Personal Computer

MZ-C0O

OWNER’S MANUAL

| 1
)

| B KB |
i

A S

)

SHARP

Personal Computer

MZ-E@0(0

Owner’s
Manual

© SHARP CORPORATION

NOTICE

This manual has been written for the MZ-800 personal computers and the BASIC
interpreter (1Z-016) which is provided with the MZ-800.

)

@)

€))

All system software for the MZ-800 computers is supported in software packs
(cassette tape, etc.) in file form. The contents of all system software and
the material presented in this manual are subject to change without prior
notice for the purpose of product improvement and other reasons, and care
should be taken to confirm that the file version number of the system soft-
ware used matches that specified in this manual.

All system software for the Sharp MZ-800 personal computer has been de-
veloped by the Sharp corporation, and all rights to such software are reserved.
Reproduction of the system software or the contents of this book is pro-
hibited.

This computer and the contents of this manual have been fully checked for
completeness and correctness prior to shipment; however, if you should en-
counter any problems during operation or have any questions which cannot
be resolved by reading this manual, please do not hesitate to contact your
Sharp dealer for assistance.

Not withstanding the foregoing, note that the Sharp Corporation and its
representatives will not assume responsibility for any losses or damages in-
curred as a result of operation or use of this equipment.

Preface

Congratulations on purchasing the MZ-80(computer. Your MZ-800 is a compact personal computer,
featuring 640 X 200 dot addressable graphics, 16-colour display, and a programmable sound genera-
tor (PSG) which can generate 3-tone chords over 6 octaves. One of the excellent features of the MZ-800
is that it contains hardware which makes it compatible with the MZ-700 series computer. This makes

it possible for you to use most of the existing programs for the SHARP MZ-700 series computers on
your MZ-800.

This manual is written both as a guide to the MZ-800 and a BASIC reference manual. The manual
is constructed as follows.

Chapter 1 describes how to unpack, handle, and setup your MZ-800, and what to do if a problem occurs.
Chapter 2 describes how to turn on the power, load the BASIC interpreter, and turn off the power.

Chapter 3 explains the BASIC interpreter. This chapter also shows you how to write a simple pro-
gram, edit it, save it on a cassette tape and load it back into memory.

Chapter 4 describes the functions of the keyboard keys. This chapter also describes how to operate
the data recorder and handle tapes.

Chapter 5 presents the background knowledge you need to be able to write programs.
Chapter 6 describes the BASIC commands and statements.

Chapter 7 describes the hardware configuration of the MZ-800 and 1/0 port control. It also describes
peripheral devices and how to connect them.

Chapter 8 explains the monitor program, which allows you to ‘‘bypass’’ BASIC and directly access
the MZ-800’s memory.

Chapter 9 explains the MZ-700 mode of the MZ-800.

Make sure that you read the handling and setup instructions before turning on the computer’s power
switch. Read this manual thoroughly to get the most out of your MZ-800 computer.

CONTENTS

Chapter 1 Introduction

V.1 UNDACKING, mresnssscmmmmmsssivanssrsys snmuaysss sy saismsnss s SRR 1§ PR U SEErEE 003 1-2
195500 5 231 Y 4 I Py Wt s O O S R 1-3
Lo3 ADDCATANCE s svwssrsss s sisiwaimimeins s samusonio somtmiams Lo maanns Smsmns | (Imsss § § 0 as s e ieesiys Ui 1-4
Lol SCUUD wvmsss unnsunis s sauranss s s sacimsmes ssvmaie seamsaiss SLavinns s Laneme ; (Gmauvms » iEassns | fieaies pves 1-6
LS In Case of it wes somuimes commmmenns semsenss s srasmess sassmins o ssusendin s §680007 5 Soaaubsd o 00 1-10
Chapter 2 Start Up
2l POWET-OTL s s sanmransssamsmms s oo amusbli s s s s s simsmmes S oRaB S eSS saTt S s RS s g 2-2
2.2 POWEE-OEE «xvemimisn ssa s mumens 550 o omsis s Sy s e SS9 S S8 s G S G RS 2-3
2.3 Running the Demonstration Programcccceviiiiiiiieiireserneesenieneeneeeesensesersessensens 2-4
Chapter 3 Basic Operation
Brell YT O CENOTL s 5007572580 T A A B S S S P R TS B P 3-2
3.2 Getting to know the KeVboard ... ueswsssnnmmmmansmmmensessmnsms s sens s va s soesssoms s 3-3
3.3 "WrItiTe @ SIAPIE PLOBTATIL ..o sumvimscmemmmemmnsisssionmminns b i miies s (mmpuess sisamss seumahmns 34
3.4 Bditing PrOCTATIS o svmmmmsneau e o et s s st e ssss s nuis simmsmsssisssssasmnnin D ames s 3-7
BT SAVITIG T PP ORI ATN ur000510:0smco10;5150580850558 5500800553558 5 8 1800 5 5850 G 3-10
I8 TN 0 7 Ve 5 8 20)3 521 1 (RUR e s s T ——— 3-12
Chapter 4 Keyboard and Data Recorder
.1 KOYDOATH voivnswsmwmnminssivssmmninensissssmsnss o sivsms s inmms o riena sy Lo ssrss 5ol Esa e b s s 4-2
4.2, Tt RECOTUERT muueasissommorsismssmsisnsissmmseinesiwinssmsomsissasss i Eass DGR ST L Sineees 4-6
Chapter 5 Programming Concepts
5.1 Multi-statement Lines and Line NUMDBELS . ..euessscosuimiiss snwmins s s avammmnss s sansonss s oasomaniass 5-2
5.2, Nameric Data, and SN DDA .. coomsomeis ommomanne sommmemsinsmnmnions s 45 EHE 15 855055 § THERREESR 5-3
S TCONSUANTS. « - ovnnsss it TEaimks s ST TS S RSy St oS Ra esan B S BB § 5-4
S VEHEUHIES v conomonns o s sAumss s sOMERiES SN § SRS) AN § A s TS S EesRREE 1 5 5-5
5.5 AXTAY VaATIaDLES souui covnesnnis s snwnmnmns s snwannns s v swsinss § RARn SESARENS 6 S5 ERRNEA § § SLEHHNSS POASHEETSE S 5-6
L Uy PP VY S SRS R ——— -7
B30T 1O hu e 5o mrtt aTe 0 B R GBS s S B s s ol s S SR S T R TR 5-9
S8 FURCEIOINS 05 00 rvsoromins s a8 08 A B SIS A 86 SIS ¥ S 5 I S 5 S S N S T 5-10
5.9 SCreen COOTAIIATES wuwwsmssssvs sismsssssvisins sesnsmesss e s mnms w5 Smomss s mmess e s sommenes s 5-16
Chapter 6 MZ-800 BASIC Commands and Statements
6.1 COTTINTAIENS s 0 vmcncosrsissrssstosmimio i stsnssns 2k 8800 RS ARS8 PR S S B G B S T 6-3
6.2 Fundamental STALEIMEITS . cco.seermivsosssnomsesmmuomeesns smannossioms o s s e v s s samiess 6-9
6.3 File Control SIalBMIENES «v. s commursrsmmmmsnrsmverssrsmsensnaysesnsrsss s smnsasssiss snkins 6-43
6.4 Graphics Control StAtEMENLScceeeiueieiriniieiniieiiieieierernraeeseserarernsessssasnssssnsnsens 6-56
6.5 MusiC Control StatemMENLSvueeeireiiienirneieerteirinerserseieeneeseeseaneestnsenessennenesseosennens 6-68
G Prntor Coolin] Bl . .o ooimiminsiinimnmnssiiniis s Sisasimns o 1) At s L SOmsess 6-73
6.7 Machine Language Control StatemMents ...o.vuveeeeueeererniieneenereesenererernenssesacnsnssasnsnes 6-84
6.8 Error Processing StateImMeNtseuieiereiniirineiieineinerteieesieseeseaseesessesessesseneancssenseneens 6-87

Chapter 7 Hardware

Tialy MZEBOOHATAWATE - con i ommmieios snsinmmis S romems s SR R AT s e e SN T A s 7-2
Talwl, ISTStEM: AIABTHNN vrccommnersamsmBmes s R T A A A e A A R R SR SR 7-2
Tl 2 1Sy stenm SWIteH, SCTINBS cvsmsumanininmissmessersmss s s s GRS SRR Ao 7-3
Telui? LIET DR SO o consscninsnmmnicioss s s St SR ENTEN S RIS S b s by 5 SRS § E A 7-4

7.2 Periphetal IYETICEE: w oo vsnmesysspsiisssss s s mmsis s oot st somsinons sopmsp i S s ps As s 7-8
To2e]l SEARAAT0 INECTTACES! comusisssvmmmusinsncstuussaebessmsississ syt S ummns LR R e 7-8
7:2.2, Bxpansion, L/O COMMNBEEOT crmuss ssswwnssnsssmmvos s ¢ SHpmas(ss. s umuses s arammmens souvmss v 7-8
723 RAM file board (MZ-IR1B). ccumuns s capcmussessssmsasns snosmranns sonsmurss s uassnnss s s 6onses 7-10
T2l AOYREICKE 1 . isnmmmes somsiommics s wsimiesss s SEVRERosG SAREERRRE & oo smon s a8 EATSS AV 7-11
T2 PTITHCES spncsusenns snnumesms smsiams b s s i s o A e S S s SRR o SR e e 7-13
7.2.6 Optional graphic MeMOry MZ-1R2Y ... coinsoivesnsmmnssviminnss s o seesisis e suvams 7-16
7.2.7 External cassette tape recorder (for MZ-811 only) ..c.ccevvveiniiineieiiiniiiieirenenenens. 7-18

Chapter 8 Monitor

B () TP NV 8-2
8.2 ROM Monitor and BASIC MoOMItOreuieiiireiieiieitieneeieeeneeneeeneeasenneeanenseensenneen 8-3
TR TR e RS ——————————E 8-4
8.4 MONIOT CORMATIOS csnasssanmsmswmasinms o mnsvs s smmes s m o s s s SEusss s sasmes 8-5
9.5 IBASIE NIOTIEOE 2 0o mmestne s s aenss oS s O IOTa s S (ERE AR Se st i s TG E0E 8-8
8.6 BASIC MoOnitor COMIMANGAS t.uvvuriinrrnternteneesnresesntencsasenssessesnsessesssansesnssnsansssnses 8-9

Chapter 9 MZ-700 Mode

0,1 USINg MZ-T00 PLOZTAINIS ..ouvnenrs o vosmmsision s swsisioss s suswesiaes sasidmiined o swnewnsmossessmens s yewsies 55 9-2
9.2 Summary of MZ-700 BASIC Commands and Statements,
Bunctions Gt ODEratiOnS sovemssseimsnsss piomsbnms sanvsmsos oo s meaumss S asoeniss s amssbmi i 9-3
Appendixes
Appendix A Display Control in the MZ-800 MOEcceevvernrireriniienninenieneneneneenennnns A-2
B Programmable SOUNd Generation ... isessss sssnsmmssssomsswms sasmssmiss smesoans siiness A-7
C RESeTEC, NWOTAS. oo v ieisspss s s Somiiames s moaiase s e St R S S S aie A-10
I Console Control Codes s smsmemsismrsmmspimmss suvimmmmesnes s sy o ATE T A-12
E Restrictions on Using File I/O Commands and Statements A-13
F MOHtOT SUDTOULITIES s s snsssnssnsnsnians s anussns s s s sasmans s shsismons ss sswsmses A-14
G Making Backup Copy of the BASIC Interpreterocoeeveeeeieiniinineeennenns A-17
H Optional Colour Plotter-Printer MZ-1P16cccviviviiireniniieiniieeenniienennns A-18
I Colour Plotter-Printer Control Codescouiuiiieiueeerniieieiieneneenrnrneneenenans A-21
J Code TableSusn s sovvmnins s snnnnsns susimsns o swsmsey s ausmamsms § SOy s seaeasvy s iissmssas A-24
K Error Messages Generated by the Monitor......coovveviiiiiininiiireiienienineeenes A-26
L Error Messages Generated by BASIC.....couiiiiiiiiiiiiiiiiiiiiiiieiicreeeeeee A-27
IVIL . DO s s amstimsmasss e S A S e o SR s S AR B L AR TR A-29
N S CCTTICATTON. cvnnwsns samummssiss smmwisssisio msimessssissiasis s s S asm vy davEwesT ¥5 A dFeas wamssiasns A-31

&

'l;_?
ET
EA
B

-

D=

S L
CN S

)l

..

¥
[

o F

i
.a

L] P

Rl =

'::I\"
1* &
N .

X

&4

R4

.

NY

ol

T

. o’-rmm- o “mrm- PR P I o B L RO T

vmmie sAgedD
N e e e e o e mna o fd B Al e e ST LR £ T
S PR N * 0 T e
o g a - D" = ey 1 8 Jryriieg dsirer Meta D)8
I N R 5 [I8 "= L0 S
;o Eyneel) Sl £

PIE , SR g vl b g gy e - ok .

ke i n omld srrrl ’rrr e app™ ary o b e, =y :At-A-- m“j 'J‘M F—-—n
T sie apie e EGEGE 1FY peigpenl) L2

. - Pl GV Roaed) REAR 228
" & Lih P ol e e sanis . Fagavey &% 7
Pury s a4 = pee wea aror i e e PRMSASE X L1
o dfer oich o 4 ‘i!'ﬂﬁm'uﬂﬁa-;h:hhwﬁa 't

IR T e B ...ﬁt-'u\mm.-. saisy g T

wipedd € gl b
S B (F Eors S

. - | o AT l-l JE’.F.'I S WS MTRR TR

- st DR Slsaetd B

. e s e aan SSUgETRENT mtnetd of

o S . . - o
- - . T U R I 1S T A TP -

ahold GUC-RN © wtgedY

. o BT BT SRA o) I w

PRt T -hr.nm ""rlme"‘u'-!f th R G,
—— . . . o Spaihy ety Lese puedtueey

‘ TSI NY)

e < bR TR RTE O o Yoahe 7 palaeifl e
. Comgae CRRCEETY Sl pigRlon e
S . -t s S Geerin))
. R S L T 3 ‘.ﬂ"l‘.‘l‘.ﬂ’

- Con ¢ AHESYRIDE et
N Wit BRI Sile Y g wiidl omidett
RERIU RN PN Lt e T ks B sy

e e et = TN it vt oneor wain)
e i . i mwhau wegen e o APEOTRLE D
- y —a 1--u". - T ke s aly wercl
- P : R R T L S e ke e o TR
Mgemt 2 . " e T o
i - e . 2

-

R N T R I N

[YRR RS —

Chapter 1 Introduction

This chapter describes how to handle and set up the MZ-800 computer system. Read this chapter carefully
before turning on the power switch.

1.1 Unpacking

Remove the MZ-800 from the packing carton and check that you have the following items.

Cassette (containing the MZ-800
BASIC interpreter program,

a demonstration program for

the MZ-800 BASIC interpreter,
the MZ-700 BASIC interpreter,
and demonstration programs for
the MZ-700 BASIC interpreter)

Power cable
Computer

Graphi
raphic key label set Mistiitar cabls

Store the carton and packing materials away in a safe place, so that you can reuse them if you have
to transport the computer in the future.

1.2 Handling

1) This computer uses many precision parts. Do not use or store it in extremely hot or cold condi-
tions, or under conditions where the temperature changes rapidly.

2) Do not use or store the computer in damp or dusty places, and avoid exposing it to corrosive chem-
icals or gases.

3) Do not block the ventilation holes or place large objects nearby that will disrupt ventilation.

4) Do not subject the computer to shock or vibration.

5) Do not expose the computer to direct sunlight.

6) Do not allow water or other liquid to enter the cabinet. Using the computer when it is wet is very
dangerous, and will damage the computer’s electronics.

7) Do not disassemble the cabinet unless you are installing options as instructed by documents from
SHARP.

8) Radios and TV sets may pick up interference from RF (radio frequency) noise generated by the
computer. Keep such equipment (other than that you may be using as the computer’s display unit)
well away from the computer.

9) When peripheral devices are connected, the display image may jitter. If this problem occurs, change
the layout of your system’s equipment.

10) Do not place any object other than the optional plotter/printer (MZ-1P16) on the cabinet.

11) After turning off the power switch, unplug the power cable by grasping the plug molding, not
the cable.

12) Make sure that you turn off the power switch when you not using the computer. After turning
off the power switch, wait at least 10 seconds before turning it on again, otherwise the system
may not operate properly.

13) Use a dry soft cloth to clean the unit. Do not use a wet cloth or volatile fluids such as alcohol
or benzene. Discolouration or deformation of the cabinet may result if this precaution is ignored.

14) If you notice any abnormal condition such as an extremely high temperature, an abnormal odour,
or smoke, stop what you are doing and quickly turn off the power then unplug the power cable.

MZ-811 and MZ-821

One of the models described in this manual may not be available in some countries.

This manual explains two personal computer models: the MZ-811 and the MZ-821. Differences
between these two computers are as follows.

Model name MZ-811 MZ-821
Data recorder Optional Standard
Ordinary cassette recorder Connectable | Not connectable

When the optional MZ-1T04 data recorder is installed on the MZ-811, it becomes equivalent

to the MZ-821. Procedures for installing the data recorder are described in the MZ-1T04 in-
struction manual.

The explanations in this manual are based on the MZ-821.
However, the explanations on pages 7-3 and 7-18 apply only to the MZ-811.

1-3

1.3 Appearance

(Front view)

Data recorder

Definable function keys

Main keyboard Power lamp

Cursor control keys

Insert and delete keys

(Rear view)

Channel control

B/W-colour switch

Composite signal output jack

RGBI signal output connector

Expansion slot compartment cover

Reset switch

Power cable socket
/"1'g = T ——f———— el
E 5
® ® ®
_ f 2 l ® @]U | oN
1] SYSTEM. Sw!
RF VIDEO—RGB_ 12341ON T—JOYSTICK—2 PRINTER
x - . DOFF|
L i A"ss!\%i @ = @ @ ® ‘he ERE?ET 7 | POVER
NS
Printer connector
Cassette tape recorder jacks
(These jacks are not used.)
System switch Power switch
Joystick connectors
’ . Volume control
RF signal output jack et

Printer power jack

(Note: If this jack is short-circuited,
the memory contents will be lost.)

1-5

1.4 Setup

To operate your MZ-800 computer, you must first set up the system. To do this, you will need to con-
nect a display unit to see what the computer is doing. SHARP supplies several types of display units
for the MZ-800 computer, or you can use an ordinary home TV set providing it can receive the VHF
band. The minimum configuration your computer can operate with is shown below:

Monitor
(TV-set)

The following explanation shows the setup procedure for a typical system.

(1) Using a TV set
To use a TV set as the display unit, use the monitor cable provided with your MZ-800.

1) Disconnect all antenna cables from the TV set. (If they are left connected, RF interference generat-
ed by the computer will be radiated from your TV antenna, which may interfere with neighboring
TV sets.)

2) Insert the monitor cable pin plug into the RF pin socket on the rear of the MZ-800. Connect the
other end of the cable to the 75-ohm UHF antenna terminal on your TV set.

1-6

RF signal
output jack

75Q UHF
antenna terminal

3) If the TV set is a colour unit, position the B/W-colour switch on the MZ-800 to COLOR, otherwise
position the switch to B/W.

RF VIDEO

4) Tune the channel selector on your TV set to a vacant channel between 33 and 39.
5) Turn on the TV set then turn on the MZ-800. As shown in the figure below, adjust the channel
control trimmer so that the following image is clearly displayed on the TV screen.

A E=C);

VIDEO

1-7

Make ready CMT
Please push key
C: Cassette tape

M: Monitor
Notes:
e The image quality on your TV set will not be as good as that obtained from a monitor supplied
by SHARP.

e Part of the image may not be displayed on some TV sets, and this is most likely due to how the
TV controls are set up. In such cases, consult your dealer.

e If the UHF antenna terminal does not use a pin jack, use a monitor cable with a pin plug at one
end and the correct connector for your TV set at the other end. The monitor cable impedance must
be 75 ohms, to match the impedance of the RF socket of your TV.

® No audio signal is output from the RF socket, therefore adjust the volume control of the TV set
to minimum.

(2) Using the MZ-1D19 colour display unit

1) Plug the square connector of the connection cable provided with the MZ-1D19 into the connector
on the rear panel of the display unit.

2) Plug the DIN connector of the connection cable into the RGB connector on the rear panel of the
MZ-800.

\

) ® = = e~
- sl Y on]

Y608 @7y

Note:
A colour TV set which has an RGB input terminal can also be connected to the RGB connector of
the MZ-800. Prepare the monitor cable as described in the instruction manual for the TV set.

1-8

(3) Using a green display unit (MZ-1D04)

Insert the pin plug of the green display unit cable into the composite signal output jack on the rear
panel of the MZ-800.

Position the B/W-colour switch to B/W.

=

©)
4l
i
)

| RN
RF VIDEO

Note:
A colour TV set with a video input terminal can be connected to the composite signal output jack
of the MZ-800. The monitor cable provided with the MZ-800 can be used for this connection.

1-9

1.5 1In Case of Difficulty

If you have any problems with your MZ-800 either now or in the future, read this section first then
if necessary contact your dealer.

The following table lists possible problems and checks you can make.

Problem Points to check

Image quality is poor. e Is the monitor cable connected correctly?

e Is the selected TV channel the same as the channel control setting on the
MZ-800? (See page 1-7.)

e [s the B/W-colour switch selected correctly?

Nothing is displayed. e s the power switch of the display switched ON?

e [s the display unit power cable plugged into an AC outlet?

The program will not stop. e To stop a BASIC program, press and hold the key, then press the
[BREAK | key.

e To stop a machine language program or the monitor program, press the
RESET switch on the rear panel.

The program cannot be loaded | ® Is loading method for the program correct? The loading method differs
from the cassette. for machine language programs and BASIC programs. Use the monitor
L command to load a machine language program and the LOAD state-
ment to load a BASIC program.

Other problems e Press the RESET switch on the rear panel to restart MZ-800 operation.

1-10

Chapter 2 Start Up

2.1 Power-on

To start up your MZ-800 computer, first turn on the MZ-800, then turn on the display unit and any
other connected peripheral devices power switch.

Turn on the equipment in the following order.
1) The MZ-800 computer
2) The expansion unit (MZ-1U06)

3) Peripheral devices (such as the printer)

You will see the following message on the screen of the display unit.

Make ready CMT
Please push key

C: Cassette tape
M: Monitor

Remove any slack from the cassette tape (see page 4-7). Press the button on the MZ-800 data
recorder. Then insert the cassette with the side marked ‘“BASIC 1Z-016"’ facing upwards.

Close the cassette compartment cover by hand. Press the key on the main keyboard. (Pressing the
key starts the monitor. See Chapter 8.) The screen display will change as follows:

r Make ready CMT

Press the | PLAY | button on the data recorder. The screen display will change as follows:

[IPL is looking for a program

2-2

The following message is then displayed.

(IPL is loading MZ-1Z2016

Wait for several minutes, then the following display will appear on the screen. The tape stops auto-
matically. Press the [STOP button.

s

BASIC interpreter 1Z-016 VX.XX
Copyright (C) 1984 by SHARP CORP.

XXXXX bytes free
Ready
I

t— Cursor (blinking)

This display indicates that the BASIC interpreter has been loaded into memory and the MZ-800 is
ready to accept BASIC commands. This display is called the “‘initial’’ frame.

2.2 Power-off

When you switch the MZ-800 off, all programs and data stored in memory will be lost. Therefore,
execute a SAVE operation prior to powering the computer off. (Chapter 3 describes how to save data
onto the cassette tape.) To power off the MZ-800,finish any BASIC operations you may have started,
then check the screen to make sure ‘‘Ready’’ is displayed and the cursor is blinking. Switch OFF the

power switch.

Turn off the equipment in the following order.
1) Peripheral devices (such as the printer)

2) The expansion unit (MZ-1U06)

3) The MZ-800 computer

Note:
Do not power off the MZ-800 while the data recorder is operating (turning).

2-3

2.3 Running the Demonstration Program

The cassette provided with your MZ-800 contains a demonstration program, which can be executed
by typing in the following after loading BASIC and advancing the tape until the counter reads 170.

RUN ““CMT:"”
When the screen display below appears:

RUN “CMT:"’
$ PLAY

Press the | PLAY | button.

The demonstration program will now be executed. To stop the program, press the |SHIFT | and
BREAK | keys at the same time. Press the | STOP | button after the tape has stopped.

Note:
The tape will still move after the demonstration program has started.

e Accessory Tape

The accessory tape which is provided with the computer contains the following files.

Side A
“MZ-1Z016"" ...oeeenenennnnn. MZ-800 BASIC Interpreter (1Z-016)
“OPENING 800”.............. Demonstration program for MZ-800 BASIC
“OPENING DATA” Data for demonstration program
Side A
ide label BASIC
12016
| “%?
| 8
’Illl-&@ ‘
—/OPSHAR,% e
Side B
“S-BASIC .. MZ-700 BASIC Interpreter (1Z2-013)
“OPENING”’ \
“zlgfé)(l:{ PLOTTER”i """" Demonstration programs for MZ-700 BASIC
Side B label “BASIC
12013
W | |
W
\
mz700 J

SHARP:, oo

©COPYRIGHT SHARP CORPORATION "“FagniaUE. AU JAPON |

2-4

Chapter 3 Basic Operation

3.1 Introduction

Your MZ-800 has been encoded with a set of instructions that allow it to perform a variety of opera-
tions, such as accepting a command entered by you from the keyboard. This set of instructions is called
the monitor program or simply the ‘‘monitor’’, and is stored in ROM (*). Any computer needs input
from a human being to know what operation to perform next. After you power on the MZ-800 the
monitor program makes the MZ-800 wait for you to input a command. Depending on the key you
press, the monitor allows you to perform one of the monitor commands, or reads a larger set of in-
structions from an external memory device, such as the data recorder, and places it in RAM (*).

*: ROM and RAM are memory devices which store information for the computer. The ROMs (Read
Only Memory) contain memory which can be read but cannot be changed or removed, even if the
power is turned off. The RAMs (Random Access Memory) however, contain memory which can
be both read and written. The MZ-800 uses ROM for storing the monitor program, and RAM for
temporarily storing the BASIC interpreter, BASIC programs and data, and other information. The
BASIC interpreter is explained in this chapter, while the monitor will be explained in detail in Chapter
8.

All the commands you input to your computer must be translated into the computer’s own language,
called machine language. Machine language consists of a collection of binary digits, which makes it
extremely difficult for most people to understand. Luckily however, you need not worry about learn-
ing to understand machine language, since the BASIC interpreter does this for you. BASIC is a ‘‘high-
level’’ language system which is similar to English and much easier for us as human beings to under-
stand than machine language. The BASIC interpreter reads instructions written by you in BASIC and
interprets them into the MZ-800’s machine language.

If you press the key when the initial frame is displayed, the monitor loads the BASIC interpreter
into RAM from the cassette, the BASIC interpreter then begins operating. (‘‘Load’’ means that infor-
mation is read from one memory device, e.g., the cassette, and is placed in another memory device,
e.g., the RAM.) Instructions written in BASIC are called commands or statements. The BASIC inter-
preter displays the following frame after the BASIC interpreter has been loaded.

BASIC interpreter 1Z-016 VX.XX
Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free
Ready

N
L (blinking)

This display indicates that you can use the computer interactively, i.e., when you type in a command,
the computer responds. If you type an incorrect command, the computer will answer with an error
message.

Each command evokes only one response from the computer, and multiple commands are difficult
to connect in a sequence. Because of this, you cannot get the computer to perform complicated opera-
tions in the interactive mode. The solution to enable the computer to perform complicated task, is
to write a program and store it in RAM. A program is a series of statements which are automatically
interpreted by the BASIC interpreter. A program which can be interpreted by the BASIC interpreter
is called a BASIC program.

3-2

3.2 Getting to Know the Keyboard

Follow the start-up procedure described in Section 2.1, your MZ-800 is ready to accept commands
typed in from the keyboard.

-

BASIC interpreter 1Z-016 VX. XX
Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free
Ready
|
(blinking)

The blinking block-shaped marker you can see on the screen is called the cursor. When you press any
character key on the main keyboard, the cursor will move the right, with the typed character appearing
in the previous cursor position.

Press other character keys, and the characters will appear in the order in which you type them. The
cursor is always positioned to the immediate right of the character typed last. Next, press the key marked
““CR”’ located on the right side of the main keyboard. You will see the message ‘‘Syntax error’’ ap-
pears on the next line.

7

BASIC interpreter 1Z-016 VX. XX
Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free
Ready
ASDFGJJ
Syntax error
Ready
]

The message ‘‘Syntax error’’ indicates that the computer cannot understand what you have just typed.
This is because the computer only recognizes commands from the BASIC programming language.
(Remember the BASIC interpreter?). BASIC will be explained more fully in Chapter 6, while ‘‘Syntax
error’’ and other error messages are listed in Appendix L. At the moment, this and the following exer-
cises don’t require you to know anything about BASIC. Now, type the following sentence from the
main keyboard.

PRINT ““ABC"’

After the closing quotation mark, press the key. The characters ‘““ABC’’ will appear below the
sentence you just typed. The computer displays these characters in reply to the BASIC command you
entered. The command was the word ‘“PRINT”’, which instructs the computer to redisplay the charac-
ters typed between the quotation marks.

Words in the BASIC language vocabulary which instruct the computer to perform an operation (such
as PRINT) are called commands or statements.

3-3

3.3 Writing a Simple Program

Start up the BASIC interpreter following the procedures described in Section 2.1.

BASIC interpreter 1Z-016 VX.XX
Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free
Ready
|
(blinking)

Type the following characters.
10 CLS

Press the key. CLS is a statement which erases all the characters from the screen. However, the
computer does not act on the statement immediately as in the interactive mode. This is because we
are now writing a program, which causes the BASIC interpreter to store the statement in memory rather
than execute it immediately. After you input the statement, the cursor blinks at the beginning of the
line below ‘‘10 CLS’’ as shown below:

10 CLS
[

When a number precedes a statement, the BASIC interpreter stores the statement in memory. The number
preceding the statement is called the line number, and when many statements are stored in memory,
the line numbers indicate the order in which the statements are interpreted and performed by the com-
puter. Type the following characters then press the key.

RUN
All characters will disappear from the screen. RUN is a command which orders the BASIC interpreter
to interpret into machine language instructions all the statements stored in memory. The statements
are interpreted in ascending order of the line numbers and given to the computer. The CLS statement
is still in memory. You check this by typing the following:

LIST [CR]

indicates the key has to be pressed. The following display appears:

LIST
10 CLS
Ready

34

Type in the following.

20 PRINT ‘“SAMPLE PROGRAM’’ CR |
30 PRINT “MZ-800"" |CR]
40 END [CR|

You already know that in this program the PRINT statement will redisplay the characters between
quotation marks in lines 20 and 30. The END statement informs the BASIC interpreter of the end
of program. Type in RUN and press the key, the screen will then reappear as shown below.

Note:
From now on, you will frequently see the phrase ‘“‘Enter a command or statement’’ (e.g., ‘‘Enter the

RUN command’’). This actually means ‘‘Type in a command or statement, and press the key’’.
You should remember this.

SAMPLE PROGRAM
MZz-800

Ready

[]

Enter the LIST command to display the whole program.

r

SAMPLE PROGRAM

MZz-800

Ready

LIST

10 CLS

20 PRINT ““SAMPLE PROGRAM"’
30 PRINT ‘“MzZ-800""

40 END

Ready
@

Enter the following command.
NEW [CR

Then clear the screen by entering the CLS statement.

CLS [CR]

Now enter the LIST command.

LIST [CR]

3-5

The program can no longer be listed, since the NEW command erased the program from memory.
Entering the NEW command allows you to now write a new program in memory. Enter the following
program.

10 INPUT “A="";A
20 INPUT “B="";B
30C=A+B

40 PRINT “A+B="";C
50 END

This program will calculate the sum of the two values A and B input from the keyboard. Two new
statements are used in this program. These are the INPUT statement and the LET statement (LET
is represented by the equal ‘‘=’’ symbol on line 30).

The INPUT statement on line 10 reads whatever number (don’t type characters) you type in from the
keyboard and assigns it as the value of A. The INPUT statement on line 20 reads a second number
typed in from the keyboard and assigns it as the value of B. The LET statement on line 30 calculates
the sum of values A and B and assigns the result as the value of C. At the moment in our program,
the letters A, B, and C each represent a numeric value. When letters of the alphabet are assigned values
like this, they are called ‘‘variables’’. Enter the RUN command after typing in the above program.
The screen will change as follows:

10 INPUT “A="";A
20 INPUT “B="";B

30 C=A+B

40 PRINT “A+B=""C
50 END

RUN [CR]

A=

Type in any number and press the key. The message ‘‘B ="’ will be displayed following the above.

A=35|CR]

B

Type in another number and press the key. The sum of A and B will now be displayed as fol-
lows.

A=35
B=23|CR|
A+B= 58

The program shown here is very simple. If you like, you can write your own programs by combining
some of the commands and statements which are explained in Chapter 6.

You may be confused by the words ‘‘statement’” and ‘‘command’’. Both commands and statements
control operation of the computer. The distinction between commands and statements is thatcommands
are generally entered without line numbers and are executed immediately after they are entered. State-
ments however, are included in a program and are only executed when the program is started by the
RUN command.

In practice, most commands and statements can be used both with or without line numbers, so the
distinction between them is more traditional than qualitative.

3-6

3.4 Editing Programs

The BASIC interpreter makes it possible for you to edit a program which is in memory. Therefore,
if you type in any incorrect character during programming, you can correct it easily.

You can edit any portion of a program when that part of the program is displayed on the screen. The
program can be displayed by the LIST command. The cursor can be moved in any direction by the
cursor control keys (marked with arrows) you can change or delete the character in the same location
as the cursor, or insert characters before the character in the same location as the cursor.

The keys which allow you to edit programs are as follows.

: Moves the cursor one character position right.
: Moves the cursor one character position left.
: Moves the cursor one line up.

: Moves the cursor one line down.

INST | : Moves the character on which the cursor is located and all characters following it on the same
line to the right by one character position, and inserts a space at the cursor position. This
makes it possible to insert any character at the cursor position. To insert more than one charac-
ter, press the key the required number of times.

If the end of a program line reaches the right end of the display while inserting blanks with
the key, you cannot insert any more blanks. In this case, press the key and
execute the LIST command. The new program listing will include a row of blanks following
the line, allowing you to insert more blanks.

DEL | : Deletes the character at the location to the left of the cursor position and moves all characters
following it on the same line to the left by one character position.

|SHIFT | + [INST | (CLR)
: Clears the screen. (‘‘|SHIFT | + [INST |*’ is another way of saying ‘‘press and hold the

SHIFT | key, then press the | INST | key’’.)

|SHIFT | + |DEL | (HOME)
: Moves the cursor to the upper left corner of the screen.

Type in again the program shown in Section 3.3, but with the following intentional mistakes:

10 CLS

20 PRINT *‘SIMPLE PROGRAM”’
30 PINTT ““MZ-800""

40 END

To edit and correct the above program, the program must be listed on the screen. To do this, execute
the LIST command.

(1) Replacing a letter

SIMPLE on line 20 should read SAMPLE. Move the cursor to the position of character I by using
the cursor control keys, then press the key. After changing I to A, press the key, and the
cursor will be returned to the beginning of line 30.

(2) Imserting a letter

Move the cursor to I in PINTT and press the key. Press the @ key to insert R between the
characters P and I.

(3) Deleting a letter

Move the cursor to the second T in PRINTT and press the key to delete it.

Press the key, and the cursor will move to the beginning of line 40.

3-7

(4) Adding a line
A new line can be added to any portion of the program. For instance, if we want to insert a line be-
tween line 10 and line 20, move the cursor to the beginning of the new line below line 40. Type ““15

REM Editing sample e

10 CLS

20 PRINT ““SAMPLE PROGRAM"’
30 PRINT ‘“MZ-800""

40 END

15 REM Editing sample

You may have noticed that until we added line 15, all the line numbers have been in increments of
10. There is no real technical reason for doing this other than the fact that increments of 10 leave space
for extra lines to be inserted if you want to change the program later on, and increments of 10 are
easy to remember. With this in mind, line number 15 could have just as easily been any other number
between 11 and 19 inclusive, but ‘“15”’ is convenient since it still allows even further lines to be added
if later program changes are made.

Enter the CLS command, then enter the LIST command to confirm that the new line is now inserted
between lines 10 and 20.

LIST

10 CLS

15 REM Editing sample

20 PRINT ““SAMPLE PROGRAM’’
30 PRINT ““MZ-800""

40 END

(5) Deleting lines
Any program line can be deleted by using the DELETE command. To delete lines 15 and 20, type:

DELETE 15— 20

Enter the LIST command. The program listing should appear as follows:

10 CLS
30 PRINT ““MZ-800""
40 END

Typing a line number and pressing the key also deletes the line.

(6) Renumbering
Enter the RENUM command to return all the line numbers to increments of 10. (RENUM can also
be specified to increment the line numbers by any other value.)

RENUM

LIST

10 CLS

20 PRINT **MZ-800"
30 END

(7) AUTO command
The AUTO command is a convenient feature which allows the computer to automatically generate/
line numbers for you, in increments of 10 or the specified value. For details, see Chapter 6.

Remember to press the key after you finish editing each line; otherwise the editing changes

for that line will not be entered into memory. Secondly, make sure that you move the cursor to the
line below the last line of the program before typing RUN.

3-9

3.5 Saving a Program

When you turn the power switch off, any programs you may have typed will be lost. To reuse a pro-
gram in a later session, you must save it onto any external storage device such as a cassette. The proce-
dure for saving a program onto a cassette is described below.

e Using a new cassette:

1) Open the cassette compartment cover on the MZ-800 and insert the cassette. Close the cover, then
press the counter reset button to reset the counter to “000”’.

Counter reset button

2) Type the following.
SAVE “"CMT:TEST"”

This command instructs the computer to save the program in memory onto the cassette in the data
recorder (the data recorder is indicated in the SAVE statement by CMT:). The program is saved
with the name ““TEST”’.

3) The next message to be displayed is ““ # RECORD.PLAY’’. When you see this message, press the

button.

4) When the message ‘‘Ready’’ appears on the screen and the tape stops, press the | STOP | button. Write
down the program name ‘‘TEST’’ and the counter value at the end of the program on the cassette
label.

e Using a cassette which contains programs:

When using a cassette which already contains programs, the counter value for the end of the program
preceding the program you want to save must be known; otherwise your new program may become
lost somewhere on the tape.

1) Insert the cassette into the data recorder and rewind the tape by pressing the | REWIND | button.

2) Press the counter reset button to reset the counter to ‘“000°’.

3-10

3) Press the |[FFWD | button. Stop the tape by pressing the | STOP | button when the counter value for
the end of the preceding program nears.

4) Press the |PLAY | button to begin saving the program onto the cassette.

5) Perform steps 2 to 4 of the procedures described above for a new cassette.

6) When the program has been saved, note down the counter value, then run the tape an extra 2 or
3 counter revolutions and press the | STOP | button. When saving programs onto a cassette with exist-

ing programs, there is a possibility that the existing programs may be destroyed when the above
procedures are performed. Therefore, it is reccommended that you use a new cassette to save a program.

3-11

3.6 Loading a Program

The cassette provided with your computer contains a demonstration program, and you can also pur-
chase commercially available programs. To use these programs, plus ones you may have written, you
must load them off the cassette and into the computer’s memory. The procedure for loading program
is described below.

1) Insert the cassette which contains the program into the data recorder. Rewind the tape to the coun-
ter value of the program preceding the program you want if necessary.
2) Enter the following command to load the program into memory.
LOAD ““CMT:<name of program>"’
For example, to load the program ‘““TEST”’,
LOAD ““CMT:TEST"
3) When the message ‘“ #PLAY’’ appears, press the | PLAY | button on the data recorder.

4) Press the button when the tape stops.
5) To execute the program ‘“TEST”’ now that it has been loaded, enter the RUN command when the

message ‘‘Ready’’ is displayed on the screen.

Ready

RUN

3-12

Chapter 4 Keyboard and Data
Recorder

4.1 Keyboard

4.1.1 Keyboard modes
The MZ-800 keyboard operates in one of the following modes:

e Normal mode:

Normally used to input the alphabetic characters, numbers and symbols. This mode

is automatically set when the BASIC interpreter is started or the MZ-800 is reset.
e Shift lock mode: In this mode, all keys excepting through operate in the SHIFT mode. This
mode is entered when [SHIFT |+ [ALPHA |is pressed. Pressing |SHIFT |+

ALPHA | again resets the shift lock mode.

e Graphics mode: Used to input special graphic characters.

Three types of cursor are used to indicate the current keyboard mode.

. : Normal mode cursor
@ : Shift lock mode cursor
__ : Graphics mode cursor

4.1.2 Keys

The keyboard has many keys and their functions are as follows:

I N I N 0 |

! 3 # $ % &
GRAPH! | I | 1
23] L[e) Le

e Y o Ylw| ' N , ‘ Y - { Mt
'g,, § ;J %V,VJ -‘_EJ\ RITIT Y Y| U I (Y| O ! P | @ [T
| CTRL 1 1 F | s
e YT YCs Yo Y(P Yo N Y00 WO Ve TS MOE AN on
[[f & ! « ->
(st [Yjurm Yl 2 Y] X BEENER A () () (B3 (i
M ﬁ [~/ \ \l/ 0 P\ V.
\ |
Space bar

4-2

%

(ERED
L/

FINST '!.'
N
\V
\

(1) Character keys
These keys are used to input letters, numerals and graphic characters.

Some character keys are marked with two different characters. These characters are input when the key
is pressed in each of the input modes described above.

Normal mode character
: “3!’
+ [3]: “#”

O\

Graphics mode characters

EIGN |
[SHIFT] + [3]:

In the normal mode: when a character key is pressed, either the uppercase type for the letter marked
on the keytop or the lower character on the keytop is input. When the character key is pressed together
with the key, either the lowercase type for the letter marked on the keytop or the upper character
on the keytop is input.

In the graphics mode: each character key can be used to input either of two different graphic charac-
ters. When a character key is pressed by itself, the graphic character which is input is that shown on
the left side of the corresponding keytop in the figure below. When it is pressed together with the
key, the graphic character which is input is that shown on the right side of the keytop in the figure.

Pressing [1],[«<],[=],[4],[CLR]or [HOME |in this mode inputs i , . 1.l . © or [.

OO0 00| 00| =55 B|S 0| BIEHE| 40|80 EON|=8
OO|BEEEB0E000onoOoodyRoNeR80rze

(V] %]l [¢] @@ OO0 W[40 0|E|HBUDNNDN|4 0
NIXCONOgCD0O0 ORENLERCy

These graphic symbols are not printed on the keys. However, adhesive labels on which graphic sym-
bols are printed are included with the MZ-800. You may find it convenient to stick the labels to the
front of each key, as shown in the two figures.

4-3

(2) Special keys
These keys are used to control the computer and set the input mode for the character keys. The special
keys are shaded in the figure below.

1 7200 7 0 O

TN N EINSY e Y N N INEY - M- Y
BER (&) 8] (8] (80 (E8) (E:3)] (§:5) (€3] [E=5) | £3) {&
\|l/
BN DE DT EEENE
* t
AlYsNMoYleYlaMulYoIMIxYI LYY : "}‘M
\ \ 2 \ L—J/
/ Y xYelYfviYie inYmYSMZIY 7N %é
2/ A/ A/ \I/ /[\l/ A/ A W

The functions of the special keys are as follows.

SHIFT | :
GRAPH| :
ALPHA | :

BREAK
ESC

G
IIIIII !I

: This key is used to enter the line containing the cursor into the computer. Although characters

typed by the character keys are displayed on the screen, the computer ignores them until the
key is pressed.

This key operates keys in the shift mode while it is being held down.
Pressing this key switches the keyboard to the graphics mode.
Pressing this key returns the keyboard to the normal mode.

: This key is used to input an ESC code.

SHIFT | +

BREAK | .
ESC

: These keys are used to stop a program during execution or to stop cassette operation.

TAB
CTRL |:

: Advances the cursor to the next tab stop position on the display screen.

Pressing a character key while this key is being held down will enter a control code. For
details of the control codes, see Appendix D.

(3) Editing keys
The editing keys are used for making additions, changes, or deletions in programs. These are keys
located on the right-hand side of the computer. See Section 3.4 for the function of each key.

(4) Definable keys

Lavel
holder

(i S & L IS T IR

[Fi]I 2 JI[B3 || Fa F5

 SESCUPRE | O [,

Immediately after the BASIC interpreter has started operating, the following functions are assigned
to the definable keys. You can change the functions of these keys by using DEFKEY statement. See

Chatper 6.

4-4

: "RUN L’ + CHRS (13)
: PLIST o™
: "AUTOL "
: “"RENUM "'
F5 | : “COLOR..""
" “CHRS$("

Fl] &
F2 | 5 “DEE JKEY (™

M| m||m||m

[SHIFT] +

SHIFT | + 5 HCONT™

+ [F&] : "SAVE_, "
SHIFT | + : “LOAD "

Note:
CHRS$ (13) is the code for the key and ‘.’ represents a space.

e Installing definable key labels

You may find it convenient to insert the labels provided for the definable keys on which you write
the assigned characters into the label holders located above the definable keys.

The labels can be inserted into this holder by pulling open the transparent label cover.

(5) Auto repeat function

The auto repeat function causes input from the last key pressed to be repeated if that key is held down
longer than a certain period. The keys for which the auto repeat function is effective are those shaded
in the figure below.

BREAK
GRAPH W ESC

CTRL

//;/

7

I
%

7
]| e % T, m‘)\ %//
g

4-5

4.2 Data Recorder

1) Hardware
The MZ-800 is equipped with a data recorder.

Counter reset
button

L1717/ /7//777/77, SILILSI/11/ 17T Y, LI/
00

1LY ///// /////////';'//////////7////////////////////////,/7//////////
T s s it
////;;;;;;;//// ///////////////5///////////////////////////////////////
Y,
L

/7

SHARP -

The function of each button is as follows.

PLAY

[PLAY |:
RECORD | : Pressing this button saves a program or data from memory onto the cassette.
FFWD : Pressing this button fast forwards the tape.
REWIND | : Pressing this button rewinds the tape.

STOP/EJECT | : Pressing this button stops the tape or ejects the tape when it is at a stop.
Counter reset button :

Pressing this button resets the counter to ‘‘000”’.

Pressing this button plays the tape, to load a program or data from the cassette into
memory.

The |FFWD | and | REWIND | buttons are not automatically released when the tape end is reached. Be
sure to press the | STOP | button when the tape end is reached.

4-6

2) Tape handling
e Any commercially available cassette tape can be used with the MZ-800. However, it is recommend-

ed that you use quality cassette tape produced by a reliable manufacturer.
* Use normal type tapes.

* Avoid using C-120 type cassette tapes.
* Use of C-60 or shorter cassette tapes is recommended.

® Be sure to remove slack from the tape by using a pencil or similar object before inserting the tape
into the data recorder.

Slack

e Keep a record of the program name and the counter values for the beginning and end of each pro-
gram after it has been saved.

e Do not store cassette tapes near a TV set or speaker system which generates a magnetic field.

° Protecting programs/data from accidental erasure
To prevent data from being accidentally erased, remove the record lock-out tab from the cassette with

a screwdriver or similar object. This will then make it impossible for the | RECORD | button to be pressed
accidentally, thereby preventing erasure of valuable data or programs.

Remove the record lock-out tab
with a screwdriver.

Tab for side A

Tab for side B

Chapter S Programming Concepts

This chapter describes fundamental concepts which will allow you to program the MZ-800 in BASIC.
The information included in this chapter is essential to realizing the full potential of BASIC.

5.1 Multi-statement Lines and Line Numbers

As described in Chapter 3, a program consists of one or more program lines. Although each line of
the examples in Chapter 3 contains only one statement, a program line can contain two or more state-
ments, providing each statement is separated from each other by a colon (:). A program line which
contains two or more statements is called a multi-statement line.

Example:
10 CLS:PRINT “MULTI=STATEMENT'":END

Each program line begins with a line number. Line numbers can be any number between 1 and 65535.
It is not necessary to specify line numbers consecutively, in fact, it is advisable to assign line numbers
in increments of ten so that you can insert additional lines during program editing.

5.2 Numeric Data and String Data

Data handled by the computer is categorized into numeric data and string data. Broadly speaking,
numeric data represents quantity or magnitude, whereas string data represents characters.

(1) Numeric data

The MZ-800 BASIC allows you to use numeric data in either decimal or hexadecimal notation. However,
data in either notation is converted to binary form by the computer so that it can be stored in memory
or used for calculations.

Decimal notation is probably the most familiar numbering system to you, and uses numerals from 0 to 9.
Hexadecimal notation uses numerals from 0 to 9, then characters A to F to represent the values from
10 to 15. With this system, the number of significant digits required to express numbers increases by
one each time the magnitude of the number being expressed increases by a factor of 16. Hexadecimal
numbers are indicated by prefixing ‘‘$’’ to the character as follows.

$41=4x16'+1x16°=65
$FA=15x16'+10x 16°=250

Complements result for hexadecimal numbers greater than $7FFF.
For example, value resulting from $8000 is — 32768 and that resulting from $FFFF is —1.

(2) String data

All characters are represented by numeric codes in the computer. These numeric codes are based on
the ASCII code system. In this system, characters are represented by the numbers 0 to 255 or $00 to
$FF. For example, the character ““A”’ is represented by 65 (decimal) or $41 (hexadecimal).

5-3

5.3 Constants

(1) Numeric constants

Numeric constants are positive or negative numbers. They can be represented in either their ordinary
form or an exponential form. Numeric constants must lie within the range 1072 to 10°® (1E—38 to
1.7014118E + 38), and the maximum number of significant digits is 8. If the value of a constant is out
of the range, the result of operation is not assured.

Ordinary integers and decimal numbers are represented in their normal form as follows.

123

-123.4

+12

The ““+”’ sign may be omitted for positive numbers.

Very large or small numbers are represented in the exponential form. In this form, a number is represented

by a number representing the mantissa, E, and a number representing the exponent. Use of ‘““E’’ in
the exponential form is shown below.

1.23E+2

This represents 1.23 X 10X 10=123

—1,2E<1

This represents —1.2+10= —0.12

The ““+” sign may be omitted for positive numbers. The mantissa must be less than 10 and greater
than — 10 and the exponent must be an integer between —38 and + 38.

(2) String constants

A string constant is a set of characters enclosed in quotation marks (‘‘ *’). The maximum number
of characters in a string constant depends on the effective line length, but the total maximum number
of characters of string data permitted is 255. Examples of string constants are as follows.

IIABC”
“12345"
“MZ-800""

Note:
Quotation marks are not required in DATA statements. (See Chapter 6.)

5-4

5.4 Variables

Variables are locations in memory which are used to hold values during program execution. You must
give a specific name to each variable when writing a program. Values held by these variables may be
arbitrarily changed during program execution.

There are three types of variables handled by MZ-800 BASIC: numeric variables, string variables and
system variables.

(1) Numeric variables

Numeric variables can hold only numeric data. The name of each variable may be composed of any
number of characters, but only the first two characters actually identify the variable. For example,
AB and XYZ are different variables, but ABC and ABD are handled as the same variable.
Lowercase letters cannot be used for variable names.

The first character must be a letter from A to Z, but the second and the following characters may
be any letter of the alphabet or numbers; however, special characters such as @ and * cannot be used.
No reserved words (see Appendix C.) may be used as the names of a variable. For example, PRINT
and C@ cannot be used as the names of variables.

Each numeric variable contains 0 until some value is given.

(2) String variables

A string variable can hold only string data, and its name can be assigned in the same manner and with
the same limitations as the name of a numeric variable. The only difference is that it is always followed
by a dollar sign ($).

Each string variable may contain a maximum of 255 characters of string data. Each string variable
includes only null characters until some stirng data is given.

(3) System variables
There are special variables called system variables, which are defined and used by the BASIC inter-
preter. The following table lists the system variables.

System variable Explanation

TIS Contains a 6-digit number which is the time from a 24-hour built-in clock.
For example, the value ¢‘192035°’ indicates that the clock reads 19:20:35.
The clock is always set to 00:00:00 when the power is turned on.

SIZE Indicates the amount of free memory area which can be used for BASIC programs and
data.

ERN When an error occurs, this variable contains the corresponding error number.

ERL When an error occurs, this variable contains the line number of the error.

CSRH Contains the column position at which the cursor is located.

0=<CSRH =39 (40 column screen mode)
0=CSRH =79 (80 column screen mode)

CSRV Contains the line number at which the cursor is located.
0=<CSRV=24
POSH Contains the X-coordinate of the graphics position pointer.
—16384<POSH < 16383
POSV Contains the Y-coordinate of the graphics position pointer.
—16384 <=POSV =16383

5-5

5.5 Array Variables

An array is an arrangement of variables of the same data type, which are referred to by a common
name. Each variable of an array is identified by the common name, which is composed of a string
formed in the same manner as a variable name and followed by subscripts enclosed within parenthese,
e.g., A(X) and B$(x,y). An array with one subscript (such as A(X), B$(1) or P(100)) is called a one-
dimensional array, while that with two subscripts (such as A(x,y), B$(1,3) or P(50,25)) is called a two-
dimensional array. To use array variables in a program, the common name and the number of varia-
bles included in the array must be declared before they are used. For details see the explanation of
the DIM statement in Chapter 6.

e Note Concerning Computational Error

Computational error must always be taken into consideration whenever a computer is used.
The reason for this is that, although computational error can be reduced by increasing the number
of digits of numerical data which are handled, not even a computer can handle an infinite number
of digits. Further, the more digits are involved in any given calculation, the greater the amount
of time which is involved in completing it.

Therefore, it is important to be aware of the sources of error and to construct programs so
that error is minimized. (For example, use the sequence ‘‘5#6/3’’ instead of ‘‘5/3%6”°.)

Take the following into account when doing calculations in BASIC (1Z016) for the MZ-800.

(1) Rounding error

Rounding error is the error which results when the number of digits to the right of the decimal
place exceed the number of effective digits which can be handled. For example, when the num-
ber 2/3 is calculated, the true result is 0.666666666 . . . (where the number of 6s is infinite).
However, if the number of effective digits is 8, the result will be rounded to 0.66666667.

(2) Error resulting upon conversion to binary form

Although numbers are ordinarily input in decimal format, they are internally converted to bi-
nary form for calculation.

According, a binary number with an infinite number of digits may result upon conversion even
if the original decimal number only has a few digits. For example, when the decimal number
0.1 is converted to binary form, the result is 0.00011001100. . . . Since this must be rounded
for calculation, a certain amount of error results.

(3) Increase in relative error due to subtraction

When one number is subtracted from another, the relative size of the error in the result will
be greater than that in the original numbers. This is illustrated in the example below, where
the digits which include error are marked with a dot (.). An error of +1 in the number 100012
corresponds to an error percentage of about 0.001%; however, relative error is much greater
after subtraction, since 11 +1 corresponds to a relative error of about 10%.

100012

—110000i
11

(4) Error due to approximation

With a computer, exponentiation, trigonometric calculations, and logarithmic calculations are
done using approximation; in consequence, a certain amount of approximation error results
when such calculations are done.

5-6

5.6 Expressions

An expression is any combination of variables and constants which is combined with operators. Oper-

ators are symbols which perform mathematical or logical operations. The types of expressions han-
dled by the MZ-800 BASIC are as follows.

Arithmetic expressions
String connective expressions
Relational expressions
Logical expressions

(1) Arithmetic expressions

An arithmetic expression consists of arithmetic operators, numeric constants, numeric variables and
numeric functions. It calculates a numeric value from an operation(s) performed by the operator. (The
numeric functions will be explained later in this chapter.)

The table below lists the arithmetic operators arranged in order of operational priority.

Arithmetic operator Operation Example
@) Gives the highest priority to enclose operations. X +Y)
1 Creates an exponentiatial value X1TY
- Converts the sign of a value -X
%,/ Multiplication, devision Mo N XY
+, — Addition, subtraction X+Y,X-Y

When an arithmetic expression includes operations of the same priority, they are performed in sequence
from left to right.

(2) String connective expressions

String connective expressions are used to combine two or more data strings into a single string. A string
connective expression consists of string constants, string variables, string functions and the operator
““4+°°, (The string function will be explained later in this chapter.)

Example:
1= Sl] =) = —————— ‘“ABCDEF’’
“AT+BT+C “ABC”

5-7

(3) Relational expressions

Relational expressions are used to compare two values and ascribe a logical value of either true (— 1)
or false (0) to the expression according to the result of the comparison. The result is used to make
a decision regarding subsequent program flow. A relational expression can consist of constants, varia-
bles, arithmetic expressions, string connective expressions and relational operators.

The table below lists the relational operators.

Operator Comparison Example

= Equal to X=Y

< Less than X<Y

> Greater than X>Y
< =, =< | Less than or equal to Xz=Y, X=<¥
> =, => | Greater than or equal to | X> =, X=>Y
<>, > < | Not equal to X< 3Y, X><Y

Note:

The relational values of character data are based on the characters’ ASCII codes.

(4) Logical expressions

A logical expression expresses the Boolean sum or product of true or false values (—1 or 0)
given by relational expressions. A logical expression is formed of logical values, relational ex-
pressions and logical operators. The following table lists the logical operators.

Operator Meaning Example
NOT Logical negation NOT X
AND Logical product XLAND Y

OR Logical sum XORY
XOR Exclusive OR X _XORY
Note:

Spaces indicated by .. must be included.

5-8

5.7 Files

A file is a program or a set of data which is output to or input from a peripheral device (such as a
data recorder). A file is identified by a file descriptor, which consists of a name (called the file name)
preceded by the name of the peripheral device (called the device name).

"< device name>:<file name>"’

For example:
(&%) R D] =1\, (@ ——— The file named DEMO is output to or input from the data recorder.
[RVAY 1) e 555 N ————— The file named TEST is output to or input from the RAM file board.

(1) File name
A file name can consist of up to 16 alphanumeric characters.

(2) Device name
The following table lists the device names which are used by the MZ-800 BASIC.

Device name Device
CMT: Data recorder
RAM: Optional RAM file board
CRT: Display device
LPT: Printer
RS1:
RS2: RS-232C interface ports

5-9

5.8 Functions

(1) Numeric functions
Numerical functions such as SIN and COS perform arithmetic operations on given numeric expres-
sions then return the result. The MZ-800 is provided with the following numerical functions.

ABS(X) — Absolute value
Returns the absolute value of numeric expression X.
Example: A=ABS(X). When X=2.9, A=2.9; when X=—-5.5, A=5.5.

SGN(X) — Sign
Returns 1, — 1, or 0 according to whether numeric value X is greater than, less than, or equal to 0,

respectively.
Example: A=SGN(X). When X=0.4, A=1; when X=-1.2, A= —1.

INT(X) — Integer
Returns the largest integer which is less than or equal to X.
Example: A =INT(X). When X=3.87, A=3; when X=0.6, A=0; when X=—3.87, A= —4.

SQR(X) — Square root
Returns the square root of X. The value specified for X must be greater than or equal to 0.
Example: A=SQR(X). When X=4, A=2.

EXP(X) — Exponential
Returns the value of the natural base e to the power of X.
Example: A =EXP(X)

Trigonometric Functions

SIN(X)

Returns the sine of X, where X is an angle in radians.

Use the following expression to obtain the sine of an angle in degrees.
SIN (X * 7/180)

Example: A =SIN(X)

COS(X)

Returns the cosine of X, where X is an angle in radians.

Use the following expression to obtain the cosine of an angle in degrees.
COS (X=*7/180)

Example: A=COS (X)

TANX)

Returns the tangent of X, where X is an angle in radians.

Use the following expression to obtain the tangent of an angle in degrees.
TAN (X*7/180)

Example: A=TAN(X)

ATN(X)

Returns the arc tangent of X in radians. The value returned is within the range — 7/2 to 7/2.
Use the following expression to obtain the arc tangent of X in degrees.

ATN (X)* 180/

Example: A=ATN(X)

5-10

LOG(X) — Common logarithm
Returns the common logarithm of X (log10X), where X must be greater than 0.
Example: A=LOG(X)

LN(X) — Natural logarithm
Returns the natural logarithm of X (log.X), where X must be greater than 0.
Example: A =LN(X)

PAI(X) — Circular constant

Returns the value which is X times pi.
(PAI(1)=7=3.1415927)

Example: A=PAI(X) or A=7#%X

RAD(X) — Radian
Converts the numeric value X from degrees into a value in radians.
Example: A=RAD(X)

(2) Character functions
A character function processes character strings. The MZ-800 BASIC supports the following charac-
ter functions. In the examples below, character variable A$ contains the character string ‘‘ABCDEFG”’.

LEFTS$(x$,n)

x$: character string

n: numeric value (from 0 to 255)
Returns a string consisting of the left n characters of string XS$.
Example: B§ = LEFT$(AS,2) produces string ‘“AB”’

MIDS$(x$,m,n)

x$: character string

m: numeric value from 1 to 255

n: numeric value from 0 to 255
Returns a string consisting of n characters following the mth character from the beginning of string x$.
Example: B$ =MID$(AS$,3,3) produces string ‘“CDE”’.

RIGHTS$(x$,n)
x$: character string
n: numeric value (from 0 to 255)
Returns a string consisting of the right n characters of string x$.
Example: B$ =RIGHT$(AS,2) returns a string consisting of the right 2 characters of string A$. There-
fore, variable B$ is returned as the string “FG”’.

Functions used with the PRINT statement

TAB(n)
n: numeric value

Moves the cursor to the (n+ 1)th character position from the left end of the current line.
This function is ignored when n is less than the current cursor location.
Example: PRINT ““‘A’’;TAB(3);‘ABC”’

A ABC

012345 < column positions which are not displayed.

String ‘ABC’ is displayed from column 3.

5-11

SPC(n)
n: numeric value
Returns a string of successive spaces, the length of which is expressed by n.
Example: PRINT “A’’;SPC(3);“ABC”’
A ABC

0123456 <« column positions which are not displayed.
—

3 spaces

(3) Numeric value/character string conversion functions
The following functions convert a numeric expression into a character string or vice versa.

STR$(n)
n: numeric value
Converts numeric value n into a character string.
(A hexadecimal value is preceded by $.)
Examples: A$=STR$(—12)
The character string ‘“—12”’ is returned as AS$.
B$ =STR$(70* 33)
The character string ‘2310’ is returned as BS.
C$=STR$(1200000 * 5000)
The character string ‘‘6E +09’’ is returned as C8$.
Note:
A positive integer displayed or printed is preceded by a single space which indicates that the plus sign
(+) is valid but has been omitted. However, this space is deleted when the integer is converted into
a string by the STR$ function.

VAL(xS)
x$: character string
Converts a character string into a numeric value.
Example: A=VAL (‘“123”)
The string ¢“123”’ is converted into the numeric value 123.
A=VAL (‘“‘$FF”’)
A string ‘‘$FF”’ is converted into the numeric value 255.

ASC(x$)
x$: character string
Returns the numeric value which is the ASCII code for the first character of string X$.
Examples: X=ASC(‘*“‘A”’)
Returns the numeric value 65, which is the ASCII code for character “‘A”’.
Y =ASC(‘‘SHARP”’)
Returns the numeric value 83, which is the ASCII code for the first character of
the string “SHARP”’.

5-12

CHR$(n)
n: numeric value (greater than 32)
Returns the character whose ASCII code is integer expression n.
When a space is to be displayed, use PRINT “‘_.”” or PRINT SPC(1).
Examples: A$=CHRS$(65)
Returns ‘‘A’’, which has an ASCII code of 65.
PRINT CHR$(107)
Displays the graphics character ‘‘gg’’, which has an ASCII code of 107. Multiple
ASCII codes can be specified as follows:
A$ =CHR$(65,66,67,68)

LEN(S$)
x$: character string
Returns the number of characters in string x$.
Example: A=LEN(‘“ABC”’)
Returns the number 3, which is the number of characters in string ‘“ABC’’.

(4) Random number functions

RND(n)
n: numeric value
This function returns a pseudo random number for a given numeric value.

* Pseudo random numbers are generated from values between 0.00000001 and 0.99999999.

* When the numeric value specified is greater than 0, the function gives the next pseudo-random number
in the current sequence.

* When the numeric value is less than or equal to 0, RND generates a new pseudo-random number
set whose initial value is determined by the value specified for X, and gives the first number of
the new set. This makes an operation such as a simulation with random numbers repetitive.

Example:
To generate a random number which is an integer from N to M, use the following formula:

INT(RND(X) * (M—N+1) +N)

The following program draws a number of circles. The radius of the circles and the coodinates are
given by the random number.

10 FOR A=1 TO 100
20 B=RND(1)* 320
30 C=RND(1)* 200
40 D=RND(1)* 100
50 E=INT(RND(1)*4)
60 CIRCLE [E,0]B,C,D
70 NEXT A

80 END

5-13

(5) Joystick functions

STICK(f)
f: numeric value

Returns an integer from 1 to 8 which indicates the state of the joystick lever or the cursor control keys
on the keyboard. The numeric value f specifies the device from which the data is read, as shown below.

0: Cursor contorl keys of the keyboard

1: Joystick 1

2: Joystick 2
The relationship between the integer and the direction in which the joystick lever is pushed (or the
cursor control keys are pressed) is as follows:

8 2 W
T & > 3 7@- -%]3

, S

6
4 E

Cursor control key

When the keyboard is selected by specifying 0 as f, integers 2, 4, 6, and 8 are returned when two cursor
control keys are pressed at the same time, as shown below.

2 and
4: and
6: and [«]
8: and

STRIG(f)
f: numeric value

Returns an integer 0 or 1 which indicates the state of the joystick button or the space bar on the key-
board. When the space bar on the keyboard or the joystick button is pressed, 1 is returned and when
they are not pressed, O is returned. The integer value f specifies the device as follows:

0: Keyboard space bar

1: Joystick 1 button

2: Joystick 2 button

The following program uses STICK and STRIG functions. It draws a vertical, horizontal or inclinded
line when a cursor key is pressed, and clears the screen when the space bar is pressed.

5-14

10 INIT “CRT:M1"

20 A=STICK(0):B=STRIG(0)
30 ON A GOSUB 200,300,400,500,600,700,800,900
40 IF X<O THEN X=0

50 IF X>319 THEN X=319
60 IF Y<O THENY=0

70 IF Y>199 THEN Y=199
80 SET X,Y

90 IFB=1 GOTO 10

100 GOTO 20

200 Y =Y — 1:RETURN

300 X=X+1:Y=Y - 1:RETURN
400 X=X+ 1:RETURN

500 X=X +1:Y =Y + 1:RETURN
600 Y =Y + 1:RETURN

700 X=X-1:Y =Y + T:RETURN
800 X=X-1:RETURN

900 X=X-1:Y=Y - 1:RETURN

5-15

5.9 Screen Coordinates

Screen coordinates are used to specify the screen position in which characters and graphic data are
to be displayed by display commands. Such coordinates are expressed in terms of a horizontal position
and a vertical position. Character display positions are specified using character coordinates, and graphic
display positions are specified using graphic coordinates.

e Character coordinates

(0,0) (39,0) (0,0) (79,0)

(0,24) (39,24) (0,24) (79,24)
With 40 character line mode With 80 character line mode

e Graphic coordinates

(0,0) (319,0) (0,0) (639,0)

(0,199) (319,199) (0,199) (639,199)
320 x 200 mode 640 x 200 mode

The ranges of both character coordinates and graphic coordinates vary according to mode. The mode
is specified with the INIT command.

5-16

Chapter 6 MZ-800 BASIC Commands
and Statements

This chapter explains the MZ-800 BASIC (1Z-016) commands and statements. These commands and
statements are functionally divided into the following eight groups.

® Fundamental commands

e Fundamental statements

e File control statements

e Graphics statements

® Music control statements

e Printer control statements

e Machine language control statements
e Error processing statements.

The commands and statements for the MZ-700 mode are summarized in Chapter 9.

Format Notations
The following rules apply to specification of commands, statements, and functions.

Angle brackets ‘“< >’ indicate items which must be specified by the user.
Items in square brackets ‘‘[]’ are optional.

Items in { } are mutually exclusive; and only one of the items shown can be included when the state-
ment is executed.

... indicates that the item preceding ... may be specified repeatedly.

6-2

6.1 Commands

AUTO

| Format |

AUTO [<starting line number >][, <increment >]

| Abbreviated Formaﬂ

l Explanationj

FExample }

A.

The AUTO command automatically generates program line numbers during entry
of BASIC program statements.
The default setting of both parameters is 10.

(Example 1)

AUTO

10
s S
1 S
(Example 2)
AUTO 300,5
300
305
310

Example 2 automatically generates program line numbers, incrementing by 5 start-
ing at line 300.

(Example 3)
AUTO 100

1005
i et
120

Example 3 generates program line numbers with an increment of 10, starting at line
100.

(Example 4)
AUTO, 20

| S
B nens
50

Example 4 generates program line numbers with an increment of 20, starting at line 10.

Note:
The AUTO command is terminated by pressing [SHIFT| and [BREAK | .

6-3

DELETE

[Format | DELETE [<starting line number > [—] <ending line number >]
DELETE <line number >

[Abbreviated Format I

D.
[Explanation | Deletes program lines from < starting line Inumber > to <ending line number >.
| Example | DELETE 150—350[CR]..... Deletes all program lines from 150 to 350.
DELETE —100 [CR | Deletes all program lines up to line 100.
DELETE 400— |[CR | Deletes all program lines from 400 to the end of the
program.
DELETE 150 [CR] ...vv...... Deletes line 150.

LIST

LIST [/P] [<starting line number>] [—] [<ending line number >]

[Abbreviated Format |
L..

Explanation The LIST command lists on the display screen all or part of the program lines con-
tained in the BASIC text area of the memory.

Output of the program listing to the display screen can be temporarily interrupted
by pressing the space bar; listing is then resumed when the space bar is pressed again.
To terminate the listing, press the [SHIFT| + |BREAK | keys.

The program listing can be output to the printer by entering LIST/P.

LIST IHCR | 455 csmmons s imnsmion s « s Lists the entire program.

LIST =80 CR | soincenmbbidik. Lists all lines of the program up to line 30.

LIST 30— [{CR | siosssommnsses Lists all lines of the program from line 30 to the end.
LIST 30—50 [CR] Lists all lines of the program from line 30 to line 50.
LIST30|CR | .coovviiiennan Lists line 30 of the program.

6-4

SEARCH

| Format —| SEARCH [/P]<text data>

LAbbreviated Format |
SE.

| Explanationj The SEARCH command searches the BASIC program in memory for lines which
contain the character string specified in <text data> and displays any found lines
on the screen. When specifying a double quotation mark (°’) in <text data>, use
CHRS$(34).
Display of matching lines can be suspended by pressing the SPACE bar. Pressing
the SPACE bar again will resume display. To terminate the SEARCH command,
press [SHIFT| + [BREAK | . The /P option directs the output of the SEARCH
command to the printer.

I Example \ SEARCGH “"ABC" . .raeecnimnman Searches for then displays on the screen the program

lines that contain the character string ‘““ABC”’.
SEARCH “'PRINT"" + CHR$(34)+ A"+ CHR$(34) Searches for program lines

that contain PRINT ¢A”’.

RENUM
| Format | RENUM [<new line number >] [, <old line number>] [, <increment >]
| Abbreviated Format]

REN.

I Explanation | The RENUM command renumbers the lines of a BASIC program. When this com-

mand is executed, note that line numbers referenced in branch statements such as

GOTO, GOSUB, ON~GOTO, and ON~ GOSUB are also reassigned.

| Example | RENIN 5 ssemmnns oo s sas s Renumbers the lines of the current program in
memory so that they start with 10 and are incremented
in units of 10.

REBIUNTIQO 5o eeemiies o & garers Renumbers the lines of the current program in
memory so that they start with 100 and are increment-
ed in units of 10.

RENUM 10085020, <o Renumbers lines of the current program in memory,
which starts at line number 50. Line number 50 is
renumbered to 100, and subsequent line numbers are
incremented in units of 20.

(Before renumbering) (After renumbering)
50 A=1 100 A=1

60 A=A+1 120 A=A+1

70 PRINT A 140 PRINT A

100 GOTO 60 160 GOTO 120

Note:

When specifying the new and old line numbers, the new line number specified must
be larger than the old line number. Note that an error will result if execution of
this command results in the generation of a line number which is greater than 65535.

6-5

NEW

r Format J

| Explanation J

NEW

The NEW command deletes programs in the BASIC memory area and clears pro-
gram work areas such as the variables and arrays. When the BASIC area is limited
with the LIMIT statement, the NEW command deletes only the programs in the
BASIC area; it does not delete machine-language programs.

| Example | 10 INPUT A
20 PRINT A
30 END
When the above program is in memory, executing NEW will delete the program.
(Confirm the deletion by using the LIST command.)

NEW ON

| Format | NEW ON

[Explanation | Expands the BASIC program area by deleting part of the BASIC interpreter which
is relating to the plotter printer control. This command can be used only when the
optional printer (MZ-1P16) is not used. This command deletes programs in the BASIC
memory area.

| Example l NE N T s, T e Expands the BASIC program area.

CLR

[Format | CLR

| Explanation | The CLR command clears all variables and cancels all array definitions. All numer-
ic variables are cleared to 0, all string variables are cleared to null strings (*‘ >’) and
arrays are eliminated entirely by nullifying all previously executed DIM statements.
Therefore, DIM statements must be reexecuted to redefine the dimensions of any
required arrays before the arrays can be used again.
The CLR command also cancels all function definitions made with the DEF FN
statement; therefore, it is necessary to reexecute DEF FN statements to redefine such
functions before they can be used again.
The CLR command can not be included in a FOR ~NEXT loop or subroutine.

[Example [10 A=12

20 B$ =""parasol”’
30 PRINT A,Bs
40 CLR

50 PRINT A,B$
60 END

’1_‘he CLR statement on line 40 clears variable A to zero and B$ to nulls.

6-6

CONT

Format

CONT

| Abbreviated Format |

I Explanation |

[

See also

|

C.

The CONT command is used to resume execution of a program which has been

interrupted by pressing |[SHIFT| + |[BREAK |or by a STOP statement in the

program. When the message ‘‘Ready’’ is followed by a period (.), the CONT com-
mand can be used. Examples of situations in which the CONT command can and

cannot be used are shown in the table below.

Program continuation possible

Program execution stopped by
pressing [SHIFT | + [BREAK | .
Program execution stopped by a
STOP command.

Program continuation not possible

Before a RUN command has been
executed.

““Ready”’ is displayed due to an
error occurring during program
execution.

When cassette operation has been

interrupted by pressing | SHIFT | +

:

When program execution has stopped
during execution of a MUSIC
statement.

After program execution has stopped
and ‘‘Ready’’ is displayed after
execution of the END statement.

STOP

6-7

RUN

Format

RUN [< starting line number >]

| Abbreviated Format |

| Explanation |

Example

|

R.

The RUN command executes the current program in the BASIC text area of memory.
If the program is to be executed starting at the first program line, simply enter RUN
and press the key. If execution is to begin with a line other than the lowest line
number, type in RUN, < starting line number >, then press the key. When this
command is executed with no < starting line number > specified, the BASIC inter-
preter clears all variables and arrays before passing control to the BASIC program.

R s o e et s 4 Executes the program from the beginning.
RUINL 2000050 s150csboimiains Executes the program starting at line 200.

6-8

6.2 Fundamental Statements

CLS

ﬁ Format W

CLS

| Explanation | The CLS statement clears.the entire screen irrespective of the screen boundaries es-
tablished by the CONSOLE command.

[Example \ D s e s vt 5 Clears the entire screen.

| See also CONSOLE

CONSOLE

| Format CONSOLE [< starting line>, <number of lines>]

rAbbreviated Format |

| Explanation I

Example

|

CONS.

The CONSOLE command specifies the size of the scrolling area; i.e., the area which
is cleared by specifying the CLS statement or pressing the [SHIFT | and | CLR | keys.
This command becomes invalid after a PLOT ON command has been executed.
Specify an appropriate value for the <number of lines> when editing; that is the
<number of lines> must not be too small because it is harder to perform screen
editing within a small scroll area.

0

<starting line >

Scrolling area } <number of lines>

24

CONSOLE 0,25 or CONSOLE .. Scrolls the entire screen.
CONSOLE B, 15, . : coummmss ¢ s soiins Scrolls the area between lines 5 and 15, inclusive.

CURSOR

[7 Format J CURSOR < X-coordinate>, <Y-coordinate>
lebreviated Formatj
CU.
[Explanation J The CURSOR statement moves the cursor to a specified position on the screen. It

can be used together with the PRINT and INPUT statements to display characters
at any desired location. The value of the <X-coordinate > must fall within the range
for the screen mode specified in the INIT statement. The value of the
< Y-coordinate> must be an integer from 0 to 24. If the value specified for either
X or Y is other than an integer, it is converted to one by truncating the decimal
fraction before the cursor is moved.

| Example | 10 CURSOR 8, 10 commmmssvens Moves the cursor to point (8,10). After this statement

is executed, when a PRINT or INPUT statement is
executed the display will start at this point.

0 8 39
0
10
724 (8,10)
24
< 40-character screen mode >
| Seealso | TAB, SPC

6-10

REM

|

Format

|

| Explanation |

REM (remark)

REM is a non-executable statement which is specified in a program line to cause
the BASIC interpreter to ignore the remainder of that line. Since REM statements
are non-executable, they may be included at any point in the program without af-
fecting the program’s execution. REM statements are generally used to make a pro-
gram easier to read, or to add explanatory notes to a program.

10 REM # % % MZ—800 * % %

LET

| Format] LET <variable> = <expression >

| Explanation | The LET statement assigns the value (numeric or string) specified by <expression >
to the variable or array element specified by <variable>. As shown in the example
below, LET may be omitted.

| Example | 10A=10 10 LET A=10
20 PRINT A 20 PRINT A
30 END 30 END

The two programs above produce exactly the same result.

T0LET N'=32
This statement assigns 32 to variable N.

10 LET A=A+5
This statement adds 5 to variable A.

10 LET B$=""SUNDAY"’
This statement assigns character string ‘“‘SUNDAY”’ to character variable B$.

A=1[CR]

This is an example of a command in the direct mode. 1 is assigned to variable A.

The following are examples of incorrect use of the LET statement.

20 LET A$=A+B.....ccov.... This is invalid because different types of variables
(string and numeric) have been specified on either
sides of the ‘="’ sign.

20 LET LOG(LK) =LK+ 1 Invalid because the left side of the statement is not
a numeric variable or array element.

6-11

STOP

Format

|

STOP

| Abbreviated Format l

| Explanation |

Example

1

|

See also

S.

Temporarily stops program execution, displays the line number at which execution
stops, then waits for the entry of executable commands in the direct mode.

The STOP statement is used to temporarily interrupt program execution, and may
be inserted at as many points and locations in the program as required. Since exe-
cution of the program is only interrupted temporarily, the PRINT statement can
be used in the direct mode to check the values stored in variables, after which exe-
cution can be resumed by entering CONT [CR | .

10 READ A,B

20 X=A=*B

30 STOP

40 Y=A/B

50 PRINT X,Y

60 DATA 15,6

70 END

RUN

Break in 30

Ready. « This period indicates that the program can be continued by CONT.

Note:
Unlike the END statement, no files are closed by the STOP statement.

CONT

6-12

END

| Format \

1 Explanation I

END

The END statement terminates program execution and returns the BASIC inter-
preter to the command mode for input of direct mode commands. When this state-
ment is executed, ‘‘Ready’’ is displayed to indicate that the BASIC interpreter is
ready. After the END statement has been executed, execution cannot be resumed
by executing the CONT command even if there are executable statements on pro-

gram lines following the END statement.

Note:

All open files are closed when the END statement is executed.

Differences between the STOP and END statements

closed.

Screen display Files Resumption of execution
STOP | Break in X X X X Open files are | Can be resumed by executing
Ready. not closed. CONT.
END | Ready Open files are | Cannot be resumed.

6-13

FOR ~NEXT

| Format

FOR <control variable> = <initial value> TO < final value >
[STEP < increment >]
§

NEXT < control variable >

LAbbreviated Format \

| Explanation J

r Example

|

F.~N.

The FOR ~ NEXT statements repeat the instructions between the FOR and NEXT
variables the specified number of times.

10 A=0

20 FOR N=0 TO 10 STEP 2

30 A=A+1

40 PRINT ““N="";N,

50 PRINT “A="";A

60 NEXT N

(1) In the program above, 0 is assigned to N as the initial value.

(2) Next, lines 20 through 50 are executed and the values of variables A and N dis-
played.

(3) In line 60, the value of N is increased by 2, after which the BASIC interpreter
checks to see whether N is greater than 10, the final value. If not, lines follow-
ing line 20 are repeated.

When the value of N exceeds 10, the program leaves the loop and the subsequent
instructions (on lines following line 60) are executed. The program above repeats
the loop 6 times.

If STEP <increment> is omitted from the statement specification, the value of
< control variable> is increased by 1 each time the loop is repeated. In the pro-
gram above, omitting STEP2 would result in 11 repetitions of the loop.

FOR N=0 TO 10 STEP 2

Initial value Final value Increment
of N for N for N

NEXT N
FOR ~NEXT loops may be nested within other FOR ~NEXT loops. When doing

this, inner loops must be completely enclosed within outer ones, and not overlap.
Also, separate control variables must be used for each loop.

6-14

Example

|

10 FOR X=1 TO 9
20 FOR Y=1 TO 9—
30 PRINT X#*Y; Inner loop
40 NEXT Y Outer loop
50 PRINT
60 NEXT X
70 END

10 FOR A=1TO 3
20 FOR B=1 TO b—

30 FOR C=1TO 7]
110 NEXT C
T20/INBXT B=————— 110 NEXT C,B,A

130 NEXT A

When loops C, B, and A all end at the same point as in the example above, one
NEXT statement may be used to indicate the end of all the loops.

Incorrect example:
FOR <=1 10 10
EFOR J=K TO K+5

NEXT J
Different control variables must be used in each loop.
FOR I=1 TO 10
FOR J=K TO K+5
NEXT |
NEXT J

Loops may not overlap each other.

Note:

The syntax of BASIC does not limit the number of levels to which loops may be
nested; however, space in the memory is required to store return addresses for each
level, so the number of levels is limited by the amount of free memory space available.
The CLR and LIMIT statements cannot be used within a FOR ~NEXT loop.

6-15

LABEL

Format

LABEL ‘‘<label name>"’

| Abbreviated Form;]

| Explanation |

r Example

|

See also

LA.

The LABEL statement defines a label. Labels are used to define the destination to
which program execution will transfer from the GOTO or GOSUB statement. Proper
use of labels in your program will substantially improve program readability.

10 PRINT ""SAMPLE"’

20 GOSUB ""ABC"’

30 PRINT "“END"’

40 END

100 LABEL “"ABC"’

110 PRINT “"LABEL SAMPLE"
120 RETURN

Line 100 defines the label ““ABC”’ as the destination of the GOSUB statement on
line 20. After the GOSUB statement on line 20 is executed, control is transferred
to the subroutine starting at line 100.

GOTO
GOSUB

GOTO

<label >

| Format | GOTO{<line number>}

| Abbreviated Format |

| Explanation |

Example

I

See also

G.

The GOTO statement unconditionally transfers program execution to the line number
specified in <line number > or <label>. If <line number> or <label> points
to a line which contains executable statements (statements other than REM or DATA
statements), execution resumes with that line; otherwise, execution resumes with
the first executable statement following < line number> or <label>.

10 N=1

20 PRINT N

30 N=N+1

40 GOTO 20.....ccvveniininnnnn. Transfers program execution to line 20.
50 END

Since execution of the program shown above will continue indefinitely, stop it by
pressing the [SHIFT | and | BREAK | keys together (this may be done at any time to
stop execution of a BASIC program). To resume execution, execute the CONT
command.

Note:
The line number specified in a GOTO statement may not be for a line inside a
FOR ~NEXT loop.

LABEL
GOSUB

6-16

ON~GOTO

| Format | ON <numerical expression> GOTO [<line number> [, <line number>] }
{<label> [, <label>] ...
mbbreviated Format |
ON~G.
ﬁixplanation | The ON~GOTO statement branches execution to one of the line numbers follow-
ing GOTO, depending on the value of <numeric expression>. The value of
< numeric expression> indicates which of the line numbers following GOTO will
become the branch destination. Therefore, if <numeric expression> is 1, execu-
tion branches to the first line number in the list; if <numeric expression> is 2,
execution branches to the second line number in the list, etc. For example:
100 ON A GOTO 200,300,400,500
Destination when
A is 1 = line 200
A is 2 = line 300
A is 3 = line 400
A is 4 = line 500
Example l 10 INPUT"NUMBER""; A
20 ON A GOTO 50,60,70
30 GOTO 10
50 PRINT ““XXX'* : GOTO 10
60 PRINT “YYY" : GOTO 10
70 PRINT “'zzZ'" : GOTO 10
RUN
NUMBER 1
XXX
NUMBER 2
Y
NUMBER
If a decimal number such as 1.2 is specified, the decimal fraction is truncated be-
fore the statement is evaluated.
Note:
When the value of <numeric expfession> in an ON ~GOTO statement is greater
than the number of line numbers specified following GOTO, execution continues
with the next line of the program. This also applies if the value of <numeric
expression> is less than 1 or negative.
Further, if the value of <numeric expression> is a non-integer, the decimal frac-
tion is truncated to obtain an integer value before the statement is evaluated.
| Secalso | GOTO
ON GOSUB

6-17

GOSUB ~RETURN

| Format | GOSUB {<line number>}

<label >

RETURN

| Abbreviated Format |

’ Explanation |

|

Example

GOS.~RE.

The GOSUB statement transfers program control to a subroutine identified with
<label> or beginning at the line number specified in <line number >. After the
subroutine has been executed, control is returned by the RETURN statement to the
line following the GOSUB statement.

A subroutine is a set of statements that may be used more than once in a program.
One subroutine may call another subroutine which may call still another subrou-
tine. Nesting of such subroutines is limited only by the available memory space.
Each called subroutine must have a RETURN statement at the end.

10 INPUT A, B
20 GOSUB 100
30 B=C

40 GOSUB 100
50 PRINT C

60 END

100 C=AT2+8B
110 RETURN

» 10 — 60 Main program

} 100 — 110 Subroutine

6-18

ON~GOSUB

[Format ‘ ON <numeric expression> GOSUB [<line number > [, <line number >] ...
<label> [,<label>] ...
| Abbreviated Format |
ON ~ GOS.
| Explanation | The ON ~ GOSUB statement branches program execution to the subroutine indi-

cated by one of the line numbers following GOSUB, depending on the value of
< numeric expression>. The operation of this statement is basically the same as
with the ON ~ GOTO statement, but all branches are made to subroutines. Upon
return from the subroutine, execution resumes with the first executable statement
following the ON ~ GOSUB statement which made the call.

| Example \ Let us try using the ON ~ GOSUB statement in a scheduling program. The most
important point to note in the following program is that, a subroutine call is made
at line 180, even though line 180 itself is part of a subroutine (from line 170 to 190)
which in turn is called by line 90. Subroutines can be nested to many levels in this

manner.

10 As$=" ENGL "":B$="" MATH ":C$=" FREN "
20 D$=" SCI ":E$=" MUS ":Fs$="" GYM "
30 Gg=" HIST ": Hs=" ART *: Ig="" GEQG "
40 J$=""BUS ":K$=""H RM ":CLS

50 INPUT ““WHAT DAY?"";X$

60 FORZ=1TO 7:Y$=MID$(""SUNMONTUEWEDTHUFRISAT", 1+3%*(Z-1),3):
IFY$=X$ THEN X=Z

70 NEXT Z

80 FOR Y=0 TO 4: PRINT TAB(b+6*Y);Y+1;

90 NEXT Y: PRINT

100 ON X GOSuB 180,120,130,140,150,160,170

110 PRINT: GOTO 50

120 PRINT "“MON "*;A$;B$;D$;G$;K$:RETURN

130 PRINT “TUE '’;B$;E$;H$;HS;D$:RETURN

140 PRINT ““WED "";C$;Cs;1$;A$;F$:RETURN

150 PRINT “THU "*;B$;D$;F$;G$;E$:RETURN

160 PRINT “FR 1 "";A$;D$;1$;Cs$;C$:RETURN

170 PRINT "“SAT '";B$;G$;D$;K$:RETURN

180 FOR Y=1TO 6

190 ON Y GOSUB 120,130,140,1560,160,170

200 PRINT:NEXT Y

210 RETURN

6-19

IF ~THEN ~ :ELSE

| Format | IF {<relational expression>} THEN

<logical expression >

[:ELSE

| Abbreviated Format |

< statement >

< statement >
<line number >

<label >

]

< line number >

<label >

IF ~TH.~:EL.

| Explanation |

to that line.

If :ELSE is omitted and the result of expression is false, execution continues with

the next program line after the IF~ THEN statement.

(When ELSE is not used)

onditional
expression
satisfied?

IF ~ THEN ~ :ELSE statements are used to control branching of program execu-
tion according to the result of a logical or relational expression. When the result
of such an expression is true, statements following THEN are executed. If a line
number is specified following THEN, program execution jumps to that line of the
program.

If the result of the logical or relational expression is false, statements following ELSE
are executed. If a line number is specified following ELSE, program execution jumps

(When ELSE is used)

Conditional
expression
satisfied?

YES YES
THEN THEN
If a line number | If a statement If a line number | If a statement
or label is is specified, it is or label is is specified, it is
specified. executed. specified. executed.

!

Execution jumps
to the specified
line or label.

l

Afterwards, pro-
gram execution
advances to the

l

Execution jumps
to the specified
line or label.

Afterwards, pro-
gram execution
advances to the

next line. next line.
To next line ELSE

6-20

If a line number
or label is
specified.

If a statement
is specified, it is
executed.

l

Execution jumps
to the specified
line or label.

l

Afterwards, pro-
gram execution

advances to the
next line.

Example

10 IF€<1 THEN €=3 :ELSE C=C~1
This statement assigns 3 to C if C is less than 1; otherwise, assigns C-1 to C.

10 IF C< >D THEN 150 :ELSE END

This statement causes jump to line 150 if C is not equal to D; otherwise, ends pro-
gram execution.

10 IF A$=""ABC'" THEN A$=A$+"'DEF"
This statement assigns ‘‘ABCDEF’’ to A$ if A$ contains ‘““ABC’’; otherwise, the
program proceeds to the next line.

Note:

(Precautions on comparison of numeric values with BASIC 1Z-016)

Numeric values are represented internally with binary floating point representation;
since such values must be converted to other forms for processing or external dis-
play (such as in decimal format with the PRINT statement), a certain amount of
conversion error can occur.

For example, when an arithmetic expression is evaluated whose mathematical result
is an integer, an integer value may not be returned upon completion of the opera-
tion if values other than integers are handled while calculations are being made.
Be aware of this and take it into consideration when evaluating relational expres-
sions using ‘‘="’.

This need is illustrated by the sample program below, which returns FALSE after
testing for equality between 1 and 1/100 * 100.

10 A=1/100% 100

20 IF A=1 THEN PRINT ““TRUE'":ELSE PRINT "*FALSE"’
30 PRINT “"A=""A

40 END

RUN

FALSE

A= 1

The fact that both “FALSE’’ and ‘A =1"’ are displayed as the result of this pro-
gram shows that external representation of numbers may differ from the number’s
internal representation in the computer.

6-21

IF~GOTO

|

Format

IF | <relational expression>| GOTO [<line number >
I <logical expression > } <label >

| Abbreviated Format |

[Explanation !

Example —|

|

See also

|

IF~G.

The IF ~ GOTO statement sequence evaluates the condition defined by <relational
or logical expression >, then branches to the line number specified in < line number >
or <label> if the condition is satisfied. As with the IF~THEN sequence,
IF ~GOTO is used for conditional branching. When the specified condition is satis-
fied, the program execution jumps to the line number specified in <line number >
or <label>. If the condition is not satisfied, execution continues with the next line
of the program. (Any statements following IF ~GOTO on the same program line
will be ignored.)

10 T=0:N=0

20 INPUT “"VALUE="";X

30 IF X=999 GOTO 100

40 T=T+X:N=N+1

50 GOTO 20

100 PRINT ““ % s % % % % % % % % %'’

110 PRINT “TOTAL:"";T

120 PRINT “’NO. ENTRIES:"";N

130 PRINT “"AVERAGE:"";T/N

140 END

The above example gives the total and average of input values. If 999 is input, pro-
gram execution is terminated.

GOTO
IF ~ THEN ~ :ELSE
IF~GOSUB

6-22

IF~GOSUB

| Format | IF {<re1ational expression>} GOSUB {<1ine number>}

<logical expression > <label >

mbbreyiated Format |

[Explanation I

f Example l

|

See also 1

IF ~GOS.

The IF ~ GOSUB statement evaluates the condition defined by <relational or logi-
cal expression>. If the condition is satisfied, the program execution branches to
the subroutine beginning on the line number specified in <line number> or
< label > . Upon completion of the subroutine, execution returns to the first executa-
ble statement following the calling IF ~ GOSUB statement. Therefore, if multiple
statements are included on the line with the IF ~ GOSUB statement, execution returns
to the first statement following IF ~ GOSUB.

10 INPUT ** X= *;X

20 IF X< 0 GOSUB 100:PRINT ““X<0"

30 IF X=0 GOSUB 200:PRINT *"X=0"

40 IF X>0 GOSUB 300:PRINT ““X>0"

5O PRINT ‘% s s % % % % % s % %k s 3k sk sk s % % % %'
60 GOTO 10

100 PRINT “* * PROGRAM LINE 100 *":RETURN
200 PRINT ** % PROGRAM LINE 200 ‘*:RETURN
300 PRINT ** * PROGRAM LINE 300 ‘“:RETURN

GOSUB ~RETURN
IF ~THEN ~ :ELSE
IF~GOTO

6-23

PRINT

[Format ‘ PRINT [<palette code>] <data> [J;}<data>]

L

| Abbreviated Format |

[Explanation |

Example

|

See also

|

?

The PRINT statement displays data on the screen. <palette code> specifies the
palette code for the colour of the text on the screen. If this code is omitted, the
palette code specified in the colour statement is assumed.

When a semicolon is used to delimit two <data> items, it causes them to be dis-
played with no extra space. A comma, on the other hand, causes 10-character tabu-
lations to be performed between the printout of each <data> item. If no <data>
item is specified, this command performs a line feed.

Numeric data is displayed by this statement in one of two formats: real number
format or exponential format. Numeric values in the range from 1 X 10%to 1 x
10® are displayed in real number format; those beyond this range are displayed in
exponential format.

10 PRINT [2] “*ABC’";123 ... Displays the text data ‘““‘ABC’’ and numeric data 123
with no space in the colour corresponding to palette
code 2.

20 PRINT [3] ""ABC’’,123 ... Displays the text data ‘““ABC’’ and numeric data 123
with a 10-character tabulation between them. The
colour assigned to palette code 3 is used.

Note:

Some special uses of the PRINT statement are shown below.

PRINT ‘[*’ Clears the entire screen and moves the cursor to the home position
the upper left corner of the screen).

PRINT “[f] >’ Moves the cursor to the home position without clearing the screen.

PRINT “”’ Moves the cursor one column to the right.

PRINT “[@l>’ Moves the cursor one column to the left.

PRINT “Jjll”’ Moves the cursor up one line.

PRINT ‘>’ Moves the cursor down one line.

To enter special characters for cursor control, press the key; this changes

the form of the cursor to ““__*’. Next, press an edit key, [CLR |, [HOME], [=],

L< |, 1], or[L |. After entering the special character, press the key

to return to the normal mode.

COLOR
PAL

6-24

PRINT USING

| Format | PRINT [<palette code>] USING “‘ < format string>"’; <data> [{;} < data>] <

3

| Abbreviated Format |
? USL

| Explanation | The PRINT USING statement displays data on the screen in a specific format. This
statement should be entered using the same format as the PRINT statement, except
for the specification of <format string>. <format string > consists of formatting

characters which specify the format in which data is to be displayed, as described
in the examples below.

(1) Formatting characters for numeric values
(a) #
A “‘sharp’’ symbol is used to represent each digit position. If the number
to be displayed has fewer digits than positions specified, the number will
be right-justified in the field.

10 A=123

20 PRINT USING “# # # #'";A
RUN

w123

d) .
A period indicates the position in which the decimal point is to be displayed.
The number of # signs to the right of the decimal point specifies the num-
ber of decimal places to be displayed.

10 A=12

20 PRINT USING “"# ##.##'";A
RUN

L1 12,00

© ,
A comma placed at every third # sign in the <format string > parameter
indicates the position in which a comma is to be displayed. Numbers will
be displayed right-justified.
10 A=6345123
20 PRINT USING “"# # # # ### " A
RUN
6,345,123

6-25

(d) + and —

()

®

(&

A plus (+) or minus (—) sign may be included at the end of <format
string> to specify that the sign of the number is to be displayed in that
position instead of a space. For instance, PRINT USING “‘ # # # # + ;A
or PRINT USING ““# # # # — ;A will cause the sign to be displayed im-
mediately after the number. (PRINT USING ““# # # # —’’ causes a minus
sign to be displayed following the number if the number is negative; if the
number is positive, only a space is displayed in that position.) Furthermore,
a plus sign may be specified at the beginning of a format string to indicate
that the number’s sign is to be displayed in the position regardless of whether
it is positive or negative.

PRINT USING “"## ##+",—13
L 13-

PRINT USING “+ # # ##',2b
Lw +25

Note:
Although a minus sign will be displayed if one is specified at the beginning
of the format string, it will have no relationship to the sign of the number.

* %
Specifying a pair of asterisks at the beginning of the format string indi-
cates that asterisks are to be displayed in the positions of leading zeros.

10 A=123

20 PRINT USING "=« # # # #'";A
RUN

® %k %123

££

Specifying a pair of pound signs at the beginning of the format string indi-
cates that a pound sign is to be displayed in the position immediately to
the left of the number.

10 A=123

20 PRINT USING “"EE# # # #'",A
RUN

L £123

$$

Specifying a pair of dollar signs at the beginning of the format string indi-
cates that a dollar sign is to be displayed immediately to the left of the
number.

10 A=456

20 PRINT USING “ss# ## #'",A
RUN

L $456

6-26

(h) 1111

Four exponential operators may be included at the end of a format string
to control the display of numbers in exponential format.

10 A=51123

20 PRINT USING “"# # . # # #1111"";,A
RUN

w 5. 112E+04

In this case, the first number sign is reserved for display of the sign of the
number.

(i) Extended list of operands
A list of variables may be specified following a single PRINT USING state-
ment by separating them from each others with commas or semicolons. When
this is done, the format specified in < format string> is used to display
all resulting values.

10 A=5.3: B=6.9: C=7.123

20 PRINT USING " # #.# ##'"; [A;B;C
;A,B,Cl

RUN

L1 5.300 L, 6.900 ., 7.123

The result is the same regardless of whether semicolons or commas are used
to separate variables.

(2) Formatting characters for string values
(a)!
An exclamation mark in < format string> specifies that only the first charac-
ter in the given string is to be displayed.

10 A$="'"CDE"

20 PRINT USING “'I'";A$
RUN

C

& L&
Ampersands with n spaces between them specify that the first 2 + n charac-
ters in the specified string are to be displayed. If the string is shorter than
the field defined by <&, &>, it will be left-justified in the field
and padded with spaces on the right. If the string is longer than the field,
the extra characters will be ignored.

10 As$ =""ABCDEFGH"

20 PRINT USING "&yiiaa&";AS
RUN

ABCDEF

10 A$ =""XY"
20 PRINT USING & & ";AS
RUN

XYL

6-27

@)

“)

String constant output function

When any character other than those described above is included in the for-
mat string of a PRINT USING statement, that character is displayed together
with the value specified following the semicolon.

10 A=123

20 PRINT USING ""DATA# # ##'",A
RUN

DATA ., 123

Separating the USING clause

Usually, the keywords PRINT and USING are specified adjacent to eath other;
however, it is possible to use them separately within the same statement.
18 A= —1E : Bl C=12

20 PRINT A;B; USING “# ###''.C

RUN

=12 14 1,12

In the above example, line 20 consists of a normal PRINT statement and a
USING clause.

6-28

INPUT

| Format

|

INPUT [<message>;]<variable> [, <variable>] ...

| Abbreviated Format J

Explanation

I

The INPUT statement reads data entered during program execution and assigns it
to <variable>.

When an INPUT statement is encountered during program execution, execution stops,
a question mark appears, and the cursor blinks to indicate that the program is wait-
ing for data. If <message> is specified, the message is displayed instead of the
question mark. After data is typed in from the keyboard and is pressed, the
data is assigned to <variable >, then program execution resumes. The types of the
data and <variable > must be the same. Character constants can be entered without
double quotes. In such cases, any leading or trailing spaces are ignored. However,
if leading or trailing spaces or commas are to be included in the constant, enclose
the entire character string in double quotes.

| Example | 10 INPUT ABScoeimins o Allows data to be entered and displays ?. When you
have entered the data, the program assigns the first
item to variable A and the second item to variable BS$.
20 INPUT “A="" A .nes i ivon Displays message ‘‘A ="’ and waits for data to be
typed in.
GET
[Format ‘ GET <variable>

rExplanation]

Example

l

The GET statement checks whether any key on the keyboard is being pressed, and
if so, assigns the key value to the variable specified in <variable>. The variable
will be left empty (0 for a numeric variable or null for a string variable) if no keys
are pressed.

With numeric variables, this statement allows a single digit (from 0 to 9) to be en-
tered; with string variables, it allows a single character to be entered. Any non-numeric
value entered for a numeric variable will be ignored.

10 GET As$: IF As=""""THEN 10
20 PRINT A$
30 END

This program displays a character entered from the keyboard if the character is
printable.

6-29

DIM

| Format |

i Explanation]

| Exémple]

DIM < variable > (< subscript >)[, < variable > (< subscript >)] ...
DIM < variable > (< subscript >, <subscript >)[, < variable > (< subscript >,
<subscript>)] ...

The DIM statement declares arrays with from one to four dimensions and reserves
space in the memory for the number of dimensions declared (DIM: DIMENSION).
Up to two alphanumeric characters beginning with an uppercase character can be
specified for <variable> as the array name, and subscripts of any value may be
specified to define the size of dimensions; however, the number of dimensions which
can be used is limited in practice by the amount of free memory space available.
Different names must be used for each array which is declared; for example, the
declaration DIM A(5),A(6,3) is illegal. Execution of a DIM statement sets the values
of all elements of the declared arrays to 0 (for numeric arrays) or nulls (for string
arrays). Therefore, this statement should be executed before values are assigned to
arrays.

If the DIM statement is executed on an array which has previously been declared,
and if the newly declared dimensions are greater than the existing array, an error
results.

All array declarations are nullified by execution of a CLR statement or a NEW
statement.

10 DIM A(3) .o Declares 1-dimensional numeric array A with 4
elements.
AO[ADAR)IAG)
3+ 1=4 elements
20 DIM B$(2,3)...ccvvvinnnnnn. Declares 2-dimensional string array B with 12
elements.

B$(0,0) | B$(0,1) | B$(0,2)
B$(1,0) | B$(1,1) | B$(1,2)
B$(2,0) | B$(2,1) | B$(2,2)
B$(3,0) | B$(3,1) | B$(3,2)
2+1)X(3+1)=12 elements

10 DIM A(2)

20 FOR J=0TO 2

30 INPUT A(J)

40 NEXT J

50 PRINT A(0), A(1), A(2)
60 END

Three array variables (A(0), A(1), and A(2)) are used in this example. The program
inputs three numbers into these variables, then displays these numbers.

6-30

READ ~DATA

|

Format

READ <variable> [, <variable>] ...

§

DATA <constant> [, <constant>] ...

l Abbreviated Format |

I Explanation l

|

Example

REA.~DA.

Like the INPUT and GET statements, the READ statement is used to submit data
to the computer for processing. However, unlike the other two statements, data is
not entered from the keyboard, but is instead held in the program itself with DATA
statements. More specifically, the function of the READ statement is to read suc-
cessive items of data into variables from a list of values which follows a DATA
statement. When doing this, there must be a one-to-one correspondence between
the variables of the READ statements and the data items specified in the DATA
statements. Quotation marks can be omitted for string data in DATA statements.
However, they cannot be omitted for null strings and strings including spaces.

(Example 1)
10 READ A,B,C,D
20 PRINT A;B;C;D
30 END
40 DATA 10,100,50,60
RUN
10 100 50 60
In this example, the values specified in the DATA statement are read into variables
A, B, C, and D by the READ statement, then the values of those variables are dis-
played.

(Example 2)

10 READ X$,A1,Z%
20 PRINT X$;A1;Z$
30 END

40 DATA A,1,C

As shown by the example above, string data included in DATA statements does
not need to be enclosed in quotation marks.

RUN

A 1C

The READ statement in this example picks successive data items from the list specified
in the DATA statement, then substitutes each item into the corresponding variable
in the list following the READ statement.

6-31

|

See also

|

(Example 3)
10 DIM A(2)
20 READ A(0),A(1),A(2)
30 PRINT A(0);A(1);A(2)
40 END
50 DATA 3,4,5
RUN
345
The READ statement in this program substitutes the numeric values following the
DATA statement into array elements A(0), A(1), and A(2), then the PRINT state-
ment in line 30 displays the values of those array elements.

(Example 4)
10 READ A
20 READ B
30 DATA X

The example above is incorrect because firstly a numeric variable is specified by
the READ statement on line 10, but the value specified following the DATA state-
ment is a string value, and secondly there is no data which can be read by the READ
statement on line 20.

RESTORE

6-32

RESTORE

| Format

RESTORE [| <line number>|]
| <label>

‘ Abbreviated Format \

[Explanation |

Example

l

See also

RES.

When the RESTORE statement is executed with no line number or only a line num-
ber of 0 specified, it causes the BASIC interpreter (when READ statements are en-
countered) to read the lists of data items from the beginning of the DATA statement
with the smallest line number. If either <line number> or <label> is specified,
this statement causes the BASIC interpreter to start reading data items in the DATA
statement specified by the <line number > or <label> parameter or the subse-
quent DATA statement having the smallest line number.

10 DATA “"PERSONAL COMPUTER"
20 DATA ""Mz-800""

30 READ A$.,B$

40 PRINT AS$;B$

50 RESTORE 20

60 READ Cs

70 PRINT C$

80 RESTORE

90 READ D$

100 PRINT D$

110 END

RUN

PERSONAL COMPUTER MZ-800
MZ-800

PERSONAL COMPUTER

READ ~DATA

6-33

DEF FN

L Format

| Explanation |

Example

DEF FN < function name > (<variable >)= <numeric expression >

The DEF FN statement is used to define user function. Such functions consist of
combinations of functions which are intrinsic to BASIC. The < function name>
is an uppercase letter.

DEF FNA(X)=2*X12+3%*X+1 Defines 2X2 + 3X + 1 as FNA(X).
DEF FNE(V)=1/2%M#%V12............ Defines 1/2MV? as FNE(V).

(incorrect definitions)
10 DEF FNK(X)=SIN(X/3+ w/4), FNL(X)=EXP(— X12/K)
............... Only one user function can be defined by a
single DEF FN statement.
10 DEF FND(X)=FNB(X)/C+ X....... Any functions which have been defined with
DEF FN cannot be used in another DEF FN.

Find the kinetic energy of a mass of 5.5 kg when it is imparted with initial accelera-
tions of-3.5 m/s?, 3.5x2 m/s?, and 3.5x3 m/s’.

10 DEF FNE(V)=1/2*M* V12

20 M=55V=35

30 PRINT FNE(V), FNE(V*2), FNE(V * 3)

40 END

Note:
All user function definitions are cleared when the CLR or NEW statement is executed.

6-34

TRON

| Format |

TRON[/P]

| Abbreviated Format]

[Explanation |

Example |

[See also }

TR.

The TRON command traces the execution of the program. Once a TRON command
is executed, line numbers of program lines are printed on the screen, enclosed in
brackets ([1), as they are executed by the BASIC interpreter. The /P option directs
the output of the TRON command to the printer.

10 DEF FNA(X,Y)=X=*Y

20 READ A1,A2,A3,A4

30 W=FNA(A1,A2):GOSUB 100

40 W =FNA(A2,A3):GOSUB 100

50 W =FNA(A3,A4):GOSUB 100

60 DATA 4,5,6,7

70 END

100 IF W>20 THEN PRINT''ABCD"’
110 RETURN

Enter TRON before running this program.

RUN
[101[201(301[1001[1101(401[100JABCD
[110][50][100]JABCD

[1101[601[70]

Line numbers of program lines are printed as they are executed so you can keep
track of how program execution proceeds. To terminate tracing, enter the TROFF
command.

TROFF

TROFF

l Format l

TROFF

| Abbreviated Format \

TROF.

| Explanation | The TROFF command disables the trace function.

| See also |

TRON

6-35

DEF KEY

Format

| Explanation |

r Example

DEF KEY(<key number >) = ‘‘ <character string>"’

Character strings can be assigned to any of the ten function keys to allow the strings
to be entered at any time, simply by pressing a single definable function key.
Function key numbers 1 to 5 are entered just by pressing the corresponding func-
tion key at the top left corner of the keyboard, while keys 6 to 10 are entered by
pressing the SHIFT key together with the corresponding function key. The func-
tion key number (1 to 10) is specified in <key number >, and the string or com-
mand which is to be assigned to the key is specified in <character string> exactly
as you want it to appear. <character string> can be up to 15 characters long in-
cluding spaces.

Execution of the DEF KEY statement cancels any existing function key definition.

10 DEF KEY(1)=""SHARP"cc..... Defines key [F1]as SHARP.
20 DEF KEY(2)=""RUN’’ + CHR$(13) Defines key as RUN)
Note:

CHR$(13) is the ASCII code for CR, which can be specified together with the string
assigned to a definable function key to the same effect as you actually press the

key.

KEY LIST

Format

|

KEY LIST

| Abbreviated Format |

| Explanation ’

Example

|

K.L.

The KEY LIST command displays a list of the character strings assigned to the defina-
ble function keys.

KEY LIST

DEF KEY(1)="'RUN " +CHRS$(13)
DEF KEY({ 2)="'LIST "

DEF KEY({ 3)="AUTO "
DEF KEY(4)=""RENUM "
DEF KEY(B)="'COLOR "’
DEF KEY(6)=""CHRS$("”

DEF KEY(7)="'DEF ., KEY("
DEF KEY(8)="'CONT"*

DEF KEY(9)="'SAVE "’
DEF KEY(10)=""LOAD "’
Ready

The list above shows the initial settings for the definable keys.

Note:
‘" indicates a space.

6-36

INIT

Format

\ Explanation |

Example

(1) INIT “RAM:[<number of bytes>]"’
(2) INIT “LPT: [M(0)][, Sn] [, CR code]”’

1
2
(3) INIT “RS { 1 }: <monitoring code >, <initialization code>[,<end code>]"’
2

(4) INIT “CRT:[M<mode>][,B<block code>]"’

The INIT command defines the initial settings and modes for external devices.

(Format 1)

In this format the INIT command initializes the optional RAM file board (MZ-1R18)
and allocates the amount of memory space specified in <number of bytes> to this
file, with the remaining memory space reserved for the printer buffer. <number
of bytes > must be within the range $0010 to $FFFF. When <number of bytes >
is omitted, the current setting for the RAM file area is assumed. The ‘“OK? [Y/N]”’
message appears when this command is executed. Typing Y sets up the RAM file
area as shown below. Typing N causes BASIC to display a ‘‘Break’’ message and
return to the command mode.

Either the RAM file board or the printer buffer function may become unavailable
if the memory space assigned to it is too small.

INIT ““RAM:$FFFF"

This statement initializes the RAM file board and allocates the maximum amount
of memory space to RAM files.

i System area SElS System ar
$000F e $000F Y =
RAM file area RAM file area
$CFFF
$D000
Printer buffer area
$FFFF
After INIT"’"RAM:$FFFF"’ Initial setting
has been executed. (After INIT"RAM: $CFFF'’

has been executed.)

6-37

I

Example

|

(Format 2)
In this format the INIT command specifies the printer and the mode in which the
printer buffer is to be used.

[M] indicates the printer buffer mode.

MO: Direct mode (The buffer is initialized.)

M1: Spool mode (The buffer is initialized.)

M2: Direct mode (If the spool mode is active, this mode is entered after any exist-
ing contents of the buffer have been printed out.)

The M1 and M2 options are invalid if no RAM file board is installed.

An error will be generated if image print code 0BH + 0BH* is sent to the MZ-80P5(K)
printer in the spool mode. To recover from this type of error, reenter the desired
command after executing INIT ‘““LPT: M2’’. Printing can be stopped in the spool
mode by pressing the and keys simultaneously.

* H indicates that the preceding number is in hexadecimal.

[S] specifies the printer type.

S0: MZ-1P16

S1: MZ-80P5(K)

S2: Printer which converts print data into ASCII codes
S3: Code through

The following codes are converted as shown during execution of PRINT/P state-
ment when SO or S1 is specified in the INIT statement.

CHRS ($11) or ¥ is converted to $09.
CHRS ($12) or [l is converted to $0B.
CHRS ($15) or [} is converted to $OF.
CHRS ($16) or is converted to $0C and $0A.

< CR code> must be specified when a code other than ODH is to be used as the
CR code.

INIT “LPT: M1, S1"

The above example specifies that part of the RAM file area is to be used as the
printer buffer and sets the printer buffer spool mode. The printer to be used is an
MZ-80P5(K).

¢ The printer buffer

When data is output to the printer, the computer waits until all data has been printed
before going on to do other processing. However, since the speed of data printout
is much slower than the computer’s processing speed, the computer spends a great
amount of time simply waiting for the printer to become ready. However, if data can
be output to a special holding memory for temporary storage, and that memory will
automatically forward the data to the printer as it becomes ready, the computer will
not have to wait and can be used for other tasks while the printer is printing. Such
a special memory is referred to as a printer buffer.

With the MZ-800, part of the memory in the RAM file [MZ-1R18] option can be
used as a printer buffer. Printer buffer operation is enabled when M1 (the spool mode
is specified with format 2 of the INIT command, and is disabled when MO or M2
(the direct mode) is specified.

6-38

Example

(Format 3)
In this format the INIT command sets up the RS-232C interface mode.

< Monitoring code > (High active)

l7]6[s5]a]3]2]1]0]

Enables receive DCD monitoring.

Enables send DCD monitoring.

Enables send CTS monitoring.

Not used. Normally set to O.
Enables send RTS OFF.

Enables send all characters monitoring.

< Initialization code> (High active)

[7]e]s]a]af2]1]0]

|
Brs Parity
00: No parity
01: Odd parity
10: No parity
11: Even parity

Number of stop bits
00: Not used.
01: 1 stop bit
10: 1+ 1/2 stop bits
11: 2 stop bits

“Not used. Normally set to O.

Length of receive or send characters
0: 7 bits/CHR
1: 8 bits/CHR

<End code>
A number from 0 to 255 ($00 - $FF)

When exchanging data between two MZ-800 units, prepare a cable connecting the
RS-232C terminals as shown below.

Signal name | Pin number Pin number | Signal name
TXD 2 >< 2 TXD
RXD 3 3 RXD
RTS 4 4 RTS
CTS 5 5 CTS
DTR 6 6 DTR
DCD 7 7 DCD

Ground 1, 8 1, 8 Ground

Use both units in the terminal mode. (Refer to the manual for the RS-232C interface.)

6-39

< Flow chart>

Sender

RTS ON

Send buffer
empty?

_________ 1bit 7
|
|
All characters |
sent? :
|
|
________ o= |
Send 1 byte.
""""""""" 1bit 6
1
1
RTS OFF 1
|
_________ 4
End

6-40

Yes

Receiver

DTR ON

Reception
error?

Received
character
valid?

Receive 1 byte.

DTR OFF

End

bit O

The following programs transfer the contents of A$ between the two MZ-800s:

[Program for sender]

10 INIT'’"RS1:$00,$8C""
20 A$="0123456789"
30 WOPEN #1,""RS1:""
40 PRINT #1,AS

50 CLOSE#1

60 END

[Program for receiver]
10 INIT"*RS1:$00,$8C"’
20 ROPEN#2,"'RS1:"
30 INPUT #2,A$

40 PRINT As

50 CLOSE#2

60 END

(Format 4)
In this format the INIT command sets up the display settings. <mode> specifies
the resolution of the screen and the number of colours as follows.

Mode Resolution |Characters per line Colours
1 320 x 200 dots 40 4 colours
2 320 x 200 dots 16 colours

Foreground and back-
i ground colours

4 640 x 200 dots 4 colours

3 640 x 200 dots

Note:

Optional graphic memory (MZ-1R25) is required to set mode 2 or 4.
When a TV set is used as the display unit, sufficient resolution will not
be obtained in mode 3 or 4.

<block code> specifies the colour pallete block number.

See Appendix A for more information on display control.

6-41

BYE

[Format | BYE
| Abbreviated Format |
B.
| Explanation f The BYE command returns control of the computer from the BASIC interpreter

to the monitor program in RAM.
See chapter 8 for details of the monitor program.

BOOT

| Format | BOOT

Explanation | The BOOT command initiates an initial program load (IPL). This command places
the computer into the same state as when the computer is first powered on.

[Example | E1) (5] [——— Reloads the system program into memory.

WAIT

L Format I WAIT <numeric data>

| Abbreviated Format |
W.

LExplanation] The WAIT statement suspends program execution for the time specified in <numeric
data>. The time must be specified in milliseconds (1/1000 seconds).

l Example I WAIT 100 s ommmanss smamnssnis Suspends program execution for 0.1 (100/1000)

second.

6-42

6.3 File Control Statements

DIR

Format

| Explanation |

DIR[/P][RAM]

The DIR command displays the names of files on the RAM file board.
Specifying DIR/P sends the contents of the directory to the printer.

The optional MZ-1R18 RAM file board is required for this command to be valid.
RAM may be omitted when the RAM file board is specified in the DEFAULT state-
ment or it is logged as the default device.

The device specified in the DIR command becomes the default device.

Each filename is followed by one of the following three file types.

BTX: BASIC program files

BSD: BASIC sequential data files or program files written in ASCII format
OBJ: Machine-language files

L Example | DIRRAM....ooviiiiiiiininnn, Displays a directory of the RAM file board files.
| Seealso | DEFAULT
RUN
| Format | RUN [“[<device name>:] < filename>"’[, { A} 1
R

‘ Abbreviated Format |

| Explanation |

|

Example

|

R.

Erases the existing programs in the BASIC program area and clears the program
work area, thea loads the program specified with < filename > into the BASIC pro-
gram area from the device indicated with <device name>. Then, this command
executes the program from its beginning.

<device name> may be omitted when the default device or the device specified
in the DEFAULT statement is to be used. When all parameters are omitted, this
command does not erase the program in the BASIC program area.

To load and execute a program which has been saved in the form of BSD file writ-
ten in ASCII codes, specify the A option.

Specifying the R option makes it possible to load an OBJ file in the same manner
as IPL.

The file types which can be loaded are BTX, BSD and OBJ.

RUN ““CMT:PROG" Loads BTX file “PROG’’ from the cassette
tape and executes it.
RUN "“CMTDATA™ A oensc v ins Loads BSD file “DATA”’ from the cassette

tape and executes it.

6-43

LOAD

| Format J LOAD ‘‘[<device name > :] < filename>"" [,A]

rAbbreviated FormatJ

l Explanation \

[Example

LO.

The LOAD command loads a specified program into memory from an external
storage device.

< filename> must have the same name as when the file was first saved. This
parameter is mandatory. <device name> must be CMT or RAM. This parameter
may be omitted when the default device or the device specified in the DEFAULT
statement is to be used. Add the A option when loading a program file which is
saved in ASCII format. Note that reading ASCII format files takes more time than
binary format files.

Only BASIC text files and machine language programs can be loaded with this com-
mand. When the file to be loaded is a BASIC text file, the current program is cleared
from the BASIC text area when the new program is loaded.

Note:

When loading a machine language routine to be linked with a BASIC program, the
LIMIT statement must be executed to reserve an area in memory for the machine
language program. Further, the applicable machine language program file is executed
as soon as loading is completed if the loading address is inside that area. (In this
case, the BASIC text is not erased.)

The LOAD command can be used within a program to load a machine language
program file.

LOAD "“"CMT:HELLO"" Loads a file named ‘“HELLO” from the data
recorder.

6-44

Procedure for loading a program file

EOAD“CMT:<fiIename>” T_R]’ Key in

L YPLAY Screen display

4

| Press the [PLAY | button I Data recorder operation

4

| Found “* < filename>"" J Screen display (the names of program files found are displayed.)

¢

L Loading ‘‘ < filename>"’ T Screen display

4

‘ Ready J Screen display

6-45

SAVE

|

Format

SAVE ‘“‘[<device name>:] <filename>"" [,A]
< device name> must be CMT or RAM.

| Abbreviated Format |

I Explanation I

Example

SA.

The SAVE command assigns a file name to the BASIC program in the computer’s
memory and saves it onto an external storage device.

The < device name: > parameter can be omitted when specifying a device that has
already been specified in a DEFAULT statement, or is the current default device.
The < filename> parameter is required and must always be specified.

The SAVE command saves the BASIC program text in the ASCII format if the
< A > option is specified. In this case, the BASIC interpreter attaches BSD to the
file name as the file type. The types of the files that can be saved with the SAVE
command are BTX and BSD.

SAVE “"CMT:PROG" Saves the program in memory on cassette tape with
a file name of ““PROG”’. The file type of the saved
program is assumed to be BTX.

SAVE "CMT:DEMO"" ,A....... Saves the program in memory on cassette tape in AS-
CII format with a file name of ‘““DEMO?’. The file
type of the saved program is assumed to be BSD.

Note:

The SAVE command saves only the BASIC program text (i.e., the program text
displayed by executing the LIST command); it does not save any machine language
program in the machine language area.

When using SAVE, make a note of the tape counter reading for future reference.

Procedure for saving a program file

|SAVE"CMT:<fiIename> cr]] Key in

| iRECORt.PLAY I Screen display

l Press the TR:.W button. | Data recorder operation
l Writing "<:ename>" , Screen display

| R:dy | Screen display

6-46

VERIFY

[Format J

VERIFY ¢“[CMT]: <filename>"’

‘ Abbreviated Format |

I Explanation ‘

V.

The VERIFY command compares the program in memory with the program writ-
ten on cassette to confirm that the program has been properly saved. ‘‘Ready’’ is
displayed if both programé are the same and ‘‘CMT:Illegal data error’’ is displayed
if they are different. In the latter case, save the program again.

Any ASCII file cannot be verified.

This command is valid only for cassette files.

VERIFY “"CMT:NAME"........ Compuares file “NAME’’ on the cassette with the pro-
gram in memory.

Procedure for verifying a program file

l VERIFY ' <filename>"" @ ‘ Key in
| _t:AY I Screen display
‘ Press the button. ‘ Data recorder operation
4
| Found *' <filename>"" l Screen display (the names of program files found are displayed.)
| Verifying “:ilename>” | Screen display

Ready CMT:lllegal data error Screen display

Ready
Verify An error is detected.
completed. If this message is displayed, retry to save the program file again.

6-47

DELETE

I Format | DELETE ‘‘[RAM:] < filename>"’
| Abbreviated Format |
D.

| Explanation | The DELETE command deletes the file specified in < filename>. The optional
MZ-1R18 RAM file board is required for this command to be valid.

| Example] DELETE ""RAM: SAMPLE'" ... Deletes a file named ‘““SAMPLE’’ on the RAM file
board.

RENAME

[Format —| RENAME ‘‘[RAM:] <old filename>"’, ‘“<new filename>"’

| Abbreviated Format |
RENA.

| Explanation [The RENAME command renames a given file. To rename a file, specify the old
and new file names in that order. An error will occur if the new file name specified
matches that of an existing file on the RAM file board.
RAM may be omitted if the RAM file board is set as the default device or has al-
ready been specified in a DEFAULT statement. The optional MZ-1R18 RAM file
board is required for the RENAME command to be valid.

[Example | RENAME ‘RAM: OLDPROG"’, ""NEWPROG"’
This example changes the name of a file on the RAM file board from ‘“OLDPROG”’
to “NEWPROG”.

6-48

CHAIN

|

Format 1 CHAIN “‘[<device name>:] <filename>"’

< device name> must be CMT or RAM.

| Abbreviated Format |

| Explanation |

Example J

CH.

The CHAIN statement transfers execution from the current program to another
program in a file. The CHAIN statement can also open a file. Executing a CHAIN
statement has the same effect as executing the RUN command in a program except
that CHAIN passes variables and arrays from the current program to the called
program.

< device name > may be omitted when the default device or the device specified
in the DEFAULT statement is to be used.

10 A=1

20B=2

30 CHAIN “"CMT:PROG"’

40 END

In this sample program, control is passed on line 30 to the program, from file
“PROG”’ on the cassette. The values of variables A and B, 1 and 2, are passed
to the called program.

6-49

MERGE

| Format

MERGE [‘‘[<device name>:] < filename>"’][,A]
< device name > must be CMT or RAM.

{Abbreviated Format |

| Explanation |

(Example

l

M.

The MERGE command merges the program specified in the < filename> into the
program currently in memory.

< device name> may be omitted when the default device or the device specified
in the DEFAULT statement is to be used.

If lines from the file have the same line numbers as those in the program in memory,
the lines from the file overwrite the corresponding lines in memory.

To merge a BSD file (program) saved in ASCII format, add the A option at the
end of the statement.

(Program in memory) (Program on cassette tape)

""PROG"’
10 B=2 10 A=1
30 PRINT B 20 PRINT A
50 END 40 END

When these programs are merged together with the MERGE ‘“CMT: PROG’’ state-
ment, the merged program will look like this:

10 A=1

20 PRINT A

30 PRINT B

40 END

50 END

Confirm the resulting program by using the LIST command.

6-50

WOPEN #

| Format I WOPEN # <logical number >, ‘“‘[<device name>:] <filename>"’
<logical number > must be an integer from 1 to 127.
< device name> must be CMT, RAM, or RSn.

| Abbreviated Format |
WO. #

| Explanation | The WOPEN # statement opens a BSD file for output. It also assigns a logical number
and name to the file.
< device name> may be omitted when the default device or the device specified
in the DEFAULT statement is to be used. Specifying RSn as < device name> causes
output to be sent to the RS-232C device.

| Example | 10 WOPEN#1, “CMT:DATA" Opens a file under the name ‘““DATA”’ for out-
put and assigns logical number 1 to that file.
TRPWOPEN #4E BB Tt i After this statement is executed, all output from
PRINT #1 statements is sent to the RS-232C
port.

10 WOPEN #2, ""DATA"
20 FOR Z=1TO 99

30 PRINT #2, Z

40 NEXT Z

50 CLOSE #2

60 END

The above sample program writes numbers 1 to 99 into the specified file.
| Seealso | PRINT#, ROPEN#, CLOSE #

PRINT #
| Format l PRINT # <logical number>, <data> [, <data>] ...
| Abbreviated Format]

T#

l Explanation | The PRINT # statement writes data sequentially to the file that is opened for out-
put with a WOPEN # statement.
<logical number> must be the file number used in the WOPEN # statement.
< data> may be numeric or alphanumeric.

| Example | 10 WOPEN#1, "CMT:DATA2"
20 PRINT#1, 1, 2, 3
30 CLOSE# 1
40 END

This sample program writes numeric data 1, 2, and 3 into file ““DATA”’. The file
has the logical number 1 and is opened for output.

| Seealso | WOPEN#, CLOSE#

6-51

ROPEN #

Format

|

ROPEN # <logical number>, ‘‘[<device name>:] <filename>"’
<logical number > must be an integer from 1 to 127.
< device name> must be CMT, RAM, or RSn.

| Abbreviated Format |

| Explanation |

Example

|

See also

|

RO. #

The ROPEN # statement opens a file for input. The ROPEN # statement assigns
<logical number > to the file designated by <device name> and < filename>.
< device name > may be omitted when the default device or the device specified
in the DEFAULT statement is to be used. ‘“‘RSn:”’ specified in <device name >
designates the RS-232C interface as the input device from which data is to be read.

10 ROPEN #1, ""CMT: DATA' Opens a BSD file named ‘“DATA” on the
cassette.

10 ROPEN#1, “BS1:" i vsninnn Sets the RS-232C port as the device from which
all data specified in the INPUT # 1 statements
is to be read.

10 ROPEN #2, ""DATA"
20 FOR Zz=1 TO 99
30 INPUT #2,A

40 PRINT A

50 NEXT z

60 CLOSE #2

70 END

The above program reads and displays the contents of the file created by the sam-
ple program given for the WOPEN # statement.

INPUT #, WOPEN#, CLOSE #

6-52

INPUT #

| Format | INPUT# <logical number>, <variable> [, <variable>] ...
l Abbreviated Format—|
I #

| Explanationw The INPUT # statement sequentially reads data items from the file opened for in-
put with the ROPEN # statement and assigns them to program variables. < variable >
may be an array element. <logical number > is the same number used as when the
file was first opened for input by the ROPEN # statement.
As with the READ ~ DATA statement pair, an error may be generated if data
and variable types disagree. The end of file can be tested by using the EOF # func-
tion if the specified file is on the RAM file board.

| Example | 10 ROPEN#2, ““DATA2"
20 INPUT#2, A, B, C
30 PRINT A, B, C
40 CLOSE#2
50 END

This sample program reads numeric data from the file opened for input under logi-
cal number 2 and assigns the data to numeric variables A, B, and C.

| Seealso | ROPEN#, CLOSE#, EOF#
EOF(#)
| Format | EOF(# <logical number>)
| Abbreviated Format |

EO. #

| Explanation I The EOF(#) function is used to find the end of a file. This function signals an end-
of-file condition when all data in the file has been read. The value — 1 (true) is returned
after the end of the file is encountered. EOF(#) is invalid when reading data from
CMT.
The EOF(#) function is generally used with the IF statement and placed after an
INPUT # statement.

| Example | 10 ROPEN#3, 'DATA"
20 INPUT#3, A
30 IF EOF(#3) THEN END
40 PRINT A
50 GOTO 20

The above program reads data items sequentially from the file named ‘“DATA”’
and displays them on the screen until the end of the file is encountered.

| See also | INPUT #

6-53

CLOSE #

| Format | CLOSE[# < logical number>]

| Abbreviated Format |
CLO. #

| Explanation | The CLOSE statement closes the file opened under the specified logical number.
The logical number assigned to the file is released after execution of the CLOSE
statement.

A CLOSE operation on a file opened for output causes the output buffer to be
flushed. A CLOSE operation with no logical number specified closes all open files
and releases all logical numbers.

L Example] 18 BLLIBERT e sisosmnisging Closes the file existing as logical number 1.
(10RO N ——— Closes all open files.

| Seealso | WOPEN#, ROPEN#

KILL #

| Format —I KILL[# <logical number >]

| Abbreviated Format |
KI. #

LExplanation | The KILL # command aborts the writing of data into the file opened under the speci-
fied logical number. A KILL # command with no logical number aborts all current
writing processing, closes all open files, and releases the logical numbers.

| Example | RILL S s s ¢ scmaann srsmmmmb 1 Aborts the writing of data to the file opened under
logical number 3 and releases the logical numbers as-
signed to that file.

| Secalso | WOPEN#, PRINT#

6-54

DEFAULT

| Format | DEFAULT ‘‘<device name>: ”’
| Abbreviated Format |
DEF.

| Explanation J The DEFAULT statement defines the device names to be assumed when the < device
name > parameter is omitted in input/output statements.

— Specify device names as follows:

CMT .. coviss Data recorder (Default)
RAM........ RAM file board
EPT... o Printer

| Example | DEFAULT “'CMT: “
After this statement is executed, the data recorder becomes the default device

whenever the < device name > parameter is omitted in input/output statements for
external devices.

6-55

6.4 Graphics Control Statements

COLOR

[

Format

COLOR [<palette code> [,<mode>]

| Abbreviated Format—l

| Explanation |

Example

See also

COL.

The COLOR statement specifies the <palette code> and optional <mode> that
are used by the PRINT, PRINT USING, and graphics statements SET, RESET,
LINE, BLINE, BOX, CIRCLE, PAINT, PATTERN, and SYMBOL.

<mode > specifies the type of logical operation performed on the colours. When
<mode> is specified as 0, the old colours in superimposed sections are over-painted
by new colours. When this parameter is specified as 1, the old and new colours are
logically ORed. The mode parameter does not apply however to the RESET and
BLINE statements (see Appendix A).

10 INIT “CRT:M1"

20 COLOR 3,0

30 FOR J=0 TO 10 STEP 2
40 SET 100,J

50 NEXT J

60 END

This program plots dots at points (100, 0) and (100,2) through (100,10) in colours
associated with palette code 3 and in superimpose mode 0.

Appendix A.

6-56

PAL

| Format |

\ Explanation |

PAL <palette code>, <colour code>

The PAL statement matches a palette code and colour codes to each other. Both
the palette and colour code parameters can have a value from 0 to 15. In colour
modes other than the 16-colour mode, the user can select two or four palette codes
at a time and can select 16 colours. In the 16-colour mode, the user can set up a
palette block with the INIT command and select four palettes for that block, again
enabling selection of 16 colours. The default (initial) values of the palette and colour
codes are given below.

(1) 2-colour mode

Palette code

Colour code

0
1

0 Black
15 Light white

(2) 4-colour mode

The table below shows the relationship between the palette and colour codes
that is established when BASIC is started.

Palette code

Colour code

0
1
2
3

0 Black

1 Blue

2 Red
15 Light white

You can select four colour codes out of a possible 16 colour codes.

(3) 16-colour mode
The default palette code values are identical to those in colour mode. In this
mode, colours are fixed for each palette block (see the “‘INIT Statement’’ for
palette blocks).
n: Palette block number

n Colour code Colour n Colour code Colour
0 0 Black 2 8 Grey

1 Blue 9 Light blue

2 Red 10 Light red

3 Magenta 11 Light magenta
1 4 Green 3 12 Light green

5 Cyan 13 Light cyan

6 Yellow 14 Light yellow

) White 15 Light white

Note:

When a palette block is changed with the INIT statement in the 16-colour mode,
the palette code settings are initialized. See Appendix A for details of colour codes
and pallette codes.

6-57

SET

I

Format

I Explanation]

SET [<colour specification>] < X-coordinate>, < Y-coordinate >
< colour specification> = [<palette code>][, <mode>]

The SET statement sets a dot on the screen at the point specified by < X-coordinate >
and <Y-coordinate> in the specified colour. <X-coordinate> and <Y-
coordinate > are numerical expressions (i.e., numeric constants, variables, or ex-
pressions). They can have values from the following ranges:

— 16384
— 16384

< X-coordinate> < 16383

= =
= <Y-coordinate> = 16383

(—16384,—-16384)

[

Example

|

See also

Virtual area

(=X) (0,0) (639,0) (+X)

Display area
640 % 200 dot
mode

RS (639,199)

{+Y)

(16383,16383)

Although you can specify X- and Y-coordinates in the virtual area, BASIC displays
only the shaded area in the above figure. <palette code> can specify the colour
of the dot to be plotted. <mode> must be either 0 or 1. When 0 is specified, the
dot is displayed in the colour specified by <palette code>, irrespective of the cur-
rent palette code value. When 1 is specified, the dot is displayed in the colour deter-
mined by ORing the current palette code with the < palette code> specified in the
SET statement.

When < colour specification> is omitted, the dot is displayed in the colour speci-
fied by the last COLOR statement.

10 SET3.0] 1005000 Turns on a dot at coordinates (100,50) in the colour
associated with the palette code 3, superimpose mode
0.

RESET

6-58

RESET

Format

| Explanation |

See also

RESET [< colour specification>] < X-coordinate>,<Y-coordinate >
< colour specification> = <palette code>, <superimpose mode >

The RESET statement changes the colour of a dot on the screen at the point speci-
fied by <X-coordinate> and <Y-coordinate> according to the rule shown be-
low. <X-coordinate > and < Y-coordinate> are numerical expressions (i.e., numeric
constants, variables, or expressions). They can have values in the following ranges:

—16384 = <X-coordinate> =16383
—16384 = <Y-coordinate> = 16383

Their range of values is the same as that for the SET statement. < palette code>

specifies the palette code for the colour of the dot to be reset. <mode> must be
either 0 or 1. See Appendix A for more information.

SET

6-59

LINE

Format

|

] Explanation ‘

Example

See also

LINE [<colour specification>] <X-coordinate>, <Y-coordinate>,
< X-coordinate>, <Y-coordinate> [,<X-coordinate>, <Y-coordinate>] ...
< colour specification> = [<palette code>][, <mode>]

The LINE statement draws line(s) connecting given points in the specified colour.
< X-coordinate> and <Y-coordinate> are numerical expressions (i.e., numeric
constants, variables, or expressions). Their range of values is the same as that for
the SET statement. The < colour specification> parameter is identical to that of
the SET statement. If this parameter is omitted, the colour specification made in
the COLOR statement is assumed. If coordinates outside the display area are speci-
fied, the line is clipped off at the boundary of the display area.

10 LINE [2,0110,20,260,180,380,60
20 END

The above program draws lines that connect from points (10,20), (260,180), to (380,
60) in the colour previously specified from palette code 2 in superimpose mode 0.

10 INIT"CRT:M1"

20 FOR X1=0 TO 319 STEP 3
30 LINE 169,99,X1,0

40 NEXT X1

50 FOR Y1=0 TO 199 STEP 3
60 LINE 159,99,319,Y1

70 NEXT Y1

80 FOR X2=319 TO O STEP -3
PO LINE 159,98,X2,199

100 NEXT X2

110 FOR Y2=199 TO O STEP -3
120 LINE 159,99,0,Y2

130 NEXT Y2

140 END

The above program draws dotted lines (every three dots) from the center of the screen
(159,99) to the corners of the screen.

BLINE, SET

6-60

BLINE

|

Format

[Explanation l

See also

BLINE [<colour specification>] <X-coordinate>, <Y-coordinate>,
< X-coordinate >, <Y-coordinate> [, <X-coordinate>, <Y-coordinate>]...
< colour specification> = < palette code>, <superimpose mode >

The BLINE statement changes the colour of line(s) connecting given points on the
screen according to the rule shown below. < X-coordinate> and <Y-coordinate >
are numerical expressions (i.e., numeric constants, variables, or expressions). Their
range of values is the same as that for the SET statement. The < colour specifica-
tion> parameter is identical to that of the RESET statement. If this parameter is
omitted, the colour specification made in the COLOR statement is assumed. If coor-
dinates outside the display area are specified, only the line segment within the dis-
play area is deleted. See Appendix A for more information.

LINE, RESET

BOX

Format

|

[Explanation]

Example

|

l

See also

BOX [<colour specification>] <X-coordinate 1>, <Y-coordinate 1>,
< X-coordinate 2>, <Y-coordinate 2> [, <palette code>]
< colour specification> = [<palette code>][, <superimpose mode >]

The BOX statement uses two pairs of coordinates as the location of the opposing
corners of the box. <X-coordinate> and <Y-coordinate> are numerical expres-
sions. Their range of values is the same as that for the SET statement.

The < colour specification> paramet<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>