Chapter 2 Start Up

2.1 Power-on

To start up your MZ-800 computer, first turn on the MZ-800, then turn on the display unit and any
other connected peripheral devices power switch.

Turn on the equipment in the following order.

1) The MZ-800 computer
2) The expansion unit (MZ-1 U06)
3) Peripheral devices (such as the printer)

You will see the following message on the screen of the display unit.

Make ready CMT
Please push key
C: Cassette tape
M: Monitor

Remove any slack from the cassette tape (see page 4-7). Press the I EJECT I button on the MZ-800 data
recorder. Then insert the cassette with the side marked "BASIC lZ-016" facing upwards.

Close the cassette compartment cover by hand. Press the [g key on the main keyboard. (Pressing the
IM f key starts the monitor. See Chapter 8.) The screen display will change as follows:

r Make ready C MT

Press the I PLAY I button on the data recorder. The screen display will change as follows:

IPL is looking for a program

2-2

The following message is then displayed.

r IPL is loading MZ-1 ZO 1 6

Wait for several minutes, then the following display will appear on the screen. The tape stops auto­
matically. Press the \ STOP \ button.

BASIC interpreter 1 Z-016 VX.XX

Copyright (C) 1984 by SHARP CORP.

XXXXX bytes free

Ready

•
L Cursor (blinking)

This display indicates that the BASIC interpreter has been loaded into memory and the MZ-800 is
ready to accept BASIC commands. This display is called the "initial" frame.

2.2 Power-off

When you switch the MZ-800 off, all programs and data stored in memory will be lost. Therefore,
execute a SA VE operation prior to powering the computer off. (Chapter 3 describes how to save data
onto the cassette tape.) To power off the MZ-800,finish any BASIC operations you may have started,
then check the screen to make sure "Ready" is displayed and the cursor is blinking. Switch OFF the
power switch.

Turn off the equipment in the following order.

1) Peripheral devices (such as the printer)
2) The expansion unit (MZ-1 U06)
3) The MZ-800 computer

Note:
Do not power off the MZ-800 while the data recorder is operating (turning).

2-3

2.3 Running the Demonstration Program

The cassette provided with your MZ-800 contains a demonstration program, which can be executed
by typing in the following after loading BASIC and advancing the tape until the counter reads 170.

RUN "CMT:" I CR I

When the screen display below appears:

RUN "CMT:"
:l PLAY

Press the I PLAY I button.

The demonstration program will now be executed. To stop the program, press the I SHIFT I and
I BREAK I keys at the same time. Press the I STOP I button after the tape has stopped.

Note:
The tape will still move after the demonstration program has started.

• Accessory Tape

The accessory tape which is provided with the computer contains the following files.

Side A
"MZ-1Z016" MZ-800 BASIC Interpreter (lZ-016)
"OPENING 800" Demonstration program for MZ-800 BASIC
"OPENING DAT A" Data for demonstration program

Side A label

Side B

BASIC
1Z016

S HARR@ ""' '",., ...
HElllGESTELLT IN JAPAN

ClCOPYRIGHT SHARP CORPORATION FASll lOUE AU JAPON

"S-BASIC" MZ-700 BASIC Interpreter (lZ-013)
''OPENING''

"MUSIC" !······ Demonstration programs for MZ-700 BASIC
"COLOR PLOTTER"

Side B label BASIC
1Z013

SHARR HEllGES~:~~ :: ~=~::
CCOPYRIGHT SHARP CORPORATION fABIUQUE AU JAPON

2-4

Chapter 3 Basic Operation

3.1 Introduction

Your MZ-800 has been encoded with a set of instructions that allow it to perform a variety of opera­
tions, such as accepting a command entered by you from the keyboard. This set of instructions is called
the monitor program or simply the "monitor", and is stored in ROM (*). Any computer needs input
from a human being to know what operation to perform next. After you power on the MZ-800 the
monitor program makes the MZ-800 wait for you to input a command. Depending on the key you
press, the monitor allows you to perform one of the monitor commands, or reads a larger set of in­
structions from an external memory device, such as the data recorder, and places it in RAM (*).

*· ROM and RAM are memory devices which store information for the computer. The ROMs (Read
Only Memory) contain memory which can be read but cannot be changed or removed, even if the
power is turned off. The RAMs (Random Access Memory) however, contain memory which can
be both read and written. The MZ-800 uses ROM for storing the monitor program, and RAM for
temporarily storing the BASIC interpreter, BASIC programs and data, and other information. The
BASIC interpreter is explained in this chapter, while the monitor will be explained in detail in Chapter
8.

All the commands you input to your computer must be translated into the computer's own language,
called machine language. Machine language consists of a collection of binary digits, which makes it
extremely difficult for most people to understand. Luckily however, you need not worry about learn­
ing to understand machine language, since the BASIC interpreter does this for you. BASIC is a "high­
level" language system which is similar to English and much easier for us as human beings to under­
stand than machine language. The BASIC interpreter reads instructions written by you in BASIC and
interprets them into the MZ-800's machine language.
If you press the @] key when the initial frame is displayed, the monitor loads the BASIC interpreter
into RAM from the cassette, the BASIC interpreter then begins operating. ("Load" means that infor­
mation is read from one memory device, e.g., the cassette, and is placed in another memory device,
e.g., the RAM.) Instructions written in BASIC are called commands or statements. The BASIC inter­
preter displays the following frame after the BASIC interpreter has been loaded.

BASIC interpreter 1 Z-016 VX.XX

Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free

Ready

•
L (blinking)

This display indicates that you can use the computer interactively, i.e., when you type in a command,
the computer responds. If you type an incorrect command, the computer will answer with an error
message.
Each command evokes only one response from the computer, and multiple commands are difficult
to connect in a sequence. Because of this, you cannot get the computer to perform complicated opera­
tions in the interactive mode. The solution to enable the computer to perform complicated task, is
to write a program and store it in RAM. A program is a series of statements which are automatically
interpreted by the BASIC interpreter. A program which can be interpreted by the BASIC interpreter
is called a BASIC program.

3-2

3.2 Getting to Know the Keyboard

Follow the start-up procedure described in Section 2.1, your MZ-800 is ready to accept commands
typed in from the keyboard.

BASIC interpreter 1 Z-016 VX.XX

Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free

Ready

•
(blinking)

The blinking block-shaped marker you can see on the screen is called the cursor. When you press any
character key on the main keyboard, the cursor will move the right, with the typed character appearing
in the previous cursor position.
Press other character keys, and the characters will appear in the order in which you type them. The
cursor is always positioned to the immediate right of the character typed last. Next, press the key marked
"CR" located on the right side of the main keyboard. You will see the message "Syntax error" ap­
pears on the next line.

BASIC interpreter 1Z-016 VX.XX

Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free

Ready

ASDFGJJ

Syntax error

Ready

•

The message "Syntax error" indicates that the computer cannot understand what you have just typed.
This is because the computer only recognizes commands from the BASIC programming language.
(Remember the BASIC interpreter?). BASIC will be explained more fully in Chapter 6, while "Syntax
error" and other error messages are listed in Appendix L. At the moment, this and the following exer­
cises don't require you to know anything about BASIC. Now, type the following sentence from the
main keyboard.

PRINT "ABC"

After the closing quotation mark, press the I CR I key. The characters "ABC" will appear below the
sentence you just typed. The computer displays these characters in reply to the BASIC command you
entered. The command was the word "PRINT", which instructs the computer to redisplay the charac­
ters typed between the quotation marks.
Words in the BASIC language vocabulary which instruct the computer to perform an operation (such
as PRINT) are called commands or statements.

3-3

3.3 Writing a Simple Program

Start up the BASIC interpreter following the procedures described in Section 2.1.

BASIC interpreter 1 Z-016 VX .XX

Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free

Ready

•
(blinking)

Type the following characters.

10 CLS

Press the I CR I key. CLS is a statement which erases all the characters from the screen. However, the
computer does not act on the statement immediately as in the interactive mode. This is because we
are now writing a program, which causes the BASIC interpreter to store the statement in memory rather
than execute it immediately. After you input the statement, the cursor blinks at the beginning of the
line below "10 CLS" as shown below:

10 CLS

•
When a number precedes a statement, the BASIC interpreter stores the statement in memory. The number
preceding the statement is called the line number, and when many statements are stored in memory,
the line numbers indicate the order in which the statements are interpreted and performed by the com­
puter. Type the following characters then press the I CR I key.

RUN

All characters will disappear from the screen. RUN is a command which orders the BASIC interpreter
to interpret into machine language instructions all the statements stored in memory. The statements
are interpreted in ascending order of the line numbers and given to the computer. The CLS statement
is still in memory. You check this by typing the following:

LIST lcR I

I CR I indicates the I CR I key has to be pressed. The following display appears:

LIST
10 CLS
Ready

•

3-4

Type in the following.

20 PRINT "SAMPLE PROGRAM" I CR I
30 PRINT "MZ-800" I CR I
40 END l cR I

You already know that in this program the PRINT statement will redisplay the characters between
quotation marks in lines 20 and 30. The END statement informs the BASIC interpreter of the end
of program. Type in RUN and press the I CR I key, the screen will then reappear as shown below.

Note:
From now on, you will frequently see the phrase "Enter a command or statement" (e.g., "Enter the
RUN command"). This actually means "Type in a command or statement, and press the I CR I key".
You should remember this.

SAMPLE PROGRAM
MZ-800
Ready

•
Enter the LIST command to display the whole program.

SAMPLE PROGRAM
MZ-800
Ready
LIST
10 CLS
20 PRINT "SAMPLE PROGRAM"
30 PRINT "MZ-800"
40 END
Ready

•
Enter the following command.

NEW i cR I

Then clear the screen by entering the CLS statement.

CLS i cR I

Now enter the LIST command.

LIST i cR i

3-5

The program can no longer be listed, since the NEW command erased the program from memory.
Entering the NEW command allows you to now write a new program in memory. Enter the following
program.

10 INPUT "A= ";A
20 INPUT "B = ";B
30 C=A+B
40 PRINT "A+ B = ";C
50 END

This program will calculate the sum of the two values A and B input from the keyboard. Two new
statements are used in this program. These are the INPUT statement and the LET statement (LET
is represented by the equal "=" symbol on line 30).
The INPUT statement on line 10 reads whatever number (don't type characters) you type in from the
keyboard and assigns it as the value of A. The INPUT statement on line 20 reads a second number
typed in from the keyboard and assigns it as the value of B. The LET statement on line 30 calculates
the sum of values A and B and assigns the result as the value of C. At the moment in our program,
the letters A, B, and C each represent a numeric value. When letters of the alphabet are assigned values
like this, they are called "variables". Enter the RUN command after typing in the above program.
The screen will change as follows:

10 INPUT "A= ";A
20 INPUT "B = ";B
30 C=A+B
40 PRINT "A+B=";C
50 END

RUN lcR I
A=

Type in any number and press the I CR I key. The message ''B = '' will be displayed following the above.

A=35 ICR I
B=

Type in another number and press the I CR I key. The sum of A and B will now be displayed as fol­
lows.

A=35
8=23 ICR I
A+B= 58

The program shown here is very simple. If you like, you can write your own programs by combining
some of the commands and statements which are explained in Chapter 6.

You may be confused by the words "statement" and "command". Both commands and statements
control operation of the computer. The distinction between commands and statements is thatcommands
are generally entered without line numbers and are executed immediately after they are entered. State­
ments however, are included in a program and are only executed when the program is started by the
RUN command.

In practice, most commands and statements can be used both with or without line numbers, so the
distinction between them is more traditional than qualitative.

3-6

3.4 Editing Programs

The BASIC interpreter makes it possible for you to edit a program which is in memory. Therefore,
if you type in any incorrect character during programming, you can correct it easily.

You can edit any portion of a program when that part of the program is displayed on the screen. The
program can be displayed by the LIST command. The cursor can be moved in any direction by the
cursor control keys (marked with arrows) you can change or delete the character in the same location
as the cursor, or insert characters before the character in the same location as the cursor.
The keys which allow you to edit programs are as follows.

-+ : Moves the cursor one character position right.

+-- : Moves the cursor one character position left.

i : Moves the cursor one line up.

i : Moves the cursor one line down.

I INST I : Moves the character on which the cursor is located and all characters following it on the same
line to the right by one character position, and inserts a space at the cursor position. This
makes it possible to insert any character at the cursor position. To insert more than one charac­
ter, press the I INST I key the required number of times.
If the end of a program line reaches the right end of the display while inserting blanks with
the I INST I key, you cannot insert any more blanks. In this case, press the I CR I key and
execute the LIST command. The new program listing will include a row of blanks following
the line, allowing you to insert more blanks.

I DEL I : Deletes the character at the location to the left of the cursor position and moves all characters
following it on the same line to the left by one character position.

~,SH-I-FT~, + I INST I (CLR)
: Clears the screen. (" I SHIFT I + I INST I " is another way of saying "press and hold the

SHIFT key, then press the I INST I key''.)
I SHIFT I + DEL (HOME)

: Moves the cursor to the upper left corner of the screen.

Type in again the program shown in Section 3.3, but with the following intentional mistakes:

10 CLS
20 PRINT "SIMPLE PROGRAM"
30 PINTT "MZ-800"
40 END

To edit and correct the above program, the program must be listed on the screen. To do this, execute
the LIST command.

(1) Replacing a letter
SIMPLE on line 20 should read SAMPLE. Move the cursor to the position of character I by using
the cursor control keys, then press the~ key. After changing I to A, press the I CR I key, and the
cursor will be returned to the beginning of line 30.

(2) Inserting a letter
Move the cursor to I in PINTT and press the I INST I key. Press the [fil key to insert R between the
characters P and I.

(3) Deleting a letter
Move the cursor to the second T in PRINTT and press the I DEL I key to delete it.
Press the I CR I key, and the cursor will move to the beginning of line 40.

3-7

(4) Adding a line
A new line can be added to any portion of the program. For instance, if we want to insert a line be­
tween line 10 and line 20, move the cursor to the beginning of the new line below line 40. Type "15
REM Editing sample I CR I ' '.

10 CLS
20 PRINT "SAMPLE PROGRAM"
30 PRINT "MZ-800"
40 END
1 5 REM Editing sample

You may have noticed that until we added line 15, all the line numbers have been in increments of
10. There is no real technical reason for doing this other than the fact that increments of 10 leave space
for extra lines to be inserted if you want to change the program later on, and increments of 10 are
easy to remember. With this in mind, line number 15 could have just as easily been any other number
between 11 and 19 inclusive, but "15" is convenient since it still allows even further lines to be added
if later program changes are made.
Enter the CLS command, then enter the LIST command to confirm that the new line is now inserted
between lines 10 and 20.

LIST
10 CLS
1 5 REM Editing sample
20 PRINT "SAMPLE PROGRAM"
30 PRINT "MZ-800"
40 END

(5) Deleting lines
Any program line can be deleted by using the DELETE command. To delete lines 15 and 20, type:

DELETE 1 5 - 20 I CR I

Enter the LIST command. The program listing should appear as follows :

10 CLS
30 PRINT "MZ-800"
40 END

Typing a line number and pressing the I CR I key also deletes the line.

(6) Renumbering
Enter the RENUM command to return all the line numbers to increments of 10. (RENUM can also
be specified to increment the line numbers by any other value.)

RENUM lcR I
LIST I CR I
10 CLS
20 PRINT "MZ-800"
30 END

3-8

(7) AUTO command
The AUTO command is a convenient feature which allows the computer to automatically generate/
line numbers for you, in increments of 10 or the specified value. For details, see Chapter 6.

Remember to press the I CR I key after you finish editing each line; otherwise the editing changes
for that line will not be entered into memory. Secondly, make sure that you move the cursor to the
line below the last line of the program before typing RUN.

3-9

3.5 Saving a Program

When you turn the power switch off, any programs you may have typed will be lost. To reuse a pro­
gram in a later session, you must save it onto any external storage device such as a cassette. The proce­
dure for saving a program onto a cassette is described below.

• Using a new cassette:

1) Open the cassette compartment cover on the MZ-800 and insert the cassette. Close the cover, then
press the counter reset button to reset the counter to "000".

Counter reset button

2) Type the following.

SAVE "CMT:TEST" I CR I

This command instructs the computer to save the program in memory onto the cassette in the data
recorder (the data recorder is indicated in the SAVE statement by CMT:). The program is saved
with the name ''TEST''.

3) The next message to be displayed is " ! RECORD.PLAY". When you see this message, press the
I RECORD I button.

4) When the message "Ready" appears on the screen and the tape stops, press the I STOP I button. Write
down the program name ' 'TEST'' and the counter value at the end of the program on the cassette
label.

• Using a cassette which contains programs:

When using a cassette which already contains programs, the counter value for the end of the program
preceding the program you want to save must be known; otherwise your new program may become
lost somewhere on the tape.

1) Insert the cassette into the data recorder and rewind the tape by pressing the I REWIND I button.

2) Press the counter reset button to reset the counter to "000".

3-10

3) Press the I FFWD I button. Stop the tape by pressing the I STOP I button when the counter value for
the end of the preceding program nears.

4) Press the I PLAY I button to begin saving the program onto the cassette.

5) Perform steps 2 to 4 of the procedures described above for a new cassette.

6) When the program has been saved, note down the counter value, then run the tape an extra 2 or
3 counter revolutions and press the I STOP I button. When saving programs onto a cassette with exist­
ing programs, there is a possibility that the existing programs may be destroyed when the above
procedures are performed. Therefore, it is recommended that you use a new cassette to save a program.

3-11

3.6 Loading a Program

The cassette provided with your computer contains a demonstration program, and you can also pur­
chase commercially available programs. To use these programs, plus ones you may have written, you
must load them off the cassette and into the computer's memory. The procedure for loading program
is described below.

1) Insert the cassette which contains the program into the data recorder. Rewind the tape to the coun­
ter value of the program preceding the program you want if necessary.

2) Enter the following command to load the program into memory.

LOAD "CMT: <name of program>"

For example, to load the program "TEST",

LOAD "CMT:TEST"

3) When the message '' .!PLAY'' appears, press the I PLAY I button on the data recorder.
4) Press the I STOP I button when the tape stops.
5) To execute the program "TEST" now that it has been loaded, enter the RUN command when the

message "Ready" is displayed on the screen.

Ready
RUN lcR I

3-12

Chapter 4 Keyboard and Data
Recorder

4.1 Keyboard

4.1.1 Keyboard modes

The MZ-800 keyboard operates in one of the following modes:

• Normal mode: Normally used to input the alphabetic characters, numbers and symbols. This mode
is automatically set when the BASIC interpreter is started or the MZ-800 is reset.

• Shift lock mode: In this mode, all keys excepting ~ through [EI) operate in the SHIFT mode. This
mode is entered when I SHIFT I + I ALPHA I is pressed. Pressing I SHIFT I +
I ALPHA I again resets the shift lock mode.

• Graphics mode: Used to input special graphic characters.

Three types of cursor are used to indicate the current keyboard mode.

• : Normal mode cursor
• : Shift lock mode cursor
_ : Graphics mode cursor

4.1.2 Keys

The keyboard has many keys and their functions are as follows:

Space bar

4-2

(1) Character keys
These keys are used to input letters, numerals and graphic characters.

Some character keys are marked with two different characters. These characters are input when the key
is pressed in each of the input modes described above.

Normal mode character w: "3"
~I SH-I-FT~I + w : " #"

-.:::,. ::;--

3
;f ICI ~I \

Graphics mode characters
[l]:[J

~I S-HI-FT~I + w : ~
In the normal mode: when a character key is pressed, either the uppercase type for the letter marked
on the keytop or the lower character on the keytop is input. When the character key is pressed together
with the I SHIFT I key, either the lowercase type for the letter marked on the keytop or the upper character
on the keytop is input.
In the graphics mode: each character key can be used to input either of two different graphic charac­
ters. When a character key is pressed by itself, the graphic character which is input is that shown on
the left side of the corresponding keytop in the figure below. When it is pressed together with the I SHIFT I
key, the graphic character which is input is that shown on the right side of the keytop in the figure.

Pressing DJ ' B ' B ' DJ ' I CLR I or I HOME I in this mode inputs • ' • ' • ' D ' II or m .

These graphic symbols are not printed on the keys. However, adhesive labels on which graphic sym­
bols are printed are included with the MZ-800. You may find it convenient to stick the labels to the
front of each key, as shown in the two figures.

4-3

(2) Special keys
These keys are used to control the computer and set the input mode for the character keys. The special
keys are shaded in the figure below.

The functions of the special keys are as follows.

I CR I : This key is used to enter the line containing the cursor into the computer. Although characters
typed by the character keys are displayed on the screen, the computer ignores them until the
I CR I key is pressed.

I SHIFT I : This key operates keys in the shift mode while it is being held down.

I GRAPH I : Pressing this key switches the keyboard to the graphics mode.

IALPHA l : Pressing this key returns the keyboard to the normal mode.

~: This key is used to input an ESC code.

I SHIFT I + I B~~~K I ·
: These keys are used to stop a program during execution or to stop cassette operation.

I TAB I : Advances the cursor to the next tab stop position on the display screen.

I CTRL I : Pressing a character key while this key is being held down will enter a control code. For
details of the control codes, see Appendix D.

(3) Editing keys
The editing keys are used for making additions, changes, or deletions in programs. These are keys
located on the right-hand side of the computer. See Section 3.4 for the function of each key.

(4) Definable keys

[I r) (l (l [) [1 I l Lave I
J I J holder

[~ Fl 11[F2 J]J F3 JI(F4 m f 5 ~]

Immediately after the BASIC interpreter has started operating, the following functions are assigned
to the definable keys. You can change the functions of these keys by using DEFKEY statement. See
Chatper 6.

4-4

Note:

ITIJ "RUN LJ LJ LJ" + CHR$ (13)

[}TI "LIST LJ"

[£IJ "AUTOL-J"

[ill "RENUML-J"

IT[] "COLOR LJ"

SHIFT + ITIJ : "CHR$("

SHIFT +[}TI : "DEFLJKEY("

SHIFT + [£IJ : "CONT"

SHIFT + ITD : "SAVEL-JL_,''

~S_H_IF_T~ + [£]] : "LOAD LJ LJ"

CHR$ (13) is the code for the I CR I key and ''.. __ ," represents a space.

• Installing definable key labels
You may find it convenient to insert the labels provided for the definable keys on which you write
the assigned characters into the label holders located above the definable keys.
The labels can be inserted into this holder by pulling open the transparent label cover.

(5) Auto repeat function
The auto repeat function causes input from the last key pressed to be repeated if that key is held down
longer than a certain period. The keys for which the auto repeat function is effective are those shaded
in the figure below.

-

4-5

4.2 Data Recorder

1) Hardware
The MZ-800 is equipped with a data recorder .

r1111111111111 111111111 1111 11111 11111 11111111 11 11 11111111 1w111111 11 1111111111 111rn llllllllllllllllllllllillill! * ~~7~~]

=
=

The function of each button is as follows.

PLAY I : Pressing this button plays the tape, to load a program or data from the cassette into
memory.

RECORD Pressing this button saves a program or data from memory onto the cassette.

FFWD Pressing this button fast forwards the tape.

REWIND Pressing this button rewinds the tape.

I STOP/EJECT Pressing this button stops the tape or ejects the tape when it is at a stop.
Counter reset button :

Pressing this button resets the counter to "000".

Note:
The ~I F_F_W_D~I and I REWIND I buttons are not automatically released when the tape end is reached. Be
sure to press the J STOP I button when the tape end is reached.

4-6

2) Tape handling
• Any commercially available cassette tape can be used with the MZ-800. However, it is recommend­

ed that you use quality cassette tape produced by a reliable manufacturer.
* Use normal type tapes.
* Avoid using C-120 type cassette tapes.
* Use of C-60 or shorter cassette tapes is recommended.

• Be sure to remove slack from the tape by using a pencil or similar object before inserting the tape
into the data recorder.

Slack

• Keep a record of the program name and the counter values for the beginning and end of each pro­
gram after it has been saved.

• Do not store cassette tapes near a TV set or speaker system which generates a magnetic field.

• Protecting programs/ data from accidental erasure
To prevent data from being accidentally erased, remove the record lock-out tab from the cassette with
a screwdriver or similar object. This will then make it impossible for the I RECORD I button to be pressed
accidentally, thereby preventing erasure of valuable data or programs.

Remove the record lock-out tab

with a screwdriver.

Tab for side B

Tab for side A

4-7

Chapter 5 Programming Concepts

This chapter describes fundamental concepts which will allow you to program the MZ-800 in BASIC.
The information included in this chapter is essential to realizing the full potential of BASIC.

5.1 Multi-statement Lines and Line Numbers

As described in Chapter 3, a program consists of one or more program lines. Although each line of
the examples in Chapter 3 contains only one statement, a program line can contain two or more state­
ments, providing each statement is separated from each other by a colon (:). A program line which
contains two or more statements is called a multi-statement line.

Example:
10 CLS:PRINT "MULTI =STATEMENT":END

Each program line begins with a line number. Line numbers can be any number between 1and65535.
It is not necessary to specify line numbers consecutively, in fact, it is advisable to assign line numbers
in increments of ten so that you can insert additional lines during program editing.

5-2

5.2 Numeric Data and String Data

Data handled by the computer is categorized into numeric data and string data. Broadly speaking,
numeric data represents quantity or magnitude, whereas string data represents characters.

(1) Numeric data
The MZ-800 BASIC allows you to use numeric data in either decimal or hexadecimal notation. However,
data in either notation is converted to binary form by the computer so that it can be stored in memory
or used for calculations.
Decimal notation is probably the most familiar numbering system to you, and uses numerals from 0 to 9.
Hexadecimal notation uses numerals from 0 to 9, then characters A to F to represent the values from
10 to 15. With this system, the number of significant digits required to express numbers increases by
one each time the magnitude of the number being expressed increases by a factor of 16. Hexadecimal
numbers are indicated by prefixing "$" to the character as follows.

$41 = 4 x 161 +1x16° = 65
$FA= 15 x 161 +10 x 16° = 250

Complements result for hexadecimal numbers greater than $7FFF.
For example, value resulting from $8000 is - 32768 and that resulting from $FFFF is - 1.

(2) String data
All characters are represented by numeric codes in the computer. These numeric codes are based on
the ASCII code system. In this system, characters are represented by the numbers 0 to 255 or $00 to
$FF. For example, the character "A" is represented by 65 (decimal) or $41 (hexadecimal).

5-3

5.3 Constants

(1) Numeric constants
Numeric constants are positive or negative numbers. They can be represented in either their ordinary
form or an exponential form. Numeric constants must lie within the range 10-38 to 1038 (lE- 38 to
1. 70141l8E + 38), and the maximum number of significant digits is 8. If the value of a constant is out
of the range, the result of operation is not assured.

Ordinary integers and decimal numbers are represented in their normal form as follows.

123
- 123.4
+12

The "+" sign may be omitted for positive numbers.

Very large or small numbers are represented in the exponential form. In this form, a number is represented
by a number representing the mantissa, E, and a number representing the exponent. Use of "E" in
the exponential form is shown below.

1.23E + 2

This represents 1.23 x 10 x 10 = 123

-1.2E - 1

This represents - 1.2 + 10 = - 0.12

The " + " sign may be omitted for positive numbers. The mantissa must be less than 10 and greater
than -10 and the exponent must be an integer between -38 and + 38.

(2) String constants
A string constant is a set of characters enclosed in quotation marks (" "). The maximum number
of characters in a string constant depends on the effective line length, but the total maximum number
of characters of string data permitted is 255. Examples of string constants are as follows.

"ABC"
"12345"
"MZ-800"

Note:
Quotation marks are not required in DATA statements. (See Chapter 6.)

5-4

5.4 Variables

Variables are locations in memory which are used to hold values during program execution. You must
give a specific name to each variable when writing a program. Values held by these variables may be
arbitrarily changed during program execution.
There are three types of variables handled by MZ-800 BASIC: numeric variables, string variables and
system variables.

(1) Numeric variables
Numeric variables can hold only numeric data. The name of each variable may be composed of any
number of characters, but only the first two characters actually identify the variable. For example,
AB and XYZ are different variables, but ABC and ABD are handled as the same variable.
Lowercase letters cannot be used for variable names.
The first character must be a letter from A to Z, but the second and the following characters may
be any letter of the alphabet or numbers; however, special characters such as @ and * cannot be used.
No reserved words (see Appendix C.) may be used as the names of a variable. For example, PRINT
and C@ cannot be used as the names of variables.
Each numeric variable contains 0 until some value is given.

(2) String variables
A string variable can hold only string data, and its name can be assigned in the same manner and with
the same limitations as the name of a numeric variable. The only difference is that it is always followed
by a dollar sign ($).
Each string variable may contain a maximum of 255 characters of string data. Each string variable
includes only null characters until some stirng data is given.

(3) System variables
There are special variables called system variables, which are defined and used by the BASIC inter­
preter. The following table lists the system variables.

System variable Explanation

TI$ Contains a 6-digit number which is the time from a 24-hour built-in clock.
For example, the value "192035" indicates that the clock reads 19:20:35.
The clock is always set to 00:00:00 when the power is turned on.

SIZE Indicates the amount of free memory area which can be used for BASIC programs and
data.

ERN When an error occurs, this variable contains the corresponding error number.

ERL When an error occurs, this variable contains the line number of the error.

CSRH Contains the column position at which the cursor is located.
O~CSRH~39 (40 column screen mode)
O~CSRH~79 (80 column screen mode)

CSRV Contains the line number at which the cursor is located.
O:;:;CSRV :;:;24

POSH Contains the X-coordinate of the graphics position pointer.
- 16384~POSH~ 16383

POSY Contains the Y-coordinate of the graphics position pointer.
- 16384 ~POSY~ 16383

5-5

5.5 Array Variables

An array is an arrangement of variables of the same data type, which are ref erred to by a common
name. Each variable of an array is identified by the common name, which is composed of a string
formed in the same manner as a variable name and fallowed by subscripts enclosed within parenthese,
e.g., A(X) and B$(x,y). An array with one subscript (such as A(X), B$(1) or P(lOO)) is called a one­
dimensional array, while that with two subscripts (such as A(x,y), B$(1,3) or P(50,25)) is called a two­
dimensional array. To use array variables in a program, the common name and the number of varia­
bles included in the array must be declared before they are used. For details see the explanation of
the DIM statement in Chapter 6.

• Note Concerning Computational Error

Computational error must always be taken into consideration whenever a computer is used.
The reason for this is that, although computational error can be reduced by increasing the number
of digits of numerical data which are handled, not even a computer can handle an infinite number
of digits. Further, the more digits are involved in any given calculation, the greater the amount
of time which is involved in completing it.
Therefore, it is important to be aware of the sources of error and to construct programs so
that error is minimized. (For example, use the sequence "5 * 613" instead of "5/3 * 6" .)

Take the following into account when doing calculations in BASIC (1Z016) for the MZ-800.

(1) Rounding error
Rounding error is the error which results when the number of digits to the right of the decimal
place exceed the number of effective digits which can be handled. For example, when the num­
ber 2/3 is calculated, the true result is 0.666666666 ... (where the number of 6s is infinite).
However, if the number of effective digits is 8, the result will be rounded to 0.66666667.

(2) Error resulting upon conversion to binary form
Although numbers are ordinarily input in decimal format, they are internally converted to bi­
nary form for calculation.
According, a binary number with an infinite number of digits may result upon conversion even
if the original decimal number only has a few digits. For example, when the decimal number
0.1 is converted to binary form, the result is 0.00011001100 Since this must be rounded
for calculation, a certain amount of error results.

(3) Increase in relative error due to subtraction
When one number is subtracted from another, the relative size of the error in the result will
be greater than that in the original numbers. This is illustrated in the example below, where
the digits which include error are marked with a dot(.). An error of± 1 in the number 100012
corresponds to an error percentage of about 0.001 %; however, relative error is much greater
after subtraction, since 11 ± 1 corresponds to a relative error of about 10%.

100012
-)100001

11

(4) Error due to approximation
With a computer, exponentiation, trigonometric calculations, and logarithmic calculations are
done using approximation; in consequence, a certain amount of approximation error results
when such calculations are done.

5-6

5.6 Expressions

An expression is any combination of variables and constants which is combined with operators . Oper­
ators are symbols which perform mathematical or logical operations. The types of expressions han­
dled by the MZ-800 BASIC are as follows.

• Arithmetic expressions
• String connective expressions
• Relational expressions
• Logical expressions

(1) Arithmetic expressions
An arithmetic expression consists of arithmetic operators, numeric constants, numeric variables and
numeric functions. It calculates a numeric value from an operation(s) performed by the operator . (The
numeric functions will be explained later in this chapter.)
The table below lists the arithmetic operators arranged in order of operational priority.

Arithmetic operator Operation Example

() Gives the highest priority to enclose operations. (X + Y)

i Creates an exponentiatial value XiY

- Converts the sign of a value -X

*, I Multiplication, devision X * Y, X I Y

+ -, Addition, subtraction X + Y, X - Y

When an arithmetic expression includes operations of the same priority, they are performed in sequence
from left to right.

(2) String connective expressions
String connective expressions are used to combine two or more data strings into a single string. A string
connective expression consists of string constants, string variables, string functions and the operator
'' + ''. (The string function will be explained later in this chapter.)

Example:
"ABC"+ "DEF" "ABCDEF"
II A" + "B" + "C" "ABC"

5-7

(3) Relational expressions
Relational expressions are used to compare two values and ascribe a logical value of either true (-1)
or false (0) to the expression according to the result of the comparison. The result is used to make
a decision regarding subsequent program flow. A relational expression can consist of constants, varia­
bles, arithmetic expressions, string connective expressions and relational operators .
The table below lists the relational operators.

Operator Comparison Example

= Equal to X=Y

< Less than X<Y

> Greater than X>Y

<= , =< Less than or equal to X< =Y, X= <Y

>=, => Greater than or equal to X>=,X=>Y

<>, >< Not equal to X< >Y, X> <Y

Note:
The relational values of character data are based on the characters' ASCII codes.

(4) Logical expressions
A logical expression expresses the Boolean sum or product of true or false values (- 1 or 0)
given by relational expressions. A logical expression is formed of logical values, relational ex­
pressions and logical operators. The following table lists the logical operators.

Operator Meaning Example

NOT Logical negation LJ NOT X

AND Logical product XLJAND Y

OR Logical sum X LJ OR Y

XOR Exclusive OR XLJXOR Y

Note:
Spaces indicated by LJ must be included.

5-8

5.7 Files

A file is a program or a set of data which is output to or input from a peripheral device (such as a
data recorder). A file is identified by a file descriptor, which consists of a name (called the file name)
preceded by the name of the peripheral device (called the device name).

11 <device name>:< file name>''

For example:
CMT:DEMO The file named DEMO is output to or input from the data recorder.
RAM:TEST The file named TEST is output to or input from the RAM file board.

(1) File name
A file name can consist of up to 16 alphanumeric characters.

(2) Device name
The following table lists the device names which are used by the MZ-800 BASIC.

Device name Device

CMT: Data recorder

RAM: Optional RAM file board

CRT: Display device

LPT: Printer

RSl:

RS2:
RS-232C interface ports

5-9

5.8 Functions

(1) Numeric functions
Numerical functions such as SIN and COS perform arithmetic operations on given numeric expres­
sions then return the result. The MZ-800 is provided with the following numerical functions.

ABS(X) - Absolute value
Returns the absolute value of numeric expression X.
Example: A=ABS(X). When X=2.9, A=2.9; when X= - 5.5, A=5.5.

SGN (X) - Sign
Returns 1, - 1, or 0 according to whether numeric value X is greater than, less than, or equal to 0,
respectively.
Example: A= SGN(X). When X = 0.4, A= 1; when X = - 1.2, A= - 1.

INT(X) - Integer
Returns the largest integer which is less than or equal to X.
Example: A=INT(X). When X=3.87, A=3; when X=0.6, A=O; when X = - 3.87, A = -4.

SQR(X) - Square root
Returns the square root of X. The value specified for X must be greater than or equal to 0.
Example: A= SQR(X). When X = 4, A= 2.

EXP(X) - Exponential
Returns the value of the natural base e to the power of X.
Example: A= EXP(X)

Trigonometric Functions

SIN(X)
Returns the sine of X, where X is an angle in radians.
Use the following expression to obtain the sine of an angle in degrees.
SIN (X * ?r/180)
Example: A= SIN(X)

COS(X)
Returns the cosine of X, where X is an angle in radians.
Use the following expression to obtain the cosine of an angle in degrees.
COS (X * ?r/180)
Example: A= COS (X)

TAN(X)
Returns the tangent of X, where X is an angle in radians.
Use the following expression to obtain the tangent of an angle in degrees.
TAN (X* ?r/180)
Example: A=TAN(X)

ATN(X)
Returns the arc tangent of X in radians. The value returned is within the range - 7r/2 to 7r/2.
Use the following expression to obtain the arc tangent of X in degrees.
ATN (X) * 180/7r
Example: A=ATN(X)

5-10

LOG(X) - Common logarithm
Returns the common logarithm of X (log 10X), where X must be greater than 0.
Example: A= LOG(X)

LN(X) - Natural logarithm
Returns the natural logarithm of X (logeX), where X must be greater than 0.
Example: A= LN(X)

P AI(X) - Circular constant
Returns the value which is X times pi.
(PAI(l) = 7r= 3.1415927)
Example: A= P AI(X) or A= 7r * X

RAD(X) - Radian
Converts the numeric value X from degrees into a value in radians.
Example: A= RAD(X)

(2) Character functions
A character function processes character strings. The MZ-800 BASIC supports the following charac­
ter functions. In the examples below, character variable A$ contains the character string "ABCDEFG".

LEFT$(x$,n)
x$: character string
n: numeric value (from 0 to 255)

Returns a string consisting of the left n characters of string X$.
Example: B$ = LEFT$(A$,2) produces string "AB"

MID$(x$,m,n)
x$: character string
m: numeric value from 1 to 255
n: numeric value from 0 to 255

Returns a string consisting of n characters following the mth character from the beginning of string x$.
Example: B$ = MID$(A$,3,3) produces string "CDE".

RIGHT$(x$,n)
x$: character string
n: numeric value (from 0 to 255)

Returns a string consisting of the right n characters of string x$.
Example: B$ = RIGHT$(A$,2) returns a string consisting of the right 2 characters of string A$. There­

fore, variable B$ is returned as the string "FG".

Functions used with the PRINT statement

TAB(n)
n: numeric value

Moves the cursor to the (n + l)th character position from the left end of the current line.
This function is ignored when n is less than the current cursor location.
Example: PRINT "A";TAB(3);"ABC"

A ABC
0 1 2 3 4 5 +- column positions which are not displayed.

'------String 'ABC' is displayed from column 3.

5-11

SPC(n)
n: numeric value

Returns a string of successive spaces, the length of which is expressed by n.
Example: PRINT "A";SPC(3);"ABC"

A ABC
o 1 2 3 4 5 6 +-- column positions which are not displayed.

3 spaces

(3) Numeric value/character string conversion functions
The following functions convert a numeric expression into a character string or vice versa.

STR$(n)
n: numeric value

Converts numeric value n into a character string.
(A hexadecimal value is preceded by $.)
Examples: A$= STR$(- 12)

The character string " - 12" is returned as A$.
B$ = STR$(70 * 33)

The character string "2310" is returned as B$.
C$ = STR$(1200000* 5000)

The character string "6E + 09" is returned as C$.
Note:
A positive integer displayed or printed is preceded by a single space which indicates that the plus sign
(+)is valid but has been omitted. However, this space is deleted when the integer is converted into
a string by the STR$ function.

VAL(x$)
x$: character string

Converts a character string into a numeric value.
Example: A= VAL (" 123 ")

The string "123" is converted into the numeric value 123.
A= VAL ("$FF")

A string "$FF" is converted into the numeric value 255.

ASC(x$)
x$: character string

Returns the numeric value which is the ASCII code for the first character of string X$.
Examples: X=ASC("A")

Returns the numeric value 65, which is the ASCII code for character "A".
Y = ASC("SHARP")

Returns the numeric value 83, which is the ASCII code for the first character of
the string "SHARP".

5-12

CHR$(n)
n: numeric value (greater than 32)

Returns the character whose ASCII code is integer expression n.
When a space is to be displayed, use PRINT "L_i'' or PRINT SPC(l).
Examples: A$= CHR$(65)

Returns ''A'', which has an ASCII code of 65.
PRINT CHR$(107)

Displays the graphics character "B~f ', which has an ASCII code of 107. Multiple
ASCII codes can be specified as follows:

A$= CHR$(65,66,67 ,68)

LEN(x$)
x$: character string

Returns the number of characters in string x$.
Example: A= LEN(" ABC")

Returns the number 3, which is the number of characters in string ''ABC''.

(4) Random number functions

RND(n)
n: numeric value

This function returns a pseudo random number for a given numeric value.

* Pseudo random numbers are generated from values between 0.00000001 and 0.99999999.
* When the numeric value specified is greater than 0, the function gives the next pseudo-random number

in the current sequence.
* When the numeric value is less than or equal to 0, RND generates a new pseudo-random number

set whose initial value is determined by the value specified for X, and gives the first number of
the new set. This makes an operation such as a simulation with random numbers repetitive.

Example:
To generate a random number which is an integer from N to M, use the following formula:

INT(RND(X) * (M-N + 1) + N)

The following program draws a number of circles. The radius of the circles and the coodinates are
given by the random number.

1 0 FOR A= 1 TO 1 00
20 B=RND(1)*320
30 C=RND(1)*200
40D=RND(1)*100
50 E = INT(RND(1) * 4)
60 CIRCLE [E,0)8,C,D
70 NEXT A
80 END

5-13

(5) Joystick functions

STICK(f)
f: numeric value

Returns an integer from 1 to 8 which indicates the state of the joystick lever or the cursor control keys
on the keyboard. The numeric value f specifies the device from which the data is read, as shown below.
0: Cursor contorl keys of the keyboard
1 : Joystick 1
2: Joystick 2

The relationship between the integer and the direction in which the joystick lever is pushed (or the
cursor control keys are pressed) is as follows:

3

5
5

Cursor control key

When the keyboard is selected by specifying 0 as f, integers 2, 4, 6, and 8 are returned when two cursor
control keys are pressed at the same time, as shown below.

2: OJ and El
4: El and ITJ
6: ITJ and EJ
8: EJ and OJ

STRIG(f)
f: numeric value

Returns an integer 0 or 1 which indicates the state of the joystick button or the space bar on the key­
board. When the space bar on the keyboard or the joystick button is pressed, 1 is returned and when
they are not pressed, 0 is returned. The integer value f specifies the device as follows:
0: Keyboard space bar
1: Joystick 1 button
2: Joystick 2 button

The following program uses STICK and STRIG functions. It draws a vertical, horizontal or inclinded
line when a cursor key is pressed, and clears the screen when the space bar is 'pressed.

5-14

10 INIT "CRT:M 1"
20 A =STICK(O):B =STRIG(O)
30 ON A GOSUB 200,300,400,500,600, 700,800,900
40 IF X<O THEN X=O
50 IF X>319 THEN X=319
60 IF Y<O THEN Y=O
70 IF Y > 199 THEN Y = 199
80 SET X,Y
90 IF B= 1 GOTO 10
100 GOTO 20
200 Y = Y - 1 :RETURN
300X=X+1 :Y =Y- 1 :RETURN
400X=X+1 :RETURN
500X=X+1 :Y =Y + 1 :RETURN
600 Y = Y + 1 :RETURN
700 X=X-1:Y=Y+ T:RETURN
800 X = X - 1 :RETURN
900 X =X- 1 :Y =Y- 1 :RETURN

5-15

5.9 Screen Coordinates

Screen coordinates are used to specify the screen position in which characters and graphic data are
to be displayed by display commands. Such coordinates are expressed in terms of a horizontal position
and a vertical position. Character display positions are specified using character coordinates, and graphic
display positions are specified using graphic coordinates.

• Character coordinates

(0,0) (39,0) (0,0) (79,0)

(0,24) (39,24) (0,24) (79,24)

With 40 character line mode With 80 character line mode

• Graphic coordinates

(0,0) (319,0) (0,0) (639,0)

(0, 199) (319, 199) (0,199) (639, 199)

320 x 200 mode 640 x 200 mode

The ranges of both character coordinates and graphic coordinates vary according to mode. The mode
is specified with the INIT command.

5-16

Chapter 6 MZ-800 BASIC Commands
and Statements

This chapter explains the MZ-800 BASIC (IZ-016) commands and statements. These commands and
statements are functionally divided into the following eight groups.

• Fundamental commands
• Fundamental statements
• File control statements
• Graphics statements
• Music control statements
• Printer control statements
• Machine language control statements
• Error processing statements.

The commands and statements for the MZ-700 mode are summarized in Chapter 9.

Format Notations
The following rules apply to specification of commands, statements, and functions.

Angle brackets "< > " indicate items which must be specified by the user.

Items in square brackets " [] " are optional.

Items in { } are mutually exclusive; and only one of the items shown can be included when the state­
ment is executed.

. . . indicates that the item preceding . . . may be specified repeatedly.

6-2

6.1 Commands

AUTO

Format AUTO [<starting line number>][,< increment>]

I Abbreviated Format I

I Explanation

Example

A.

The AUTO command automatically generates program line numbers during entry
of BASIC program statements.
The default setting of both parameters is 10.

(Example 1)

AUTO [QLJ
10 [QLJ
20 [QLJ
30 [QLJ
(Example 2)
AUTO 300,5 [QLJ
300 [QLJ
305 [QLJ
310 [QLJ
Example 2 automatically generates program line numbers, incrementing by 5 start­
ing at line 300.

(Example 3)
AUTO 100 [QLJ
100 ····· ·· [QLJ
110 [QLJ
120 [QLJ
Example 3 generates program line numbers with an increment of 10, starting at line
100.

(Example 4)
AUTO, 20 [QLJ
10 ··· ··· ·· [QLJ
30 ·· ·· ·· ·· [QLJ
50 [QLJ
Example 4 generates program line numbers with an increment of 20, starting at line 10.

Note:
The AUTO command is terminated by pressing I SHIFT I and I BREAK I .

6-3

DELETE

Format DELETE [<starting line number> [-] <ending line number>]
DELETE <line number>

I Abbreviated Format I

Explanation

Example

LIST

D.

Deletes program lines from <starting line In umber> to <ending line number> .

DELETE 150-350 [lli] Deletes all program lines from 150 to 350.

DELETE -100 [lli] Deletes all program lines up to line 100.

DELETE 400- [QU Deletes all program lines from 400 to the end of the
program.

DELETE 150 [lli] Deletes line 150.

Format LIST [/P] [<starting line number>] [-] [<ending line number>]

I Abbreviated Format I
L.

I Explanation I The LIST command lists on the display screen all or part of the program lines con­
tained in the BASIC text area of the memory.
Output of the program listing to the display screen can be temporarily interrupted
by pressing the space bar; listing is then resumed when.the space bar is pressed again.
To terminate the listing, press the I SHIFT I + /BREAK I keys.
The program listing can be output to the printer by entering LIST IP .

Example LIST [lli] Lists the entire program.
LIST -30 [lli] Lists all lines of the program up to line 30.
LIST 30 - [lli] Lists all lines of the program from line 30 to the end.
LIST 30- 50 [Qi] Lists all lines of the program from line 30 to line 50.
LIST 30 [lli] Lists line 30 of the program.

6-4

SEARCH

Format SEARCH [/P] <text data>

I Abbreviated Format I
SE.

I Explanation I The SEARCH command searches the BASIC program in memory for lines which
contain the character string specified in <text data> and displays any found lines
on the screen. When specifying a double quotation mark(") in <text data>, use
CHR$(34).

Example

REN UM

Display of matching lines can be suspended by pressing the SP ACE bar. Pressing
the SP ACE bar again will resume display. To terminate the SEARCH command,
press I SHIFT I + I BREAK I . The IP option directs the output of the SEARCH
command to the printer.

SEARCH ''ABC'' Searches for then displays on the screen the program
lines that contain the character string "ABC" .

SEARCH "PRINT" + CHR${34) +"A"+ CHR${34) Searches for program lines
that contain PRINT "A".

Format RENUM [<new line number>] [, <old line number>] [,<increment>]

I Abbreviated Format I
REN.

I Explanation I The RENUM command renumbers the lines of a BASIC program. When this com­
mand is executed, note that line numbers referenced in branch statements such as
GOTO, GOSUB, ON -GOTO, and ON - GOSUB are also reassigned.

Example REN UM Renumbers the lines of the current program in
memory so that they start with 10 and are incremented
in units of 10.

REN UM 1 00 Renumbers the lines of the current program in
memory so that they start with 100 and are increment­
ed in units of 10.

REN UM 1 00, 50, 20 Renumbers lines of the current program in memory,
which starts at line number 50. Line number 50 is
renumbered to 100, and subsequent line numbers are
incremented in units of 20.

(Before renumbering)
50A = 1
60A=A+1
70 PR INT A
100 GOTO 60

Note:

(After renumbering)
100A=1
120A=A+ 1
140 PRINT A
160 GOTO 120

When specifying the new and old line numbers, the new line number specified must
be larger than the old line number. Note that an error will result if execution of
this command results in the generation of a line number which is greater than 65535.

6-5

NEW

Format

Explanation

Example

NEW ON

Format

Explanation

Example

CLR

Format

I Explanation

Example

NEW

The NEW command deletes programs in the BASIC memory area and clears pro­
gram work areas such as the variables and arrays. When the BASIC area is limited
with the LIMIT statement, the NEW command deletes only the programs in the
BASIC area; it does not delete machine-language programs.

10 INPUT A
20 PRINT A
30 END

When the above program is in memory, executing NEW will delete the program.
(Confirm the deletion by using the LIST command.)

NEW ON

Expands the BASIC program area by deleting part of the BASIC interpreter which
is relating to the plotter printer control. This command can be used only when the
optional printer (MZ-1P16) is not used. This command deletes programs in the BASIC
memory area.

NEW ON Expands the BASIC program area.

CLR

The CLR command clears all variables and cancels all array definitions. All numer­
ic variables are cleared to 0, all string variables are cleared to null strings (" ") and
arrays are eliminated entirely by nullifying all previously executed DIM statements.
Therefore, DIM statements must be reexecuted to redefine the dimensions of any
required arrays before the arrays can be used again.
The CLR command also cancels all function definitions made with the DEF FN
statement; therefore, it is necessary to reexecute DEF FN statements to redefine such
functions before they can be used again.
The CLR command can not be included in a FOR - NEXT loop or subroutine.
10A=12
20 B$ ="parasol"
30 PRINT A,B$
40 CLR
50 PRINT A,B$

60 END

The CLR statement on line 40 clears variable A to zero and B$ to nulls.

6-6

CONT

Format CONT

I Abbreviated Format I
c.

Explanation

See also

The CONT command is used to resume execution of a program which has been
interrupted by pressing I SHIFT I + I BREAK] or by a STOP statement in the
program. When the message "Ready" is followed by a period(.), the CONT com­
mand can be used. Examples of situations in which the CONT command can and
cannot be used are shown in the table below.

Program continuation possible • Program execution stopped by
pressing I SHIFT I + I BREAK I .

• Program execution stopped by a
STOP command.

Program continuation not possible • Before a RUN command has been
executed.

• "Ready" is displayed due to an
error occurring during program
execution.

• When cassette operation has been
interrupted by pressing I SHIFT \ +
I BREAK I.

• When program execution has stopped
during execution of a MUSIC
statement.

• After program execution has stopped
and "Ready" is displayed after
execution of the END statement.

STOP

6-7

RUN

Format RUN [<starting line number>]

I Abbreviated Format I
R.

I Explanation I The RUN command executes the current program in the BASIC text area of memory.
If the program is to be executed starting at the first program line, simply enter RUN
and press the I CR I key. If execution is to begin with a line other than the lowest line
number, type in RUN, <starting line number> , then press the I CR I key. When this
command is executed with no <starting line number> specified, the BASIC inter­
preter clears all variables and arrays before passing control to the BASIC program.

Example RUN Executes the program from the beginning.
RUN 200 Executes the program starting at line 200.

6-8

6.2 Fundamental Statements

CLS

Format

I Explanation

Example

See also

CONSOLE

CLS

The CLS statement clears. the entire screen irrespective of the screen boundaries es­
tablished by the CONSOLE command.

10 CLS Clears the entire screen.

CONSOLE

Format CONSOLE [<starting line>,< number of lines>]

I Abbreviated Format I

I Explanation I

Example

CONS.

The CONSOLE command specifies the size of the scrolling area; i.e., the area which
is cleared by specifying the CLS statement or pressing the I SHIFT I and I CLR I keys.
This command becomes invalid after a PLOT ON command has been executed.
Specify an appropriate value for the <number of lines> when editing; that is the
<number of lines> must not be too small because it is harder to perform screen
editing within a small scroll area.

o~-----~

<starting line>~~~~~~~

~~~~~~~ } <number of lines> 

24~-----~ 

CONSOLE 0,25 or CONSOLE .. Scrolls the entire screen. 
CONSOLE 5, 15 .. .......... ....... .. Scrolls the area between lines 5 and 15, inclusive. 

6-9 



CURSOR 

Format CURSOR < X-coordinate >, < Y-coordinate > 
I Abbreviated Format I 

Explanation 

Example 

See also 

CU. 

The CURSOR statement moves the cursor to a specified position on the screen. It 
can be used together with the PRINT and INPUT statements to display characters 
at any desired location. The value of the < X-coordinate > must fall within the range 
for the screen mode specified in the INIT statement. The value of the 
< Y-coordinate > must be an integer from 0 to 24. If the value specified for either 
X or Y is other than an integer, it is converted to one by truncating the decimal 
fraction before the cursor is moved. 

10 CURSOR 8, 10 ... ......... . Moves the cursor to point (8,10). After this statement 
is executed, when a PRINT or INPUT statement is 
executed the display will start at this point. 

10 f------!)l"' 
(8, 10) 

24~---------------------_J 
< 40-character screen mode> 

TAB, SPC 

6-10 



REM 

Format 

Explanation 

Example 

LET 

Format 

Explanation 

Example 

REM (remark) 

REM is a non-executable statement which is specified in a program line to cause 
the BASIC interpreter to ignore the remainder of that line. Since REM statements 
are non-executable, they may be included at any point in the program without af­
fecting the program's exe.cution. REM statements are generally used to make a pro­
gram easier to read, or to add explanatory notes to a program. 

10 REM * * * MZ - 800 * * * 

LET <variable> = <expression> 

The LET statement assigns the value (numeric or string) specified by <expression> 
to the variable or array element specified by <variable> . As shown in the example 
below, LET may be omitted. 

10A=10 
20 PRINT A 
30 END 

10 LET A= 10 
20 PRINT A 
30 END 

The two programs above produce exactly the same result. 

10 LET N = 32 
This statement assigns 32 to variable N. 

10 LET A=A+ 5 
This statement adds 5 to variable A. 

10 LET B$ ="SUN DAY" 

This statement assigns character string "SUNDAY" to character variable B$. 

A=1~ 
This is an example of a command in the direct mode. 1 is assigned to variable A. 

The following are examples of incorrect use of the LET statement. 

20 LET A$= A+ B ... ........... This is invalid because different types of variables 
(string and numeric) have been specified on either 
sides of the "=" sign. 

20 LET LOG(LK) = LK + 1 ..... Invalid because the left side of the statement is not 
a numeric variable or array element. 

6-11 



STOP 

Format STOP 

[ Abbreviated Format [ 
s. 

Explanation [ Temporarily stops program execution, displays the line number at which execution 
stops, then waits for the entry of executable commands in the direct mode. 
The STOP statement is used to temporarily interrupt program execution, and may 
be inserted at as many points and locations in the program as required. Since exe­
cution of the program is only interrupted temporarily, the PRINT statement can 
be used in the direct mode to check the values stored in variables, after which exe­
cution can be resumed by entering CONT [CR I . 

Example 10 READ A,B 
20 X=A*B 
30 STOP 

See also 

40 Y =A/B 
50 PRINT X,Y 
60 DATA 15,5 

70 END 

RUN 

Break in 30 

Ready. +--- This period indicates that the program can be continued by CONT. 

Note: 
Unlike the END statement, no files are closed by the STOP statement. 

CONT 

6-12 



END 

Format 

Explanation 

END 

The END statement terminates program execution and returns the BASIC inter­
preter to the command mode for input of direct mode commands. When this state­
ment is executed, "Ready" is displayed to indicate that the BASIC interpreter is 
ready. After the END statement has been executed, execution cannot be resumed 
by executing the CONT command even if there are executable statements on pro­
gram lines following the END statement. 

Note: 
All open files are closed when the END statement is executed. 

Differences between the STOP and END statements 

Screen display Files Resumption of execution 

STOP Break in xx xx Open files are Can be resumed by executing 
Ready. not closed. CONT. 

END Ready Open files are Cannot be resumed. 
closed. 

6-13 



FOR-NEXT 

Format FOR <control variable> <initial value> TO <final value> 
[STEP< increment>] 

s 
NEXT <control variable> 

I Abbreviated Format I 

Explanation 

Example 

F.-N. 

The FOR - NEXT statements repeat the instructions between the FOR and NEXT 
variables the specified number of times. 

10 A=O 
20 FOR N =0 TO 10 STEP 2 
30A=A+1 
40 PRINT "N = ";N, 
50 PRINT "A= ";A 
60 NEXT N 

(1) In the program above, 0 is assigned to N as the initial value. 

(2) Next, lines 20 through 50 are executed and the values of variables A and N dis­
played. 

(3) In line 60, the value of N is increased by 2, after which the BASIC interpreter 
checks to see whether N is greater than 10, the final value. If not, lines follow­
ing line 20 are repeated . 

When the value of N exceeds 10, the program leaves the loop and the subsequent 
instructions (on lines following line 60) are executed. The program above repeats 
the loop 6 times. 
If STEP< increment> is omitted from the statement specification, the value of 
<control variable> is increased by 1 each time the loop is repeated. In the pro­
gram above, omitting STEP2 would result in 11 repetitions of the loop. 

FOR N =0 TO 
t 

Initial value 
of N 

NEXT N 

10 STEP 2 
t t 

Final value Increment 
for N for N 

FOR - NEXT loops may be nested within other FOR - NEXT loops. When doing 
this, inner loops must be completely enclosed within outer ones, and not overlap. 
Also, separate control variables must be used for each loop. 

6-14 



Example 10 FOR X = 1 TO 9-----~ 
20 FOR Y = 1 TO 9 
30 PRINT X~ Inner loop 
40 NEXT Y Outer loop 
50 PR INT 
60 NEXT X-------~ 
70 END 

10 FOR A= 1 TO 3- ----. 

20 FOR B=1~0 5 
30 FO~ C=1 TO71 
110 NEXT C ___j ) 
120 NEXT B 110 NEXT C,B,A 
130 NEXT A---~ 

When loops C, B, and A all end at the same point as in the example above, one 
NEXT statement may be used to indicate the end of all the loops. 

Incorrect example: 

E
FOR J= 1 TO 10 
FOR J = K TO K + 5 
NEXT J 

Different control variables must be used in each loop. 

~
FOR I= 1 TO 1 0 
FOR J = K TO K + 5 
NEXT I 
NEXT J 

Loops may not overlap each other. 

Note: 
The syntax of BASIC does not limit the number of levels to which loops may be 
nested; however, space in the memory is required to store return addresses for each 
level, so the number of levels is limited by the amount of free memory space available. 
The CLR and LIMIT statements cannot be used within a FOR - NEXT loop. 

6-15 



LABEL 

Format LABEL "<label name>" 

I Abbreviated Format I 

Explanation 

Example 

See also 

GOTO 

Format 

LA. 

The LABEL statement defines a label. Labels are used to define the destination to 
which program execution will transfer from the GOTO or GOSUB statement. Proper 
use of labels in your program will substantially improve program readability. 

10 PRINT "SAMPLE" 
20 GOSUB "ABC" 
30 PRINT "END" 
40 END 
100 LABEL "ABC" 
110 PRINT "LABEL SAMPLE" 
120 RETURN 

Line 100 defines the label "ABC" as the destination of the GOSUB statement on 
line 20. After the GOSUB statement on line 20 is executed, control is transferred 
to the subroutine starting at line 100. 

GOTO 
GO SUB 

GOTO{< line number>} 
<label> 

.-I A- b-br_e_v-ia-te_d_F_o-rm- at_,I 

I Explanation 

Example 

See also 

G. 

The GOTO statement unconditionally transfers program execution to the line number 
specified in <line number> or <label> . If <line number> or <label> points 
to a line which contains executable statements (statements other than REM or DAT A 
statements), execution resumes with that line; otherwise, execution resumes with 
the first executable statement following <line number> or <label> . 

10N=1 
20 PRINT N 
30 N = N + 1 
40 GOTO 20 ....... ..... . .... . . .. Transfers program execution to line 20. 
50 END 

Since execution of the program shown above will continue indefinitely, stop it by 
pressing the I SHIFT I and I BREAK I keys together (this may be done at any time to 
stop execution of a BASIC program). To resume execution, execute the CONT 
command. 

Note: 
The line number specified in a GOTO statement may not be for a line inside a 
FOR- NEXT loop. 

LABEL 
GO SUB 

6-16 



ON-GOTO 

Format 
<label> [,<label>] ... 

ON <numerical expression> GOTO {<line number> [,<line number>] ... } 

~I A-b-b-re-v-ia-te_d_F_o-rm-at~I 

Explanation 

Example 

See also 

ON-G. 
The ON - GOTO statement branches execution to one of the line numbers follow­
ing GOTO, depending on the value of <numeric expression> . The value of 
<numeric expression> indicates which of the line numbers following GOTO will 
become the branch destination. Therefore, if <numeric expression> is 1, execu­
tion branches to the first line number in the list; if <numeric expression> is 2, 
execution branches to the second line number in the list, etc. For example: 

100 ON A GOTO 200,300,400,500 

Destination when 
A is 1 line 200 
A is 2 
A is 3 
A is 4 

line 300 
line 400 
line 500 

10 INPUT"NUMBER";A 
20 ON A GOTO 50,60, 70 
30 GOTO 10 
50 PRINT "XXX" : GOTO 10 
60 PRINT "YYY" : GOTO 10 
70 PRINT "ZZZ" : C10TO 10 
RUN 
NUMBER 1 
xxx 
NUMBER 2 
yyy 

NUMBER 

If a decimal number such as 1.2 is specified, the decimal fraction is truncated be­
fore the statement is evaluated. 

Note: 
When the value of <numeric expression> in an ON - GOTO statement is greater 
than the number of line numbers specified following GOTO, execution continues 
with the next line of the program. This also applies if the value of <numeric 
expression> is less than 1 or negative. 
Further, if the value of <numeric expression> is a non-integer, the decimal frac­
tion is truncated to obtain an integer value before the statement is evaluated. 

GOTO 
ON GOSUB 

6-17 



GOSUB- RETURN 

Format GOSUB {<line number> } 
<label> 

( 
RETURN 

I Abbreviated Format I 
GOS.-RE. 

I Explanation I The GO SUB statement transfers program control to a subroutine identified with 
<label> or beginning at the line number specified in <line number> . After the 
subroutine has been executed, control is returned by the RETURN statement to the 
line following the GOSUB statement. 

Example 

A subroutine is a set of statements that may be used more than once in a program. 
One subroutine may call another subroutine which may call still another subrou­
tine. Nesting of such subroutines is limited only by the available memory space. 
Each called subroutine must have a RETURN statement at the end. 

10 INPUT A, B 
20 GOSUB 100 
30 B= C 
40 GOSUB 100 
50 PRINT C 
60 END 

10 - 60 Main program 

1 00 C = At 2 + B } 
11 O RETURN 100 - 110 Subroutine 

6-18 



ON-GOSUB 

Format ON <numeric expression> GOSUB { <line number>[,< line number>] ... } 
< label > [, < label > ] ... 

~I A-b-b-re-v-ia-t-ed_F_o_rm-at~I 

I Explanation 

Example 

ON-GOS. 

The ON - GOSUB statement branches program execution to the subroutine indi­
cated by one of the line numbers following GOSUB, depending on the value of 
<numeric expression> . The operation of this statement is basically the same as 
with the ON -GOTO statement, but all branches are made to subroutines. Upon 
return from the subroutine, execution resumes with the first executable statement 
following the ON - GOSUB statement which made the call. 

Let us try using the ON-GOSUB statement in a scheduling program. The most 
important point to note in the following program is that, a subroutine call is made 
at line 180, even though line 180 itself is part of a subroutine (from line 170 to 190) 
which in turn is called by line 90. Subroutines can be nested to many levels in this 
manner. 

10 
20 
30 
40 

A$=,, 
0$ =,, 
G$ =,, 
J$ =,, 

ENGL ,, . B$ = ,, 

SCI ,, . E$ = ,, 

HIST " . H$ =,, 

BUS ". K$ =,, 

50 INPUT "WHAT DAY?";X$ 

MATH ": C$=" FREN 
,, 

MUS ". F$ =,, GYM " 

ART ". I$=,, GEOG " 

H RM ": CLS 

60 FOR Z = 1 TO 7:Y$ = MID$("SUNMONTUEWEDTHUFRISAT", 1+3 * (Z-1 ),3): 
IF Y$=X$ THEN X=Z 

70 NEXT Z 
80 FOR Y=O TO 4 : PRINT TAB(5+6*Y);Y+1; 
90 NEXT Y: PRINT 
100 ON X GOSUB 180,120,130,140,150,160,170 
110 PRINT: GOTO 50 
120 PRINT "MON ";A$;B$;D$;G$;K$:RETURN 
130 PRINT "TUE ";B$ ;E$;H$;H$;D$:RETURN 
140 PRINT "WED ";C$ ;C$;1$;A$;F$:RETURN 
150 PRINT "THU ";B$;D$;F$;G$;E$:RETURN 
160 PRINT "FR I ";A$;D$;1$;C$;C$:RETURN 
170 PRINT "SAT ";B$;G$;D$ ;K$ :RETURN 
180 FOR Y = 1 TO 6 
190 ON Y GOSUB 120,130,140,150,160,170 
200 PRINT:NEXT Y 
210 RETURN 

6-19 



IF -THEN - :ELSE 

Format IF { <relational expression > } THEN 1 < statement>)~. 
<logical expression> <line number> 

<label> 

[:ELSE 1 < statement> l] 
<line number> 
<label> 

[ Abbreviated Format [ 

[ Explanation [ 

IF-TH. - :EL. 

IF -THEN - :ELSE statements are used to control branching of program execu­
tion according to the result of a logical or relational expression. When the result 
of such an expression is true, statements following THEN are executed. If a line 
number is specified following THEN, program execution jumps to that line of the 
program. 
If the result of the logical or relational expression is false, statements following ELSE 
are executed. If a line number is specified following ELSE, program execution jumps 
to that line. 
If :ELSE is omitted and the result of expression is false, execution continues with 
the next program line after the IF - THEN statement. 

(When ELSE is not used) 

IF 

THEN 

If a line number If a statement 
or label is is specified, it is 
specified. executed. 

Execution jumps Afterwards, pro-
to the specified gram execution 
line or label. advances to the 

next line . 

To next line 

6-20 

(When ELSE is used) 

IF 

THEN 

If a line number If a statement 
or label is is specified, it is 
specified . executed. 

i 
Execution jumps Afterwards, pro-
to the specified gram execution 
line or label. advances to the 

next line. 

ELSE 

If a line number If a statement 
or label is is specified, it is 
specified . executed. 

Execution jumps Afterwards, pro-
to the specified gram execution 
line or label. advances to the 

next line. 



Example 10 IF C< 1 THEN C= 3 :ELSE C=C-1 
This statement assigns 3 to C if C is less than 1; otherwise, assigns C-1 to C. 

10 IF C< >D THEN 150 :ELSE END 
This statement causes jump to line 150 if C is not equal to D; otherwise, ends pro­
gram execution. 

10 IF A$ = "ABC" THEN A$=A$+"DEF" 
This statement assigns "ABCDEF" to A$ if A$ contains "ABC"; otherwise, the 
program proceeds to the next line. 

Note: 
(Precautions on comparison of numeric values with BASIC lZ-016) 
Numeric values are represented internally with binary floating point representation; 
since such values must be converted to other forms for processing or external dis­
play (such as in decimal format with the PRINT statement), a certain amount of 
conversion error can occur. 

For example, when an arithmetic expression is evaluated whose mathematical result 
is an integer, an integer value may not be returned upon completion of the opera­
tion if Values other than integers are handled while calculations are being made. 
Be aware of this and take it into consideration when evaluating relational expres­
sions using '' = ''. 
This need is illustrated by the sample program below, which returns FALSE after 
testing for equality between 1 and 1/100 * 100. 

1 0 A = 1 / 1 00 * 1 00 
20 IF A= 1 THEN PRINT "TRUE" :ELSE PRINT "FALSE" 
30 PRINT II A= II ;A 
40 END 
RUN 
FALSE 
A= 1 

The fact that both "FALSE" and "A= 1" are displayed as the result of this pro­
gram shows that external representation of numbers may differ from the number's 
internal representation in the computer. 

6-21 



IF-GOTO 

IF { <relational expression > } GOTO { < line number> } 
<logical expression> <label> 

Format 

~I A- b-b-re-v-ia-te_d_F_o-rm- at---,1 

I Explanation 

Example 

See also 

IF-G. 

The IF - GOTO statement sequence evaluates the condition defined by <relational 
or logical expression> , then branches to the line number specified in <line number> 
or <label> if the condition is satisfied. As with the IF -THEN sequence, 
IF -GOTO is used for conditional branching. When the specified condition is satis­
fied, the program execution jumps to the line number specified in <line number> 
or <label>. If the condition is not satisfied, execution continues with the next line 
of the program. (Any statements following IF - GOTO on the same program line 
will be ignored.) 

10 T=O:N=O 
20 INPUT "VALUE= ";X 
30 IF X=999 GOTO 100 
40 T = T + X:N = N + 1 
50 GOTO 20 

100 PRINT II* * * * * * * * * * *II 
110 PRINT "TOTAL:";T 
120 PRINT "NO. ENTRIES:" ;N 
130 PRINT "AVERAGE:";T/N 
140 END 

The above example gives the total and average of input values. If 999 is input, pro­
gram execution is terminated. 

GOTO 
IF -THEN - :ELSE 
IF-GOSUB 

6-22 



IF-GOSUB 

IF { < relational expression> } GOSUB { < line number > } 
< logical expression> < label> 

Format 

~I A-b-br_e_y_ia-te_d_F_o-rm-at~I 

I Explanation 

Example 

See also 

IF-GOS. 

The IF - GOSUB statement evaluates the condition defined by <relational or logi­
cal expression> . If the condition is satisfied, the program execution branches to 
the subroutine beginning on the line number specified in <line number> or 
<label> . Upon completion of the subroutine, execution returns to the first executa­
ble statement following the calling IF - GOSUB statement. Therefore, if multiple 
statements are included on the line with the IF - GOSUB statement, execution returns 
to the first statement following IF - GOSUB. 

10 INPUT" X= ";X 
20 IF X<O GOSUB 100:PRINT "X<O" 
30 IF X=O GOSUB 200:PRINT "X=O" 
40 IF X>O GOSUB 300 :PRINT "X>O" 

50 PRINT "* * * * * * * * * * * * * * * * * *. * *" 
60 GOTO 10 
100 PRINT" * PROGRAM LINE 100 ":RETURN 
200 PRINT " * PROGRAM LINE 200 " :RETURN 
300 PRINT " * PROGRAM LINE 300 ": RETURN 

GOSUB - RETURN 
IF -THEN - :ELSE 
IF-GOTO 

6-23 



PRINT 

Format PRINT [ < palette code> ] < data> [ r} < data> ] 

I Abbreviated Format I 

Explanation 

Example 

See also 

? 

The PRINT statement displays data on the screen. <palette code> specifies the 
palette code for the colour of the text on the screen. If this code is omitted, the 
palette code specified in the colour statement is assumed. 
When a semicolon is used to delimit two <data> items, it causes them to be dis­
played with no extra space. A comma, on the other hand, causes IO-character tabu­
lations to be performed between the printout of each <data> item. If no <data> 
item is specified, this command performs a line feed. 
Numeric data is displayed by this statement in one of two formats: real number 
format or exponential format. Numeric values in the range from 1 x 10-8 to 1 x 
108 are displayed in real number format; those beyond this range are displayed in 
exponential format. 

10 PRINT [2] "ABC"; 123 ... Displays the text data "ABC" and numeric data 123 
with no space in the colour corresponding to palette 
code 2. 

20 PRINT [3] "ABC", 123 ... Displays the text data "ABC" and numeric data 123 
with a IO-character tabulation between them. The 
colour assigned to palette code 3 is used. 

Note: 
Some special uses of the PRINT statement are shown below. 
PRINT "Iii " Clears the entire screen and moves the cursor to the home position 

the upper left corner of the screen). 
PRINT "m " Moves the cursor to the home position without clearing the screen. 
PRINT '·· '' Moves the cursor one column to the right. 
PRINT '·· '' Moves the cursor one column to the left. 
PRINT ... ,, Moves the cursor up one line. 
PRINT "B" Moves the cursor down one line. 
To enter special characters for cursor control, press the I GRAPH I key; this changes 
the form of the cursor to"_ ". Next, press an edit key, I CLR I, I HOME I, G, 
G::J , IJJ , or DJ . After entering the special character, press the I ALPHA I key 
to return to the normal mode. 

COLOR 
PAL 

6-24 



PRINT USING 

Format PRINT [ < palette code> ] USING ' ' < format string > ''; < data> [ { '.} < data> ] ... 

I Abbreviated Format I 

Explanation 

? USI. 

The PRINT USING statement displays data on the screen in a specific format. This 
statement should be entered using the same format as the PRINT statement, except 
for the specification of <format string> . <format string> consists of formatting 
characters which specify the format in which data is to be displayed, as described 
in the examples below. 

(1) Formatting characters for numeric values 
(a) # 

(b) 

A "sharp" symbol is used to represent each digit position. If the number 
to be displayed has fewer digits than positions specified, the number will 
be right-justified in the field. 

10 A= 123 
20 PRINT USING II#### 11 ;A 
RUN 
LJ 123 

A period indicates the position in which the decimal point is to be displayed. 
The number of # signs to the right of the decimal point specifies the num­
ber of decimal places to be displayed. 

10A=12 
20 PRINT USING II###.## 11 ;A 
RUN 
LJ 12.00 

(c) ' 
A comma placed at every third # sign in the < format string > parameter 
indicates the position in which a comma is to be displayed. Numbers will 
be displayed right-justified. 

10 A= 6345123 
20 PRINT USING II#'###'### 11 ;A 
RUN 
6,345, 123 

6-25 



(d) + and -
A plus ( +) or minus ( - ) sign may be included at the end of < format 
string> to specify that the sign of the number is to be displayed in that 
position instead of a space. For instance, PRINT USING " # # # # + ";A 
or PRINT USING " # # # # - ";A will cause the sign to be displayed im­
mediately after the number. (PRINT USING"# # # # - "causes a minus 
sign to be displayed following the number if the number is negative; if the 
number is positive, only a space is displayed in that position.) Furthermore, 
a plus sign may be specified at the beginning of a format string to indicate 
that the number's sign is to be displayed in the position regardless of whether 
it is positive or negative. 

PRINT USING "####+";-13 
LJLJ 13-
PRINT USING II+#### ";25 
LJ LJ + 25 

Note: 
Although a minus sign will be displayed if one is specified at the beginning 
of the format string, it will have no relationship to the sign of the number. 

(e) * * 
Specifying a pair of asterisks at the beginning of the format string indi-
cates that asterisks are to be displayed in the positions of leading zeros. 

10 A= 123 
20 PRINT USING "**####";A 
RUN 

* * * 123 

(f) ££ 
Specifying a pair of pound signs at the beginning of the format string indi­
cates that a pound sign is to be displayed in the position immediately to 
the left of the number. 

10 A= 123 
20 PRINT USING "££####";A 
RUN 
LJLJ £123 

(g) $$ 
Specifying a pair of dollar signs at the beginning of the format string indi­
cates that a dollar sign is to be displayed immediately to the left of the 
number. 

10 A=456 
20 PRINT USING "$$####";A 
RUN 
LJ LJ $456 

6-26 



(h) tttt 
Four exponential operators may be included at the end of a format string 
to control the display of numbers in exponential format. 

10 A= 51123 
20 PRINT USING "# #. # # # iiii" ;A 
RUN 
u 5. 11 2 E + 04 

In this case, the first number sign is reserved for display of the sign of the 
number. 

(i) Extended list of operands 
A list of variables may be specified following a single PRINT USING state­
ment by separating them from each others with commas or semicolons. When 
this is done, the format specified in <format string> is used to display 
all resulting values. 

10 A=5.3: B=6.9: C=7.123 
20 PRINT USING "# # . # # # "; 

RUN 
LJ 5.300 LJ 6.900 LJ 7.123 

!A;B;C1 
A,B,C 

The result is the same regardless of whether semicolons or commas are used 
to separate variables. 

(2) Formatting characters for string values 
(a) ! 

An exclamation mark in < format string> specifies that only the first charac­
ter in the given string is to be displayed. 

10 A$= "CDE" 
20 PRINT USING "!";A$ 
RUN 

c 

(b) &u u u u& 
Ampersands with n spaces between them specify that the first 2 + n charac­
ters in the specified string are to be displayed. If the string is shorter than 
the field defined by < &u u u u& >, it will be left-justified in the field 
and padded with spaces on the right. If the string is longer than the field, 
the extra characters will be ignored. 

10 A$="ABCDEFGH" 
20 PRINT USING "&uuuu&";A$ 
RUN 
ABC DEF 

10 A$= "XY" 
20 PRINT USING "&uuu&";A$ 

RUN 
XY u u u 

6-27 



(3) String constant output function 
When any character other than those described above is included in the for­
mat string of a PRINT USING statement, that character is displayed together 
with the value specified following the semicolon. 

10A=123 
20 PR INT USING "DATA### #";A 
RUN 
DATA u 123 

(4) Separating the USING clause 
Usually, the keywords PRINT and USING are specified adjacent to eath other; 
however, it is possible to use them separately within the same statement. 

10A=-12: B=14: C=12 
20 PRINT A;B; USING "# # # # ";C 
RUN 
-12 LJ 14 LJLJ 12 

In the above example, line 20 consists of a normal PRINT statement and a 
USING clause. 

6-28 



INPUT 

Format INPUT [<message>;]< variable>[,< variable>] 

I Abbreviated Format I 

Explanation 

Example 

GET 

Format 

Explanation 

Example 

I. 

The INPUT statement reads data entered during program execution and assigns it 
to <variable> . 
When an INPUT statement is encountered during program execution, execution stops, 
a question mark appears, and the cursor blinks to indicate that the program is wait­
ing for data. If <message> is specified, the message is displayed instead of the 
question mark. After data is typed in from the keyboard and I CR I is pressed, the 
data is assigned to <variable>, then program execution resumes. The types of the 
data and <variable> must be the same. Character constants can be entered without 
double quotes. In such cases, any leading or trailing spaces are ignored. However, 
if leading or trailing spaces or commas are to be included in the constant, enclose 
the entire character string in double quotes. 

10 INPUT A,B$ ...... ....... . .. . Allows data to be entered and displays?. When you 
have entered the data, the program assigns the first 
item to variable A and the second item to variable B$. 

20 IN PUT "A = "; A .... ... .. .. Displays message "A= " and waits for data to be 
typed in. 

GET <variable> 

The GET statement checks whether any key on the keyboard is being pressed, and 
if so, assigns the key value to the variable specified in <variable>. The variable 
will be left empty (0 for a numeric variable or null for a string variable) if no keys 
are pressed. 
With numeric variables, this statement allows a single digit (from 0 to 9) to be en­
tered; with string variables, it allows a single character to be entered. Any non-numeric 
value entered for a numeric variable will be ignored. 

10 GET A$: IF A$ = "" THEN 10 
20 PRINT A$ 
30 END 

This program displays a character entered from the keyboard if the character is 
printable. 

6-29 



DIM 

Format 

Explanation 

Example 

DIM <variable> (<subscript>)[,< variable> (< subscript>)] ... 
DIM <variable> (<subscript>,< subscript>)[,< variable> (<subscript>, 

<subscript>)] ... 

The DIM statement declares arrays with from one to four dimensions and reserves 
space in the memory for the number of dimensions declared (DIM: DIMENSION). 
Up to two alphanumeric characters beginning with an uppercase character can be 
specified for <variable> as the array name, and subscripts of any value may be 
specified to define the size of dimensions; however, the number of dimensions which 
can be used is limited in practice by the amount of free memory space available. 
Different names must be used for each array which is declared; for example, the 
declaration DIM A(5),A(6,3) is illegal. Execution of a DIM statement sets the values 
of all elements of the declared arrays to 0 (for numeric arrays) or nulls (for string 
arrays). Therefore, this statement should be executed before values are assigned to 
arrays. 
If the DIM statement is executed on an array which has previously been declared, 
and if the newly declared dimensions are greater than the existing array, an error 
results. 
All array declarations are nullified by execution of a CLR statement or a NEW 
statement. 

10 DIM A(3) . ... ... . ........ .... . Declares 1-dimensional numeric array A with 4 
elements. 

IA(O) I A(l)I A(2)1A(3)1 

3 + 1 = 4 elements 

20 DIM B$(2,3) .. .. ........ .... . Declares 2-dimensional string array B with 12 
elements. 

10 DIM A(2) 
20 FOR J = 0 TO 2 
30 INPUT A(J) 
40 NEXT J 
50 PRINT A(O), A(1 ), A(2) 
60 END 

B$(0,0) B$(0,1) B$(0,2) 

B$(1,0) B$(1, 1) B$(1,2) 
B$(2,0) B$(2,1) B$(2,2) 

B$(3,0) B$(3,l) B$(3,2) 

(2 + 1) x (3 + 1) = 12 elements 

Three array variables (A(O), A(l), and A(2)) are used in this example. The program 
inputs three numbers into these variables , then displays these numbers. 

6-30 



READ-DATA 

Format READ <variable>[,< variable>] ... 

~ 
DATA <constant>[, <constant>] ... 

I Abbreviated Format I 
REA.-DA. 

I Explanation 

Example 

Like the INPUT and GET statements, the READ statement is used to submit data 
to the computer for processing. However, unlike the other two statements, data is 
not entered from the keyboard, but is instead held in the program itself with DAT A 
statements. More specifically, the function of the READ statement is to read suc­
cessive items of data into variables from a list of values which follows a DAT A 
statement. When doing this, there must be a one-to-one correspondence between 
the variables of the READ statements and the data items specified in the DAT A 
statements. Quotation marks can be omitted for string data in DA TA statements. 
However, they cannot be omitted for null strings and strings including spaces. 

(Example 1) 
10 READ A,B,C,D 
20 PRINT A;B;C;D 
30 END 
40 DATA 10,100,50,60 
RUN 

10 100 50 60 
In this example, the values specified in the DAT A statement are read into variables 
A, B, C, and D by the READ statement, then the values of those variables are dis­
played. 

(Example 2) 
10 READ X$,A 1,Z$ 
20 PRINT X$ ;A 1 ;Z$ 
30 END 
40 DATA A, 1,C 

As shown by the example above, string data included in DAT A statements does 
not need to be enclosed in quotation marks. 
RUN 
A 1C 
The READ statement in this example picks successive data items from the list specified 
in the DATA statement, then substitutes each item into the corresponding variable 
in the list following the READ statement. 

6-31 



See also 

(Example 3) 
10 DIM A(2) 
20 READ A(0),A(1),A(2) 
30 PRINT A(0);A(1 );A(2) 

40 END 

50 DATA 3,4,5 

RUN 
3 4 5 

The READ statement in this program substitutes the numeric values following the 
DATA statement into array elements A(O), A(l), and A(2), then the PRINT state­
ment in line 30 displays the values of those array elements. 

(Example 4) 
10 READ A 
20 READ B 

30 DATA X 

The example above is incorrect because firstly a numeric variable is specified by 
the READ statement on line 10, but the value specified following the DATA state­
ment is a string value, and secondly there is no data which can be read by the READ 
statement on line 20. 

RESTORE 

6-32 



RESTORE 

Format RESTORE [ {<line number> } ] 
<label> 

l~A-b-br_e_v-ia-te_d_F_o_rm-at-.I 

RES. 

I Explanation I When the RESTORE statement is executed with no line number or only a line num­
ber of 0 specified, it causes the BASIC interpreter (when READ statements are en­
countered) to read the lists of data items from the beginning of the DAT A statement 
with the smallest line number. If either <line number> or <label> is specified, 
this statement causes the BASIC interpreter to start reading data items in the DAT A 
statement specified by the <line number> or <label> parameter or the subse­
quent DAT A statement having the smallest line number. 

Example 10 DATA "PERSONAL COMPUTER" 
20 DATA "MZ-800" 

See also 

30 READ A$,B$ 
40 PRINT A$;8$ 

50 RESTORE 20 
60 READ C$ 

70 PRINT C$ 
80 RESTORE 
90 READ D$ 

100 PRINT D$ 

110 END 
RUN 
PERSONAL COMPUTER MZ-800 

MZ-800 
PERSONAL COMPUTER 

READ-DATA 

6-33 



DEF FN 

Format 

Explanation 

Example 

DEF FN <function name> (<variable>)= <numeric expression> 

The DEF FN statement is used to define user function. Such functions consist of 
combinations of functions which are intrinsic to BASIC. The <function name> 
is an uppercase letter. 

DEF FNA(Xl = 2 * Xi2 + 3 * X + 1 . . ... Defines 2X2 + 3X + 1 as FNA(X). 
DEF FNE(V)= 1/2*M*Vi2 .. ..... . : ... Defines 1/2MV2 as FNE(V). 

(incorrect definitions) 
10 DEF FNK(X)=SIN(X/3+7r/4), FNUXl=EXP(-Xi2/K) 

. . . . . . . . . . . . . . . Only one user function can be defined by a 
single DEF FN statement. 

10 DEF FND(X) = FNB(Xl/C + X . .. ... . Any functions which have been defined with 
DEF FN cannot be used in another DEF FN. 

Find the kinetic energy of a mass of 5.5 kg when it is imparted with initial accelera­
tions of·3.5 m/s2

, 3.5x2 m/s2
, and 3.5x3 m/s2

• 

10 DEF FNE(Vl=1/2*M*Vi2 
20 M=5.5:V=3.5 
30 PRINT FNE(V), FNE(V* 2), FNE(V* 3) 
40 END 

Note: 
All user function definitions are cleared when the CLR or NEW statement is executed. 

6-34 



TRON 

Format TRON[/P] 

I Abbreviated Format I 
TR. 

I Explanation J The TRON command traces the execution of the program. Once a TRON command 
is executed, line numbers of program lines are printed on the screen, enclosed in 
brackets ([]),as they are executed by the BASIC interpreter. The IP option directs 
the output of the TRON command to the printer. 

Example 10 DEF FNA(X,Y) = X * Y 
20 READ A 1,A2,A3,A4 

See also 

TROFF 

30 W=FNA(A1,A2):GOSUB 100 
40 W=FNA(A2,A3):GOSUB 100 
50 W= FNA(A3,A4l :GOSUB 100 
60 DATA 4,5,6,7 
70 END 
100 IF W>20 THEN PRINT"ABCD" 
110 RETURN . 

Enter TRON before running this program. 

RUN 
[ 10][20][30][ 100][ 11OH40][ 1 OOJABCD 
[110][50][100JABCD 
[ 11 OJ [60] [70] 

Line numbers of program lines are printed as they are executed so you can keep 
track of how program execution proceeds. To terminate tracing, enter the TROFF 
command. 

TROFF 

Format TROFF 

I Abbreviated Format I 
TROF. 

I Explanation 

See also 

The TROFF command disables the trace function. 

TRON 

6-35 



DEF KEY 

Format 

Explanation 

Example 

KEY LIST 

DEF KEY(< key number>)= ''<character string>' ' 

Character strings can be assigned to any of the ten function keys to allow the strings 
to be entered at any time, simply by pressing a single definable function key. 
Function key numbers 1 to 5 are entered just by pressing the corresponding func­
tion key at the top left corner of the keyboard, while keys 6 to 10 are entered by 
pressing the SHIFT key together with the corresponding function key. The func­
tion key number (1 to 10) is specified in <key number>, and the string or com­
mand which is to be assigned to the key is specified in <character string> exactly 
as you want it to appear. <character string> can be up to 15 characters long in­
cluding spaces. 
Execution of the DEF KEY statement cancels any existing function key definition. 

10 DEF KEY( 1) ="SHARP" .... ... .... . . . . . .. Defines key [fl] as SHARP. 
20 DEF KEY(2) = "RUN" + CHR$( 13) .. .. . Defines key I F2 I as RUN I CR I. 
Note: 
CHR$(13) is the ASCII code for CR, which can be specified together with the string 
assigned to a definable function key to the same effect as you actually press the 
I CR I key. 

Format KEY LIST 

I Abbreviated Format I 

I Explanation 

Example 

K.L. 

The KEY LIST command displays a list of the character strings assigned to the defina­
ble function keys . 

KEY LIST~ 
DEF KEY( 1) = "R UN LJLJ L/ ' + CHR$(13) 
DEF KEY( 2) ="LIST LJ" 
DEF KEY( 3) ="AUTO LJ " 
DEF KEY( 4)="RENUM LJ" 
DEF KEY( 5) ="COLOR LJ" 
DEF KEY( 6) = "CHR$(" 
DEF KEY( 7) ="DEF LJ KEY(" 
DEF KEY( 8) = "CONT" 
DEF KEY( 9) ="SAVE LJ LJ " 
DEF KEY( 10) ="LOAD u u" 

Ready 

The list above shows the initial settings for the definable keys. 

Note: 
' ' u ' ' indicates a space. 

6-36 



INIT 

Format 

I Explanation 

Example 

(1) INIT "RAM:[ <number of bytes>]" 

(2) !NIT "LPT: [Ml rr [, Sn] [, CR code]" 

(3) INIT ''RS { ~}: <monitoring code>,< initialization code>[,< end code>]'' 

(4) INIT "CRT:[M<mode> ][,B<block code>]" 

The INIT command defines the initial settings and modes for external devices. 

(Format 1) 
In this format the INIT command initializes the optional RAM file board (MZ-1R18) 
and allocates the amount of memory space specified in <number of bytes> to this 
file, with the remaining memory space reserved for the printer buff er. <number 
of bytes> must be within the range $0010 to $FFFF. When <number of bytes> 
is omitted, the current setting for the RAM file area is assumed. The "OK? [Y /N]" 
message appears when this command is executed. Typing Y sets up the RAM file 
area as shown below. Typing N causes BASIC to display a "Break" message and 
return to the command mode. 
Either the RAM file board or the printer buff er function may become unavailable 
if the memory space assigned to it is too small. 

INIT "RAM :$FFFF" 

This statement initializes the RAM file board and allocates the maximum amount 
of memory space to RAM files. 

$0000 
System area 

$000F r-- ------____, 

RAM file area 

$FFFF ~-------~ 

After INIT"RAM: $FFFF" 
has been executed. 

6-37 

$OOoo.--------- -­
$OOOF r----S_v_st_e_ma_re_a _ _ --1 

RAM file area 

$CFFF r--------------1 
$0000 

Printer buffer area 

Initial setting 
(After INIT"RAM: $CFFF" 
has been executed .) 



Example 

(Format 2) 
In this format the INIT command specifies the printer and the mode in which the 
printer buff er is to be used. 

[M] indicates the printer buff er mode. 
MO: Direct mode (The buffer is initialized.) 
Ml: Spool mode (The buffer is initialized.) 
M2: Direct mode (If the spool mode is active, this mode is entered after any exist­
ing contents of the buffer have been printed out.) 
The Ml and M2 options are invalid if no RAM file board is installed. 
An error will be generated if image print code OBH + OBH* is sent to the MZ-80P5(K) 
printer in the spool mode. To recover from this type of error , reenter the desired 
command after executing INIT "LPT: M2". Printing can be stopped in the spool 
mode by pressing the I CTRL I and lli] keys simultaneously. 

* H indicates that the preceding number is in hexadecimal. 

[S] specifies the printer type. 
SO: MZ-1Pl6 
Sl: MZ-80P5(K) 
S2: Printer which converts print data into ASCII codes 
S3: Code through 

The following codes are converted as shown during execution of PRINT IP state­
ment when SO or S 1 is specified in the INIT statement. 

CHR$ ($11) or B is converted to $09. 
CHR$ ($12) or• is converted to $OB. 
CHR$ ($15) or m is converted to $OF. 
CHR$ ($16) or II is converted to $0C and $0A. 

<CR code> must be specified when a code other than ODH is to be used as the 
CR code. 

INIT "LPT: M 1, S 1" 

The above example specifies that part of the RAM file area is to be used as the 
printer buffer and sets the printer buffer spool mode. The printer to be used is an 
MZ-80P5(K). 

• The printer buff er 
When data is output to the printer, the computer waits until all data has been printed 
before going on to do other processing. However, since the speed of data printout 
is much slower than the computer's processing speed, the computer spends a great 
amount of time simply waiting for the printer to become ready. However, if data can 
be output to a special holding memory for temporary storage, and that memory will 
automatically forward foe data to the printer as it becomes ready, the computer will 
not have to wait and can be used for other tasks while the printer is printing. Such 
a special memory is referred to as a printer buffer. 

With the MZ-800, part of the memory in the RAM file [MZ-1Rl8] option can be 
used as a printer buffer. Printer buffer operation is enabled when Ml (the spool mode 
is specified with format 2 of the INIT command, and is disabled when MO or M2 
(the direct mode) is specified. 

6-38 



Example 

(Format 3) 
In this format the INIT command sets up the RS-232C interface mode. 

<Monitoring code> (High active) 

7 6 5 4 3 0 

Enables receive DCD monitoring. 

Enables send DCD monitoring . 

Enables send CTS monitoring . 

'------Not used. Normally set to 0. 

~------Enables send RTS OFF. 

'----- ---Enables send all characters monitoring. 

< Initialization code> (High active) 

7 6 5 4 3 2 

Parity 
00: No parity 
01 : Odd parity 
10: No parity 
11: Even parity 

Number of stop bits 
00: Not used. 
01: 1 stop bit 
1 0 : 1 + 1 /2 stop bits 
11 : 2 stop bits 

Not used. Normally set to 0. 

Length of receive or send characters 
0: 7 bits/CHR 
1: 8 bits/CHR 

<End code> 
A number from 0 to 255 ($00 - $FF) 

When exchanging data between two MZ-800 units, prepare a cable connecting the 
RS-232C terminals as shown below. 

Signal name Pin number Pin number Signal name 

TXD 2 t>< 2 TXD 

RXD 3 3 RXD 

RTS 4 

~L 
4 RTS 

CTS 5 5 CTS 

DTR 6 ~ 6 DTR 

DCD 7 7 DCD 

Ground 1, 8 1, 8 Ground 

Use both units in the terminal mode. (Refer to the manual for the RS-232C interface.) 

6-39 



< Flow chart > 

Sender 

RTS ON 

- - - - - - - - - - , bit 1 

I 
I 
I 
I 
I 
I 

________ _J 

Send 1 byte. 

- - - - - - - - - -r bit 6 
I 
I 
I 

RTS OFF 1 

End 

I 
I ---------J 

Receiver 

- - - - - - - - - - ~ bit 0 

DTR ON 

Yes 

Receive 1 byte. 

DTR OFF 

End 

6-40 



The following programs transfer the contents of A$ between the two MZ-800s: 

[Program for sender] 
10 IN IT"RS1 :$00,$8C" 
20 A$= "0123456789" 
30 WOPEN # 1,"RS1 :" 
40 PRINT# 1,A$ 
50 CLOSE# 1 
60 END 

[Program for receiver] 
10 INIT"RS1 :$00,$8C" 
20 ROPEN # 2,"RS1 :" 
30 INPUT# 2,A$ 
40 PRINT A$ 
50 CLOSE#2 
60 END 

(Format 4) 
In this format the INIT command sets up the display settings. <mode> specifies 
the resolution of the screen and the number of colours as follows. 

Mode Resolution Characters per line Colours 

1 320 x 200 dots 
40 

4 colours 

2 320 x 200 dots 16 colours 

3 640 x 200 dots 
Foreground and back-
ground colours 

· - 80 
4 640 x 200 dots 4 colours 

Note: 
Optional graphic memory (MZ-1 R25) is required to set mode 2 or 4. 
When a TV set is used as the display unit, sufficient resolution will not 
be obtained in mode 3 or 4. 

<block code> specifies the colour pallete block number. 

See Appendix A for more information on display control. 

6-41 



BYE 

Format BYE 

I Abbreviated Format I 
B. 

Explanation 

BOOT 

Format 

Explanation 

Example 

WAIT 

The BYE command returns control of the computer from the BASIC interpreter 
to the monitor program in RAM. 
See chapter 8 for details of the monitor program. 

BOOT 
The BOOT command initiates an initial program load (IPL). This command places 
the computer into the same state as when the computer is first powered on. 

BOOT .... .. ... ... .. ....... .... ..... Reloads the system program into memory. 

Format WAIT <numeric data> 

I Abbreviated Format I 

Explanation 

Example 

w. 
The WAIT statement suspends program execution for the time specified in <numeric 
data>. The time must be specified in milliseconds (111000 seconds). 
WAIT 100 .. .... ... .. ... .. . .. .. . .. Suspends program execution for 0.1 (100/1000) 

second. 

6-42 



6.3 File Control Statements 

DIR 

Format 

Explanation 

Example 

See also 

RUN 

DIR[/P] [RAM] 

The DIR command displays the names of files on the RAM file board. 
Specifying DIR/P sends the contents of the directory to the printer. 
The optional MZ-1R18 RAM file board is required for this command to be valid. 
RAM may be omitted when the RAM file board is specified in the DEFAULT state­
ment or it is logged as the default device. 
The device specified in the DIR command becomes the default device. 
Each filename is followed by one of the following three file types. 

BTX: BASIC program files 
BSD: BASIC sequential data files or program files written in ASCII format 
OBJ: Machine-language files 

DIR RAM ..... . .... .. ... . ... .. .. ... Displays a directory of the RAM file board files . 

DEFAULT 

Format RUN ["[<device name>:]< filename>"[, { ~ } ]] 

I Abbreviated Format I 
R. 

I Explanation I Erases the existing programs in the BASIC program area and clears the program 
work area, then loads the program specified with <filename> into the BASIC pro­
gram area from the device indicated with <device name> . Then, this command 
executes the program from its beginning. 
<device name> may be omitted when the default device or the device specified 
in the DEFAULT statement is to be used. When all parameters are omitted, this 
command does not erase the program in the BASIC program area. 
To load and execute a program which has been saved in the form of BSD file writ­
ten in ASCII codes, specify the A option. 
Specifying the R option makes it possible to load an OBJ file in the same manner 
as IPL. 
The file types which can be loaded are BTX, BSD and OBJ. 

Example RUN "CMT:PROG" .... ... .. ..... . . Loads BTX file "PROG" from the cassette 
tape and executes it. 

RUN "CMT:DATA" ,A ... . .. .. .. ... Loads BSD file "DATA" from the cassette 
tape and executes it. 

6-43 



LOAD 

Format LOAD "[<device name>:]<filename>" [,A] 

I Abbreviated Format I 

Explanation 

Example 

LO. 

The LOAD command loads a specified program into memory from an external 
storage device. 
<filename> must have the same name as when the file was first saved. This 
parameter is mandatory. <device name> must be CMT or RAM. This parameter 
may be omitted when the default device or the device specified in the DEFAULT 
statement is to be used. Add the A option when loading a program file which is 
saved in ASCII format. Note that reading ASCII format files takes more time than 
binary format files. 
Only BASIC text files and machine language programs can be loaded with this com­
mand. When the file to be loaded is a BASIC text file, the current program is cleared 
from the BASIC text area when the new program is loaded. 

Note: 
When loading a machine language routine to be linked with a BASIC program, the 
LIMIT statement must be executed to reserve an area in memory for the machine 
language program. Further, the applicable machine language program file is executed 
as soon as loading is completed if the loading address is inside that area. (In this 
case, the BASIC text is not erased.) 
The LOAD command can be used within a program to load a machine language 
program file. 

LOAD "CMT:HELLO" ... ... . .. Loads a file named "HELLO" from the data 
recorder. 

6-44 



Procedure for loading a program file 

ILOAD"CMT: < filename >" @filj Key in 

.!PLAY Screen display 

Press the I PLAY I button Data recorder operation 

Found '' <filename>'' Screen display (the names of program files found are displayed .) 

Loading "<filename > " Screen display 

Ready Screen display 

6-45 



SAVE 

Format SAVE "[<device name>:] <filename>" [,A] 
<device name> must be CMT or RAM. 

I Abbreviated Format I 
SA. 

Explanation 

Example 

The SAVE command assigns a file name to the BASIC program in the computer's 
memory and saves it onto an external storage device. 

The <device name: > parameter can be omitted when specifying a device that has 
already been specified in a DEFAULT statement, or is the current default device. 
The <filename> parameter is required and must always be specified. 
The SA VE command saves the BASIC program text in the ASCII format if the 
<A> option is specified. In this case, the BASIC interpreter attaches BSD to the 
file name as the file type. The types of the files that can be saved with the SA VE 
command are BTX and BSD. 

SAVE "CMT:PROG" .... . ... . . Saves the program in memory on cassette tape with 
a file name of "PROG". The file type of the saved 
program is assumed to be BTX. 

SAVE ''CMT:DEMO'' ,A ..... . . Saves the program in memory on cassette tape in AS­
CII format with a file name of "DEMO". The file 
type of the saved program is assumed to be BSD. 

Note: 
The SAVE command saves only the BASIC program text (i.e., the program text 
displayed by executing the LIST command); it does not save any machine language 
program in the machine language area. 
When using SA VE, make a note of the tape counter reading for future reference. 

Procedure for saving a program file 

i sAVE"CMT:<filename> @BJ I Key in 

±RECORD .PLAY Screen display 

Press the [RECORD] button. Data recorder operation 

Writing "<filename> " Screen display 

Ready Screen display 

6-46 



VERIFY 

Format VERIFY '' [CMT]: <filename> '' 

I Abbreviated Format I 

Explanation 

Example 

v. 
The VERIFY command compares the program in memory with the program writ­
ten on cassette to confirm. that the program has been properly saved. "Ready" is 
displayed if both programs are the same and "CMT:Illegal data error" is displayed 
if they are different. In the latter case, save the program again. 
Any ASCII file cannot be verified. 
This command is valid only for cassette files. 

VERIFY "CMT:NAME" ... .. ... Compares file "NAME" on the cassette with the pro­
gram in memory. 

Procedure for verifying a program file 

I VERIFY "<filename>" @fil Key in 

.!PLAY Screen display 

Press the I PLAY I button. Data recorder operation 

Found ''<filename>'' Screen display (the names of program files found are displayed.) 

Verifying "<filename>" Screen display 

Ready I CMT: lllegal data error 

Ready 

Screen display 

Verify 

completed. 

An error is detected. 

If this message is displayed, retry to save the program file again . 

6-47 



DELETE 

Format DELETE "[RAM:] <filename>" 

I Abbreviated Format I 

Explanation 

Example 

RENAME 

D. 
The DELETE command deletes the file specified in <filename>. The optional 
MZ-1R18 RAM file board is required for this command to be valid. 

DELETE "RAM: SAMPLE" .. . Deletes a file named "SAMPLE" on the RAM file 
board. 

Format RENAME ''[RAM:] <old filename> '', '' <new filename> '' 

I Abbreviated Format I 

Explanation 

Example 

RENA. 

The RENAME command renames a given file. To rename a file, specify the old 
and new file names in that order. An error will occur if the new file name specified 
matches that of an existing file on the RAM file board. 
RAM may be omitted if the RAM file board is set as the default device or has al­
ready been specified in a DEFAULT statement. The optional MZ-1R18 RAM file 
board is required for the RENAME command to be valid. 

RENAME "RAM: OLDPROG", "NEWPROG" 
This example changes the name of a file on the RAM file board from "OLDPROG" 
to "NEWPROG". 

6-48 



CHAIN 

Format CHAIN ' ' [<device name> :] <filename> '' 
<device name> must be CMT or RAM. 

[ Abbreviated Format [ 

Explanation 

Example 

CH. 

The CHAIN statement transfers execution from the current program to another 
program in a file. The CHAIN statement can also open a file. Executing a CHAIN 
statement has the same effect as executing the RUN command in a program except 
that CHAIN passes variables and arrays from the current program to the called 
program. 
<device name> may be omitted when the default device or the device specified 
in the DEFAULT statement is to be used. 

10A=1 
20 B=2 
30 CHAIN "CMT :PROG" 
40 END 

In this sample program, control is passed on line 30 to the program, from file 
"PROG" on the cassette. The values of variables A and B, 1 and 2, are passed 
to the called program. 

6-49 



MERGE 

Format MERGE ["[<device name>:] <filename> "][,A] 
<device name> must be CMT or RAM. 

I Abbreviated Format I 
M. 

I Explanation I The MERGE command merges the program specified in the <filename> into the 
program currently in memory. 

Example 

<device name> may be omitted when the default device or the device specified 
in the DEF AULT statement is to be used. 
If lines from the file have the same line numbers as those in the program in memory, 
the lines from the file overwrite the corresponding lines in memory. 
To merge a BSD file (program) saved in ASCII format, add the A option at the 
end of the statement. 

(Program in memory) (Program on cassette tape) 
"PROG" 

10 8=2 
30 PRINT B 
50 END 

10A=1 
20 PRINT A 
40 END 

When these programs are merged together with the MERGE "CMT: PROG" state­
ment, the merged program will look like this: 

10A=1 
20 PRINT A 
30 PRINT B 
40 END 
50 END 

Confirm the resulting program by using the LIST command. 

6-50 



WOPEN# 

Format WOPEN# <logical number>, "[<device name>:] <filename>" 
<logical number> must be an integer from 1 to 127. 
<device name> must be CMT, RAM, or RSn. 

I Abbreviated Format I 
WO.# 

Explanation 

Example 

See also 

PRINT# 

The WOPEN # statement opens a BSD file for output. It also assigns a logical number 
and name to the file. 
<device name> may be omitted when the default device or the device specified 
in the DEFAULT statement is to be used. Specifying RSn as <device name> causes 
output to be sent to the RS-232C device. 

10WOPEN#1, "CMT:DATA" .... Opens a file under the name "DATA" for out­
put and assigns logical number 1 to that file. 

10 WO PEN # 1, 11 RS1 : 11 

• • ••• •••• •••• After this statement is executed, all output from 
PRINT# 1 statements is sent to the RS-232C 
port. 

10 WOPEN#2 1 "DATA" 
20 FOR Z= 1 TO 99 
30 PRINT # 2, Z 
40 NEXT Z 
50 CLOSE # 2 
60 END 

The above sample program writes numbers 1 to 99 into the specified file. 

PRINT#, RO PEN#, CLOSE# 

Format PRINT# <logical number>, <data> [, <data>] ... 

I Abbreviated Format I 
?# 

Explanation 

Example 

See also 

The PRINT# statement writes data sequentially to the file that is opened for out­
put with a WOPEN # statement. 
<logical number> must be the file number used in the WO PEN# statement. 
<data> may be numeric or alphanumeric. 

10 WOPEN#1 1 "CMT:DATA2" 
20 PRINT#1, 1, 2, 3 
30 CLOSE# 1 
40 END 

This sample program writes numeric data 1, 2, and 3 into file "DATA". The file 
has the logical number 1 and is opened for output. 

WOPEN#, CLOSE# 

6-51 



ROPEN# 

Format ROPEN # <logical number>, " [<device name>:] <filename>" 
<logical number> must be an integer from 1 to 127. 
<device name> must be CMT, RAM, or RSn. 

~I A-b-b-re-v-ia-t-ed_F_o_rm-at_,I 

RO.# 

Explanation I The RO PEN# statement opens a file for input. The RO PEN# statement assigns 
<logical number> to the file designated by <device name> and <filename> . 
<device name> may be omitted when the default device or the device specified 
in the DEFAULT statement is to be used. "RSn:" specified in <device name> 
designates the RS-232C interface as the input device from which data is to be read. 

Example 10ROPEN#1, "CMT: DATA" . ... Opens a BSD file named "DATA" on the 

See also 

cassette. 
10 ROPEN # 1, ''RS1 :'' . .. .... .... .. . Sets the RS-232C port as the device from which 

all data specified in the INPUT# 1 statements 
is to be read. 

10 ROPEN#2, "DATA" 
20 FOR Z = 1 TO 99 
30 INPUT # 2,A 
40 PRINT A 
50 NEXT Z 
60 CLOSE # 2 
70 END 

The above program reads and displays the contents of the file created by the sam­
ple program given for the WOPEN # statement. 

INPUT#, WO PEN#, CLOSE# 

6-52 



INPUT# 

Format INPUT# <logical number>, <variable> [, <variable>] .. . 

I Abbreviated Format I 
I.# 

Explanation 

Example 

See also 

EOF( #) 

The INPUT# statement sequentially reads data items from the file opened for in­
put with the RO PEN# statement and assigns them to program variables. <variable> 
may be an array element. <logical number> is the same number used as when the 
file was first opened for input by the RO PEN# statement. 
As with the READ - DATA statement pair, an error may be generated if data 
and variable types disagree. The end of file can be tested by using the EOF # func­
tion if the specified file is on the RAM file board. 

10 ROPEN#2, "DATA2" 
20 INPUT# 2, A, B, C 
30 PRINT A, B, C 
40 CLOSE# 2 
50 END 

This sample program reads numeric data from the file opened for input under logi­
cal number 2 and assigns the data to numeric variables A, B, and C. 

ROPEN#,CLOSE#,EOF# 

EOF( # <logical number>) 
::=::======:::::::'.__-~ 
I Abbreviated Format I 

Format 

EO.# 

I Explanation I The EOF( #) function is used to find the end of a file. This function signals an end­
of-file condition when all data in the file has been read. The value -1 (true) is returned 
after the end of the file is encountered. EOF( #) is invalid when reading data from 
CMT. 

Example 

See also 

The EOF( #) function is generally used with the IF statement and placed after an 
INPUT# statement. 

10 ROPEN#3, "DATA" 
20 INPUT# 3, A 
30 IF EOF(#3) THEN END 
40 PRINT A 
50 GOTO 20 

The above program reads data items sequentially from the file named "DATA" 
and displays them on the screen until the end of the file is encountered. 

INPUT# 

6-53 



CLOSE# 

Format CLOSE[# < logical number>] 

I Abbreviated Format I 

Explanation 

Example 

See also 

KILL# 

CLO.# 

The CLOSE statement closes the file opened under the specified logical number. 
The logical number assigned to the file is released after execution of the CLOSE 
statement. 
A CLOSE operation on a file opened for output causes the output buff er to be 
flushed. A CLOSE operation with no logical number specified closes all open files 
and releases all logical numbers. 

10 CLOSE# 1 ... ...... ... .. . .... . Closes the file existing as logical number 1. 

10 CLOSE .. ... ... .. ..... ... ... .. . Closes all open files. 

WO PEN#, RO PEN# 

Format KILL[# <logical number>] 

I Abbreviated Format I 

Explanation 

Example 

See also 

KI.# 

The KILL# command aborts the writing of data into the file opened under the speci­
fied logical number. A KILL# command with no logical number aborts all current 
writing processing, closes all open files, and releases the logical numbers. 

Kl LL# 3 ..... ... ... . .... .. ...... ... . Aborts the writing of data to the file opened under 
logical number 3 and releases the logical numbers as­
signed to that file. 

WOPEN #, PRINT# 

6-54 



DEFAULT 

Format DEFAULT "<device name>: " 

I Abbreviated Format I 
DEF. 

I Explanation I The DEFAULT statement defines the device names to be assumed when the <device 
name> parameter is omitted in input/output statements. 

Example 

- Specify device names as follows: 
CMT ........ Data recorder (Default) 
RAM ........ RAM file board 
LPT ......... Printer 

RS { ~} ...... RS-232C interfaces 

DEFAULT "CMT: " 
After this statement is executed, the data recorder becomes the default device 
whenever the <device name> parameter is omitted in input/ output statements for 
external devices. 

6-55 



6.4 Graphics Control Statements 

COLOR 

Format COLOR [<palette code> [,<mode>] 

/ Abbreviated Format / 

/ Explanation 

Example 

See also 

COL. 

The COLOR statement specifies the <palette code> and optional <mode> that 
are used by the PRINT, PRINT USING, and graphics statements SET, RESET, 
LINE, BLINE, BOX, CIRCLE, PAINT, PATTERN, and SYMBOL. 
<mode> specifies the type of logical operation performed on the colours. When 
<mode> is specified as 0, the old colours in superimposed sections are over-painted 
by new colours. When this parameter is specified as 1, the old and new colours are 
logically ORed. The mode parameter does not apply however to the RESET and 
BLINE statements (see Appendix A). 

10 INIT "CRT:M1" 
20 COLOR 3,0 
30 FOR J = 0 TO 10 STEP 2 
40 SET 100,J 
50 NEXT J 
60 END 

This program plots dots at points (100, 0) and (100,2) through (100,10) in colours 
associated with palette code 3 and in superimpose mode 0. 

Appendix A. 

6-56 



PAL 

Format 

Explanation 

PAL <palette code> , <colour code> 

The PAL statement matches a palette code and col0ur codes to each other. Both 
the palette and colour code parameters can have a value from 0 to 15. In colour 
modes other than the 16-colour mode, the user can select two or four palette codes 
at a time and can select' 16 colours. In the 16-colour mode, the user can set up a 
palette block with the INIT command and select four palettes for that block, again 
enabling selection of 16 colours. The default (initial) values of the palette and colour 
codes are given below. 

(1) 2-colour mode 

Palette code Colour code 

0 0 Black 

1 15 Light white 

(2) 4-colour mode 
The table below shows the relationship between the palette and colour codes 
that is established when BASIC is started. 

Palette code Colour code 

0 0 Black 

1 1 Blue 

2 2 Red 

3 15 Light white 

You can select four colour codes out of a possible 16 colour codes. 

(3) 16-colour mode 
The default palette code values are identical to those in colour mode. In this 
mode, colours are fixed for each palette block (see the "INIT Statement" for 
palette blocks). 
n: Palette block number 

n Colour code Colour n Colour code Colour 

0 0 Black I 2 8 Grey 

1 Blue 9 Light blue 

2 Red 10 Light red 

3 Magenta 11 Light magenta 

1 4 Green 3 12 Light green 

5 Cyan 13 Light cyan 

6 Yellow 14 Light yellow 

7 White 15 Light white 

Note: 
When a palette block is changed with the INIT statement in the 16-colour mode, 
the palette code settings are initialized. See Appendix A for details of colour codes 
and pallette codes. 

6-57 



SET 

Format 

Explanation 

Example 

See also 

SET [<colour specification>] < X-coordinate > , < Y-coordinate > 
<colour specification> = [<palette code>][, <mode>] 

The SET statement sets a dot on the screen at the point specified by < X-coordinate > 
and < Y-coordinate > in the specified colour. < X-coordinate > and < Y­
coordinate > are numerical expressions (i.e., numeric constants, variables, or ex­
pressions). They can have values from the following ranges: 

-16384 ~ <X-coordinate> ~ 16383 
~ 16383 - 16384 ~ < Y -coordinate > 

( - 16384, - 16384) 

(-Y) 

V irtua l area 

(-X) (0,0) 

(0, 199) 

(+Y) 

(639,0) (+X) 

(639, 199) 

( 16383, 16383) 

Although you can specify X- and Y-coordinates in the virtual area, BASIC displays 
only the shaded area in the above figure. <palette code> can specify the colour 
of the dot to be plotted. <mode> must be either 0 or 1. When 0 is specified, the 
dot is displayed in the colour specified by <palette code> , irrespective of the cur­
rent palette code value. When 1 is specified, the dot is displayed in the colour deter­
mined by ORing the current palette code with the <palette code> specified in the 
SET statement. 
When <colour specification> is omitted, the dot is displayed in the colour speci­
fied by the last COLOR statement. 

10 SET[3,0J 100,50 .... .. ... .. Turns on a dot at coordinates (100,50) in the colour 
associated with the palette code 3, superimpose mode 
0. 

RESET 

6-58 



RESET 

Format 

Explanation 

RESET [<colour specification>] < X-coordinate >, < Y-coordinate > 
<colour specification> = <palette code> , <superimpose mode> 

The RESET statement changes the colour of a dot on the screen at the point speci­
fied by < X-coordinate > and < Y-coordinate > according to the rule shown be­
low. <X-coordinate> and <Y-coordinate> are numerical expressions (i.e., numeric 
constants, variables, or expressions). They can have values in the following ranges: 

-16384 ~ <X-coordinate> ~ 16383 
-16384 ~ <Y-coordinate> ~ 16383 

Their range of values is the same as that for the SET statement. <palette code> 
specifies the palette code for the colour of the dot to be reset. <mode> must be 
either 0 or 1. See Appendix A for more information. 

See also SET 

6-59 



LINE 

Format 

Explanation 

Example 

See also 

LINE [<colour specification>] < X-coordinate >, < Y-coordinate >, 
< X-coordinate >, < Y-coordinate > [, < X-coordinate >, < Y-coordinate >] ... 
<colour specification> = [<palette code>][,< mode>] 

The LINE statement draws line(s) connecting given points in the specified colour. 
< X-coordinate > and < Y-coordinate > are numerical expressions (i.e., numeric 
constants, variables, or expressions). Their range of values is the same as that for 
the SET statement. The <colour specification> parameter is identical to that of 
the SET statement. If this parameter is omitted, the colour specification made in 
the COLOR statement is assumed. If coordinates outside the display area are speci­
fied, the line is clipped off at the boundary of the display area. 

10 LINE [2,0J 10,20,260, 180,380,60 
20 END 

The above program draws lines that connect from points (10,20), (260,180), to (380, 
60) in the colour previously specified from palette code 2 in superimpose mode 0. 

10 INIT"CRT:M1" 
20 FOR X 1 = 0 TO 319 STEP 3 
30 LINE 159,99,X1 ,0 
40 NEXT X1 
50 FOR Y1=0 TO 199 STEP 3 
60 LINE 159,99,319,Y1 
70 NEXT Y1 
80 FOR X2 = 319 TO 0 STEP - 3 
90 LINE 159,99,X2,199 
100 NEXT X2 
110 FOR Y2 = 199 TO 0 STEP - 3 
120 LINE 159,99,0,Y2 
130 NEXT Y2 
140 END 

The above program draws dotted lines (every three dots) from the center of the screen 
(159,99) to the corners of the screen. 

BLINE, SET 

6-60 



BLINE 

Format 

Explanation 

See also 

BOX 

Format 

Explanation 

Example 

BLINE [<colour specification>] < X-coordinate > , < Y -coordinate> , 
< X-coordinate >, < Y-coordinate > [, < X-coordinate >, < Y-coordinate >] ... 
<colour specification> = <palette code> , <superimpose mode> 

The BLINE statement changes the colour of line(s) connecting given points on the 
screen according to the rule shown below. < X-coordinate > and < Y-coordinate > 
are numerical expressions (i.e., numeric constants, variables, or expressions). Their 
range of values is the same as that for the SET statement. The <colour specifica­
tion> parameter is identical to that of the RESET statement. If this parameter is 
omitted, the colour specification made in the COLOR statement is assumed. If coor­
dinates outside the display area are specified, only the line segment within the dis­
play area is deleted. See Appendix A for more information. 

LINE, RESET 

BOX [<colour specification>] < X-coordinate 1 >, < Y-coordinate 1 >, 
< X-coordinate 2 >, < Y-coordinate 2 > [,<palette code>] 
<colour specification> = [<palette code>][, <superimpose mode>] 

The BOX statement uses two pairs of coordinates as the location of the opposing 
corners of the box. < X-coordinate > and < Y-coordinate > are numerical expres­
sions. Their range of values is the same as that for the SET statement. 
The <colour specification> parameter is identical to that of the SET statement. 
If this parameter is omitted, the colour specification mode in the COLOR state­
ment is assumed. 
The last <palette code> parameter specifies that the box must be painted in the 
specified colour. When this parameter is omitted, only the borders are drawn. 

10 INIT"CRT:M1" 
20 CLS 
30 BOX [2,0]20,20,60 ,60,2 
40 END 

This program draws a rectangle on the screen and paints it in colour previously speci­
fied from palette 2. 

See also SET 

6-61 



CIRCLE 

Format CIRCLE [<colour specification>] <X-coordinate>, <Y-coordinate>, 
<radius> [, [<aspect>] [,<start>,< end>] [,0]] 
<colour specification> = [<palette code>][,< superimpose mode>] 

I Abbreviated Format I 
Cl. 

I Explanation I The CIRCLE statement draws an ellipse (circle) or arc (fan). The meanings of the 
<colour specification> parameter are identical to those of the SET statement. When 
this parameter is omitted, the values specified by the COLOR statement are assumed. 
<X-coordinate> and <Y-coordinate> give the coordinates of the center of the 
circle and <radius> the radius of the circle. Their ranges of values are as follows: 

Example 

See also 

-16384 ~ <coordinates> ~ 16383 
0 ~ <radius> ~ 16383 

The area in which the circle can be actually displayed is determined by the !NIT 
command. , 
<aspect> affects the ratio of the X-radius to the Y-radius. When <aspect> is 
less than 1, the <radius> specified becomes the X-radius. If aspect is greater than 
1, then <radius> becomes the Y-radius. The default value of <aspect> is 1. 
The <start> and <end> angle parameters specify where drawing of an ellipse 
is to begin and end. These parameters must be given in radians. When omitted, an 
ellipse (circle) is drawn. When the 0 parameter is specified with <start> and 
<end>, a fan is drawn, that is, an arc is connected to the center point with lines. 
When 0 is omitted, an arc only is drawn. 

10 IN IT"CRT:M1" 
20 CIRCLE[1,0l100,100,80,0 .5 
30 GOSUB 80 
40 CIRCLE[2,0l50, 130,60,0.5,0,7r/4,0 
50 GOSUB 80 
60 CIRCLE 159,99,50 
70 END 
80 GET A$ :1F A$=" " THEN 80 
90 RETURN 

The above program draws an ellipse, and, if any key is pressed, it draws an arc, 
then a circle. 

SET, GET 

6-62 



PAINT 

Format 

Explanation 

Example 

PAINT [<palette code>] < X-coordinate >, < Y-coordinate >, 
<boundary colour> [,<boundary colour>] ... 

The PAINT statement fills in an area on the screen with the colour specified by 
< palette code> . 
When <palette code> is omitted, the palette specified in the COLOR statement 
is assumed. 
You can select the <boundary colour> from 16 colours. The range of values that 
< X-coordinate > and < Y-coordinate > can have is determined by the INIT 
statement. 
Unless the area is completely surrounded by the specified border colour (called the 
closed loop state), painting will occur beyond that area. Painting will be suppressed 
if the specified X- and Y-coordinates lie on the border or in an area that has already 
been painted with the specified colour. 
Figures are all drawn in dots, so when lines and curves are drawn in a small area, 
small closed loops may result. When this happens, painting will not occur unless 
coordinates falling inside the closed loop are specified. 

10 INIT"CRT:M1" 
20 CLS 
30 CIRCLE[2J 160, 100,50 
40 PAINT[1J160, 100,2 
50 END 

The above program paints the area surrounded by a border using palette code 2 
with a colour specified by palette code 1, starting at point (160, 100). 

6-63 



PATTERN 

Format 

Explanation 

Example 

See also 

PATTERN [<colour specification>]< numeric data>, <text data> 
<colour specification> = [<palette code>][, <superimpose mode>] 

The PATTERN statement defines a graphics pattern in the specified colour. The 
meanings of the <colour specification> parameter are identical to those of the SET 
statement. When this parameter is omitted, the parameters in the COLOR state­
ment are assumed. 
The pattern to be drawn can be specified using <numeric data> and <text data> . 
<numeric data> ( ± 1 to ± 24) represents the number of stacked 8-bit dot pattern 
rows, and <text data> represents the individual dot pattern rows. 

Drawing of the pattern is controlled by the position pointer. The number of dot 
pattern rows specified by <numeric data> are displayed from bottom to top if 
<numeric data> is positive and from top to bottom if it is negative. After the speci­
fied number of dot pattern rows are drawn, dot pattern lines 8 bits (1 character) 
to the right of the current column are displayed. <text data> must be specified 
using ASCII codes which correspond to the binary representation of dot pattern rows. 

I ~~-. 
(Binary number) 0 1 0 1 0 1 1 1 

5 7 -+ 57 (hexadecimal) 
-+ CHR$($57) or "W" 

10 POSITION 100, 100 ........ Sets up the position pointer. 
20 PATTERN[2,0J6, "ABC DEF" 
30 END 

The above program draws the graphics pattern shown below in a colour from palette 
2. 

Binary Hexadecimal 
or Character representation 

.,,, 
/, /• 

00 -+ 0 1 0 0 0 1 1 0 -+ 46 --+ "Ff' 

~ iJ! 
~ -+ 0 1 0 0 0 0 1 -+ 45 ---+ ''E'' 

~ m, 
;: -+ 0 1 0 0 0 0 0 -+ 44 --+ ''D'' 

r~ Pf1 '~ -+ 0 1 0 0 0 0 1 1 -+ 43 --+ ''C'' 

~& ' -+ 0 1 0 0 0 0 1 0 -+ 42 -+ "B" 

~ ~ -+ 0 1 0 0 0 0 0 1 -+ 41 -+ "A" 

l 
Position pointer before execution 

Line 20 above can be replaced by the following line: 

20 PATTERN[2,0J6,CHR${$41,$42,$43,$44,$45,$46) 

POSITION 

6-64 



POSITION 

Format POSITION < X-coordinate >, < Y-coordinate > 
I Abbreviated Format I 

POS. 

I Explanation I The POSITION statement sets the position pointer to a given point on the screen. 
The position pointer points to the position on the screen where the dot pattern speci­
fied in a subsequent PATTERN statement is to be displayed. The range of values 
of the < X-coordinate > and < Y-coordinate > parameters is the same as that of 
the SET statement. 

Example 10 POSITION 100,50 

See also 

20 A$ = "ABCDEFGH" 
30 PATTERN[1,0J-8,A$ 
40 END 

The POSITION statement on line 10 sets the position pointer to (100,50) where ex­
ecution of the subsequent PATTERN statement begins. 

PATTERN 

6-65 



SYMBOL 

Format SYMBOL [<colour specification>] < X-coordinate >, < Y-coordinate >, 
<text data>[,< horizontal magnification>]*[,< vertical magnification>]* 
[, <angle code>] 
<colour specification> = [<palette code>][, <superimpose mode>] 

~, A- b-br_e_v-ia-te_d_F_o-rm-at-,! 

Explanation 

Example 

SY. 

The SYMBOL statement draws a graphics pattern of a given size at a given angle. 
When this statement is encountered, BASIC positions the lower left corner of the 
graphics pattern represented by <text data> at point (X-coordinate, Y-coordinate), 
rotated by <angle code>, and magnified by a factor of <horizontal magnifica­
tion> and/ or < vertical magnification> . 
The meanings of the <colour specification> parameter are identical to those of 
the SET statement. When this parameter is omitted, the parameters in the COLOR 
statement are assumed. 

The range of values that < X-coordinate > and < Y-coordinate > can have is iden­
tical to that specified in the SET statement. <horizontal magnification> and 
<vertical magnification> are integers from 1 to 255 and default to 1. 
When <angle code> is specified, the pattern is rotated counterclockwise with respect 
to the upper left corner of the pattern at point (X-coordinate, Y-coordinate) by the 
angle specified by <angle code> . The reference position of the pattern remains 
unchanged after the rotation. The relationship between angle codes and angles is 
given below. 

Angle code Angle Rotated by 90° 

0 oo (Default) 

1 90° 
2 180° 
3 270° 

(X,Y) 

10 SYMBOL [1 J 40,0, "MZ-800", 5,5,0 
20 FOR J = 1 TO 3 
30 SYMBOL [JJ J*80,100, "A",J+2,J+2,J 
40 NEXT J 
50 SYMBOL [1 l 280, 199, "MZ-800", 5,5,2 

6-66 



POINT 

Format 

I Explanation 

Example 

POINT ( < X-coordinate >, < Y-coordinate >) 

The POINT function returns the palette code that is defined at the given point on 
the screen. The range of values that <X-coordinate> and <Y-coordinate> can 
have is set by the INIT statement. 

10 INIT"CRT:M1" 
20SET[3,0J100,100 
30 A = POINT(100,100l 
40 PRINT A 
50 END 
RUN 
3 
Ready 

The statement on line 10 assigns the point (100,100) to palette code 3. The POINT 
function therefore returns a palette code of 3. 

6-67 



6.5 Music Control Statements 

MUSIC 

Format MUSIC < notel of melodyl > [; < notel of melody2 >] 
[; < notel of melody3 > ][, < note2 of melodyl >] 
[; < note2 of melody2 >] [; < note2 of melody3 >] 

I-A-b-br_e_v-ia-te_d_F_o-rm-at~I 

Explanation 

MU. 

The MUSIC statement generates through the MZ-800 speaker the melody or sound 
effects specified by the character string or string variable of its argument. 
Three parts of a melody can be played at the same time. In the melody specification 
that follows the keyword MUSIC, where a melody is a sequence of notes, semico­
lons are used to separate individual parts, and commas are used to separate one 
melody from another. Each note is specified as follows: 

<octave specification> <note name> <duration> 

(i) Octave specification 
The basic octave of a melody is specified in the format "On" where n is a number 
in the range 0 to 6. The plus sign ( +) makes the following notes played one 
octave higher than the basic octave, while the minus sign ( - ) causes notes to 
be played one octave lower. If neither sign is specified, the basic octave is as­
sumed. Plus and minus signs are illegal in a melody in which the basic octave 
is set to 06 and 00, respectively. 

(ii) Note specification 
The symbols used to specify notes within each octave are as follows: 

CDEFGAB# R 

The relationship between the 8-note scale (do, re, mi, fa, so, la, ti, do) and 
these symbols are shown below. The sharp symbol ( #) is used to raise a note 
by a half step. A note can be lowered a half step by attaching a # symbol to 
a note one step lower than that desired. For example, B flat is represented as 
#A. Silent intervals are specified with "R". 

J,.t JJJ,; 
----- ----

I I 1 I I 
F GIA B 

I I I 
C D E 

# C ::± 0 :l:!: F :i±G :t± A R - Rest 

6-68 



Example 

(iii) Duration specification 
The duration specification determines the length of the specified note. Dura­
tions from 1/32 to 1 are specified as numbers from 0 to 9 as shown below. 
(When R is specified, the length of the silent interval is determined.) 

¥ 7 7· i "!· ~ ~. --- . 
1 /32 rest 1/16 rest Dotted 

1 /8 rest Dotted 1 /4 rest Dotted 
1 /2 rest Dotted 

Whole rest 1/16rest 1 /8 rest 1 /4 rest 1 /2 rest 

)i 1' Jt ~ f. J J. J J 0 

1 /32 note 1 /16 note ~/~~e~ote 1 /8 note Dotted 1 /4 note Dotted 
1 /2 note Dotted 

1 /8 note 1 /4 note 1 /2 note Whole note 

0 1 2 3 4 5 6 7 8 9 

The following program plays "Oh! Susanna", composed by Stephen Foster: 

10 TEMPO 6 
20 A 1$="02G1A1 B3 + D3 + D3 + E3+D3B3G4A1B3B3A3G3A6G1A183 + 

D3 + D3 + E3+D3B3G4A1 B3B3A3A3G6R3'' 
30 A2$ = "G 1A1 G3B3B3+C3B3G3G4G1G3G3G3G3E6G1A1 G3B3B3 + 

C3B3G3G4G1G3G3E3E3G6R3" 
40 MUSIC A1 $;A2$ 
50 END 

The following options can be defined in the <melody> specification: 

n= integer Default 
Description 

value value 

On 0 to 6 2 Sets the current octave. The frequency of A is 
440Hz if n = 2. 

Nn 0 to 83 Specifies the note directly through the cor-
responding note number rather than through the 
octave number and note name. The values of n 
are listed in the table on the following page. 
Values NO to NS means rest. 

Tn 1 to 7 4 Sets the tempo in the same way as the TEMPO 
statement. 

Vn 0 to 15 15 Sets the sound volume. The volume is maxi-
mum when n = 15 and no sound is generated 
when n=O. 

Sn 0 to 7 8 Sets the envelope pattern (sound waveform). 
For the values of n, see the figures for enve-
lopes on the following page. 

Mn 1 to 255 255 Always used with the S parameter to specify the 
rate at which the envelope pattern is to change. 

1 =approx. The rate is maximum when n = 1 and decreases. 
lOm/s The slope of the envelope becomes slower as the 

value of n increases. Values of Mn which are 
too large may generate inaudible sound depend-
ing on the envelope pattern. 

Ln 0 to 9 5 Sets the length of the note. 

6-69 



Note numbers (Nn) 

~ 0 1 2 3 
e 

do 12 24 36 

do# 13 25 37 

re 14 26 38 

re# 15 27 39 

mi 16 28 40 

fa 17 29 41 

fa# 18 30 42 

so 19 31 43 

so# 20 32 44 

Ia 9 21 33 45 

la# 10 22 34 46 

ti 11 23 35 47 

Envelope patterns (Sn) 

Envelope pattern 
n (x-axis represents time; 

y-axis represents volume.) 

0 

2 

3 

4 

5 

6 

7 

8 

4 5 6 

48 60 72 

49 61 73 

50 62 74 

51 63 75 

52 64 76 

53 65 77 

54 66 78 

55 67 79 

56 68 80 

57 69 81 

58 70 82 

59 71 83 

x-axis represents time in the units specified in Mn. 

The MUSIC statement causes music data to be buffered and the sounds to be gener­
ated independently of computer processing. This makes it possible to change the 
display on the screen while playing music. However, this function also prevents the 
music from being stopped with the I SHIFT I and I BREAK I keys or being played out 
to the display. The following commands are provided to control the starting and 
stopping of musical sound: 

MUSIC STOP: Stops sound generation. 
MUSIC WAIT: Suspends program execution until the entire series of notes have 

been played. 
MUSIC INIT: Initializes the music and noise setting to " 02Vl5L5T4S8M255" . 

(See the table on the previous page.) 

6-70 



TEMPO 

Format TEMPO <numeric expression> 

I Abbreviated Format I 
TE. 

Explanation The TEMPO statement sets the tempo with which music is played by the MUSIC 
statement. The setting for tempo may range from 1 to 7. The default setting is 4. 

SOUND 

TEMPO 1: Slowest tempo, 
TEMPO 4: Medium tempo, 
TEMPO 7: Fastest tempo 

Format SOUND <pitch> , <duration> 
SOUND= (<register> , <data>) 

~I A-b-b-re-v-ia-t-ed_F_o_rm-at~I 

so. 
I Explanation I The SOUND statement generates sounds as specified by <pitch> and <duration> . 

(i) <pitch> 
<pitch> specifies the pitch of the sound. The pitch codes and the corresponding 
musical notes are listed in the table below. 

I~ 0 1 2 3 4 5 6 
e 

do 12 24 36 48 60 72 

do# 13 25 37 49 61 73 

re 14 26 38 50 62 74 

re# 15 27 39 51 63 75 

mi 16 28 40 52 64 76 

fa 17 29 41 53 65 77 

fa# 18 30 42 54 66 78 

so 19 31 43 55 67 79 

so# 20 32 44 56 68 80 

la 9 21 33 45 57 69 81 

la# 10 22 34 46 58 70 82 

ti 11 23 35 47 59 71 83 

The frequency of note la in octave 2 is 440 Hz. 

6-71 



NOISE 

Format 

(ii) <duration> 
<duration> specifies in units of 1I100 seconds the length of the tone generat­
ed by this statement. <duration> must be a numeric expression from 0 to 65535. 
The SOUND = (<register>,< data>) statement is used to directly control 
the sound generator (Programmable Sound Generator) LSI. The PSG can gener­
ate three tones and one noise. The PSG register table is shown below. 

Regiser 
Data 

Number 

0 Tone 0 Frequency Integer from I to 210 
- I 

I Tone 0 Volume Integer from 0 to 15 (see note) 

2 Tone I Frequency Same as register 0 

3 Tone I Volume Same as register I 

4 Tone 2 Frequency Same as register 0 

5 Tone 2 Volume Same as register I 

6 Noise Frequency Noise data 

7 Noise Volume Same as register I 

The PSG can generate either synchronous or white noise. The type of noise 
to be generated can be specified by sending 1-byte of data to PSG port $F2. 
See Appendix B for control of PSG. 

NOISE <melody>[,< melody>] ... 

<melody> = {~}<note name> [<duration>] 

I Abbreviated Format I 
NO. 

I Explanation I The NOISE statement generates white noise as specified by the <melody n> 
parameters. The meanings of the <melody n > parameters are identical to those 
of the MUSIC statement. 

Example 

This statement can generate two parts of noises simultaneously. The parameters 
specifying these two must be separated by a semicolon(;). Any two consecutive melo­
dies must be separated by a comma (,). 

10 NOISE "C3D1","E3F1" 

The above NOISE statement generates two parts of white noises simultaneously. 

6-72 



6.6 Printer Control Statements 

PT EST 

Format PTEST 

I Abbreviated Format J 

PTE. 

Explanation 

PM ODE 

Format 

The PTEST command causes the printer to print squares in black, blue, green, and 
red in that order to check the colour specification, quantity of pen ink, and so on. 

D D D D 
0 1 2 3 .--- Value specified in PCOLOR 

(Black) (Blue) (Green) (Red) 

This command is valid only in the text mode. 

PMODE ntl 
~I A-b-b-re-v-ia-te_d_F_o-rm-at~I 

PM. 

Explanation The PM ODE command specifies the operating mode for the colour plotter-printer. 

PMODE TN 

The PMODE TN command returns the printer to the text mode from the graphics 
mode, and sets the character size to 40 characters.per line (the initial setting). 

PMODE TL 

The PMODE TL command returns the printer to the text mode from the graphic 
mode, and sets the character size to 26 characters per line. 

PMODE TS 

The PMODE TS command returns the printer to the text mode from the graphic 
mode, and sets the character size to 80 characters per line. 

PMODE GR 

The PM ODE GR command switches the printer from the text mode to the graphics 
mode. When switching to this mode, the BASIC program being executed must make 
a note of the character size being used immediately before the mode change is made. 
Doing this allows the program to return to the text mode when the I SHIFT [ + 
I BREAK I key is pressed or a STOP command is encountered. 

6-73 



Current 

***CHARACTER MODE*** 

SHARP MlH300 

SHARP M2-800 

SHARP MZ-800 

80 character mode (TL) 

40 character mode (TN) 

26 character mode (TS) 

The PMODE GR command turns any command used in the graphics mode executable 
and sets the X and Y axes on the printer. The current pen location is initially set 
as the origin (0, 0). The origin can be moved to any location if it is within the range 
of the printable area. Printing beyond the forms may damage the pen and cause 
printer trouble. 

Y = 999 (Max.) 

+Y 

~ 
0 

;;:: 

Qi 
c. 
"' c. 

Y = 999 (Max.) 
+Y 

~ 
0 

;;:: 

Qi 
c. 

"' c. 
pen location (0,0) (480,0) 0 -X -240 240 +X 

'+-
0 

c 
0 

"i=) 
<.J 

~ 
Ci 

-Y 

-Y 
Y = -999 (Min.) 

c 
0 

"i=) 
<.J 
~ 
Ci 

X and Y axes after the origin is moved X and Y axes after execution of 
to the center. (PMOVE 240, -- 240: HSET) 

• Printer modes 

a PMODE GR command. The X-axis 
is drawn from 0 to 480 and the Y-axis 
from - 999 to 999. 

The modes of printer operation and commands which can be used with different modes 
are as shown in the table below. 

Mode 
Mode selection 

Commands usable 
command 

Text mode PMODE TN PT EST * LIST/P 
40 characters/line PCOLOR * HCOPY 

PSKIP PWf 
Text mode PMODE TL PAGE 
26 characters/line * PRINT/P 

Text mode PMODE TS * PRINT/P USING 
80 characters/line 

Graphic mode PMODE GR PLINE HSET 
RUNE GPRINT 
PMOVE AXIS 
RMOVE PCIRCLE 
PHO ME PCOLOR 

Note: 
Commands marked with an asterisk ( *) can be used with a dot printer (MZ-80 P5(K)); 
other commands can only be used with a plotter printer. 

6-74 



PCOLOR 

Format 

I Abbreviated Format I 
PC. 

The PCOLOR command specifies the colour to be used for the printout of charac­
ters or graphics. This command can be entered in either the text mode or graphics 
mode. The available colours and the corresponding colour numbers are listed below. 

0: Black 
1: Blue 
2: Green 
3: Red 

Example 10 PCOLOR 1 ...... .. .. .. .. .... . Sets the pen colour to blue. 

PSKIP 

Format PSKIP <number of lines> 

I Abbreviated Format I 
PS. 

I Explanation I The PSKIP command feeds the paper by the specified <number of lines> forward 
when the specified value is positive and feeds it by the specified <number of lines> 
backward when the value is negative. <number of lines> must be an integer from 
-20 to 20. This statement is valid only in the text mode. 

Example 10 PSKIP 12 ...... ....... ... .. ... Feeds the paper 12 lines forward. 
20 PSKIP - 6 ... ....... .. ..... ... Feeds the paper 6 lines backward. 

PAGE 

Format PAGE <number of lines> 

I Abbreviated Format I 
PA. 

J Explanation I The PAGE command specifies the number of lines per page. <number of lines> 
must be an integer from 1 to 72. The PAGE command also sets the current page 
position as the first line of the page. This statement can only be executed in the 
text mode. 

Example 10 PAGE 20 ... .. ... .. .... .. .... . Sets the number of lines per page to 20. With this set­
ting, the printer will space 20 lines when a form feed 
is performed. 

6-75 



PRINT/P 

Format PRINT IP < data> [ { : } < data> ] ... 

I Abbreviated Format I 

Explanation 

Example 

?IP 

The PRINT IP statement submits output data to the printer in almost the same for­
mat as the PRINT statement would to the screen. Either the separators "," and 
'';'' or the TAB function in this statement have the same effect as that in the PRINT 
statement. Various functions supported by the printer can be used by sending print 
control codes in the following format: 

PRINT/P CHR$ (control code) 

10 PRINT/P "ABCD" .. ....... . Prints "ABCD". 
10 PRINT/P CHR$($0A) ... ... Causes a line feed. 

Note: 
To execute PRINT IP statements containing control code •or B successively, you 
must specify them on separate lines or delimit them with colons (:). BASIC may 
interpret control codes concatenated with connectors ( +) as a single code sequence 
and cause a print malfunction. 

[Invalid] PRINT/P "B" + "BB 4D" 

BASIC will interpret this statement as PRINT IP "II II II" + "4D" . Instead, 
specify the following : 

[Valid] PRINT/P "B" : PRINT/P "BB 4D" 

PRINT /P USING 

Format PRINT IP [<palette code> ]USING"format string";< data>[{'.}< data>] ... 

I Abbreviated Format I 

Explanation 

See also 

?IP USI. 

The same as the PRINT USING statement excepting that the output device is ·the 
printer. 

PRINT USING 

6-76 



PLINE 

Format PLINE [% <line type>,] xl,yl [, x2,y2, .. ., xi,yi] 

I Abbreviated Format I 

Explanation 

Example 

PLI. 

The PLINE statement draws a solid or dotted line from the current pen location 
to the location indicated by absolute coordinates (xl,yl), then draws a line from 
that point to the location indicated by absolute coordinates (x2,y2), etc. xi must 
be an integer from - 480 to 480 and yi an integer from - 999 to 999. < line type> 
specifies the type of line to be drawn and must be an integer from 1 to 16. Solid 
lines are drawn when <line type> = 1 and dotted lines are drawn when <line 
type> = 2 to 16, where n is a number corresponding to a line type. If % <line type> 
is omitted, the previous value of n is assumed. The initial value of <line type> 
is 1 (solid line). Lines selectable with <line type> are as follows: 

* * * LINE 1-16 * * * 
n= 1 - - · -·~-·--·-------·---------

r =- 2 
n= 3 
n= 4 
r = 5 

r•= 6 
-
/ 

n= 8 
n= 9 
r·= 10 
r-1= 1 1 
r = 12 
r·= 13 
r· = 14 
n= 15 
r = 16 

The PLINE statement is only valid in the graphics mode. 

10 PMODE GR 
20 PLINE % 1, 0, 0, 200, 0, 200, - 200, 0, - 200, 0, 0 
30 END 

The above program draws a square with sides 200 units long. 

6-77 



RLINE 

Format 

Explanation 

Example 

PMOVE 

Format 

Explanation 

Example 

RLINE [OJo <line type>,] xl,yl [, x2,y2, .. . , xi, yi] 

The RLINE statement draws a line from the current pen location to the location 
indicated by relative coordinates (xl ,yl), then draws a line from that point to the 
location indicated by relative coordinates (x2,y2), etc. 
xi must be an integer from - 480 to 480 and yi must be an integer from - 999 to 
999. The line styles selectable with <line type> are the same as for the PLINE 
statement. 
The RUNE statement is only valid in the graphics mode. 

10 PMODE GR 
20 SO= INT (120*SOR(3)) 
30 RLINE % 1,240,0, - 120, -SO, - 120,SO 
40 PMODE TN 

This program draws a triangle with solid lines. 

PMOVE < X coordinate>, < Y coordinate> 

The PMOVE statement lifts the pen and moves it to the specified location (x,y). 
< X coordinate> and < Y coordinate> must be an integer in the range - 480 to 
480 and - 999 to 999, respectively. 
This statement is only valid in the graphics mode. 

The following program draws a cross with sides 480 units long: 

10 PMODE GR 
20 PLINE 0,0,480,0 
30 PMOVE 240,240 
40 PLINE 240,240,240, - 240 
50 PMODE TN 

Remember to advance the paper before executing this program. 

6-78 



RMOVE 

Format RMOVE <X coordinate>,<Y coordinate> 

[Abbreviated Format J 

J Explanation 

Example 

PHOME 

RM. 

The.RMOVE statement lifts the pen and moves it to the location indicated by rela­
tive coordinates (x, y). < X coordinate> can be an integer from - 480 to 480 and 
< Y coordinate> can be an integer from - 999 to 999. 
The RMOVE statement is only valid in the graphics mode. 

10 PMODE GR 
20 PMOVE 240, 0 
30 PLINE 240, 0, 360, 120 
40 RMOVE -120, 0 
50 PLINE 240, 120, 360, 240 
60 PMODE TN 

The above program draws two oblique lines. 
Remember to advance the paper before executing this program. 

Format PHO ME 

J Abbreviated Format J 

J Explanation 

Example 

PH. 

The PHOME statement returns the pen to the origin. This statement is valid only 
in the graphics mode. 

10 PMODE GR 
20 PLINE 240, - 240 
30 PCIRCLE 240, - 240, 50 
40 PHOME ....................... Returns the pen to the home position. 
50 PMODE TN 

6-79 



HSET 

Format~ HSET 

I Abbreviated Format I 
H. 

Explanation 

Example 

GPRINT 

The HSET statement sets the current pen location as the new origin. The most ap­
propriate location for drawing figures can be set as the origin by moving the pen 
to the location with a PMOVE statement before specifying a HSET statement. This 
statement is only vaid in the graphics mode. 

10 PMODE GR 
20 PMOVE 240, - 240 
30 HSET ..... ........ ........... .. Sets (240, -240) as the new origin (0,0). 
40 PMOVE 240,0 
50 PLINE 240,0,0, - 240, - 240,0,0,240,240,0 
60 PHOME 
70 PMODE TN 

Format GPRINT [[ < size> , < angle>],] <text data> 

I Abbreviated Format I 

Explanation 

Example 

GP. 

The GPRINT statement prints the specified character using the specified size and 
angle. 
<size> may be any number from 0 to 63. 80 characters can be printed per line 
when <size> = O; 40 characters per line when <size> = 1; and 26 characters per 
line when <size> =2. <angle> indicates the direction in which character lines 
are printed. The character is rotated with respect to its lower left corner by the an­
gle specified with <angle> . <angle> must be an integer from 0 to 3. When < size> 
and <angle> are omitted, the previous or default settings are assumed. The initial 
(default) values are <size>= 1 and <angle> =0. 
The GPRINT statement is only valid in the graphics mode. 

10 PMODE GR 
20 GPRINT "A" ............ .. .. Prints "A" in the graphics mode. 
30 PMOVE 240, - 240 
40 GPRINT [2,2], "A" ...... ... Prints an upside down "A" in the 26 characters/line 
50 PHOME mode. 
60 PMODE TN 

6-80 



The following figures show various examples of printout. 

A 

<size> =3 A <size> =0 

<angle>=~ 
y 

<angle>= 1 

A 
<size> =4 A <size>= 1 

A 
<size> =5 A <size> =2 

AXIS 

Format AXIS <axis>,< pitch>,< repetitions> 

I Abbreviated Format I 

Explanation 

Example 

AX. 

The AXIS statement draws the X-axis when <axis> = 1, and the Y-axis when 
<axis> = 0. The number of scale marks specified in <repetitions> is drawn with 
the pitch specified in < pitch> . 
< pitch> must be an integer from - 999 to 999. <repetitions > must be an integer 
from 1 to 255. 
The AXIS statement is only valid in the graphics mode. 

10 PMODE GR 
20 PMOVE 240, 0 
30 AXIS 0, - 10,48 
40 PMOVE 0, - 240 
50 AXIS 1, 10,48 
60 PMODE TN 

6-81 



PCIRCLE 

Format 

The above example draws the X and Y axes with scale marks from - 240 to 240 
at 10 unit intervals. 
The coordinates can be used in the same manner as ordinary Cartesian coordinates 
after setting the point of intersection of the X and Y axes as the new origin. (X = - 240 
to 240, Y = - 240 to 240) 

PCIRCLE < X coordinate> , < Y coordinate> , <radius> , 
< starting angle> , < ending angle> , < step angle> 
< X coordinate> : - 999 to 999 
< Y coordinate > : - 999 to 999 
<radius>: 0 to 999 

I Abbreviated Format I 
PCI. 

Explanation 

Example 

The PCIRCLE statement draws a circle, or arc counterclockwise. The circle (arc) 
has a <radius> and a <step angle>, with the center at location (x,y), and starts 
at <starting angle> and ends at <ending angle> . A complete circle is drawn when 
<starting angle> = 0, <ending angle> = 360, and <step angle> = 0.2. 
This statement actually draws a polygon, therefore <step angle> must be as small 
as possible in order to draw a smooth figure. <starting angle> must be smaller 
than <ending angle>. When <step angle> = 0, lines connecting the center and 
the starting point and the center and the ending point are drawn. The PCIRCLE 
statement is only valid in the graphics mode. 

10 PMODE GR:P=O 
20 PMOVE 240, - 240 

30 HSET 

40 FOR J = 240 TO 40 STEP - 60 
50 PCOLOR P 

60 PCIRCLE 0, 0, J, 0, 360, 2 

70P = P+1 
80 NEXT J 
90 PMODE TN 

6-82 



LIST/P 

Format LIST /P [<starting line number>] [ - ] [<ending line number>] 

I Abbreviated Format I 

Explanation 

HCOPY 

L./P 

The LIST /P command lists all or part of the program lines in memory on the printer. 
See the explanation of the LIST command for an explanation of procedures for 
specifying the range of lines to be printed. Note that, when graphic characters are 
included in the program list, most of them will be printed in a different colour as 
hexadecimal ASCII codes if the plotter printer is used. 
This statement is valid only in the text mode. 

Format HCOPY 

I Abbreviated Format I 
HC. 

Explanation 

PLOT 

Format 

The HCOPY command copies the contents of the screen onto the printer. This com­
mand is only available for the MZ-80P5(K) printer and cannot be used for the colour 
plotter printer. 

PLOT {ON } 
OFF 

I Abbreviated Format I 
PL. 

Explanation The PLOT ON statement makes it possible to use the colour plotter printer as a 
display unit. Thus, the MZ-800 can be used without an external display screen. 
The PLOT ON statement sets the number of characters printed per line to 80 when 
the screen is in the 80-column mode and sets it to 40 when the screen is in the 
40-column mode. 
This statement is only valid when the colour plotter printer is installed and used 
in the text mode. The CONSOLE command is made invalid once a PLOT ON is 
executed. 
A period ''.'' is printed to represent any character which is not contained in the 
colour plotter printer's character generator. The I INST I , I DEL I , and B keys are 
disabled by executing this statement. I CTRL I + [QJ can be used to change the colour 
of the pen. 
The PLOT OFF command cancels the PLOT ON command. 
The INIT"CRT:Mn" statement also cancels the PLOT ON command. 
The printer is set to the 40-character mode if the PLOT ON is executed when the 
display is in the 40-character mode; it is set to the 80-character mode if the state­
ment is executed when the display is in the 80-character mode. 

6-83 



6. 7 Machine Language Control Statements 

PEEK 

Format 

Explanation 

Example 

POKE 

Format 

Explanation 

Example 

INP@ 

Format 

Explanation 

PEEK <address> 

This function returns the contents of the specified address as a decimal number from 
0 to 255. <address> may be a decimal number from 0 to 65535 or a 4-digit hex­
adecimal number from $0000 to $FFFF. 

The following program displays data stored in the area from 40960 ($AOOO) to 40975 
($AOOF): 

10 FOR AD= 40960 TO 40975 
20 PRINT PEEK (AD) 

30 NEXT AD 
40 END 

POKE <address> , <data> [, <data>] ... 

The POKE statement writes a consecutive number of data values starting at the speci­
fied address. 
<address> may be a decimal number from 0 to 65535 or a 4-digit hexadecimal 
number from $0000 to $FFFF. < datan > may range from 0 to 255 or from $00 
to $FF. This statement can write data to any memory location, regardless of the 
limit set by the LIMIT statement. Therefore, careless use of this statement can des­
troy the monitor or BASIC interpreter. 

POKE $D000,$5F ..... ......... Uses hexadecimal numbers. 
POKE 53248,95 ............. ... Uses decimal numbers. 

The two statements above perform the same function. 

INP@ <port number>, <variable> 

The INP@ statement reads 8-bit data from the input port specified in <port num­
ber> , converts it into a decimal number and assigns it to <variable> . <port num­
ber> may be in the range 0 to 127 (hexadecimal $00 to $7F). Port addresses 128 
to 255 ($80 to $FF) are reserved for optional peripheral devices. 

6-84 



OUT@ 

Format 

Explanation 

USR 

OUT@ <port number>, <numeric expression> 

The OUT@ statement converts the decimal number specified in <numeric expres­
sion> (0 to 255) to a binary format and sends it to the output port specified in 
<port number>. <port number> may range from 0 to 127 (hexadecimal $00 to 
$7F). Port addresses 128 to 255 (hexadecimal $80 to $FF) are reserved for optional 
peripheral devices. 
Peripheral devices are controlled by data transmitted to 1/0 ports. Consequently, 
specifying an illegal number in <port number> may cause peripheral device mal­
function. 

Format USR (<address>[,< input string variable>] [,<output string variable>]) 

I Abbreviated Format I 

Explanation 

u. 
The USR function transfers control to a machine language program which starts 
at the specified address. As with CALL <address>, control is returned to the state­
ment following the USR function when a return instruction RET or RET cc is en­
countered in the machine language program. <address> must be a decimal or 4-digit 
hexadecimal number. 
The parameters are loaded into the following registers when the main program trans­
fers control to the machine language program: 
DE register: Starting address of <input string variable> in memory. 
B register: length of <input string variable>. 
IX register: address of the error processing routine, if declared. 
The machine program loads processing results into the following registers when it 
returns control to the main program: 
DE register: starting address of <output string variable> in memory. 
B register: length of <output string variable>. 
The following steps are necessary when error processing is required in the machine 
language program: 
1. Declare an error processing routine in the BASIC program using an ON 

ERROR GOTO statement. 
2. Write a program segment which loads the A register with the error code and causes 

program execution to jump to the address specified in the IX register. 

6-85 



LIMIT 

Format LIMIT <address> 
LIMIT MAX 

I Abbreviated Format I 
LIM. 

I Explanation I The LIMIT statement limits the memory space available for use by BASIC. 
<address> sets the upper limit of the BASIC area; the area following that address 
to $FEFF ( 65279) are set aside as the user area. The area from $FFOO to $FFFF 
is used by the monitor as a work area, so it cannot be used for user programs. 
<address> can either be a decimal number or 4-digit hexadecimal number. When 
linking a BASIC program with a machine language program or storing special data 
in memory, sufficient memory space must be reserved for the user area. 

Example 

The LIMIT statement must appear at the beginning of the program. The LIMIT 
MAX statement releases the limit specified by a LIMIT statement. 

LIMIT $CFFF 

Limits the BASIC program area to $CFFF and defines the area above that address 
as the user area. 

$0000 

$FEFF 

Monitor 

BASIC interpreter 

BASIC program area 

User area 

LIMIT MAX 

LIMIT $CFFF 

Resets the limit established by a previous LIMIT statement. 

6-86 



6.8 Error Processing Statements 

ON ERROR GOTO 

Format ON ERROR GOTO { <line number> } 
<label> 

~I A-bb-r-ev-i-at_e_d_F_o_rm-at~I 

Explanation 

Example 

ON ERR. G. 

The ON ERROR GOTO statement causes program execution to branch to <line 
number> or <label> if an error occurs. The ERN or ERL system variable can 
be used in a trap routine starting at that line to control subsequent processing ac­
cording to the type of error and the line number in which it occurred. Including 
a RESUME statement at the end of the error processing routine makes it possible 
to return execution to the line at which the error occurred. Executing an ON ER­
ROR GOTO statement cancels the error trap line number defined by the previous 
ON ERROR GOTO statement. The error trap line number definition is also can­
celled by executing a CLR statement. 

10 ON ERROR GOTO 100 

20 INPUT "X = ";X 
30 PRINT SQR(X) 

40 END 
100 PRINT "ERROR" 

110 RESUME 20 

The program above displays the message "ERROR" and returns to line 20 if an 
error occurs. 

6-87 



RESUME 

Format RESUME <line number> 
RESUME NEXT 
RESUME 0 
RESUME 

I Abbreviated Format I 
RESU. 

Explanation The RESUME statement returns control to the main routine from an error process­
ing routine. 
The system holds the number of the line on which the error occurred in memory 
and returns program execution to that line or to another specified line after the er­
ror is corrected. The RESUME statement may be used in any of the following four 
forms: 

RESUME ..................... returns to the error line. 
RESUME NEXT ........... returns to the line following the error line. 
RESUME <line number> ..... returns to the line specified in <line number> . 
RESUME 0 .................. returns to the beginning of the main routine. 

Always use a RESUME statement to return to the main program from the error 
processing routine. 
If RESUME is encountered when no error has occurred, an error occurs. 
If RESUME cannot be executed, an error occurs. 

6-88 



Chapter 7 Hardware 



This chapter describes the MZ-800 hardware . It also describes peripheral devices which can be con­
nected to the MZ-800 and how to connect them. 

7 .1 MZ-800 Hardware 

7.1.1 System diagram 

CPU 
Z-80A 
3.55 MHz 

- ,. 
I I 

-----~ Printer , 
I Keyboard I ...._ ._... ._... 

,.- --.... r Keyboard interface Printer 
interface 

/~ I 

\LJ ' 
( 

MZ-1P16 or) 
MZ-80P5(K) __ ,,- ...... 

me 'Monoch~o 
1CRT 
\ " 

:.l" "--' Composite 

,.-.-- ..... 
I ' 1 Colour CRT 

display I CRT \ , , '-----
RGBI 
,.--- .... 

I ' 
I ' 
I TV , 
\ .. 
~---
RF 

,...-------, 
: Optional : 
1 device 1 L _____ _ _. 

\l./ 
interface 

I 

----i 
I 

I 

,-, 
\1 ( 

I I 

~-' LI 
/I'--

I \ l.I 
I I 
~---~ 

2 joysticks 

(~ 
1 

I 

Monitor 
CG ROM 
16 KB 

---~-~ 
I I 
1VRAM 16 KB1 V RAM 
I (MZ-1R25) I 16 KB 

L.-----J 

RAM 
64KB 

...._ 

24-hour clock -

Joystick 
interface 

.__ 

General 
purpose .__ 

slot 
interface slot 

Data recorder I ... _ 
interface 

r 

r ____ l_ __ , .... 

I I 

!Data recorder: * I 

I I 
L--------...1 

r--------, 
I I 
: RAM fi le I 

I I --t board I 
I (MZ-1R18) I 
I I 
I I 
L---------' 

I 
Programmable - sound 

generator 
I 

PSG 

I 

___ _J 

- --__ , r 
Centronics 
standard printer 

I 

"--' I 

" 

,... 
I 
I 

I 
L 

,--~ 

-------, 
Cassette l 
recorder • _______ ..; * * 

* Standard with the MZ-821 and optional with the MZ-811. 

* * Can only be used with the MZ-811. 

7-2 



7.1.2 System switch settings 

A 4-switch DIP switch package is located at the rear of the MZ-800. These switches are called the 
system switch. The function of each switch is as follows. 

Note: 
Be sure to turn off the power switch when setting the system switch. 

ON 

OFF 

1 2 3 4 

u u LJ ~ 
r r LNot used 
L_J_____'.=. Printer 

~-------Operational 

mode 

Switch 1: Mode switch 

ON 

MZ 
MZ-700 

OFF 

Centronics 
MZ-800 

This switch is used to switch the operating mode between the MZ-700 and MZ-800 modes. Normally, 
this switch is OFF. (See Chapter 9 for the MZ-700 mode.) 

ON: MZ-700 mode 
OFF: MZ-800 mode 

Switches 2 and 3: Printer interface selection 
These switches are used to switch the interface between the MZ printer system and Centronics system. 
Both switches must be set to the same position. 

ON: MZ printer 
OFF: Centronics interface 

If your Centronics standard printer does not operate even if both switches are set to OFF, set either 
switch to ON. 

Switch 4: Not used. 

With the MZ-811 
When a cassette recorder other than the MZ-1 T04 is connected to the MZ-811 's cassette tape 
recorder jack, this switch is used to switch the head polarity. If programs or data files cannot 
be read from the cassette recorder, try changing the setting of this switch. 

7-3 



-.J 

' ... 

73 MHz t 
r--

Colour r----1 
enc

1
oder ,___ -

Video 
RGBI I -- -

L_ 
,...--4 

r-1 . 
c/>=3.547 MHz 

-
CPU 

,,...____ 
L_J 

ij--

Z-80A \----

-
OSC Cursor 

556 

KEY 
DATAr-'I 

I Decoder I " 
KEY STROBE J 

!Keyboard 

0 . 

I ~ <>-:;J.,.Ht::::.t:J I 

VRAM ADR.BUS 
GOG 

VRAM 

VRAM DATA BUS 16 KB 

Tempo -
osc 

Custom - 556 
IC - CS ROM -

RAS ........_ 
........_ 

VRAS WR CAS 

ADDRESS BUS 

DATA BUS 
I 

CONTROL BUS 
L_ 

~ 
- Peripheral 1/0 BUS 

- CTC ~,_ 
PP! _, OUTO 

PC L..__ rl ~ 

r2 
8253 

8255 LC1 PA OUT2 ~~ 

PC2 -PB 

L=jPSG 76489~ 

L.a--ri R W ~ F 

c~I 
Data Recorder 

Monitor ROM 

,s: .. ~m RAM, 
16 KB 

(approx. 
27128) 
~ 

I--
I 64 KB 

I l I -~ m -~ 
)( 

~ Multiplexer "tJ 

"' I I I :i 

"' c;· 
:i 

- ,o 
OJ 
c 
Ul 

L w I Bus driver I 
PIO 

~ p '~l '-------\ ~eneral purpose___, ~-
Z-80A input bus ~ 

PIO 
C" 

PB PRINTER DATA BUS ~ 
PA4 L=: PA ,___ CTRL BUS 

VBLN- PA5 
11 - I 

r==il ~ 1 r'L/ CTRL BUS n System switch 
(MZ+-+Centronic 

0 c. e; ...., ........ 
'-" Oo::r ;_. 

::s i:::: 0 • = ...... ...... _, ~ 0 ~t=.:2. 
t"";i ~ .............. 11-11 
::r::" ........ ~ 0 .......... =- 0 0.. §. 0 
-· "Cl O" ::s :i 0 '< (Jq 'C 
... .., ............ 0 
~ ..... ::r::s ... a o 0 O' ..... 

"Cl i:::: .., ~ 

~ rD 3 0 
~ ~.., ~ a 
...... Pl ...... ... 
0 "' 0 0 ::s ...... ::s -....... ~ ....... 
Cl'l ....... en 
...... "' "Cl ::s "Cl .., 
(":) 0 0 
0 "' < 1-1 Cl'l lo-I• .., ...... 0.. 
0 O" 0 
~ ~ 0.. . ...... _, 

0 0 
(":) .., .., .., 
0 0 

~ O' 
0 .., 

3 g 
Pl (":) 
(":) 0 

go 
::s ::s 0-< 
~ (') 
...... Pl 
2' i:::: ::s c. 
(":) 0 
c. ::s 
0 3 
~ = 

m 0 ~ 
)( .., cr' 
~ 0 ('b 

~ 0.. 0 
- ...... :><I 

"' 0 Pl .., 
O" D. 
...... "' 0 0 

"Cl 0.. 
~ ~ ...... ::r 

"Cl 0 g ::s 
.., -Pl ........ 
;; 0 

"Cl "Cl 
0 0 .., .., 
Pl ...... 

I VJ 



(2) 110 port address 

The following I/O port addresses are already assigned to the existing I/O devices or are reserved 
for peripheral devices which Sharp has planned for the future. 

BO to B3 : Serial I/O port 
CC to CF : GDG (graphic display generator) 
DO to D3 : 8255 (data recorder and keyboard control) 
D4 to D7 : 8253 (programmable interval timer) 
D8 to DF : FDC (floppy disk controller) 
EO to E6 : GDG 
FO to Fl : Joystick inputs 
F2 : PSG output 
F4 to F7 : QDC 
FC to FF : Z-80A PIO (printer) 

(3) Programmable clock generator (8253) 

The MZ-800 has a built-in programmable interval timer. This timer is used for controlling the built-in 
clock and programmable sound generator. 
In the MZ-700 mode, memory mapped I/O addresses $E004 to $E007 are assigned to this timer, while 
in the MZ-800 mode, I/O mapped addresses $D4 to $D7 are assigned. 

$D4 : counter 0 
$D5 : counter 1 
$D6 : counter 2 
$D7 : control word register 

Counter 0 is used for the programmable sound generator, counter 1 is used internally and coun­
ter 2 is used for interrupting the CPU. 

8255 
PC2 

D0-07 

AO, A1 

cs 

RD 

WR 

W, 

07 

AO 
A1 

RD 

WR 

cs 

OUT2 

CLK2 

OUT1 

OUTO 

CLK1 

CLKO 

o----~ CPU 
INT 

,__ ______ __.VO! 

t-------< HSYNC 

1-------< 1. 1 MHz 

8253 

7-5 



(4) Programmable sound generator (76489) 
The MZ-800 has a built-in programmable sound generator (PSG) which can generate 3-tone chords 
over 8 octaves. 
110 port address $F2 is assigned to the PSG. For details on controlling the PSG, see Appendix B. 

76489 
DO 

DO-D7 >----~-~DO AUDIOt-----4 LM 386 
OUT (amplifier) 

D7 D7 3.55 MHz 
(BUS¢) <J> 

WR WR 

CE CE 

(8253)0UTO AUDIO 
IN 

CPU WAIT READY 

(5) Printer interface (Z-80A PIO) 
The MZ-800 uses a Z-80A PIO for the printer interface. 
1/0 port addresses FC to $FF are assigned to the PIO. 
$FC: Control register 
$FD: Control register 
$FE: Port A 

PAO, PAI: printer status (in) 
P A4, PAS: system status (in) 
PA6, PA7: printer control (out) 

$FF: Port B 
Printer data (out) 

Z-80A 
PIO 

DATA BUS--------1DO-D7 
8253 

PAS t-------- (OUTO) 

AO,A1 
AO PA4...._------VBLN 

>O---~A1 

CS, RD, WR------~cs 

RD 

WR 
PBO 

I Data 

PB7 CTRL Q; 
PA 7 ...._---1 >----1 .~ 

6 ~ 
PA1t-------c~n~---t 

0 STATUS 

7-6 



(6) Keyboard and data recorder controller (8255) 
The MZ-800 uses an 8255 to control the keyboard and data recorder. 
In the MZ-700 mode, memory mapped 1/0 addresses $EOOO to $E003 are assigned to 8255 while in 
the MZ-800 mode, 1/0 mapped addresses $DO to $D3 are assigned. 

$DO: Port A 
PAO to PA3: KEYSTROBE signals (out) 
PA4 to PA5: JOYSTROBE signals (out) 
PA7: cursor RST (out) 

$Dl: Port B 
PBO to PB7: KEYDA TA signals (in) 

$D2: Port C 
PCO: SOUND MASK (out) 
PCl: CMTWR (out) 
PC2: disable INT (out) 
PC3: MOTOR (out) 
PC4: SENSE (in) 
PC5: CMTRD (in) 
PC6: cursor FLSH (in) 
PC7: VBLNK (in) 

$D3: Control register 

DO- D7 >-----..----t 

AO, A 1 >----~---1 

cs 
WP ~-r-~_/ 

~-+-~ 

RD ~---<L_..1 

7-7 

8255 

DO LS145 
PAO 

) 
PA3 

D7 >-
UJ 

AO PBO ::.: 
A1 
cs 
WR 

RD 
PB7 

PC2 
PC3 
PC4 
PC5 
PC1 



7 .2 Peripheral Devices 

Many optional peripheral devices are available, but some of those explained in this manual may not 
be available in your country. 
Be sure to turn off the power switches of both the MZ-800 and peripheral device when connecting them. 

7 .2.1 Standard interfaces 

The MZ-800 is equipped with the following interfaces as standard. 

• CRT display interface 
• Keyboard interface 
• Data recorder interface 
• Printer interface 
• Joystick interface 

7.2.2 Expansion 1/0 connector 

An expansion I/O connector is provided inside the computer, which can be accessed by removing the 
expansion slot cover from the rear panel. This connector is provided for the connection of an optional 
interface or expansion unit. The pin assignment of the expansion I/O connector is as follows. 

Component side Solder side 
1 +5V 2 +5V 
3 D2 4 D3 
5 Dl 6 D4 
7 DO 8 D5 
9 GND 10 D6 
11 ADF 12 D7 
13 ADE 14 BUS</:> 
15 ADD 16 Ml 
17 ADC 18 WR I:::: ::: :::::::::::::: I 
19 ADB 20 RD 
21 ADA 22 IORQ Connector 

23 AD9 24 MREQ 
25 ADS 26 GND 
27 AD7 28 HALT 
29 AD6 30 IEI 
31 AD5 32 ,NC. /N lrJ Z} 
33 AD4 34 RESET 
35 AD3 36 EXRESET 
37 AD2 38 INT 
39 ADI 40 EXWAIT 
41 ADO 42 ~~ .. sovr,1 
43 GND 44 GND 
li' Gr H/ .. 'r' fl I 

~1 I . ( l, i-j -~)'tl 
l1 c /\ [ I v- ~ ytJ 

7-8 



• Installation of an optional interface 

1) Remove the expansion slot cover. (Store the cover in a safe place in case you want to remove the 
interface in the future.) 

2) Insert the interface card into the slot, and slide it along the card guides with the component side 
up. Firmly press the card into the expansion 1/0 connector at the rear of the slot. 

Interface card 

3) Remove the connector cover from optional slot cover MZ-1X17. Affix the optional slot cover to 
the rear panel of the MZ-800. 

Slot cover MZ-1X17 

11----- - Connector cover 

For details, see the manual supplied with the interface. 

7-9 



7 .2.3 RAM file board (MZ-1R18) 

The RAM file board is a memory device which can be used in the same manner as floppy disk drives, 
except that the contents of memory are lost when the power is turned off. For full details about the 
RAM file board, see the manual supplied with the RAM file board. 
The installation procedure for the RAM file board is as follows. 

(1) Remove the three screws which retain the expansion slot cabinet as shown below. Push the expan­
sion slot cabinet toward the rear of the MZ-800, then lift the rear side of the slot cabinet to remove 
it. Unplug the connector which is connected to the main unit by opening the connector latches. 

Expansion slot cabinet 

(2) Place the expansion slot cabinet upside down on a flat surface to view the two internal connectors. 
Insert the RAM file board into the upper connector with the insulating sheet surface facing up­
wards. Be sure to engage the tabs on the board with the hook on the expansion slot chassis (see 
the figure below). 

Insulating sheet / 

Tab 

7-10 



(3) Plug the connector previously unplugged in Step 1 into the connector on the main unit. Replace 
the expansion slot cabinet and secure it with the three screws. Close the connector latches to firmly 
hold the connector. 

Connector latch 

Note: 
If the cable is trapped between the cabinet and main unit, the expansion slot cabinet cannot be 
replaced properly. 

7 .2.4 Joystick 

Joysticks made by Atari Inc., or their equivalents can be used with the MZ-800. 

JOYSTICK 1 

1 FWDA t 
2 BACKA J 
3 LEFTA C.-
4 RIGHTA ~ 
5 +5V 
6 TRGlA 
7 TRG2A 
8 COMA 
9 GND 

Connector 

7-11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

JOYSTICK 2 

FWDB 
BACKE 
LEFTB 
RIGHTB 
+5V 
TRGlB 
TRG2B 
COMB 
GND 

2 

0000 
9 8 7 6 

00000 
5 4 3 2 I 



The connection procedure is as follows. 

1) Remove the joystick connector cover from the rear panel. Store the cover in a safe place in case 
you want to disconnect the joysticks in the future. 

@ 

@ 

Joystick connector cover 

2) Plug in the cables from the joysticks as shown below. 

Joystick 1 Joystick 2 

7-12 



7 .2.5 Printers 

Various types of printers can be used with the MZ-800, including two SHARP printers. 

(1) Plotter-printer MZ-1P16 
Connecton procedure is as follows. 

1) Set switches 2 and 3 of the system switch to the ON position. 
2) Remove the two screws to remove the printer connector cover from the rear panel of the MZ-800. 

(Store the cover in a safe place in case you want to disconnect the printer cable in the future .) 

Printer connector cover 

-~-~"_0 __ 

~ ~ 
System switch 

3) Plug the printer cable connector into the MZ-800 card edge connector, with the connector key fac­
ing upwards, and fasten the connector to the MZ-800 with the screws. 

DI 

Plotter-printer 
[MZ-1P16) 

Screws 

~ \i,_<O 
I \ 

~L 

Printer cable 

4) Plug the printer power cable into the plotter power jack on the rear panel of the MZ-800. 

7-13 



(2) Dot matrix printer MZ-80P5(K) 
1) Set switches 2 and 3 of the system switch to the ON position. 
2) Remove the two screws to remove the printer connector cover from the rear panel of the MZ-800. 

(Store the cover in a safe place in case you want to disconnect the printer cable in the future.) 

1 2 3 4 

System switch Printer connector cover 

3) Connect the printer connector to the MZ-800 printer connector with the MZ-1C25 optional cable. 
Remember to refasten the connector to the MZ-800 by using the screws. 

Dot printer [MZ-80P5(K)] 

® 

Printer cable 
[MZ-1C25] 

7-14 

@ 

Screws 



(3) Other printers 
Switching switches 2 and 3 of the system switch OFF allows you to use a printer equipped with a Cen­
tronics interface. However, some commercially available printers which are sold as Centronics stan­
dard printers do not actually comply with the Centronics Standard and therefore cannot be used. 
Some printers have character code sets different from that used by the MZ-1P16 or MZ-80P5(K) printer. 
These types of printers can be used but may require special programming to allow full utilization of 
all the features of the MZ-800. 

1 2 3 4 

System switch 

Printer interface 

Component side Solder side 
1 RDP 2 GND 
3 RDl 4 GND 
5 RD2 6 GND 
7 RD3 8 GND 
9 RD4 10 GND 
11 RDS 12 GND 
13 RD6 14 GND 

f 2s n.J 15 RD7 16 GND 
17 RDS 18 GND 

26 2 19 IRT 20 GND 
21 RDA 22 GND 

Connector 23 STA 24 GND 
25 GND 26 GND 

7-15 



7 .2.6 Optional graphic memory MZ-1R25 

An optional MZ-1R25 graphic memory further improves the display capability of the MZ-800. The 
set includes two I Cs which must be installed inside the cabinet. Follow the installation procedure below: 

1) Remove screws (a) and detach the data recorder unit and expansion slot compartment cabinet as 
indicated by arrows CD and @ . 

2) Unplug connectors A and B. 
3) Remove the screws (b). 
4) Remove the metal fixtures. t 

(a) 

7-16 



5) Press and hold the upper cabinet at the points indicated by the arrows Q) , then pull up the upper 
cabinet to remove it from the lower cabinet. 

Upper cabinet 

Lower cabinet 

6) Lift the front of the keyboard as shown below. 

Back side of keyboard 

7) Two IC sockets are located near the front right corner of the main printed circuit board. Insert 
the IC chips into the IC sockets as shown below. Take care that you install the pointing chips in 
the correct direction (with the dot or notch over the first pin of the IC facing the center of the com­
puter). Installing the chips in the wrong direction may damage them. 

r---llfl-+ Back side of keyboard 

Printed ci rcuit board 

8) Perform steps 1) to 6) in the reverse order to reassemble the MZ-800. 

7-17 



7 .2. 7 External cassette tape recorder (for MZ-811 only) 

With the MZ-811, an ordinary audio cassette tape recorder can be used as the data recorder. 
Connect the WRITE and READ jacks on the rear panel of the MZ-811 to the MIC and EAR 
(or EXT.SP) jacks on the tape recorder, respectively. Use shielded audio cables with 3.5 0 jacks 
at the computer ends. 

Note the following when using an ordinary cassette tape recorder. 

1) The message" ! RECORD. PLAY" does not appear when a SAVE command is entered. 
Be sure to press the I RECORD I button on the recorder before entering this command. Press 
the I STOP I button to stop the recorder after the message "Ready" is displayed. The recorder 
will not stop until the I STOP I button is pressed. 

2) The message " .:l PLAY" does not appear when a LOAD command is entered. Be sure 
to start playing the tape after entering the command. Press the I STOP I button to stop the 
recorder after the message "Ready" is displayed. The recorder will not stop until the 
I STOP I button is pressed. 

3) The level and tone controls of the cassette tape recorder must be adjusted to appropriate 
levels. Some cassette recorders (e.g., those with an automatic level control) may not be usa­
ble. In such cases, please purchase the MZ-1 T04. 

4) Programs cannot be loaded unless the head polarity is correct. Try changing the setting of 
switch 4 of the system switch to reverse the head polarity if programs cannot be loaded. 

5) For any transfer or collation, use the tape recorder that was used for recording. If the tape 
recorder for transfer or collation is different from that used for recording, no transfer nor 
collation may be possible. 

7-18 



Chapter 8 Monitor 



8.1 General 

Although a machine language program is difficult to understand because of the numeric fashion in 
which data is presented, it has many advantages, e.g., it runs much faster and -requires less memory 
space than a BASIC program. Moreover, machine language makes it possible to develop more hardware­
oriented programs, to make fuller use of your computer. You can develop machine language programs 
by using the monitor commands. 

This chapter describes the function and use for each monitor command. 

When using a monitor command, note the following points. 

* Any monitor command is accepted after the I CR I key is pressed. 
* Any command must be input exactly as it is described in this manual. Do not enter spaces in the 

command line. 
* Single-byte data in a monitor command must be specified with a 2-digit hexadecimal number, and 

2-byte (address) data must be specified with a 4-digit hexadecimal number. The "O" in the upper 
digit must not be omitted. 

* Filename characters exceeding the limit are ignored. 
* The entire memory space can be accessed by monitor commands. However, remember that the 

presence of even a single error in a program is li~ly to result in the destruction of all data stored 
in your MZ-800. 

8-2 



8.2 ROM Monitor and BASIC Monitor 

The MZ-800 is provided with two types of monitors: a ROM monitor and a BASIC monitor. The ROM 
monitor resides (is located) in ROM, while the BASIC monitor is loaded into RAM when you load 
the BASIC interpreter. 
The difference between the ROM and BASIC monitors is shown below. 

BASIC 

ROM monitor BASIC monitor 

(resides in ROM) (resides in RAM) 

8-3 



8.3 Starting the ROM Monitor 

When you turn on the power to the MZ-800, you will see the following screen. 

Make ready CMT 

Please push key 

C: Cassette tape 
M: Monitor 

Press the IM I key to start the monitor. The screen will then change and appear as follows. 

* * MONITOR 9Z-504M * * 
* 

The asterisk ( *) on the second line is called the monitor prompt, and asks you to enter a monitor 
command. 

The monitor commands are explained in Section 8.4. 

To terminate the monitor, turn off the power switch. 

8-4 



8.4 Monitor Commands 

L Command 

Format 

I Explanation 

Example 

S Command 

Format 

I Explanation 

Example 

L 

This command loads a machine language program from the cassette. 
When "!PLAY" is displayed on the screen, press the I PLAY I button. 

The following example loads a machine language program. 

*L 
!. PLAY +-- Press the I PLAY I button on the data recorder. 

s 
This command saves the specified memory block onto the cassette with specified 
filename. 

The following example saves a machine language program stored in addresses $6000 
to $60A3 onto the cassette under the filename "MFILE". The address from which 
the program is to be executed is $6050. 

*S [Q3J 
Filename? MFILE [EB] 
Top adrs? 6000 [EB] 
End adrs? 60A3 [EB] 
Exe adrs? 6050 [Q3J 
! RECORD.PLAY 

Press the I RECORD I button 

8-5 



M Command 

Format 

J Explanation 

J Example 

J Command 

Format 

J Explanation 

Example 

G Command 

Format 

J Explanation 

J Example 

M < starting address > 

This command modifies the contents of memory, starting at the specified address. 

The following example fills addresses $COOO to $C002 with the value $FF and ad­
dresses $C010 to $C013 with the value $88. 

* MCOOO [Qi] 
COOO 00 FF 
C001 00 FF 
C002 00 FF 
C003 00 ~I S-H-IFT~I + I BREAK I 
* MC010 [ill 
C010 00 88 
C011 00 88 
C012 00 88 
C013 00 88 
C014 00 ~I S-H-I F-T~I + I BREAK I 
To return to the monitor prompt, press I SHIFT I + I BREAK I . 

J <address> 

This command transfers control to the specified address, by loading the <address> 
into the program counter of the CPU. 

The following example transfers control to address $1200. 

*J1200 [Qi] 

G<address> 

This command calls the specified address. 

The following example calls address $1200. 

* G1200 [ill 

8-6 



D Command 

Format 

I Explanation 

Example 

V Command 

Format 

Explanation 

Example 

D < starting address > < end address > 

This command dumps the contents of the specified memory area. 

When the <end address> is omitted, 160 bytes from the <starting address> are 
displayed. 
The dislay format is as follows: 

HHHH HH HH HH HH HH HH HH HH ABCDEFGH T 2-digit hexadecimal numbers (8 bytes) 

Starting address 

I I 

I 
Character data (8 bytes) 

To modify the memory contents, move the cursor to the data to be modified, type 
in the new data and press the I CR I key. 

Note: 
The last eight characters indicate the ASCII codes corresponding to eight hexadecimal 
numbers. A contorl code is represented by a period (.).To stop the screen display, 
press the space bar; to return to the monitor prompt, press I BREAK I while 
holding down the \ SHIFT \ key. 

The following example dumps the contents of addresses $COOO to $C700. 

* DCOOOC700 lli] 

v 
This command verifies data saved on the cassette, or checks whether the data saved 
on the tape and the data in memory are identical. 
When no incorrect data is detected, the message "OK!" is displayed. If one or more 
bytes that do not match are detected, the message "CHECK SUM ERROR" is dis­
played. 

The following example verifies the data of file "MFILE" which has been previous­
ly saved with the S command. 

*VMFI LE~ 
!. PLAY Press the I PLAY I button. 

8-7 



B Command 

Format 

Explanation 

Example 

B 

This command specifies that the buzzer in the MZ-800 sounds every time a key is 
pressed. If the B command is entered again, the buzzer toggles off and no longer 
sounds. 

* B .[ill] 

8.5 BASIC Monitor 

When the BASIC interpreter is used, the BASIC monitor can be used instead of the ROM monitor. 
To call the BASIC monitor, key in the BASIC BYE command. After the prompt "*"is displayed, 
key in a BASIC monitor command. 
The BASIC monitor uses memory area $FFOO to $FFFF as its stack area. 
All variables for BASIC programs are not changed when the BASIC monitor is called, but they can 
be changed by monitor commands. 

8-8 



8.6 BASIC Monitor Commands 

P Command (Print switch) 

Format 

Explanation 

p 

This command outputs the data produced by the D or F command to the printer 
or screen depending on whether the current operating mode is the printer mode or 
the screen mode. When the BASIC monitor is started, the screen mode becomes 
valid. The mode is changed each time the P command is entered. 
In the printer mode, if no printer is connected or the printer is off-line, the monitor 
prompt ( *) is displayed preceded by the message "ERR?". 
Check the printer or key in the P command to enter the screen mode. 

D Command (Dump) 

Format 

Explanation 

D < starting address > < end address> 

This command displays the contents of the main memory. When the end address 
is omitted, the 128 bytes following the starting address are displayed. When the start­
ing address is omitted, the 128 bytes following the last end address are displayed. 
The display format is as follows: 

:HHHH = HH HH HH HH HH HH HH HH/ABCDEFGH 
~~~~~--,,--~~~~~' I 

I
Character data (8 bytes)

2-digit hexadecimal numbers (8 bytes)

Starting address

To modify the memory contents, move the cursor to the data to be modified, type
in a 2-digit hexadecimal number or character preceded by a semicolon and press
the I CR I key.

Note:
The last eight characters indicate the ASCII code equivalents to the eight hexadecimal
numbers. Control codes are represented by periods(.). To stop the screen display,
press the I BREAK I key, and to return to the monitor prompt, press I BREAK I while
holding down the I SHIFT I key.

8-9

M Command (Memory set)

Format

Explanation

M < starting address >

This command modifies the contents of the main memory. When the <starting
address> is omitted, modification is made from the address indicated by the cur­
rent pointer. To return to the monitor prompt, press I BREAK I while holding down the
I SHIFT I key.
When the M command is entered, the cursor positions itself at the data for the speci­
fied address. The address pointer is incremented by the number of data bytes specified.
Data may be either a 2-digiht hexadecimal or a character preceded by a semicolon.

F Command (Find)

Format

Explanation

F < starting address > < end address > < data> < data> ...

This command searches for one or more bytes of data at the specified addresses,
and if found, displays the addresses and data with the format shown for the D com­
mand. To return to the monitor prompt, press I BREAK I while holding down the
I SHIFT I key.

G Command (Gosub)

Format G < call address >

Explanation This command calls the specified address. The stack pointer resides at address $FEFF.

T Command (Transfer)

Format

Explanation

T < starting address > < end address > < destination address >

This command transfers data from the specified source address to the specified des­
tination address.

8-10

S Command (Save)

Format

Explanation

S <starting address> <end address> <execution address> :
<device name> : <filename>

This command saves data from the specified address onto the specified device. The
execution address is the address to which control is to be transferred when the pro­
gram is loaded by the L command. Filename must be specified after a colon (:).

L Command (load)

Format

Explanation

L < starting address > : < device name> : < filename >

This command loads the specified file from the specified device. If the <starting
address> is omitted, the file is loaded to the same address as that specified when
the file was first saved by the S command. If filename is omitted when the device
is CMT:, the first file found is loaded. When the l SHIFT l + l BREAK l key is pressed
or a check sum error occurs during the load operation, the message "ERR?" is dis­
played, followed by the monitor prompt.

V Command (Verify)

Format

Explanation

V <filename>

This command loads the specified file from the cassette and compares it with the
same file still in the main memory. The purpose of this command is to check whether
the file was saved onto the cassette correctly.
If an error is detected, the message "ERR?" is displayed.

R Command (Return)

Format

Explanation

R

This command returns control to the program from which the monitor was called.
If the stack pointer for the program which called the monitor resides in addresses
$FFOO to $FFFF or if no return address is saved in the stack, control cannot be
returned by the R command. When this happens, warm start the computer with
the G command.

8-11

Chapter 9 MZ-700 Mode

9 .1 Using MZ-700 Programs

Most of the programs for the SHARP MZ-700 series computer can be run on your MZ-800 computer.
However, programs which use joystick MZ-1X03 cannot be used. Please consult your dealer to check
whether the MZ-700 programs you already have can be used with the MZ-800.
To run on an MZ-700 program on your MZ-800, you must first place the MZ-800 in the MZ-700 mode.
This can be done by switching switch 1 of the system switch on the rear panel ON, then turning on
the power to the MZ-800.

MZ-700 BASIC (lZ-013) is recorded on the beginning of the side of the cassette which is labeled "BASIC
lZ-013".

Three BASIC demonstration programs for the MZ-700 are recorded on the tape following MZ-700
BASIC.

These programs can be executed as follows.

After loading BASIC (lZ-013), advance the tape to one of the values indicated below, then input the
following.

"OPENING" 130
"MUSIC" 170
"COLOR PLOTTER 190

RUN "CMT:" I CR I

When " .:l PLAY" is displayed, press the I PLAY I button.

After the tape stops, press the I STOP I button. To stop the program, press the I SHIFT I and I BREAK I
keys at the same time.

9-2

9.2 Summary of MZ-700 BASIC Commands and Statements,
Functions and Operations

Commands

LOAD

SAVE

RUN

MERGE

VERIFY

AUTO

LIST

LIST/P

RENUM

NEW

CONT

BYE

KEY LIST

LOAD "ABC"

SAVE "E"

RUN

RUN 1000

Loads BASIC text file ABC from the cassette tape into memory.

Names the BASIC text currently in the text area "E" and writes in
to the cassette tape.

Executes the program from the heading of the BASIC text currently
in the text area.
Note:
At the RUN command, all variables become 0 or null immediately
prior to program execution.

Executes program from statement number 1000.

MERGE "TEST" Merges program currently in the memory and "TEST" file in the
cassette tape.

VERIFY "H"

AUTO

AUTO 200, 20

LIST

LIST-500

LIST/P

RENUM

RENUM 100

NEW

CONT

BYE

KEY LIST

Compares program text currently in BASIC text area and content of
cassette tape file specified by file name "H".

Automatically generates line numbers 10, 20, 30 ... during text
making.

Automatically generates 200 220, 240 ... in steps of 20, from state­
ment number 200.
AUTO command is released by pressing \ SHIFT I + I BREAK \ keys.

Displays all lists of BASIC text currently in text area.

Displays list up to statement number 500.

Display list goes to printer. (TEXT MODE)

Changes statement number of the program.

Renumbers all statements beginning with first statement number 100,
and in steps of 10.

Erases BASIC text currently in text area and clears variable area.
Machine language area specified by LIMIT command· is not cleared.

Continues program execution. In other words, restarts execution from
point of interruption by \SHIFT I + I BREAK I keys or STOP statement
during program. CONT command becomes invalid when, during a
program break, the BASIC text is edited.

Moves system control from BASIC to monitor. (The return from mo­
nitor to BASIC can be made by monitor command "R" .)

Lists, on the CRT display, the definition condition of the definable
function keys.

File control statements

WOP EN 10 WOPEN
"DATA"

PRINT/T 20 PRINT/TX

RO PEN 10 ROPEN
"DATA"

INPUT/T 20 INPUT/TX

CLOSE 30 CLOSE

Opens a data file on cassette tape prior to writing data to it. This
command also assigns name DAT A to the data file.

Writes data to cassette tape in the same format as it would be dis­
played by the PRINT statement.

Searches for data file DAT A on cassette tape and opens that file to
prepare for reading data from it.

Inputs data from a cassette file and passes it to variable X.

Closes cassette data files after writing or reading has been completed.

9-3

Error processing statements

ON ERROR
GOTO

IF ERN

IF ERL

RESUME

ON ERROR GOTO
1000

IF ERN = 43 THEN
1050

IF ERL= 350
THEN 1090

IF (ERN = 43) *
(ERL= 700) THEN
END

650 RESUME

700 RESUME
NEXT

If an error occurs during program execution, this is a sentence saying
to jump to statement number 1000.

If the error number is 43, this is a command to jump to statement
number 1050.

A command to jump to statement number 1090 if the error statement
number is 350.

A command to finish the program if the error number is 43 and the
error statement number is 700.
For the BASIC, if an error occurs during the program, the error
number and error statement number will be set, respectively, to varia­
bles ERN and ERL.

Transfers control once again to the command generating the error.

Transfers control to the command following the command generating
the error.

750 RESUME 400 Transfers control to statement number 400.

800 RESUME 0 Trasnfers control to the program heading.

Substitution statement

LET LET A=X+3 Substitutes sum results of numerical variable X and numerical data 3
to numerical variable A. LET can be omitted.

Input/ output and colour control statements

COLOR

PRINT

10 COLOR,,,2

20 COLOR 3,2, 7

30 COLOR 4,2,4,2

10 PRINT A

?A$

100 PRINT [6,5]
"ABC"

110 PRINT [,4]
"DEF"

Changes all screen background colour to red.

Changes the colour of characters at coordinates (3,2) to white.

Makes the colour of characters at coordinates (4,2) green, and the
background colour red.

Displays the content of numerical variable A on the CRT display.

Displays the content of string variable A$ on the CRT display.

Writes the "ABC" string in yellow on a light blue background.

Writes the "DEF" string in yellow on a green background.

120 PRINT [7,4] Writes the "GHI" string in white on a green background.
"GHI"

200 PRINT New line if PRINT only.

PRINT USING PRINT USING "# A designation which lines up decimal point positions by a fixed
. # # '';A decimal point display.

INPUT 10 INPUT A Inputs values relative to variable A from the keyboard.
~~~~~~~~~~~~~~~~~~~~~~~~~~-=-~~~~~~~~ 

SET 

RESET 

20 INPUT A$ Inputs strings relative to string variable A$ from the keyboard. 

30 INPUT Before input from the keyboard, the question string data VALUE? is 
"VALUE?";D displayed. The semi-colon is used to separate the string from the 

variable. 

40 INPUT X, X$, 
Y, Y$ 

SET 30, 15 

RESET 30, 15 

Numerical variables and string variables can be combined by using 
the comma (,) to separate them, but it is necessary to match the type 
of variable at the time of input. 

Illuminates the position of coordinates (30,15). 

Erases the position of coordinates (30, 15). 

9-4 



GET 10 GET N 

20 GET K$ 

READ - DATA 10 READ A,B,C 
1010 DATA 25, 
-0.5, 500 

RESTORE 

10 READ H$,H, 
S$,S 

30 DATA 
"HEART", 3 

35 DATA 
"SPADE", 11 

10 READ A,B,C 
20 RESTORE 
30 READ D,E 
100 DATA 3, 6, 

9, 12, 15 

700 RESTORE 
200 

Loop statements 

FOR - NEXT 10 FOR A= 1 TO 
10 

20 PRINT A 
30 NEXT A 

10 FOR B = 2 TO 
8 STEP 3 

20 PRINT B 
30 NEXT B 

Inputs one numerical character from the keyboard relative to numeri­
cal variable N. If the key is not pressed at that time, 0 is input. 

Inputs one string from the keyboard relative to string variable K$. If 
the key is not pressed at that time, A$ becomes vacant. 

Numerical data 25, - 0.5 and 500 are substituted to, respectively, nu­
merical variables A, Band C by execution of the READ-DATA 
statements at the left. 

The first data of the DATA statement, i.e., string data "HEART'', 
is substituted for the first variable of the READ statement, i.e., for 
the string variable H$. Next, numerical data 3 is substituted for the 
second variable H , and read-in continues one after the other. 

In the example at the left, 3, 6 and 9 are respectively substituted for 
variables A, B and C by the READ statement in statement number 
10, but, because the RESTORE statement occurs next, the values 
next substituted for variables D and E by statement number 30's 
READ are, respectively, 3 and 6, not 12 and 15. 

Moves the data read-out pointer in the READ-DATA statement to 
the heading of the DATA statement in statement number 200. 

The statement number 10 is a command to change variable A and 
substitute for values from 1 to 10; the value of the first A becomes 
1. Because the value of A is displayed on the CRT screen by state­
ment number 20, the numeral 1 is displayed. Next, the value of A be­
comes 2 by statement number 30, and this loop is repeated. The loop 
is repeated in this way until the value of A becomes 10. (At the point 
when the loop ends, the value 11 is entered to A.) 

A command to change variable B and substitute for values from 2 to 
8 in steps of 3 (statement number 10). It is also possible to make the 
STEP value negative and make the variable smaller each time. 

10FORA=1 To 3 An example of an overlay of the FOR- NEXT loops (variables A 
2° FOR B= 

10 
To 

301 ~ 0'.': and B). Note that B loop is placed inside A loop. Nesting of loops 30 PRINT A, B _ g 
40 NEXT B "" .g (doubling, tripling ... ) is possible, but the inner loop must be en-
50 NEXT A---~ 

closed within the outer loop. FOR- NEXT nesting must not exceed 
15 levels. 

9-5 



Branch statements 

GOTO 

GOSUB­
RETURN 

IF-THEN 

IF-GOTO 

IF-GOSUB 

ON-GOTO 

ON-GOSUB 

100 GOTO 200 

100 GOSUB 700 

800 RETURN 

10 IF A>20 
THEN 200 

50 IF 8<3 THEN 
8=8+3 

100 IF A> =8 
GOTO 10 

30 IF A=8*2 
GOSU8 90 

50 ON A GOTO 
70, 80, 90 

90 ON A GOSU8 
700, 800 

Jumps to statement number 200 (=movement of program execution). 

Branches to statement number 700 subroutine (calling of subroutine). 
Ends subroutine execution by RETURN statement, and returns to 
statement following GOSUB command in the main program. 

Jumps to statement number 200 if variable A is larger than 20. Exe­
cutes next statement if A is 20 or less. 

Substitutes B + 3 for variable B if variable B is less than 3. Executes 
next statement if B is 3 or greater. 

Jumps to statement number 10 if variable A is equal to or greater 
than variable B. Executes next statement if A is less than B. 

Branches to statement number 90 subroutine if value of variable A is 
equal to twice the value of B. If not, executes next statement. 
(If there is a multi-statement following a conditional statement, the 
ON statement is executed when the condition is not reached, but the 
IF statement moves the execution to the next statement number if the 
condition is not reached, and the multi-statement is ignored.) 

Jumps to statement number 70 if variable A is 1, to statement num­
ber 80 if it is 2, and to statement number 90 if it is 3. The next state­
ment is executed if A is 0 or 4 or more. The INT function is included 
in ON, so jumps to statement number 80 if A is 2. 7, in the same way 
as 2. 

Branches to statement number 700 subroutine if variable A is 1, and 
to statement number 800 if it is 2. The next statement is executed if 
A is 0 or 3 or more. 

Definition statements 

DIM 

DEFFN 

DEF KEY 

10 DIM A(20) For one-dimensional numerical array variable A( ), 21 array variables 
become available, from A(O) to A(20). 

20 DIM 8(79, 79) For two-dimensional numerical array variable B( ), 6400 array varia­
bles become available, from B(O, 0) to B(79,79). 

30 DIM C1 $(10) For one-dimensional string array variable Cl$( ), 11 array variables 
become available, from Cl$(0) to Cl$(10). 

40 DIM K $ (7, 5) For two-dimensional string array variable K$( ), 48 array variables 
become available, from K$(0, 0) to K$(7, 5). 

100 DEF FNA (X) 
=Xt2 - X 

110 DEF FN8 (X) 

=LOG (X)+1 
120 DEF FNZ (Y) 

=LN (Y) 

1 5 DEF KEV ( 1 ) = 
"LIST" +CHR$ 
(13) 

25 DEF KEY(2) = 
"LOAD:RUN" 
+CHR$(13) 

Statement number 100 defines X2 
- X to FNA (X), statement number 

110 defines log10X + 1 to FNB (X), and statement number 120 defines 
log. Y to FNZ (Y). 

Each function is limited to l variable. 

The DEF KEY statement of statement number 15 defines the func­
tion LIST I CR I to function key number 1, and statement number 25 
defines the function LOAD: RUN I CR I to function key number 2. 

9-6 



Comment statements and control statements 

REM 

STOP 

END 

CLR 

CURSOR 

CONSOLE 

SIZE 

Tl$ 

200 REM JOB1 

850 STOP 

2000 END 

300 CLR 

50 CURSOR 25, 
15 

60 PRINT "ABC" 

10 CONSOLE 0, 
25, 0, 40 

20 CONSOLE 5, 
15 

30 CONSOLE 0, 
25, 5, 30 

40 CONSOLE 0, 
10, 0, 10 

50 CONSOLE 2, 
20, 2, 35 

? SIZE 

100 Tl$= 
"222030" 

REM is a comment statement; ignored when program is executed. 

Stops program execution and awaits command. If CONT command 
given here, program continues. 

Indicates end of program. Executes program end. 

All numerical variables and character variables become 0 or vacant 
(null); all array variables return to undetermined condition. All DEF 
FN statements also become invalid. 

Specifies the position by numerals or variables: form 0 to 39 from 
the left end in the X axis direction , and 0 to 24 from the top end in 
the Y axis direction. For the example at the left, string "ABC" is 
displayed from the 26th cursor position from the left end of the 
screen and the 16th cursor position from the top end. 

The scroll range covers the whole screen. 

Specifies the scroll range form the 5th line to the 15th line. 

Specifies the scroll range from the 5th line to the 30th line. 

Specifies the scroll range to a 10 x 10 range. 

Specifies the scroll range to the scroll range shown in the figure 
bclow. 2 

(0,0) 
2 

Displays the unused size (in bytes) of the BASIC text area. 

(39,0) 

Sets the internal clock to 10:20:30 PM. Time data are expressed as a 
6-digit figure within quotation marks. 

Music control statements 

MUSIC 
TEMPO 

300 TEMPO 7 
310 MUSIC"DE# 

FGA" 

Tempo 7 (fastest speed) is specified by statement number 300. By 
statement number 310, re mi fa# sol la (midrange) are played at tem­
po 7. If there is no TEMPO statement, the music is played at the 
tempo of the default value. 

300 M 1 $ = "C3E In this example, the melody is substituted to the 3 string variables 
G +C" and the MUSIC command is executed. When the staff notation is 

31 O M2$ = "BGD used, the notes below are played. Note that, because there is o TEM-
-G" PO statement, the playing is at the default value tempo. 

320 M3$ = 
"C8R5" 

330 MUSIC M1 $, 
M2$,M3$ 

9-7 

l II 



Machine language program control statements 

INP@ 

OUT@ 

LIMIT 

POKE 

PEEK 

USR 

INP@$E8,A Substitutes data at port number $E8 for variable A. 

OUT@$E8,A Outputs variable A to port number $E8. 

100 LIMIT 49151 Limits the area used by the BASIC program to the 4915 1 address 
(BFFF with hexadecimal notation). · 

100 LIMIT A Limits the area used by the BASIC program to the address of varia­
ble A. 

100 LIMIT $BFFF Limits the area used by the BASIC program to the address BFFF in 
hexadecimal notation.A hexadecimal notation is indicated by a "$" 
mark before the notation. 

300 LIMIT MAX Returns the area used by the BASIC program to the maximum 
memory. 

120 POKE 49450, Sets data 175 (decimal notation) to the decimal notation address 
175 49450. 

130 POKE AD, 
DA 

150 A =PEEK 
(49450) 

160 B=PEEK (C) 

500 USR (491 52) 

550 USR (AD) 

Sets the value (0 to 255) indicated by variable DA to the address 
specified by variable AD. 

Changes the data at decimal notation address 49450 to a decimal 
number, and substitutes for variable A. 

Changes data entered at the decimal notation address specified by 
variable C to a decimal notation, and substitutes for variable B. 

Moves program control to decimal address 49152. This control mov­
ement has the same function as the machine language CALL com­
mand. As a result, when the RET command (201 at decimal nota­
tion) is in the machine language program, returns to the BASIC 
program. 

Calls the decimal address specified by variable AD. 

570 USR ($C000) Calls the hexadecimal address COOO. 

Printer control statement 

AXIS 

CIRCLE 

30 AXIS 0, -10, 
48 

50ASIX 1, 10, 
48 

Valid in GRAPH mode. 

Adds a scale of 48 graduations in increments of IO to the Y­
coordinate axis from the current pen position. 

Adds a scale of 48 graduations in increments of IO to the X­
coordinate axis from the current pen position. 

Valid in GRAPH mode. 

50 CIRCLE 0, 0, Draws a circle (radius 240) from coordinates (0,0). 
240, 0, 360, 
0, 2 

GPRINT Valid in GRAPH mode. 

HSET 

LINE 

30 GPRINT (2,2), Prints the character A upside down at the size of the 26-digit mode 
"A" of the TEXT mode. 

30 HSET Specifies the current pen position to a new starting point. (Valid in 
GRAPH mode.) 

Valid in GRAPH mode. 

10 LINE% 1, 240, Coordinates (240,0) , (240, - 240), (0, - 240) and (0,0) are connected 
0, 240, - 240, by a solid line from the current pen position. 
0, -240, 0, 0 

9-8 



MODE 

MOVE 

RMOVE 

PAGE 

PCOLOR 

PHO ME 

PLOT 

PRINT/P 

PRINT/P 
USING 

RLINE 

SKIP 

TEST 

MODE TN 

MODE TL 

MODE TS 

MODE GR 

10 MOVE 150, 
100 

Returns from the GRAPH mode to the TEXT mode (40 characters 
per line). 

Returns from the GRAPH mode to the TEXT mode (26 characters 
per line). 

Returns from the GRAPH mode to the TEXT mode (80 characters 
per line). 

Switches from the TEXT mode to the GRAPH mode (in order to 
draw graphs and figures). 

Valid in GRAPH mode. 

Moves the pen upward from the current pen position to coordinates 
(150, 100). 

Valid in GRAPH mode. 

20 RMOVE - 240, Moves the pen upward relatively from the current pen position by 
240 - 240 (X direction) and 240 (Y direction). 

10 PAGE 30 

10 PCOLOR 1 
20 PRINT/P 

"ABC" 

PHOME 

PLOT ON 

PLOT OFF 

10 PRINT/PA, A$ 

20 PRINT/P "H" 

PRINT/P USING 
II#### ";A 

70 RLINE% 1, 
240, 0, -120, 
-SQ, -120, 
SQ 

10 SKIP 10 

20 SKIP -10 

TEST 

Valid in TEXT mode. 

Specifies 30 lines per page. 

Valid in both TEXT and GRAPH mode. 

Prints "ABC" to the plotter printer in blue. 

Moves the pen upward from the current pen position and returns to 
the starting point. (Valid in GRAPH mode). 

Enables use of colour plotter printer as substitution for the display. 
(Valid in TEXT mode.) 

Cancels above function. 

Valid in TEXT mode. 

Outputs string variable A$ content after the·numerical variable A 
content to printer. 

For form feed of printer. 

Outputs format specified data to screen. Format specification is writ­
ten after the word USING. 

Numerical variable A contents are output to printer within 4 digits, 
justified right. 

Valid in GRAPH mode. 

Connects specified positions, relatively from current pen position 
(240,0), ( -120, - SQ) and ( - 120,SQ) by solid line. 

Valid in TEXT mode. 

Advances the paper 10 lines. 

Rewinds 10 lines. 

Checks colour specification and ink amount and dryness. (Valid in 
TEXT mode). 

9-9 



Arithmetic functions 

ABS (X) 

SGN (X) 

INT (X) 

SIN (X) 

COS (X) 

TAN (X) 

ATN (X) 

SQR (X) 

EXP (X) 

LOG (X) 

LN (X) 

PAI (X) 

RAD (X) 

A =ABS (X) Assigns the absolute value of variable IXI to variable A. 
Example: A = ABS (2.9)~A=2.9 

A=ABS (-5.5)~A=5.5 

A= SGN (X) Assigns the numeric sign of variable X to variable A. If the value of 
X is negative, - 1 is assigned to A; if X is 0, 0 is assigned to A; and 
if X is positive, 1 is assigned to A. 

1
1 (X > 0) Example: 1 is assigned to variable A when 

A= 0 (X = 0) A= SGN (0.4) is executed. 
-1 (X<O) 

A= INT (X) Assigns the greatest integer value to A which is less than or equal to 
the value of variable X. 
Examples: A= INT (3.87) ~A= 3 

A=INT (0.6) ~A=O 

A=INT (-3.87)~A= -4 

A= SIN (X) Assigns the sine of X (where X is in radians) to variable A. If the 
value of X is in degrees, it must be converted to radians before this 

A = SIN(30*PAl(1)/180) function is used to obtain the sine. Since 1 degree equals 1!"/180 radi­
ans, the value in radians is obtained by multiplying the number of 
degrees by PAI(l)/180. For example, 30°=30*PAI(l)/180 radians. 
The same applies to the COS, TAN, and ATN functions. 

A=COS (X) 
A=COS 

(200*PAl(1)/180) 

A=TAN (X) 
A= TAN(Y * PAl(1 )/180) 

A=ATN (X) 
A = 180/PAl(1 )*ATN(X) 

A=SQR (X) 

A=EXP (X) 

A=LOG (X) 

A=LN (X) 

A=PAl(X) 

A=RAD (X) 

Assigns the cosine of X (where X is in radians) to variable A. 

Assigns the tangent of X (where X is in radians) to variable A. 

Assigns the arctangent in radians of X (tan-1X) to variable A. The 
value returned will be in the range from - 11"12 to 11"12. 

Calculates the square root of X and assigns the result to variable A. 
X must be a positive number or 0. 

Calculates the value of ex and assigns the result to variable A. 

Calculates the common logarithm of X (log10 X) and assigns the 
result to variable A. 

Calculates the natural logarithm of X (log. X) and assigns the result 
to variable A. 

Assigns the value to variable A which is X times the value of 1r. 

Converts the value of X (where X is in degrees) to radians and as­
signs the result to variable A. 

9-10 



String control functions 

LEFT$ 10 A$ =LEFT$ 
(X$,N) 

Substitutes string variable X$ (from beginning to Nth character) for 
string variable A$ . It doesn't matter whether N is a constant, variable 
or numerical formula. 

MID$ 20 B $ =MID$ (X $, Substitutes string variable X$ (from Mth character to N charater) for 
M, Nl string variable B$. 

RIGHT$ 

SPC 
CHR$ 

ASC 

STR$ 

VAL 

LEN 

Tab function 

TAB 

30 C$ =RIGHT$ 
(X$, N) 

40 0$ =SPC (N) 

60 F$ =CHR$(A) 

70 A =ASC (X$) 

80 N$ =STR$ (1 l 

90 I =VAL (N$) 

100 LX =LEN 
(X$) 

110 LS =LEN 
(X$+Y$) 

10 PRINT TAB 
(X);A 

Arithmetic operations 

Substitutes string variable X$ (from end to N character) for string 
variable C$. 

Substitutes N number of spaces for string variable D$. 

Converse to the ASC function, substitutes ASCII code characters 
which are equivalent to the value of real number A for string variable 
F$. It doesn't fllatter whether A is a constant, variable or numerical 
formula. 

Substitutes the value of the ASCII code of the first character of 
string variable X$ for variable A. 

Converts to the VAL variable, substitutes the numerical variable I as 
if it were a string for string variable N$. 

Substitutes the numerical string of string variable N$ as if it were a 
number for variable I. 

Substitutes the character length (character number) of string variable 
X$ for variable LX. 

Substitutes the sum of the character length of string variables X$ and 
Y$ for variable LS. 

Displays the value of variable A at the X + 1 character position 
counting from the left edge of the screen. 

The calculation priority is of white figures on dark background at left side, but the calculation of figures in 
parentheses ( ) has even higher priority. 

t 

* 
I 

+ 

10 A=XtY 
(power) 

10 A= -B 
(minus sign) 

10 A=X*Y 
(multiplication) 

10 A=XIY 
(division) 

10 A=X+Y 
(addition) 

10 A=X-Y 
(subtraction) 

Substitutes the XtY calculation result for variable A. (Note, however, 
that an error occurs if Y is not an integral number when X is a nega­
tive number at XtY.) 

0 - B is a subtraction; note that the " - " of - B is a minus sign. 

Substitutes the multiplication result of X and Y for variable A. 

Substitutes the division result of X and Y for variable A. 

Substitutes the addition result of X and Y for variable A. 

Substitutes the subtraction result of X and Y for variable A. 

9-11 



Comparison logic operators 

= 

> 

< 

<>or>< 

> = or = > 

< = or = < 

* 

+ 

Other symbols 

? 

" " 

$ 

10 IF A =X THEN 

20 IF A$ = "XYZ" 
THEN ..... ..... . 

10 IF A>X THEN 

10 IF A<X THEN 

If variables A and X are equal, executes commands from THEN 
onward. 

If string variable A$ content is string XYZ, executes commands from 
THEN onward. 

If variable A is greater than X, executes commands from THEN 
onward. 

If variable A is smaller than X, executes commands from THEN 
........... . .. ...... onward. 

1 O IF A< > F If variable A and X are not equal, executes commands from THEN 
THEN . . . . . . . . . . . onward. 

1 0 IF A> = X If variable A is greater than or equal to X, executes commands from 
THEN ........... THEN onward. 

10 IF A< = X If variable A is smaller than or equal to X, executes commands from 
THEN . . . . . . . . . . . THEN onward. 

40 IF (A > X) * (B If variable A is greater than X and variable B is greater than Y, exe­
> Yl THEN .. .. cutes commands from THEN onward. 

50 IF (A > X) + (B If variable A is greater than X or variable B is greater than Y, exe­
> Y) THEN .... cutes commands from THEN onward. 

200 ?"A+B="; 
A+B 

210 PRINT 11A+B 
= 11 ;A +B 

Can be used instead of PRINT. Consequently, statement number 200 
and 210 are the same. 

220 A=X:B=Xt2 A symbol to express punctuation of the command statement; used in 
:?A,B multiple commands. There are 3 command statements used in the 

statement number 220 multiple command. 

230 PRINT"AB"; Executes PRINT continuously. As a result line number 230, "ABC­
"CD11; "EF" DEF" is displayed on the screen continuously, with no space. 

240 INPUT11X = 11 ; Displays "X =" on screen; awaits data key input of string variable 
X$ X$. 

250 PRINT11AB", Executes PRINT with tabulation. For statement number 250, first AB 
"CD 11 , 11 E11 is displayed on the screen, then CD is displayed in the position 10 

characters to the right of A, and then E is displayed in the position 
10 characters to the right of C. 

300 DIM A(20), An example used in punctuation of a variable. 
8$(3,6) 

330 B$ = "MZ- " indicates a string content 
700" 

340 C $ ="ABC" Indicates a string variable. 
+CHR$(3) 

500 LIMIT $BFFF Indicates hexadecimal number. 

550 S =SIN The approximate value of pi (3.1415927) is expressed by ?r. 
(X * ?r/180) 

9-12 



Appendixes 



Appendix A Display Control in the MZ-800 Mode 

(1) Graphics memory 
The standard MZ-800 supports a display screen of 320 x 200 dots in 4 colours selected from a possible 
16 colqurs, or a monochrome display screen of 640 x 200 dots. 
By installing the optional graphics memory (MZ-1R25), the display capability is improved so that a 
display screen of 320 x 200 dots can be displayed in 16 colours or a screen of 640 x 200 dots can 
be displayed in 4 colours selected from a possible 16 colours. 

(2) 40-column mode and 80-column mode (Character display) 
The number of character columns per line can be switched between 40 and 80 characters with the INIT 
command. 

(3) Display modes (Graphics display) 
The resolution and number of colours which can be displayed at any one time differs according to 
the display mode. The MZ-800's display modes are as follows. 

Mode Resolution Characters per line Colours 

1 320 x 200 dots 
40 

4 colours 

2 320 x 200 dots 16 colours 

3 640 x 200 dots 
Foreground and back-
ground colours 

80 
4 640 x 200 dots 4 colours 

Modes 2 and 4 can be used only when the optional graphic memory is installed. The graphics display 
mode is set by the Mn parameter of the INIT command. 

For exmaple: 
INIT "CRT:M 1" .............................. Sets mode 1. 
INIT "CRT:M2" .............................. Sets mode 2. 

( 4) Colour palette 
The colours which can be displayed at one time are selected from the colour palette. The colour palette 
allows the selection of 4 colours from a possible 16 colours. The 16 colours which can be displayed 
are listed below along with their colour codes. 

A-2 



Colour code Colour 
0 Black 
1 Blue 
2 Red 
3 Magenta 
4 Green 
5 Cyan 
6 Yellow 
7 White 
8 Gray 
9 Light blue 
10 Light red 
11 Light magenta 
12 Light green 
13 Light cyan 
14 Light yellow 
15 Light white 

(high brightness white) 

In mode 1 or mode 4, palette codes 0 to 3 are used. The initial settings of colour code assignments 
to the palette codes are as shown below. 

Palette code Colour code (colour) 
0 0 (black) 
1 1 (blue) 
2 2 (red) 
3 15 (light white) 

In mode 3, palette codes 0 and 1 are used and the initial settings of colour code assignments are as follows. 

Palette code Colour code (colour) 
0 0 (black) 
1 15 (light white) 

Colour code assignments to the palette codes can be changed with the PAL command. 

Ex) 
PAL 0,4 .................... Assigns colour code 4 (green) to palette code 0. 
PAL 2, 7 ...... .. ............ Assigns colour code 7 (white) to palette code 2. 

A-3 



(5) Palette usage in mode 2 
In mode 2, the initial colour code assignments to the palette codes are as follows. 

Palette code Colour code (colour) 

0 0 (black) 
1 1 (blue) 
2 2 (red) 
3 3 (magenta) 
4 4 (green) 
5 5 (cyan) 
6 6 (yellow) 
7 7 (white) 
8 8 (gray) 
9 9 (light blue) 
10 10 (light red) 
11 11 (light magenta) 
12 12 (light green) 
13 13 (light cyan) 
14 14 (light yellow) 
15 15 (light white) 

Use of the palette in mode 2 is more complicated. In mode 2, palette codes 0 to 15 are used and they 
are divided into four blocks as follows. 

Palette block No. 0 1 2 3 
Palette code Oto 3 4 to 7 8 to 11 12 to 15 

The initial setting of the palette block number is 0 and the initial settings of the colour code assign­
ments to the palette codes are as follows. 

Palette code Colour code (colour) 
0 0 (black) 
1 1 (blue) 
2 2 (red) 
3 3 (magenta) 

The palette block number can be changed by the INIT command. 

Ex) 
INIT "CRT:B 1" - Changes the palette block number to 1. 

The numbers belonging to the current palette block can be used as the palette codes in commands and 
statements. Some commands and statements have a parameter which specifies a palette code or colour 
code. The numbers belonging to the current palette block number are recognized as the palette codes, 
while the other numbers are recognized as the colour codes. 
The following example will help you understand the above explanation. 

A-4 



10 INIT "CRT:M2,B 1" 
20 PAL 4, 12 
30 PAL 5, 10 
40 PAL 6,8 
50 PAL 7,6 

- Mode 2, palette block No.= 1 
Assigns colour code 12 to palette code 4. 
Assigns colour code 10 to palette code 5. 
Assigns colour code 8 to palette code 6. 
Assigns colour code 6 to palette code 7. 

After executing the above program, 

LINE (5,0] 10,20, 100,50 

draws a line in light red. In this case, the first parameter is recognized as a palette code. 

LINE [1,0] 10,20,100,50 

Draws the same line in blue. In this case, the first parameter is recognized as a colour code. 

INIT "CRT:BO" 

If the above command is executed after execution of the above program, the result is different. 

LINE (5,0] 10,20, 100,50 

Draws the line in cyan. In this case, the first parameter is recognized as a colour code. 

LINE (1,0) 10,20, 100,50 

Draws the line in blue. In this case, the first parameter is recognized as a palette code. When INIT 
"CRT:BO" is executed, the palette codes which can be set are changed as shown below. 
The initial settings of the colour code assignments are assumed. 

Palette code 
5 
6 
7 
8 

( 6) Restoring initial settings 

INIT "CRT:BO" 

Palette ·code 
0 
1 
2 
3 

Executing the INIT statement to set a new display mode restores the initial settings of the colour code. 
Executing the INIT statement to set a new palette block in the 16-colour mode also restores the initial 
settings. 

(7) Logical summing of colours 
Some graphic statements such as COLOR, SET and LINE use the "mode" parameter. 

When the mode parameter is specified as 0, the resultant colour is specified by the palette code parameter. 

When the mode parameter is specified as 1, a logical OR operation is performed between the existing 
palette code for a dot (on the screen) and the new specified palette code for the same dot, to produce 
the resultant colour. For example, if the existing palette code for a dot at (50,50) is 2 and the new 
specified palette code is 1, the resultant palette code is 3. 

0010 (binary for 2) OR 0001 (binary for 1) ~ 0011 (binary for 3) 

A-5 



A table of codes logically ORed is shown below. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 
2 2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15 
3 3 3 3 3 7 7 7 7 11 11 11 11 15 15 15 15 
4 4 5 6 7 4 5 6 7 12 13 14 15 12 13 14 15 
5 5 5 7 7 5 5 7 7 13 13 15 15 13 13 15 15 
6 6 7 6 7 6 7 6 7 14 15 14 15 14 15 14 15 
7 7 7 7 7 7 7 7 7 15 15 15 15 15 15 15 15 
8 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15 
9 9 9 11 11 13 13 15 15 9 9 11 11 13 13 15 15 

10 10 11 10 11 14 15 14 15 10 11 10 11 14 15 14 15 
11 11 11 11 11 15 15 15 15 11 11 11 11 15 15 15 15 
12 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15 
13 13 13 15 15 13 13 15 15 13 13 15 15 13 13 15 15 
14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

This logical operation does not however apply to the RESET and BLINE statements. For these two 
statements, the resultant colour is specified by the colour code given by 
{(No. of colours which can be specified in the current colour display mode) - 1 - (specified palette 
code)} when the mode parameter is 0. For example, when the colour display mode is mode 1 in which 
a maximum of 4 colours can be specified, specifying colour palette code 1 results in colour palette 
code 2 as follows . 

4 - 1 - 1=2 

When the mode parameter is 1, the resultant palette code is given by the logical OR of the previous 
palette code and {(No. of colours which can be specified in the current colour display mode) minus 
1 minus (specified palette code)}. For example, specifying palette code 1 when the previous palette 
code is 2 results in palette code 2 as follows. 

2 OR 2 -4 2 

A-6 



Appendix B Programmable Sound Generator 

The MZ-800 has a built-in programmable sound generator (PSG) which makes it possible to generate 
3-tone chords over 6 octaves. The PSG is an SN76489AN IC. 
The PSG can be controlled by sending data to 1/0 port address $F2. 

(1) Description of the PSG 
The SN76489AN IC has eight internal registers, and controls three tone generators and one noise 
generator. 

Block diagram 

D7 
D6 
D5 
D4 
D3 
D2 
D1 
DO 

WE 

READY 

The internal registers required can be selected by setting bits D4 to D6 in the 1st byte of the output 
data. The function of each register is shown below. 

D6 D5 D4 Function 
0 0 0 Frequency of tone 0 
0 0 1 Sound volume of tone 0 
0 1 0 Frequency of tone 1 
0 1 1 Sound volume of tone 1 
1 0 0 Frequency of tone 2 
1 0 1 Sound volume of tone 2 
1 1 0 Noise control 
1 1 1 Noise volume 

(2) Setting the tone frequency 
The tone frequency is set with the following 2-bytes of data. 

1st byte 

D7 D6ID5ID4 D3 ID2 ID1 IDO 
1 Reg. select Frequency 1 

(lower four bits) 

A-7 



2nd byte 

D7 D6 D5 ID4 ID3 ID2 ID1 lno 
0 x Frequency (high six bits) 

Frequency = (3.55 x 103)/(32 x n) kHz 

n is a 10-bit binary number represented by DO to D3 of the 1st byte and DO to D5 of the 2nd byte. 

(3) Noise generation 
Synchronous noise or white noise can be generated by outputting the following 1-byte data to the I/O 
port. 

D7 D6jDS jD4 D3 D2 DI I Do 
1 Reg. select x I Frequency 

I . 
N01se type 

* The noise type is specified by D2. 
0: Synchronous noise 
1 : White noise 

* The noise frequency is set by DO and D 1. The noise frequencies which can be set by DO and 
Dl are as follows. 

Dl DO 
0 0 
0 1 
1 0 
1 1 

Frequency 
6.93(=3.55x103/512) kHz 
3.47 ( = 3.55 x 103 /1024) kHz 
1.73(=3.55x103/2048) kHz 
Same as that for the sound generated by tone generator 

Clock 

Synchronous 
noise 
(Duty 6.25%) 

#3. 

* When white noise is specified, the output waveform is composed of random patterns and a sound 
with virtually the same spectrum as white noise is generated. 

* When noise modes 0, l, 1 are specified, the frequency is given by the following formula and a low 
pulse tone can be generated. 

f = N/32 x n x 16 

* If you specify tone 2 output in the noise mode specification, you must turn the output of tone 2 off. 

( 4) Setting tone volume 

07 06 j os j D4 03 I 02 I D 1 I DO 

1 Reg. select Attenuation 

A-8 



The tone volume is altered with attenuation. 

D3 D2 DI DO Attenuation (dB) D3 D2 DI DO Attenuation (dB) 

0 0 0 0 0 I 0 0 0 I6 
0 0 0 I 2 I 0 0 1 I8 
0 0 I 0 4 I 0 I 0 20 
0 0 I I 6 I 0 I I 22 
0 I 0 0 8 I I 0 0 24 
0 I 0 I IO I I 0 I 26 
0 I I 0 I2 I I I 0 28 
0 I I I I4 I I I I OFF 

A-9 



Appendix C Reserved Words 

ABS EXP 
AND FN 
ASC FOR 
ATN GET 
AUTO GO SUB 
AXIS GOTO 
BLINE GP RI NT 
BOOT HCOPY 
BOX HSET 
BYE IF 
CHAIN INIT 
CHR$ INP@ 
CIRCLE INPUT 
CLOSE# INPUT# 
CLR INT 
CLS KEY 
COLOR KEYLIST 
CONSOLE KILL# 
CONT LABEL 
cos LEFT$ 
CSRH LEN 
CSRV LET 
CURSOR LIMIT 
DATA LINE 
DEF LIST 
DEFAULT LIST/P 
DELETE LN 
DIM LOAD 
DIR LOG 
ELSE MERGE 
END MID$ 
EOF MUSIC 
ERL NEW 
ERN NEXT 
ERROR NOISE 

A-10 



NOT RIGHT$ 
OFF RUNE 
ON RMOVE 
OR RND 
OUT@ ROPEN# 
PAGE RUN 
PAI SAVE 
PAINT SEARCH 
PAL SEARCH/P 
PATTERN SET 
PCIRCLE SON 
PCOLOR SIN 
PEEK SIZE 
PHO ME SOUND 
PLINE SPC 
PLOT SQR 
PM ODE STICK 
PMOVE STOP 
POINT STR$ 
POKE STRIG 
POSH SYMBOL 
POSITION TAB 
POSV TAN 
PRINT TEMPO 
PRINT# THEN 
PSKIP TI$ 
PTEST TROFF 
RAD TRON 
READ USING 
REM USR 
RENAME VAL 
RENUM VERIFY 
RESET WAIT 
RESTORE WOPEN# 
RESUME XOR 
RETURN 

A-11 



Appendix D Console Control Codes 

If the MZ-800's character set, some of the codes are used to control the operation of the computer 
as shown below. These control codes can be input to the computer through the keyboard or by using 
the PRINT statement (indicated with an asterisk ( *) in the code column). 

Control code table 

Code (Dec.) Key operation Function 

5 I CTRL I+ w Causes the character keys to input lowercase letters. 

6 I CTRL I+[£] Causes the character keys to input uppercase letters. 

13 ( *) I CTRL I+ [MJ Causes a carriage return. ~ 

16 ( *) I CTRL I+ w Deletes the character at the position to the left of the 
cursor position. I DEL I 

17 ( *) CTRL + [QJ Moves the cursor down one line. [I] 
18 ( *) CTRL +w Moves the cursor up one line. []] 

19 ( *) CTRL +w Moves the cursor right one character position. B 
20 (*) CTRL +[I] Moves the cursor left one character position. EJ 
21 ( *) CTRL + [QJ Moves the cursor to the home position. I HOME I 
22 (*) CTRL +CY] Clears the screen. I CLR I 
23 (*) I CTRL + [}Y] Places the keyboard in the graphics mode. I GRAPH I 
24 (*) I CTRL +W Inserts a space at the cursor position. I INST I 
25 ( *) I CTRL +w Places the keyboard in the normal mode. I ALPHA I 

A-12 



Appendix E Restrictions on Using File 1/0 Commands 
and Statements 

The file 1/0 commands and statements cannot be used for all file devices. The table below shows the 
restrictions on some of these devices. 

~~ CMT: RAM: CRT: LPT: RSl: and RS2: 
(Data recorder) (RAM file board) (Display) (Printer) (RS-232C) 

INIT x 0 0 0 0 
DEFAULT 0 0 0 0 0 
DIR x 0 x x x 
RUN 0 0 x x x 
LOAD 0 0 x x x 
SAVE 0 0 x x x 
DELETE x 0 x x x 
RENAME x 0 x x x 
CHAIN 0 0 x x x 
MERGE 0 0 x x x 
WOPEN# 0 0 x x 0 
PRINT# 0 0 x x 0 
ROPEN# 0 0 x x 0 
INPUT# 0 0 x x 0 
CLOSE# 0 0 x x 0 
KILL# 0 0 x x 0 

0 : Can be used. 
x : Cannot be used. 

Further, for CMT:, and RSl: and RS2, only one file can be opened at any one time. 

A-13 



Appendix F Monitor Subroutines 

The following subroutines are used by the ROM Monitor (9Z-504M). Each subroutine name symboli­
cally represents the function of the corresponding subroutine. These subroutines can be called from 
user programs. 
Registers saved are those whose contents are restored when control is returned to the calling program. 
The contents of other registers are changed by execution of the subroutine. 

Name and entry point (hex.) Function Registers saved 

CALL LETNL Moves the cursor to the beginning of the next line. All except AF 
(0006) 

CALL PRNTS Displays a space at the cursor position. All except AF 
(OOOC) 

CALL PRNTS Displays the character corresponding to the ASCII code A}l except AF 
(0012) stored in the ACC at the cursor position. See Appendix J 

for the ASCII codes. No character is displayed when code 
OD (carriage return) or codes 11 to 16 (the cursor control 
codes) are entered, but the corresponding function is still 
performed (a carriage return for OD and cursor movement 
for 11 to 16). 

CALL MSG Displays a message, starting at the position of the cursor . All registers 
(0015) The starting address of the area in which the message is 

stored must be loaded into the DE register before calling 
this subroutine, and the message must end with a carriage 
return code (OD). 
The carriage return is not executed. 
The cursor is moved if any cursor control codes (11 to 16) 
are included in the message. 

CALL BELL Briefly sounds tone of la (about 880 Hz). All except AF 
(003E) 

CALL MELOY Plays a tune according to the music data stored in the All except AF 
(0030) memory area starting at the address in the DE register. 

The music data must be in the same format as that for the 
MUSIC statement of the BASIC, and must end with OD or 
C8. 
When the tune is completed, control is returned to the call-
ing program with the C flag set to 0. When play is inter-
rupted with the I BREAK I key. Control is returned with the 
C flag set to 1 . 

CALL XTEMP Sets the music tempo according to the tempo data stored All registers 
(0041) in the accumulator (ACC). 

ACC +- 01 Slowest speed 
ACC +- 04 Middle speed 
ACC +- 07 Highest speed 

Note that the data in the accumulator is not the ASCII 
codes for l to 7 but the binary codes. 

CALL MSTA Generates a continuous sound of the specified frequency. BC and DE 
(0044) The frequency is given by the following equation 

freq.= 895 kHz/nn'. 
Here, nn' is a 2-byte number stored in addresses l lAl and 
11A2 (n in 11A2 and n' in l lAl) 

A-14 



Name and entry point (hex.) Function Registers saved 
CALL MSTP Stops the sound generated with the CALL MST A All except AF 

(0047) subroutine. 
CALL TIMST Sets and starts the built-in clock. The registers must be set All except AF 

(0033) as follows before this routine is called. 
ACC <- 0 (AM), ACC <- 1 (PM) 
DE <- 4-digit hexadecimal number representing the time 

in seconds. 
CALL TIMRD Reads the built-in clock and returns the time as follows. All except AF 

(003B) ACC <- 0 (AM), ACC <- 1 (PM) and DE 
DE <- 4-digit hexadecimal number representing the time 

in seconds. 
CALL BRKEY Checks whether the I SHIFT I and I BREAK I keys are both All except AF 

(OOlE) being pressed. The Z flag is set when they are being pressed 
simultaneously; otherwise, it is reset. 

CALL GETL Reads one l~ne of data from the keyboard and stores it in All registers 
(0003) the memory area starting at the address in the DE register. 

This routine stops reading data when the I CR I key is pressed, 
then adds a carraige return code (OD) to the end of the data 
read. 
A maximum of 80 characters (including the carriage return 
code) can be enered in one line. 
Characters keyed in are echoed back to the display. Cursor 
control codes can be included in the line. 
When the I SHIFT I and I BREAK I keys are pressed simultane-
ously, the BREAK code is stored at the address indicated 
by the DE register and a carriage return code is sotored in 
the following address. 

CALL GETKY Reads a character code (ASCII) from the keyboard. All except AF 
(OOlB) If no key is pressed, control is returned to the calling pro-

gram with 00 set in ACC. 
No provision is made to avoid data read errors due to key 
bounce, and characters entered are not echoed back to the 
display. 
When any of the special keys (such as I DEL I or I CR I ) are 
pressed, this subroutine returns a code to the ACC which is 
different to the corresponding ASCII code as shown below. 
Here, display codes are used to address characters stored in 
the character generator, and are different from the ASCII 
codes. 

Special key Code loaded in ACC Display code 

I DEL I 60 C7 
I INST I 61 C8 
I ALPHA I 62 C9 
I BREAK I 64 CB 
I CR I 66 CD 

Special key read with t I 11 Cl 

GETKY t I 12 C2 
---+ I 13 C3 
<- I 14 C4 

HOME I 15 C5 
CLR I 16 C6 

A-15 



Name and entry point (hex.) Function Registers saved 

CALL ASC Loads the ASCII character corresponding to the hex- All except AF 
(03DA) adecimal number represented by the lower 4 bits of data in 

ACC. 
CALL HEX Converts the 8 data bits stored in the ACC into a hex- All except AF 

(03F9) adecimla number (assuming that the data is an ASCII 
character), then loads the hexadecimal number in the lower 
4 bits of ACC. The C flag is set to 0 when a hexadecimal 
number is loaded in ACC; otherwise, it is set to 1. 

CALL HLHEX Converts a string of 4 ASCII characters into a hexadecimal All except AF 
(0410) number and loads it in the HL register . The call and return and HL 

conditions are as follows. 
DE <- Starting address of the memory area which con-

tains the ASCII character string. 
(e.g., "3" "l" "A" "5" ) 

CALL HLHEX L_DE 
CF=O HL<-hexadecimal number (e.g., HL=31A5tt) 
CF=l The contents of HL are not guarenteed. 

CALL 2HEX Converts a string of 2 ASCII characters into a hexadecimal All except AF 
(041F) number and loads it into the ACC. The call and return con- and DE 

ditions are as follows. 
DE <- Starting address of the memory area which con-

tains the ASCII character string. 
(e.g., "3" "A" ) 

CALL 2HEX LDE 
CF=O ACC<-hexadecimal number (e.g., ACC = 3Att) 
CF=l The contents of the ACC are not guaranteed. 

CALL ??KEY Blinks the cursor to prompt for key input. When a key is All except AF 
(09B3) pressed, the corresponding display code is loaded into the 

ACC and control is returned to the calling program. 

CALL?ADCN Converts ASCII codes into display codes. The call and All except AF 
(OBB9) return conditions are as follows. 

ACC <- ASCII code 
CALL ?ADCN 
ACC <- Display code 

CALL?DACN Converts display codes into ASCII codes. The call and All except AF 
(OBCE) return conditions are as follows. 

ACC <- Display codes 
CALL ?DACN 
ACC <- ASCII code 

CALL ?BLNK Detects the vertical blanking period. Control is returned to All registers 
(ODA6) the calling program when the vertical blanking period is 

entered. 
CALL ?DPCT Controls display as follows . All registers 

(ODDC) 
ACC Control ACC Control 
COH Scrolling C6H Same as the CLR key. 
ClH Same as the ITJ key. C7H 

= 
Same as the DEL key. 

C2H Same as the [iJ key. C8H = 
Same as the ~ key. 

C3H Same as the § key. C9H Same as the 
C4H Same as the +- key. I ALPHA I key. 
C5H Same as the 

IHOMEI key. 
CDH Same as the I CR I key. 

CALL ?POINT Loads the current cursor location into the HL register. The All except 
(OFBl) return conditions are as follows. AF and HL 

CALL ?POINT 
HL <- Cursor location (binary) 

A-16 



Appendix G Making Backup Copy of the .BASIC 
Interpreter 

It is possible that you may accidentally damage the tape which contains the BASIC interpreter. When 
this happens, you cannot use the computer. To avoid this, make a copy of the BASIC interpreter. 
After making the backup copy, store the original tape in a safe place and use the backup copy for 
daily use. 
Backup procedures are as follows. 

1) Prepare a new cassette tape. 
2) Turn on the MZ-800 and press the I M I key to start the monitor. 
3) Load the tape which contains the BASIC interpreter into the data recorder, then enter the follow­

ing monitor command. 
*GE807 I CR I 

4) When " i PLAY" is displayed, press the I PLAY I button of the data recorder to read the BASIC 
interpreter into memory. 

5) When the prompt ( *) appears, replace the tape with the new one and enter the following monitor 
command. 
*GE80A jcR I 

6) When " i RECORD.PLAY" is dislayed, press the I RECORD I button or the data recorder to write 
the BASIC interpreter to the new tape. 

7) When the prompt ( *) appears, rewind the tape. Then, enter the following monitor command. 
*GE80D jcRI 

8) When '' :I: PLAY' ' is displayed, press the I PLAY I button to verify the tape contents. 
9) When the message "CHECK SUM ER." is displayed, repeat steps 3 to 8. 

When the message "OK." is displayed, copying is completed. 

A-17 



AppendixH Optional Colour Plotter-Printer MZ-1P16 

Paper holder (left) 

Printer cover 

Paper shaft 

Reset switch 

Initializes the printer 
Pen change switch 

(viewed from the top) 

Paper inlet 

(viewed from the rear) 

A-18 

Paper holder (right) 

Paper cutter 

Paper feed key 

® 



Note: 
A protective sheet is inserted in printer to protect the printer mechanism. Remove the sheet by pressing 
the paper feed key (@)) before using the printer. 

• Loading roll paper 

1. Remove the printer cover. 
2. Cut the end of roll paper squarely and insert the paper into the paper inlet. (Do not fold or wrinkle 

the end of the paper when doing this.) 
3. Turn on the MZ-800's power switch and press the @)(paper feed) key to feed the paper unitl the 

leading edge exposed 3 to 5 cm above the outlet. 
4. Insert the paper shaft into the paper roll and mount it to the paper holders. 
5. Refit the printer cover so that the end of paper comes out through the paper cutter. 

• To remove the roll from the printer for replacement, cut the paper squarely at the paper inlet and 
press the @) key. 

Insert paper into the 
paper inlet. 

Press the @) key to 
feed paper. 

Replace the printer 
cover. 

• Roll paper for the plotter printer is available from your nearest SHARP deal et. Do 
not use paper other than that specified. 

The roll length is 23 to 25 meteres, and the maximum roll which can be loaded is 0 50 mm. The paper 
will not feed properly if a roll of greater diameter is used, resulting in poor printer quality. 

• lnstalling/replaceing pens 

1. Remove the priner cover and press the PEN CHANGE switch with a ball-point pen or similar ob­
ject; this causes the pen holder to move to the right side of the printer for pen replacement. 

2. Press the pen eject lever to eject the pen which is at the top of the holder. When doing this, rest 
your finger lightly on top of the pen while pushing the eject lever to prevent the pen from falling 
inside the priter. 

3. Insert a new pen. 
4. Press the PEN CHANGE switch again to bring another pen to the top of the holder. 
5. Replace all four pens (black, blue, green and red) in the same manner. When finished, press the 

RESET switch. 
Execute the BASIC PTEST command to confirm that all colours are printed correctly. 

A-19 



Pen position 
detection magnet 

• Storing pens 

Red 

Install the pens only when the printer is used. 

Black 

Pen holder 

When the printer is not used, remove the pens and cap them, then keep them in the refill container; 
otherwise, they will be dried up. 

~ _Qlli[) 
-~-~ t 

I 1 Coo,.;,., "' 
Pen cap 

Pen 

Refill container 

Note: 
Because the ball-point pens use water-soluble ink and the ink may blur if the printed paper becomes 
wet, the paper should be handled with care. 

• Replacements for the printer pens (ball-point pens) can be purchased at the same 
dealer you purchased the printer from. 

• EA-850B (black: 4 pens) 
• EA-850C (black, blue, green, red: 4 pens, 1 of each colour) 

• Self-test 

The plotter-printer has the self-test function . Press and hold the @)(paper feed) key and turn on the 
MZ-800 power, and the self-test starts. It is recommended to perform the self-test after pens have been 
replace. 

Note: 
Be sure to disconnect the interface cable when performing the self-test. 

A-20 



Appendix I Colour Plotter-Printer Control Codes 

1 Control codes used in the text mode 

• Text code ($01) 
Places the printer in the text mode. 

• Graphic code ($02) ................................................ Same as the BASIC PM ODE statement. 
Places the printer in the graphics mode. 

e Line up ($03) .......................................................... Same as the BASIC PSKIP statement. 
Moves the paper one line in the reverse direction. The line counter is decremented by 1. 

• Pen test ($04) ......................................................... Same as the BASIC PTEST statement. 
Writes the following patterns to start ink flowing from the pens, then sets scale = 1 (40 chr/line), 
colour=O. 

Black Blue Green Red 

DODD 
• Reduction scale ($09) + ($09) + ($09) 

Reduces the scale from 1 to 0 (80 chr /line). 

• Reduction cancel ($09) + ($09) + ($OB) 
Enlarges the scale from 0 to 1 (40 chr/line). 

• Line counter set ($09) + ($09) + (ASCII)z + (ASCII)i + (ASCII)o + ($OD) 
............................................................................ Same as the BASIC PAGE statement. 
Specifies the number of lines per page as indicated by the 3 ASCII bytes code. The maximum num­
ber of lines per page is 255. Automatically set to 66 when the power is turned on or the system is reset. 

• Line feed ($0A) ....................................................... Same as the BASIC PSKIP statement. 
Moves the paper one line in the forward direction. The line counter is incremented by 1. 

• Magnify scale ($OB) 
Enlarges the scale from 2 to 1. (26 chr/line) 

• Magnify scale ($0C) 
Reduces the scale from 2 to 1. 

• Carriage return ($OD) 
Moves the carriage to the left side of the paper. 

• Back space ($OE) 
Moves the carriage one column to the left. This code is ignored when the carriage is at the left side 
of the paper. 

• Form feed ($OF) 
Moves the paper to the beginning of the next page and resets the line counter to 0. 

• Next colour ($1D) 
Changes the pen to the next colour. 

A-21 



2 Character scale 

• The character scale is automatically set to 1 (40 chr/line) when the power is turned on. Afterwards, 
it can be changed by control codes and commands. 

• In the graphics mode, the scale can be changed within the range 0 to 63. 
• The scale is set to 1 when the mode is switched from graphics to text. 

3 Graphics mode commands 

Command type 

In the graphics mode, the computer can control the printer with the following commands. 
The words in parentheses are BASIC statements which have the same functions as the graphics mode 
commands. 

Command name Format Function 

LINE TYPE Lp (p=O to 15) Specifies the type of line (solid or dotted) and the 
dot pitch. 
p = 0 : solid line, p = 1 to 15 : dotted line 

ALL INITIALIZE A Places the printer in the text mode. 

HOME (PHONE) H Lifts the pen and returns it to the origin (home 
position). 

INITIALIZE (HSET) I Sets the current pen location as the origin (x = 0, 
y=O). 

DRAW (LINE) Dx, y, .. ., xn, yn Draws lines from the current pen location to 
(-999~x, y~999) coordinates (xi, Y1), then to coordinates (x2, Y2), 

and so forth. 

RELATIVE DRAW JAx, Ay, .. ., Axn, Ayn Draws lines from the current pen location to rela-
(RLINE) (-999~Ax, Ay~999) tive coordinates (~i, Ay1), then to relative coor-

dinates (~2, Ay2) and so forth. 

MOVE (MOVE) Mx, y Lifts the pen and moves it to coordinates (x, y). 
( - 999 ~ x, y ~ 999) 

RELATIVE MOVE RAx, Ay Lifts the pen and moves it to coordinates 
(RMOVE) (-999~Ax, Ay~999) (Ax, Ay). 

COLOR CHANGE Cn (n=O to 3) Changes the pen colour to n. 
(PCOLOR) 

SCALE SET Sn (n=O to 63) Specifies the character scale. 
ALPHA ROTATE Qn (n= 0 to 3) Specifies the direction in which characters are 

printed. 

PRINT Pc1c2c3 ... en (n = oo) Prints characters. 
AXIS (AXIS) Xp, q, r (p=O or 1) Draws an X axis when p = I and a Y axis when 

(q = - 999 to 999) p = 0. q specifies the scale pitch and r specifies the 
(r =I to 255) number of scale marks to be drawn. 

A-22 



Command format 

There are 5 types of command formats as shown below. 
1. Command character only (without parameters) 

A, H, I 
2. Command character plus one parameter 

L, C, S, Q 
3. Command character plus pairs of parameters 

D, J, M, R 
" , " is used to separater parameters, and a CR code is used to end the parameter list. 

4. Command plus character string 
p 

The character string is terminated with a CR code. 
5. Command plus three parameters 

x 
" , " is used to separate parameters. 

Parameter specification 

1. Leading blanks are ignored. 
2. Any number preceded by " - " is treated as a negtive number. 
3. If the number of digits of a number exceeds 3, only the lower 3 digits are effective. 
4. Each parameter is ended with '' , '' or a CR code. If other than numbers are included in a parameter, 

subsequent characters are ignored until a comma or CR codde is detected. 

Example) Du u- 135. 21, .... 
~ ~ 

Llgnoredj 

Abbreviated formats 

1. Any command can be followed by a one-character command without having to enter a CR code. 
E.g) "HDlOO, 200" CR is valid and is the same as "H" CR "DlOO, 200" CR. 

2. Any command can be followed by a command with one parameter by separating them with a com-
ma " , ". 
E.g) "LO, Sl, QO, Cl, DlOO, 200" CR is valid. 

3. A command with pairs of parameters must be terminated with a CR code. 

Data change due to mode switching 

The following data changes when the printer is switched from the graphics mode to the text mode. 
• X and Y coordiantes 

Y is set to 0 and the origin is placed at the left side of the printable area. 
• Direction of characters 

Q is set to 0. 
• Character scale 

Character scale is set to 1. 
• The line type setting is not affected. 

A-23 



Appendix J Code Tables 

• ASCII code table 
MSD is an abbreviation for most significant digit , and represents the upper 4 bits of each code. LSD 
is an abbreviation for least significant digit, and represents the lower 4 bits of each code. Codes 1 lH 
to 16H are cursor control codes. For example, executing CALL PRINT (a monitor subroutine) with 
15H loaded into the ACC returns the cursor to the home position. (" m " is not displayed.) 

~ 
0 1 2 3 4 5 6 7 8 9 A B c D E F 

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 D 

0 0000 ISP I [QJ ~ [EJ ~ ~ rn b] @] [BJ []] [d B D 
1 0001 D DJ DJ ~ [9J R rn EE ~ ~ [] [) ~ [j] [I] 

2 0010 D B [gJ [§] [BJ x ~ EJ [i] ~ ~ ~ Ed [l] ~ 
3 0011 m [j] @] [9 [§] oc ~ ~ ~ ~ [!ii] D EU 8 [t] 
4 0100 = ~ ~ [QJ ITJ ~ ~ ~ EJ [i] Q D D EJ D 
5 0101 1:1 [%] [§] ~ [ill ~ ~ 6J ~ ~ E:j D IJ LJ ~ 

6 0110 ri ~ ~ [EJ [YJ ~ ~ [] w OJ L::3 8 [] Q ~ 
7 0111 ~ [2J [§] ~ -~ CJ 00 ~ ~ D LJ [] [QJ 

8 1000 [I] [§] [8J 00 ~ ~ ~ lliJ [QJ [] II ~ [] [I] 
9 0001 rn ~ DJ [YJ ~ [] ~ G3 ~ 00 ~ ~ ~ 0 
A 1010 ~ CJ QJ ~ ~ ~ Q [fil [I] @] 0 D ~ [t] 

B 1011 [±] ITJ [RJ [] ~ ~ EJ [!] [YJ 00 [E ~ ~ ~ 

c 1100 GJ m [!:] [SJ ~ ~ ~ [4J [l] b:J c ~ D [!] 
D 1101 ICRI EJ EJ [M] [JJ KJ ~ [] 0 [ill 00 ~ ~ [SJ rn 
E 1110 GJ [IJ [NJ [!] [E [lJ [] ceJ [ill DJ El] ~ [ZJ ~ 
F 1111 [Z] rn [Q] [B ~ [!] ~ ~ [IJ ~ w ~ D rm 

A-24 



• ASCII code table 

When using the colour plotter-printer, graphics characters other than those shown above cannot be 
printed, but the curresponding hexadecimal code is printed in a different pen colour. 

~ D 0 1 2 3 4 5 6 7 8 9 A B c D E F 

0 SP 0 @ p } q n 
1 [I] 0 1 A Q 0. A 

ITJ ! I ·2 B R 
-

2 e z u 
3 EJ # 3 c s "' w m 
4 EJ $ 4 D T ~ s 
5 [8] % . D 5 E LJ u 

[g 8x 6 F u t . 
I 

-7 6 I 

7 
/ 7 G w 9 0 = 

c 8 H >< h 
·- -

I 8 0 
J 9 I y k 

- -
9 A 

* J ~ b -f - -a 

0 A 
0 

a 

K [ 0 A - -

f B + 5 x v CJ 
c 5 < L 

""' 
ci i 

M J 
- - y D - -

~ u -

E 
0 > N t p ,B < -

? 0 F ./ f- c .J J[ I = 

A-25 



Appendix K Error Messages Generated by the Monitor 

[Cassette] 

CMT: Loading error 
An error occurred during data loading. 

CHECK SUM ER. 
An error was detected in the check sum for the loaded file. 

Make ready CMT: 
An attempt was made to access data before the I PLAY I button was pressed, or when no cassette 
was inserted in the data recorder. 

[MZ disk] 

QD: Loading error 
An error occurred during data loading. 

QD: File mode error 
The type of the starting file on the disk set in the drive· at the power-on sequence was not OBJ. 

QD: File not found 
The specified OBJ file was not found. 

QD: Hard err 
A hardware error occurred. 

Already exist err 
A filename which is the same as that specified for the S command had been already cataloged 
on the disk. 

QD: Write protect 
An attempt was made to access a write-protected disk. 

QD: Not ready 
An attempt was made to access data for the disk when the disk holder was opened or when no 
disk was inserted in the drive. 

QD: No file space err 
Insufficient free space was left when a file was saved by the S command. 

QD: Unformat err 
The disk to be accessed was unformatted. 

QD: Bad disk err 
The disk to be accessed was defective. 

Make ready QD 
An attempt was made to access data when the disk holder was opened or when no disk was set 
in the drive. 

[Floppy Disk] 

FD: Loading error 
An error occurred during data loading. 

FD: Not master 
The disk set in drive-1 was not master disk. 

Make ready FD: 
An attempt was made to access data when the lever was not locked or when no disk was set 
in the drive. 

A-26 



Appendix L Error Messages Generated by BASIC 

When an error occurs during BASIC operations, either of the following error messages (1) and (2) 
is displayed on the screen. 

(1) (Type of error) error 
(2) (Type of error) error in (Line number) 

Message (1) is generated when a command is entered from the keyboard, while message (2) is generated 
during program execution. 

Error No. Message Displayed Description 

1 Syntax error A statement does not conform to the syntax rules of BASIC. 

2 Overflow error The magnitude of a numeric value exceeds the limits. 

3 Illegal data error A numeric value or variable which does not conform to the nu-
meric rules of BASIC was encountered. 

4 Type mismatch error The types of data and variable do not match. 

5 String length error The number of characters included in a string exceeds 255. 

6 Memory capacity error Insufficient memory space is available for the processing re-
quired. 

7 Array def. error An array was to be expanded or undefined array name was 
specified. 

8 Line-length error The length of a line exceeds the limits. 

IO GOSUB nesting error The number of nested GOSUB statements exceeds 15. 

11 FOR-NEXT error The number of nested FOR-NEXT statements exceeds 15. 

12 DEF FN nesting error The number of nested function definitions using the DEF FN 
statement exceeds 6. 

13 NEXT error A NEXT statement was encountered without a corresponding 
FOR statement. 

14 RETURN error A RETURN statement was encountered without a corresponding 
GOSUB statement. 

15 Un def. Function error A call was made to an undefined function. 

16 Un def. line error A non-existent line number or label was specified. 

17 Can't CONT error Program continuation with a CONT statement is impossible. 

18 Memory protection error An attempt was made to write data in the area reserved for the 
BASIC interpreter. 

A-27 



Error No. Message Displayed Description 

19 Instruction error A direct command was included in the program or an indirect 
statement was used in the direct mode. 

20 Can't RESUME error A RESUME statement cannot be used. 

21 RESUME error An attempt was made to execute a RESUME statement even 
though no error occurred. 

22 PAL error Palette block number is out of range. 

24 READ error A READ statement was encountered without a corresponding 
DAT A statement. 

29 Framing error Framing error 

30 Overrun error Overrun error 

31 Parity error Parity error 

40 File not found error An attempt was made to access a non-existent file. 

42 Already exist error An attempt was made to save a file under a filename which al-
ready existed. 

43 Already open error An attempt was made to open a file already opened. 

44 Not open error An attempt was made to access, CLOSE, or KILL a file without 
opening it. 

46 Write protect error An attempt was made to write data to a write-protected file. 

51 Too many files error An attempt was made to store more than 32 files in the RAM file 
board. 

53 No file space error Free space for storing files is insufficient. 

58 Dev. name error An invalid device name was specified. 

59 Can't execute error An attempt was made to execute a statement for an invalid 
device. 

60 Illegal filename error An illegal filename was specified. 

61 Illegal filemode error A file was accessed in an illegal mode. 

63 Out of file error An end of file was encountered during a read operation of the 
cassette. 

64 Logical number error An error was detected in the logical number. 

65 LPT: not ready error The printer is not connected or not on-line, or a malfunction has 
occurred in the printer mechanism. 

68 Dev. mode error An error was detected in the device mode. 

69 Unprintable error An error occurred which does not have a message. 

70 Check sum error An error was detected in check sum data. 

A-28 



Appendix M Index 

A ABS .............................. 5-10 G GET ............................. 6-29 
AND .............. . ............... 5-8 GOSUB - RETURN ......... 6-18 
ASC ............................. 5-12 GOTO ............. .............. 6-16 
ATN ............................. 5-10 GPRINT ........................ 6-80 
AUTO ............................ 6-3 H HCOPY ........................ 6-83 
AXIS ............................ 6-81 HSET ........................... 6-80 

B BLINE .......................... 6-61 IF -THEN - :ELSE ......... 6-20 
BOOT ........................... 6-42 IF - GOSUB ................... 6-23 
BOX ............................. 6-61 IF-GOTO ..................... 6-22 
BYE ............................. 6-42 INIT ............................. 6-37 

c CHAIN ......................... 6-49 INP@ ........................... 6-84 
CHR$ ........................... 5-13 INPUT .......................... 6-29 
CIRCLE ........................ 6-62 INPUT# ....................... 6-53 
CLOSE# ....................... 6-54 INT .............................. 5-10 
CLR ............................... 6-6 K KEY LIST ..................... 6-36 
CLS ............................ ... 6-9 KILL# .......................... 6-54 
COLOR ..... . ................... 6-56 L LABEL ........ ................. 6-16 
CONSOLE ...................... 6-9 LEFT$ .......................... 5-11 
CONT ............................ 6-7 LEN ............................. 5-13 

cos····························· 5-10 LET .............................. 6-11 
CSRH ............ ... ........... ... 5-5 LIMIT .......................... 6-86 
CSRV ............................. 5-5 LINE ............................ 6-60 
CURSOR ....................... 6-10 LIST .............................. 6-4 

D DEF FN ........................ 6-34 LIST /P ... . ......... ............ 6-83 
DEF KEY ...................... 6-36 LN ............................... 5-11 
DEFAULT ..................... 6-55 LOAD ........................... 6-44 
DELETE ..................... 6-4,48 LOG ............................. 5-11 
DIM ............................. 6-30 M MERGE ........................ 6-50 
DIR .............................. 6-43 MID$ .... . ....................... 5-11 

E END ............................. 6-13 MUSIC ......................... 6-68 

EOF ( #) ........................ 6-53 N NEW .............................. 6-6 
ERL ............................... 5-5 NEW ON ........................ 6-6 

ERN ............................... 5-5 NOISE .......................... 6-72 
EXP ............................. 5-10 NOT .............................. 5-8 

F FOR-NEXT .................. 6-14 

A-29 



0 ON ERROR GOTO ......... 6-87 
ON-GOSUB ................. 6-19 

ON-GOTO ................... 6-17 
OR ................................. 5-8 
OUT@ ...... ............... ..... 6-85 

p PAGE ........................... 6-75 

PAI .............................. 5-11 
PAINT .......................... 6-63 
PAL ............................. 6-57 
PATTERN ..................... 6-64 
PCIRCLE ...................... 6-82 
PCOLOR ....................... 6-75 
PEEK ........................... 6-84 

PHOME ........................ 6-79 
PLINE .......................... 6-77 
PLOT ........................... 6-83 
PMODE ........................ 6-73 
PMOVE ........................ 6-78 
POINT .......................... 6-67 
POKE ........................... 6-84 
POSH ............................. 5-5 
POSITION ................ ..... 6-65 
POSY ............................. 5-5 
PRINT .......................... 6-24 
PRINT# ....................... 6-51 
PRINT/P ............... ....... 6-76 
PRINT/P USING ........... 6-76 
PRINT USING ............... 6-25 
PSKIP ............. ....... .. ..... 6-75 
PTEST .......................... 6-73 

R RAD ............................. 5-11 
READ-DATA ............... 6-31 
REM .............. ............... 6-11 
RENAME ...................... 6-48 
RENUM ......................... 6-5 
RESET .......................... 6-59 

A-30 

s 

T 

u 
v 

w 

x 

RESTORE .... ................. 6-33 
RESUME ...... ................. 6-88 

RIGHT$ .... . .. ................. 5-11 
RLINE ...... . .. ......... ........ 6-78 
RMOVE ....... ................. 6-79 
RND ......... . .. ................. 5-13 
RO PEN# .. . .. ................. 6-52 
RUN .......................... 6-8,43 
SAVE ....... . .. ............... .. 6-46 
SEARCH ........................ 6-5 
SET .......... . .. ................. 6-58 
SIN .......... . .. ................. 5-10 
SIZE .............................. 5-5 
SON ......... . . .. ................ 5-10 

SOUND ..... .................... 6-71 
SPC .......... . .. ................. 5-12 
SQR ......... ............. ....... 5-10 
STICK ........ ...... ............ 5-14 
STOP ........ . .. ................. 6-12 
STR$ ........ . .. ................. 5-12 
STRIG ...... . .. ................. 5-14 
SYMBOL. .. . .. ................. 6-66 
TAB ......... . .. ........ ......... 5-11 
TAN ......... . .. ................. 5-10 
TEMPO .. ..... . ... ............. 6-71 
TI$ ................................ 5-5 
TROFF ..... . .. ................. 6-35 
TRON .......... ................. 6-35 
USR ............ . ... ... .......... 6-85 
VAL ............ ................. 5-12 
VERIFY .... . .. ................. 6-47 
WAIT ....... . ................... 6-42 
WOPEN # ..................... 6-51 
XOR .............................. 5-8 



Appendix N Specifications 

CPU Z80A-CPU 

Clock 3.5469 MHz 

Memory ROM 16K bytes 
RAM 64K bytes 
VRAM 16K bytes 

Can be expanded to 32 K bytes. (option) 

Display l/F : RF, Video, 
RGB 

Graphic display : 320 x 200 dots 
640 x 200 dots 

Cassette Standard audio cassette tape 
Data transfer speed ; 1200 bits/sec. 
Data transfer system ; SHARP PWM 

Key layout ASCII standard main keyboard 
Special function keys 
Cursor control keys 
Cassette tape deck control keys 

Editing function Cursor control; up, down, left, right, home, clear 
Deletion, insertion 

Clock function Built-in 

Power supply Local supply rating voltage 

Temperature Operating temp; 10° to 35°C 

Humidity 200Jo - 800Jo (no condensation) 

Weight MZ-811; 4.0kg 
MZ-821; 4.3 kg 

Dimensions Width : 440 mm 
Depth : 305 mm 
Height: 109 mm 

Accessories Power cable Definable key lave! 
Owners manual Graphic key lave! 
Cassette 
Monitor cable 

A-31 





This apparatus complies with requirements of BS 800 and EEC directive 
82/499/EEC. 

Dieses Gerat stimmt mit den Bedingungen der EG-Richtlinien 82/499/ 
EWG iiberein. 

Cet appareil repond aux specifications de la directive CCE 82/499/CCE. 

Dit apparaat voldoet aan de vereiste EEG-reglementen 82/499/EEG. 

Apparatet opfylder kravene i EF direktivet 82/499/EF . 

Questa apparecchio e stato prodotto in conformita alle direttive CEE 
82/499/CEE. 



SHARP CORPORATION 
OSAKA, JAPAN 

Printed in Japan 
Gedruckt in Japan 
lmprime au Japon 
Stampato in Giappone 

(C 1984 SHARP CORPORATION 

4L 5 6-l(TINSE 1295ACZZ)~ 


	Sharp_MZ-800_Owners_Manual_cover1
	2022-02-19-0001
	2022-02-19-0002
	2022-02-19-0003
	2022-02-19-0004
	2022-02-19-0005
	2022-02-19-0006
	2022-02-19-0007
	2022-02-19-0008
	2022-02-19-0009
	2022-02-19-0010
	2022-02-19-0011
	2022-02-19-0012
	2022-02-19-0013
	2022-02-19-0014
	2022-02-19-0015
	2022-02-19-0016
	2022-02-19-0017
	2022-02-19-0018
	2022-02-19-0019
	2022-02-19-0020
	2022-02-19-0021
	2022-02-19-0022
	2022-02-19-0023
	2022-02-19-0024
	2022-02-19-0025
	2022-02-19-0026
	2022-02-19-0027
	2022-02-19-0028
	2022-02-19-0029
	2022-02-19-0030
	2022-02-19-0031
	2022-02-19-0032
	2022-02-19-0033
	2022-02-19-0034
	2022-02-19-0035
	2022-02-19-0036
	2022-02-19-0037
	2022-02-19-0038
	2022-02-19-0039
	2022-02-19-0040
	2022-02-19-0041
	2022-02-19-0042
	2022-02-19-0043
	2022-02-19-0044
	2022-02-19-0045
	2022-02-19-0046
	2022-02-19-0047
	2022-02-19-0048
	2022-02-19-0049
	2022-02-19-0050
	2022-02-19-0051
	2022-02-19-0052
	2022-02-19-0053
	2022-02-19-0054
	2022-02-19-0055
	2022-02-19-0056
	2022-02-19-0057
	2022-02-19-0058
	2022-02-19-0059
	2022-02-19-0060
	2022-02-19-0061
	2022-02-19-0062
	2022-02-19-0063
	2022-02-19-0064
	2022-02-19-0065
	2022-02-19-0066
	2022-02-19-0067
	2022-02-19-0068
	2022-02-19-0069
	2022-02-19-0070
	2022-02-19-0071
	2022-02-19-0072
	2022-02-19-0073
	2022-02-19-0074
	2022-02-19-0075
	2022-02-19-0076
	2022-02-19-0077
	2022-02-19-0078
	2022-02-19-0079
	2022-02-19-0080
	2022-02-19-0081
	2022-02-19-0082
	2022-02-19-0083
	2022-02-19-0084
	2022-02-19-0085
	2022-02-19-0086
	2022-02-19-0087
	2022-02-19-0088
	2022-02-19-0089
	2022-02-19-0090
	2022-02-19-0091
	2022-02-19-0092
	2022-02-19-0093
	2022-02-19-0094
	2022-02-19-0095
	2022-02-19-0096
	2022-02-19-0097
	2022-02-19-0098
	2022-02-19-0099
	2022-02-19-0100
	2022-02-19-0101
	2022-02-19-0102
	2022-02-19-0103
	2022-02-19-0104
	2022-02-19-0105
	2022-02-19-0106
	2022-02-19-0107
	2022-02-19-0108
	2022-02-19-0109
	2022-02-19-0110
	2022-02-19-0111
	2022-02-19-0112
	2022-02-19-0113
	2022-02-19-0114
	2022-02-19-0115
	2022-02-19-0116
	2022-02-19-0117
	2022-02-19-0118
	2022-02-19-0119
	2022-02-19-0120
	2022-02-19-0121
	2022-02-19-0122
	2022-02-19-0123
	2022-02-19-0124
	2022-02-19-0125
	2022-02-19-0126
	2022-02-19-0127
	2022-02-19-0128
	2022-02-19-0129
	2022-02-19-0130
	2022-02-19-0131
	2022-02-19-0132
	2022-02-19-0133
	2022-02-19-0134
	2022-02-19-0135
	2022-02-19-0136
	2022-02-19-0137
	2022-02-19-0138
	2022-02-19-0139
	2022-02-19-0140
	2022-02-19-0141
	2022-02-19-0142
	2022-02-19-0143
	2022-02-19-0144
	2022-02-19-0145
	2022-02-19-0146
	2022-02-19-0147
	2022-02-19-0148
	2022-02-19-0149
	2022-02-19-0150
	2022-02-19-0151
	2022-02-19-0152
	2022-02-19-0153
	2022-02-19-0154
	2022-02-19-0155
	2022-02-19-0156
	2022-02-19-0157
	2022-02-19-0158
	2022-02-19-0159
	2022-02-19-0160
	2022-02-19-0161
	2022-02-19-0162
	2022-02-19-0163
	2022-02-19-0164
	2022-02-19-0165
	2022-02-19-0166
	2022-02-19-0167
	2022-02-19-0168
	2022-02-19-0169
	2022-02-19-0170
	2022-02-19-0171
	2022-02-19-0172
	2022-02-19-0173
	2022-02-19-0174
	2022-02-19-0175
	2022-02-19-0176
	2022-02-19-0177
	2022-02-19-0178
	2022-02-19-0179
	2022-02-19-0180
	2022-02-19-0181
	2022-02-19-0182
	2022-02-19-0183
	2022-02-19-0184
	2022-02-19-0185
	2022-02-19-0186
	2022-02-19-0187
	2022-02-19-0188
	2022-02-19-0189
	2022-02-19-0190
	2022-02-19-0191
	2022-02-19-0192
	2022-02-19-0193
	2022-02-19-0194
	2022-02-19-0195
	2022-02-19-0196
	2022-02-19-0197
	2022-02-19-0198
	2022-02-19-0199
	2022-02-19-0200
	2022-02-19-0201
	2022-02-19-0202
	2022-02-19-0203
	2022-02-19-0204
	2022-02-19-0205
	2022-02-19-0206
	2022-02-19-0207
	2022-02-19-0208
	2022-02-19-0209
	2022-02-19-0210
	2022-02-19-0211
	2022-02-19-0212
	2022-02-19-0213
	2022-02-19-0214
	2022-02-19-0215
	2022-02-19-0216
	2022-02-19-0217
	2022-02-19-0218
	Sharp_MZ-800_Owners_Manual_cover3
	Sharp_MZ-800_Owners_Manual_cover4
	Prázdná stránka

