Personal Computer

ms£=-700

OWNER’S MANUAL

SHARP

IMPORTANT

The wires in this mains lead are coloured in accordance with the
following code:

BLUE: Neutral
BROWN: Live

As the colours of the wires in the mains lead of this apparatus may not
correspond with the coloured markings identifying the terminals in
your plug proceed as follows,

The wire which is coloured BLUE must be connected to the terminal
which is marked with the letter N or coloured black.

The wire which is coloured BROWN must be connected to the ter-
minal which is marked with the letter L or coloured red.

NOTICE

2. 2. 2 2 2 2 2
oooooo €3 Cade Cat R g 2 2) £ N i Yt i St e Cade s

This manual has been written for the MZ-700 series personal computers and the
BASIC interpreter which is provided with the MZ-700.

(1) All system software for the MZ-700 series computers is supported in software
packs (cassette tape, etc.) in file form. The contents of all system software and the
material presented in this manual are subject to change without prior notice
for the purpose of product improvement and other reasons, and care should be
taken to confirm that the file version number of the system software used matches
that specified in this manual.

(2) All system software for the Sharp MZ-700 series personal computer has been
developed by the Sharp Corporation, and all rights to such software are reserved.
Reproduction of the system software or the contents of this book is prohibited.

(3) This computer and the contents of this manual have been fully checked for
completeness and correctness prior to shipment; however, if you should encoun-
ter any problems during operation or have any questions which cannot be resolv-
ed by reading this manual, please do not hesitate to contact your Sharp dealer
for assistance.

Not withstanding the foregoing, note that the Sharp Corporation and its repre-
sentatives will not assume responsibility for any losses or damages incurred as
a result of operation or use of this equipment.

2 2
ooooooo b pt e) 2 FOOF> OF o

25 oo cfocioctoots ofs ofoolo ol
2 Foago

ooooooo 20 080 ofo ol 26 of UORBE SUPU SUPK SUPAT SO SHAT SRPRE S S SPX SBT3 26 0800k S0 o8 ok S5 otasts cloatants afsotoots ctastsalsol
{alid St e Rt X s 20 il Nl S i S i) ni Sl S ol e i e O OFSOFOOF O OO OO 030 0§ 03> Sfo o % Cagc S S S S 0

Personal Computer

mZ-70w

Owner’s
Manual

© SHARP CORPORATION

Preface

Congratulations on your purchase of a Sharp MZ-700 series personal computer. Before using
your computer, please read and make sure you understand the operating procedures which
are described in this manual. The features and general operating procedures are described in
Chapters 1 and 3, so please read those chapters first.

All software for the MZ-700 series computers is distributed on cassette tape.

The cassette tape included with the computer contains BASIC 1Z-013B, a high level BASIC
interpreter which enables programming in the BASIC language and makes it possible to utilize
the full capabilities of the MZ-700. The BASIC 1Z-013B interpreter and procedures for its use
are fully described in this manual.

THIS FIGURE DRAWN USING THE COLOR PLOTTER-PRINTER

MZ-700 OWNER’S MANUAL

CONTENTS

Chapter 1 The world of MZ-700 Series Personal Computer

L
1
1

1 Features of the MZ-700 Seriescouiiiinnninnnnn..
2 Using'this Mafal : : czusenc 2 55 anmee § 58 @@nes § 550 be e 5 s w56
3 An Introduction to the World of Computers

Chapter 2 BASIC

2,

MR RPDD KRS

1 Introduction to Programming in BASIC
An Outhing of BASIC . . i o v i v cmme s e simmmnnos s smmnnesosmunssss
Frequently Used BASIC Commands and Statements
BUilt-in FUNCHON . « . cwmms s o 5 momimmn s s 5 siaimse o5 s bamss s a8 mmaiond oo
String Function
Colordisplay statement it
Color Plotter-Printer Commands v ...
Machine Language Program Control Statements
U BRI « o s ik St % B i im0 08 6 4 e e o
OTHetr STALEIMENTS . 4 i i e 405w 6w e s a0 £ 5 5 A 8 8 & 56 % 6 5 R 3
MONTtOFFEINCHOIIS ¢ « 550w 0 o w6 el s 6 w0 T s S5 e e b 6 o f e s s o

O 0 3 O i A W N

Joih ik
L =

Chapter 3 Operating the MZ-700

3.

W W w w

1 Appearance of the MZ-700 Series Personal Computers................
2 Connection to Display Unit
8 Dot RECOTAET o oo s i srm w68 8 5 & 550t b ionio ot 18 BTG o o 38 0 s oot o 61565
4 Color PIote=PIINTEE . 2 o bt s oo N asah 2 b i b as SOm GRS 56 NF 868 w3
5 KeyODPETalION) i s s Aeefid B b e SR @155 & i GG AT 0 R v 5 G 5 v

Chapter 4 Hardware

4.

4
4.
4.
4

1 MZ-700 System Diagram
2 Memory configuration i
3 Memory Mapped I/O ($EO00-SEOQ08) oo ot e
4 Signal System of Color V-RAM
5 MZ-700 Circuit Diagrams

Chapter 5 Monitor Commands and Subroutines

.

1 Moniter COMMIATIAS. &« x i oo omme o 5 o s mm e 5 s b6 wmm g 5 o ¥ b w5 s o o s

APPENDICES

A1 Code THHIES & v 2o xmsnm s snkmuwll g o Gam s 645 & H0S mm b s n e wgs 154
A, 2 MZ-700 Series Computer Specificationscciveviaeens 157
A 3 BASIC Error Message LisSt . uvissnmunciscasssssissosnsyenssnd 159
A 4 ZBOA. THSTHUCHIOT SBE & tw s 5 omw woe s 4 4 o508 00k 0 5 s oy o e s 160
A 5 Monitor Program Assembly Listo 164
A. 6 Color Plotter-Printer Control Codeso i 198
A7 Nofes Concerning Operation . . cssm. . sammnsssssmainsssinuses 201

INDEX

[BASIC COMMANDS] () is abbreviated format

)

ABS . oo 71 HSET . oo ooeeee e (H.)

ASC . oo e e 78

ATN oo 71

AUTO oo (A) 31

AXIS oo (AX)) . 89 TP BRE s, « 0% ot o8 bbb ot Vi e i gl o
IEERN oot
IF~GOSUB (IF~GOS.)

IF~GOTO . oo oeeeen (IF~G)

BYE . .\t (B) 35 IF~THENo ... (IF~TH))
INP oot
INPUT . ooooeeeeee e (L)

1130201 Vs (L/T)

CHRS . . . oo e e 78 13 A

CIRCLE .. .vooeeenan. (CL) 90

CLOSE ..o, (CLO.) 68

CLR . .ottt e e 59

COLOR . .oooennnn.. (COL) 80

CONSOLE (CONS.) 98

CONT oo, (C) 34

COS . v oo e 71 KEYLIST . ..o ooveen ... (K.L):

[610):30): SN (CU) 61

(D)

191330 3 ST 56 LEFTS « oo oo e

19)3)30 4> GRU 57 1521

DELETEo eoeenns (D) 31 LET o oot e

DIM oot e 56 LIMITovueennn.. (LIM)
151
LIST oo)

, LIST/P . oo (L./P)

END oot (E) 59 IN oot

125, 71 LOAD ..o (LO)
LOG '+t et

FOR~NEXT (F.~N.) 47
MERGEo....... (ME.)
MIDS © oot

MODEGR (M. GR)

o)} 43 MODETL M.TL)

GOSUB MODETN.............. (M.IN)

~RETURN (GOS~RET.) 49 MODETS, (M.TS)

GOTO v (G) 48 MOVE ..ot

GEBRINT : ;:écawiinsamsiss (GP) 88 MUSIC ; ssvcammernnsmess s MuU)

8]
INE WA it Bt e s it o med Spmaglosm ho G508 it o 8 32 SAVE . . (SA.)
BB - ne a1 suehds Lo KREEAL & 2 5 na
BON . oo smwsssssononsiossnnsssswns
(© QI o v cwomn e s s s
ON ERROR 7.4 R
GOTO (ONERR.G) 96 BRI = o' b el 5 s RS b R B
ON~GOSUB (ON~GOS) 55 R SR R PSR L N LR
ON~GOTO (ON~G) 54 0] S
Ol o8 e e ekt & ol s e i o e e 95 STOP . o o oo (S) L
B - o sy 3 5 3 et o S B3 B
(p)
(1 i) S S, RS S I s 84
e T e e L e e e 71 I T T T
PCOLORoovvnveerres (®C) 83 TARD 4w x4 s nsnes s smsam s o
SR o ca v L B &5 B 5) At 93 TEMPO . . o\ oo (TEM)
PHOME (PH) 87 TEST o (TE.)
PLOTOFF (PL.OFF) ... 98 TIS © oo
PR o5 s wwn oy 0 b (PL.ON) 98
B o 5 o o v NS0 o o e R 92
BRITE oo iy whols o lomn ivj R
PRINTUSING (FUSL) +v+: 38 B e s L el = w)
L o e R WO S ?/P) 84
BRINHIE 45 2 o i m ok (2/T) 68
PRINT[@,8] @[a,B]) 81
WEL. o5 s ks ks b alss e o ¥ el i i 0
@ VERIFYot (V)
®) WOPENccovuvn.. (W)
(1 U e 71
READ~DATA (REA.~DA.) 44
B e e T oy o e s 58
RENUMcovuvnnn. (REN.) 33
BEREP 5wk i baonh m e H s o g 55 % anes 63
RESTORE (RES.) 46
RESUME (RESU)) 97
17301 - g N SR N 77
BN, . o o e e e e e (RL) 86
BMEOVE o o sswm e m il s (RM) 87
1 S L I S S L 72
T R (RO.) 68

B e o e T s (R) 34

i
_ _ n
El M . LA IEER |
- - It
F . "R
: . b
8 LU i,
B M. et
Bl o, =
. W, N
) T i
ot £

-

N

F K

-
-

L i

FELIGAP SR

EF2ga s

R
el
B
i AN A
TR o (] [
s REF=If gl P
PRI s P
e
=3
Tl
118
« JI¥ . . LU et
o A5
L4FD B b | Lipncar]
{34 . e TR
Foile i Al e
. A=
fa - SO
| i, . WS PYGE
| E g
FL o T . Ll e
iRl . [VA=
” -
s
4 i ART) 0 P et
=0
. [AREY .. [LI -
. . . T I
Jhal| . . TEOREE
1= L. .. « AMLEERD
. g vt
1 By TR
4 A5 . o RS B
Tt . S =
i, . . ., .. EDa .
_ o
i
ra
. e - s Mes = =m0 R W e ey

i

THE WORLD OF MZ-700

SERIES PERSONAL
COMPUTER

Welcome to the World
of MZ-700
Personal Computer

Chapter 1

10

1.1 Features of the MZ-700 Series

In the space of just a few decades, the computer has undergone a dramatic transformation, changing
from an intricate, enormously expensive monster weighing several dozen tons into a compact, inexpensive
device which can be used by almost anyone. Whereas access to computers used to be limited to a few
privileged individuals with special training, the inexpensive, user-friendly machines now available make
the world of computing open to people in all different walks of life. The Sharp MZ-700 series computers
are representative of such machines.

People use words and expressions to convey meanings.

Computers of the Sharp MZ-700 series, however, convey meaning through an ordinary television set
or special printer. Any TV set can be used, either color or black-and-white; or, you may invest in one
of the special display screens available if you want greater resolution and sharpness; you will be surprised
at the beauty which is provided by such displays.

A tape recorder can be connected to computers of the Sharp MZ-700 series to record programs, the
instructions which control the operation of the computer. When printed records of such programs or of
the results of computer processing are desired, they can be obtained on the MZ-700’s compact, elegantly
designed 4-color plotter-printer.

MZ—-731

Note: In the remainder of this manual, the term “MZ-700 will be used to indicate any of the computers
of the MZ-700 series (the MZ-710, MZ-711, MZ-721, and MZ-731).

MZ—-721

MZ—=711 1

11

12

1.2 Using this Manual

Before starting to study programming, why not try playing with the MZ-700 a bit? We’re sure you
want to do that anyway, rather than waiting until after you have read this book. First, read “Operating
the MZ-700" in Chapter 3 (you need read only those parts which apply to the model which you are us-
ing). Connect the MZ-700 to a television, read the explanation of procedures for using the keyboard, and
learn which characters are output when each key is pressed.

If you are using the MZ-700 for the first time, read Chapters 1 and 2, in that order. At first, you may
find it difficult to grasp the meanings of the various commands and statements of the BASIC programming
language; however, even if you don’t understand the explanations, be sure to key in the examples as
they are encountered. As you do so, you will gradually develop a concept of what BASIC is all about.

You may skip over those portions of Chapter 2 which start with 2. 8 “Machine Language Program
Control Statements”; however, these sections will prove useful when you have completely mastered
programming in BASIC, or wish to become more familiar with the computer’s internal operation.

If you have used the MZ-80K, you will find that the commands and statements of BASIC for the
MZ-700 are used in the same manner as those of the SP-5025 family, so that the MZ-700 can be used
in almost exactly the same manner as the MZ-80K. The major difference between the two is in the color
statements (applicable to both the television screen and the color plotter-printer) which have been added;
however, you should find it easy to become familiar with these by reading sections 2. 6 ““Color display
statement” and 2. 7 “Color Plotter-printer Commands.”” Having done this, you will quickly be captivated
by the power of expanded BASIC.

This manual also includes a discussion of “Operating the MZ-700*° (Chapter 3), a reference section
entitled “Hardware” (Chapter 4), a discussion of the “Monitor Commands and Subroutines’ (Chapter 5),
and appendices of other information.

Now go ahead and learn everything you can about the MZ-700. We hope that you will find this manual
helpful.

1.3 AnIntroduction to the World of Computers
1.3.1 What is BASIC?

People use language to communicate with each other, and specially dc igned languages are also used for
communication with computers. BASIC is one such language.

Beginner’s All-purpose Symbolic Instruction Code

Just as human beings use languages such as English, French, German, and Japanese for communication,
there are also many different languages which are used for communication with computers. Among these
are BASIC, FORTRAN, COBOL, and PASCAL. Of these, BASIC is the computer language whose struc-

ture is closest to that of the languages used by humans, and therefore is the easiest for humans to under-
stand.

1.3.2 What is a “Clean Computer”?

The MZ-700 is a clean computer. Here, the word ‘“‘clean” means that the computer’s memory is com-
pletly blank when its power is turned on i.e., the computer cannot be used immediately, but first must
be taught a language. This might seem like a nuisance at first glance; however, it does provide several
advantages. For example, suppose that you wanted to use a language other than BASIC. The fact that
the computer’s memory is empty to start with means that you can teach it just about any language
you want. This greatly increases the range of software which can be run on the computer and extends
its range of potential applications.

On the other hand, if the computer knows BASIC from the time it is turned on, it is possible to use the
language immediately; however, this presents an obstacle to loading any other language into memory.

1.3.3 Loading BASIC into the MZ2-700

The BASIC language must be loaded into the MZ-700 before it can be used to do any work. A cassette
tape containing this language has been included in the case containing the MZ-700. Now let’s teach the
language to the computer; procedures for doing this are described below. (The eplanation assumes that
you are using an MZ-731; however, the procedures are basically the same for all computers of the MZ-
700 series.)

(1) Connect the display as described on page 106.

(2) Turn on the power switch located on the back of the computer.

(3) The following characters are displayed on the screen and a square, blinking pattern appears. This
pattern is referred to as the cursor.

X X MONHTOR 1hZ=81.38A XK
xif

~—— Cursor

(4) Set the cassette tape contammg the BASIC language in the computer’s data recorder.

(5) Type in the word .@.@] and press the - key. After doing this, the message £ PLAY appears
on the screen.

Notes:
1 [L[OJAD]. .. This is the instruction for loading programs or data from cassette tape.
#2 [CRI. ...« <o This is referred to as the carriage return key, and is mainly used to indicate comple-

tion of entry of an instruction.

13

(6) Press the data recorder’s button; the cassette tape starts moving and loading of the BASIC
language begins.

(7) After loading has been completed, the message READY is displayed and the cursor starts to
blink again.

XX MONITOR 1Z2-013AKXK
X LOAD

L PLAY

LOADING BASIC

BASIC INTERPRETER 1Z-0138 VXXX
COPYRIGHT 1483 BY SHARP CORP

XXXXX BYTES

READY
-

This completes loading of the BASIC program. You can talk to the computer using BASIC, and the
computer will respond.

1.3.4 Try Executing a Program

Loading BASIC into the computer doesn’t cause it to do anything; first, it must be given instructions

in BASIC as to what it is to do. Although we will not explain the instructions of BASIC until later, let’s
go ahead and try executing a BASIC program right now.

Remove the cassette tape from the recorder and turn it over so that the “B’’ side is up. A sample

program is recorded on this side of the cassette tape. Using the following procedures, load this program

into the computer and execute it.

14

(1) After turning the tape over and reloading it into the recorder, press the REWIND button to
rewind it. Next, type in [L[OJA[D|] and press the key; when the message £ PLAY is display-
ed, press the button on the data recorder. This begins loading of the sample program.

(2) When loading is completed, the cassette tape stops, READY is displayed on the screen, and the
cursor starts to blink again.

(3) Now that the program has been loaded into the computer’s memory, try executing it. This is done
by typing in R|U[N] and pressing the key.

(4) Now let’s take a peek at the program. Hold down the key and press the [BREAK |
key. This stops program execution and displays the words BREAK and READY, then the cursor
starts to blink again.

(5) Type in [I[and press the key. This lists the lines of the program on the screen one
after another. (Output of the list can be temporarily stopped at any time by pressing the space
bar.)

(6) If you wish to resume program execution, type in [R[UJN] again and hit the [CR] key.

(7) If you want to run a different program, set the cassette tape containing that program in the
recorder, LOAD the program, then RUN it. The previous program is automatically erased from
memory when the new one is loaded, so the computer contains only the BASIC language and
the last program loaded.

Chapter 2

BASIC

BASIC
Programming

16

2.1 Introduction to Programming in BASIC
2.1.1 Direct Mode

Now that you have made some key entries on the MZ-700, you have reached the point where you
are ready to start learning how to program. Before you start, however, try using the MZ-700 as you
would an ordinary pocket calculator. (This is called operating the MZ-700 in the “direct mode™.) Key
in the following, just as you would on a pocket calculator.

EEEEICR

As you can see, the computer doesn’t do anything when it is presented with a problem in this form;
your computer and an ordinary calculator are completely different in this respect, and instructions must
be entered in a form which can be understood by the computer (i.e, in the form prescribed by the BASIC
language). Now try typing in the following.

PROUONT [EEHEICH

If you have done this correctly, the number “13” will be displayed and the screen will appear as shown

below.
Poall PRINT is an instruction which tells the computer to display
PRINT 449 i i ,
13 something on the screen. Here, the computer is instructed to
READY display the sum of 4 + 9.

Now let’s try doing a somewhat more complex calculation.
With BASIC for the MZ-700, the operators (symbols) for the basic arithmetic operations are as follows.

Addition: +

Subtraction: =

Multiplication: X (the asterisk)
Division: A (the slash)

Exponentiation: 1

When symbols such a “ X 7, “+ 7, and “ 1> are mixed together in a single arithmetic expression,
the order in which calculations indicated by the symbols are performed is referred to as their priority.
Just as with ordinary algebra, operations can be included in parentheses, so operations within the inner-
most set of parentheses are performed first. Within a set of parentheses, exponentiation is performed
first, followed by multiplication and division (which have equal priority, and therefore are performed
as they are encountered in the expression, from left to right), and then by addition and subtraction.

For example, to obtain the answer to the expression 3 X 6 X (6 +3 x 19— 2 x (4 - 2) + 11 J, enter the
following.

PRUONT BEXEXAEHBEBXACIHRXIAAERDIHEIDID]

Now try using the computer to do a variety of other problems in arithmetic.

[EXERCISE] [ANSWER]

6+4
1. 8%2 P: INT (B+4)/(6—4)
2. 38X {B+OX (9—2) ——~4—§§s +5 PRINT 3*X(B+OX(9—2)—6,/(4—2») +5
200
3. (B44) X (5+6) PRINT (3+4)X(B+6)
—7
10420
a. 058 243 PRINT (10420) /BX(2+3)
o5
by LawlliBRl PRINT (10420 /(BX(2+3)
 TBX(2+3) 3

After going through the exercises, try typing in and pressing the key; the answer “40” is
displayed. The reason for this is that BASIC interprets the question mark in the same manner as the
instruction PRINT. Remember this as a convenient, abbreviated form of the PRINT instruction.

Now try entering the following. (The quotation marks are entered by holding down and
pressing the [2] key.)

FRONTM@EHRIEMCRH]

As you can see, the characters within quotation marks are displayed on the screen, but the answer is not.
Now try entering the following.

PROIONTMABICDIEFCIICH]

This causes ABCDEFG to be displayed on the screen.
In other words, using the PRINT instruction together with quotation marks tells the MZ-700 to display
characters on the screen exactly as they are specified between quotation marks. The characters within

any set of quotation marks are referred to as a “character string” or “string”.

Now go on to enter the following.

PRONTMEEEEIEIEEEFES]

This causes the following to be displayed on the screen.

Al S Ll S R T (The “_.” symbol indicates a space. Actually, nothing is display-

ed on the TV screen in the position indicated by this symbol.)

In other words, the instruction above tells the computer to display both the character string “4 + 9 =”
and the result of the arithmetic expression "4 + 9 =", Now try entering the following.

PRONTMEHEEMLIEEEICR]
After typing in this entry, the following should be displayed on the screen.
A 2 T T I

The reason the screen appears different this time is because the PRINT instruction displays items of
information (character strings or the results of arithmetic expressions) differently depending on whether
they are separated from each other by semicolons or commas.
Semicolon () Instructs the computer to display items immediately adjacent to each other.
Comma(,) Instructs the computer to display the item at the position which is 10
spaces (columns) from the beginning of the display line.

157

18

If you have the MZ-731 (or a separate plotter-printer), now try appending the characters [/ P, to the
end of the word PRINT.

PRONDPMEELIECCIEEHEICRH

This time nothing appears on the display screen, but the same result is printed out on the plotter-printer.
In other words, the /P, symbols switch output from the display to the plotter-printer.

This completes our explanation of procedures for using the MZ-700 as you would a pocket calculator.

Note: PRINT "5 + 8 ="; 5 + 8 displays 5 + 8 = 13, while PRINT ' 5 - 8 ="; 5 - 8 displays 5 - 8 =-3.
The reason for this is that one space is always reserved for a symbol indicating whether the result is
positive or negative, but the symbol is only displayed in that space when the result is negative.

2.1.2 Programming

Let’s try making a simple program. However, first let’s make sure that the area in the computer’s
memory which is used for storing programs is completely empty. Do this by typing in NEW and pressing
the[CR|key. (This instruction will be explained in more detail later; see page 32.)

Type in the following program exactly as shown.

G - T S RN S | IRl ot G e Assigns the value 3 to A.

20 B=6[CR Assigns the value 6 to B.

3 C=A+BICR.................. Assigns the result of A+ B to C.

A % CIEEl. o mmcmeddn 68 a5 b s Displays the value assigned to C.

S BENDCR s rasmmes s s e ms Instruction indicating the end of the program.

The numbers 10, 20, 30, and so forth at the left end of each line are referred to as program line numbers,
or simply line numbers; these numbers indicate the order in which instructions are to be executed by the
computer. Instructions on the lowest numbered line are executed first, followed by those on the next
lowest numbered line, and so forth. Line numbers must be integers in the range from 1 to 65535.

The line numbers 1, 2, 3, and so forth could have been used in this program instead of 10, 20, 30.
However, it is common practice to assign line numbers in increments of 10 to provide room for later
insertion of other lines.

Now let’s check whether the lines have been correctly entered. Type in LIST and press the key;
this causes a list of the program lines to be displayed. Notice that the question mark entered at the beginn-
ing of line 40 has been converted to PRINT, the full form of the command for displaying data on the
display screen.

Now-let’s try executing the program.
RIUNICRI

Enter RUN and press the key; the result is displayed on line 9 of the screen.

Now we will explain procedures for making changes in programs. First, let’s change the instruction on
line 20 from B = 6 to B = 8. Type in LIST 20 and press the key; this displays just line 20 of the
program on the screen. Next, use the cursor control keys (the keys at the right side of the keyboard which
are marked with arrows) to move the cursor to the number " 6, then press the (8] key and the key in
succession to make the change. Note that the change is not completed until the[CR|key is pressed.

Now type in LIST and press the key again to confirm that the change has been made.

Next, let’s change line 30 of the program to C =30 X A + B.
Using the cursor control keys, move the cursor so that it is positioned on top of the “A’ in line 30,
then press the | INST | key three times in succession. This moves “A + B” three spaces to the right.

C = d A + B
-Cursor position

Now type in [3][0]X]and press the key to complete the insertion. LIST the program to confirm that
the change has been made correctly.

Now change line 30 again so that it reads “C = 30 X A” instead of “C = 30 X A + B”. Do this by
moving the cursor to the position immediately to the right of B and pressing the key two times;
this deletes “+B”. Press the key to complete the change.

Now LIST the program and confirm that it appears as shown below.

109 A=3

20 B=8

30 C=3JXA
40 PRINT C
50 END

To delete an entire line from a program, simply enter the line number of that line and press the key;
delete line 20 in this manner, then LIST the program to confirm that the line has been deleted.

We could insert the instruction “?A” between lines 30 and 40, by typing in 35 ?A and pressing the
key. Try this, then LIST the program to confirm that the line has been added. Now delete line 35 by
entering 35 and pressing the key.

The process of changing or inserting lines in a program in this manner is referred to as editing, and the
program which results from this process is referred to as the BASIC text. Each line of the program can
include a maximum of 255 characters, including the line number, but the maximum length is reduced
by four characters if the question mark is used to represent the PRINT instruction.

At this point, the program contained in the computer’s memory should be as follows.

19 A=3

30 C=3IXA
48 PRINT C©C
50 END

Now we will use this program to explain the procedures for recording programs on cassette tape.
Prepare a blank cassette tape (one on which nothing has been recorded) and set it in the data recorder,

19

20

then type in the following from the keyboard.
SAVE "CALCULATION" »

Here, “CALCULATION” is the name which is to be recorded on the cassette tape to identify the
program. Any name may be assigned, but the name connot be longer than 16 characters.

Note: The J symbol in the example above represents the key.

When the[CR]key is pressed, “ £ RECORD. PLAY” is displayed on the screen. Pressing the
button on the data recorder at this time records the program on cassette tape.

The name which is assigned to the program is referred to as its file name. Specification of a file name is
not absolutely necessary, but from the point of view of file management it is a good idea to assign one.
Of course, the file name is recorded on the tape together with the program.

When recording is completed, READY is displayed to indicate that the computer is finished. Now press
the STOP button on the data recorder and rewind the tape.

The program is still present in the computer’s memory after recording is completed, so type in NEW J
to delete it (enter LIST J to confirm that the program has been deleted). Now let’s try using the LOAD
instruction to load the program back into memory from the cassette tape as described on page 14.

When a cassette tape contains many programs, that which is to be loaded can be identified by specifying
the program’s file name together with the LOAD instruction as follows.

LOAD "CALCULATION" J

Specifying the file name in this manner tells the computer to ignore all programs on the tape other than
that with the specified name. If the file name is not specified (if only LOADJ is entered), the computer
loads the first program encountered.

Note: When using cassette recorder other than the data recorder built into the MZ-731, and MZ-721 read
the instructions on page 109 before attempting to record or load programs.

The LIST command shown above can be used in a variety of different ways. For example, during
editing LIST 20 J can be used to display just line 20 of a program. The entire program can be listed
by entering LIST J . Other uses of the instruction are as follows.

COEm EEICCRH Lists all lines of the program to line 30.

UOEm EBla=ICHI Lists all lines from line 30 to the end of the program.
OOESM RBOEEOICR Lists all lines from line 30 to line 50.

OOSm [EIACRHI Lists line 30.

When editing programs by listing individual lines with the LIST instruction, press the key (the
[INST |key) together with the key when the screen becomes distractingly crowded. This
clears the entire screen and moves the cursor to its upper left corner. (This does not affect the program
in memory). Afterwards, enter LIST < line number > J again to list the line which is to be edited.

2.2 An Outline of BASIC
2.2.1 Constants

A constant is a number or string of characters which is written into a program, and which is used by
that program as it is executed. Types of constants include numeric constants, string (character) constants,
and system constants. These are explained below.

Numeric constants

A numeric constant is a number which has a maximum of 8 significant digits. The exponent of such
constants must be in the range from 1073 to 103® (the maximum range is 1.548437E—38 to 1.7014118E
+38).

(Examples:)

—-128. 4

g. 789

8748, &

B, TEH] Devvveerennseniienanns 3. 7X10m

7. BB —Grrrressotagms 7. 65X107° E indicates the exponent.
/]4 8E9 ’|4 8)(109 J

Hexadecimal numbers: Numbers can be specified in hexadecimal format only for direct memory
addressing with the LIMIT, POKE, PEEK, and USR instructions (see pages 92 and 93), and are repre-
sented as four digits preceded by a dollar sign ($).

(Examples:)
LIMIT S&BFEFF
LUEBH (BOOE, X8 o cneinss ons X$§ represents a string variable.

String constants

String constants are letters and symbols between quotation marks which are included in programs to
allow titles or messages to be output to the display screen or printer. The characters "44+9" appearing on
page 17 are a character constant, and not a numeric constant. With BASIC, a string constant may consist
of a maximum of 255 characters. (Not including quotation marks which cannot be included in a string
constant.)

(Examples:)

L ABCDEEGH

12345678910 "

DATA. ABCHEREGI I Lotk Quotation marks are not needed when string constants are
specified in a DATA statement; however, they may be used
if desired.

21

22

2.2.2 Variables

The word “‘veriable” has a different meaning with BASIC than it does when used with regard to alge-
braic expressions. To put it in very simple terms, the variables of BASIC are “boxes” in memory for
the storage of numbers and characters (character strings). The types of variables used in BASIC include
numeric variables, string variables, and system variables.

Numeric variables String variables System variables

0 5
Y, R < A];
A A$

2

O

3

31700u

A)

A

2 ME

e Y
C | XY9$

Numeric variables

Only numeric data can be stored in numeric variables.

Names must be assigned to these variables in accordance with the following rules.

i) A variable name may consist of any number of characters, but only the first two characters are
actually used by the BASIC interpreter to identify the variable. Further, the first character of the
variable name must be a letter (A to Z), either letters or numerals may be used for subsequent
characters.

ii) It is not possible to use the names of BASIC commands and statements as variable names.

Correct variable names: ABC, XY, ABCD, A12345
(ABC and ABCD are regarded as the same variable.)

Incorrect variable names: PRINT (PRINT is a BASIC statement)
Clle, ST 20t x o, (Variable names may not include special charac-
ters.)
(Example:)
(57 U0 - N—— Stores 5 in variable A.
20 PRINT Ao Displays the value stored in variable A.

String variables

String variables are variables which are used for storing character strings. Names assigned to string
variables must conform to the same rules as those assigned to numeric variables; however a dollar sign
($) is appended to the end of string variable names to differentiate them from other types of variables.

String variables may be used to store a maximum of 255 characters. Such variables are blank until
string data is assigned to them.

The only operator which can be used in expressions including more than one string variable is the
“+” sign.

(Example:)

12 A$="'ABCH "~wrass Substitutes the character string ABCD into string variable AS$.

28 Bf="' XY Z o Substitutes the character string XYZ’ into string variable B$.

3T CHI=APF+BP--eeeeeeees Substitutes the sum of string variables A$ and B$ (ABCDXYZ)
into string variable C$.

A0 PR INT C$Heeeermveveeenes Displays the contents of string variable CS$.

System Variables
System variables contain values which are automatically changed by the BASIC interpreter. The system

variables are size (the variable which indicates the amount of BASIC free area) and TIS$ (a 6-digit variable
which contains the value of the system’s 24-hour clock).

(Examples:)

109 TI1$S="01350J " -+ This statement assigns the value corresponding to 1:35:00 A.M.
to system variable TI$ and sets the system clock to that time.

22 PRINT T Bt Executing this statement displays the current time of the system
clock (24-hour time).

Display format:
1: 8528 DN b e i Indicates that the time is 13:28:19.

PRINT S| ZE e This displays the current amount of free space in the computer’s
memory (in other words, the amount of space which is available
for additional program lines). The value indicated by this variable
is reduced each time a program line is entered.

23

24

2.2.3 Arrays

Arrays can be thought of as shelves within the computer’s memory which contain rows of boxes, each
of which represents a variable. The boxes on these shelves are arranged in an orderly sequence, and are
identified by means of numbers; these numbers are referred to as subscripts, because they are subscripted
to the name which identifies the entire group of boxes.

Such shelves of boxes are set up simply by executing an instruction which declares that they exist;
this is referred to as making an array declaration. The array declaration specifies the number of boxes
which are to be included in each set of shelves (i.e., the size of the shelves) and the manner in which
they are to be arranged.

The boxes in each unit of shelves may be arranged in sequences which have any number of dimensions.
Thus, a one-dimensional array can be thought of as a single shelf which holds, one row of boxes; a two-
dimensional array can be thought of as a stack of shelves, each of which holds one row of boxes; and
so forth. These boxes, or variables, are referred to as the array’s elements.

The number of subscripts used to identify each of the array elements of a corresponds to the number
of dimensions in that array. For example, each of the elements in a one-dimensional array is identified by
a single subscript which indicates the box’s position in the row; each of the elements in a two dimensional
array is identified by two subscripts, one which identifies the box’s row, and one which indicates the box’s
position within that row; and so forth. The numbers which are used as the subscripts start with zero, and
have a maximum value which is determined by the size of each of the array’s dimensions (i.e., the number
of boxes in each row, etc.).

The maximum size of an array is limited by the amount of free space which is available in the com-
puter’s memory (i.e., by the size of the program, the number of items of data which are to be stored
in the array, and so forth). The syntax of BASIC places no restrictions on the number of dimensions
which can be used for any array, but in practice the number of dimensions is limited by the amount of
free memory space which is available for storage of array variables.

An array must be declared before values can be stored in any of its elements.

— . N b A one-dimensional array
""" . Uil consisting of 101 elements.

@A(zo) ‘‘‘‘‘ A (10, 10)
A two-dimensional array
—]

I consisting of 11 x 11 elements.

A three-dimensional array
consisting of 4 x 4 x 4 elements.

—— A | A

A(3,3,3) 0,) 0 303),

) Q ,0,2)
,0,) 1,0, 0,

= pit?
AL00)| |Awon]| |ALa2)] [A(o3

Let’s see,
4x4x4...
that makes
64 element.

f—

B | 23]

A020) |A(L20F 1AR20) [ABA0)

The variables making
up an array are referred
to as its elements.

(Example 1)

1@ DM ACS)mmssmmmmssas
20 DM XPLEB)rmvesmsrins cusss

10 DIM AG), XPBB)we

Declares 1-dimensional numeric array A with 6 elements.
Declares 1-dimensional string array X$ with 9 elements.

Performs the same function as lines 10 and 20 above.

(Example 2)
1) S N, BLS J Syt Declares 2-dimensional numeric array B with 6 x 6
elements.
20 DM YRE, 8l Declares 2-dimensional string array Y$ with 6 x 9 elements.
109 DIM BB, B, YEBE, 8) AB), XP(B)rwwmmmees Declares two numeric arrays
and two string arrays.

(Example 3)

1 DM CL3, B, 8o Declares 3-dimensional array C with 4 x 4 x 4 elements.

Note: Different names must be used for each array which is declared; for example, the instruction DIM
A(5), A(6) is not a legal array declaration.

Try executing the program shown below and check the results which are obtained.

Note:

19
20
3J
49
59
6J
79
8J
oY

DIM A@, B

ADN=26
AC1)=9
AR2)=—109

BEUH="ABC"
BB(1)="XYZ2"
Bs2)="MZ—700"
PRINT AU
PRINT B$E

190 PRINT A@
11 PRINT BS$SW@+BSC)
120 PRINT AWD

Individual variables within an array, such as A(5) and X$(8), are referred to as an array’s elements.
Numeric. constants, numeric variables, and numeric arrays are collectively referred to as numeric

expressions, and string constants, string variables, and string arrays are collectively referred to as
string ex pressions.

25

2.2.4 BASIC Operations

In BASIC, arithmetic operations take a slightly different form than is the case with ordinary arithmetic.
The various arithmetic operators used in BASIC are shown in the table below. The priority of these
operators when they are used together within a single expression (the sequence in which the different
arithmetic operations are performed) is as indicated by the numbers in the left column of the table;
however, operators within parentheses always have the highest priority.

Arithmetic operations

Operator Operation Format
1) Exponentiation | X 1Y (Indicates XY;i.e., X to the Yth power.)
2 — Negation - X
3| x,, | Multiplication, | v 4 v (¥ timesY), X/Y &; ie., X divided by Y)
4 division
4 +, — Plus, minus X+Y XplusY), X —Y (X minus Y)

Line up in
sequence!

(Example 1)

1 AZ=BKE G rmosrn o samn oo When a series of operators with the same priority are used in
an arithmetic expression, calculations are carried out from left
to right; thus, the result of the expression at left is 6.

(Example 2)
10 A=6J0—6CX8+2--- Result is 14.
20 B= (60—6) X8+2:---- Result is 434.

(Example 3)
19 A=213 - Assigns 2 to the 3rd power to A; result is 8.

String operations
String operations are used to create new strings of character data by concatenating (linking) two or
more shorter strings. The only operator which can be used in string operations is the ‘+” sign.

(Example)
PRINT "“ABC'"+"DRBEF".Z

Displays the character string “ABCDEF”.

26

2.2.5 Initial settings
Initial settings made when BASIC 1Z—013B is started are as described below.

® Keyboard
1) Operation mode: Normal (alphanumeric)
2) Definable function keys

N TEETRERR R I‘RUN+CHR$ (’] 8) .|._ D oeeessenssans IICHR$ (“

P ehsewiuesases W | & +“:_‘_2‘} L T "DEF KEY ("
D eesesenansens "AUTO" + " semmeme e ”CONT”
e DSV NG TN [EHITET [+ B8l & s "SAVE"

B8] L e "COLOR" [(SHTIETI+ [EQ] : ceoeeeeeeees e G B

Note A carriage return code is included in the definition of function key F1 .

B Built-in clock
The initial value set to system variable TI$ is "000000" .

® Music function
1) Musical performance tempo: 4 (moderato, approximately medium speed)
2) Note duration: 5 (quarter note J)

® Control keys and control characters
The control keys are keys which perform special functions when pressed together with the key.
Functions of these keys and their corresponding ASCII codes are as shown in the table below.

[Control codes]
ASCII code o
CTRL + (dotial) Function
B 5 Selects the lowercase letter input mode for alphanumeric
characters.
F 6 l Selects the uppercase letter input mode for alphanumeric
| characters.
M 13 | Carriage return ([CR]).
143 16 Same as the key.
Q 17 Moves the cursor down one line (H).
R 18 Moves the cursor up one line (R).
S 19 Moves the cursor one column (character) to the right (B).
T 20 Moves the cursor one column (character) to the left (B).
U 21 Moves the cursor to the home position ([HOME).
A 22 Clears the screen to the background color ([CLR]).
W 23 Places the computer in the graphic character input mode
~ (LGRAPH .
X 24 - Inserts one space ([_INST |).
Y 25 | Places the computer in the alphanumeric input mode.
® Other

The lower limit of the BASIC text area is set to address $FEFF; this is the same as LIMIT MAX is
executed).
For initial printer settings, see the discussion of the printer.

28

2.3 Frequently Used BASIC Commands and
Statements
2.3.1 Program file input/output instructions

2.3.1.1 LOAD

(abbreviated format: LO.)

LOAD or LOAD ' filename'
This command loads the specified BASIC text file or a machine language file to be
linked with a BASIC program from cassette tape.

(See pages 14 and 20.)

Only BASIC text files and machine language programs can be loaded with this
command. When the file to be loaded is a BASIC text file, the current program is
cleared from the BASIC text area when the new program is loaded.

When loading a machine language routine to be linked with a BASIC program, the
LIMIT statement must be executed to reserve a machine language progam area
in memory. Further, the applicable machine language program file is executed as
soon as loading is completed if the loading address is inside that area. (In this case,
the BASIC text is not erased.)

The LOAD command can be used within a program to load a machine language
program file.

$0000
Monitor
$1200
BASIC interpreter
BASIC text area
LIMIT ($9FFF)
(BA000)
Machine language
area
$FEFF

Note: The lower limit of the BASIC text area shifts according to the size the program text loaded.

2.3.1.2 SAVE.

............................... (abbreviated format: SA.)

SAVE or SAVE "“filename"

This command assigns a file name to the BASIC program in the computer’s memory
and saves it on cassette tape.

Well, then | want to save
use SAVE! this program on
cassette tape.

Give names to the programs
and use SAVE “NAME""!

vaoG“PN\

Q\\ll Wiy,
% | have sever-
2

al programs.
How can |
tell them
apart?

When using SAVE,

make a note of the j

tape counter reading .
for future reference. Type in
SAVE “NAME" [CRI.
g Assign any name of
up to 16 characters.
Screen display (i RECORD g PL AYU Ready for recording!!
Isgfa:?:: rder (Eress the [RECORD| button. ’ Recording start!!

O

Screen display (WR”"[NG- “NAME"| Recording in progress.

NAME is not displayed if no pro-
gram file name has been specified.

Screen display CR EADY) Recording completed!!

(7

Type in SAVE [CR].

This command saves only the BASIC program text (i.e., the program text displayed
by executing the LIST command); it does not save any machine language program in
the machine language area.

The file name specified is recorded on tape together with the BASIC text file;
specify any name desired using up to 16 characters. If no file name is specified,
the program is recorded without a file name; however note that this can make file
management difficult if more than one program is recorded on a single tape.

29

2.3. 1.3 VERIFY . ..ot tmmeie s mmmmmne s e (abbreviated format: V.)

VERIFY or VERIFY 'filename

This command is used to confirm that programs have been properly recorded on
tape by the SAVE command. This is done by playing the tape and comparing the
program read with the program contained in memory. If both programs are the
same, “OK” is displayed;if they are different, "READ error" is displayed.
In the latter case, save the program again.

VER' FY t‘ 2y | want to check whether my program has

been properly recorded. . .

D,
(2) Typein VERIFY “NAME”
(“NAME" is not necessary if no

file name has been assigned).

(4) Press the [PLAY | button on the data rec%

s Z
(6) FOUND “XXXX" , This is displayed if the program finds another program
< before that which is to be verified. If that program has
" \ g l;_\a name, it is displayed where indicated by ““x x x x"".

=
((6) FOUND “NAME"”........... Displayed when the program to be verified is found.)
(7) VERIFYING “NAME"”
READY Indicates that the tape file is being
Indicates that the program was\| compared with the program in

not correctly recorded; re-record\memory.
it with the SAVE command.

screen.

@)ri PLAY is displayed on the TV

(8) READ error,

Indicates that th
tape file is OK.

2.3.2 Text editing commands

2.3.2.1 AUTO ..

2.3.2.2 DELETE

.............................. (abbreviated format: A.)
AUTO or AUTO Ls, n

g wommes Starting line number

n-------- Line number increment

This command automatically generates program line numbers during entry of
BASIC program statements.
(Example 1)

AUTOJ

A (P ssanvasasnsinnsnnesarss J
3 [e m sy s o J
5 5] wom ey shymnirisw Ssia o J

(Example 2)
AUTO 399, 5/

1710 L L LR LLTIrrrs J
17 o T IR J
B GFeevereenerenaeananes J

Automatically generates program line numbers with an increment of 5, starting with
line 300.

(Example 3)

AT 600

A (DY v v o J \‘) X .

A g obedisnenish i ‘r _________ Generates program line numbers with an increment

1 DG ewsermnsasssinsisin i) of 10, starting with line 100.

(Example 4)

AUTO, 20/

A QO cermrreeneenrneians J) . g ¢
Generates program line numbers with an increment

8@’ J % of 20 Startlng Wlth lme 10

o T J)' 2 :

Note: The AUTO command is terminated by pressing [SHIFT |and|[BREAK]|.

.............................. (abbreviated format: D.)

DELETE Ls—L & Deletes program lines from Ls to Le.

RDELETE =l & Deletes all program lines from the beginning of the
program to line Le.

DELETE | 8= msswsmumss Deletes all program lines from line Ls to the end of
the program.

B E|[LHETHEN RSt iariattis Deletes line Ls.

(Example 1)
DELETE 152—385& J-w- Deletes all program lines from 150 to 350.
(Example 2)

DELETE "N = 1T1@@r) st Deletes all program lines up to line 100.
(Example 3)
DELETE ALE—)i Deletes all program lines from 400 to the end

of the program.

31

32

2.3.2.3 LIST ...

Function

2.3.2.4 LIST/P

.............................. (abbreviated format: L.)

LIST

LIST Ls—Le Ls indicates the starting line number and Le indicates
L ['ST Ls— the ending line number.

LIST —Le

This command lists all or part of the program lines contained in the BASIC text
area on the display screen.

S Lists the entire program.

Ll 8T —38Jsusmesmmmis Lists all lines of the program to line 30.

L[&T S@=—dwseemmns Lists all lines of the program from line 30 to the end.
L IST S8—50)J e Lists all lines of the program from line 30 to line 50.
L1 ST S@ s Lists line 30 of the program.

Output of the program list to the display screen can be temporarily interrupted by
pressing the space bar; listing is then resumed when the space bar is released. To

terminate list output, press the [BREAK | key together with the key.

............................ (abbreviated format: L./P)

LIST/P <Ls—Le>

|5 e Starting line number

Le - Ending line number

This command lists all or part of the program in the BASIC text area on the printer.
The range of program lines to be listed is specified in the same manner as with the
LIST command described above.

Note: The angle brackets <. ..>in the above indicate that the enclosed item is optional.

2.3.2.5 MERGE

2.3.2.6 NEW

............................. (abbreviated format: ME.)

MERGE or MERGE " filename"

The MERGE command is used to read a program from cassette tape. When a pro-
gram is read using this command, it is appended to the program in memory. If
“filename’ is omitted, the computer reads the first file encountered on the cassette
tape.

If any line numbers in the program read are the same as those of the program in
memory, corresponding lines of the program in memory are replaced with lines
of the program read.

NEW

The NEW command erases the BASIC text area and clears all variables. Execute
this command when you wish to clear the program in memory prior to entering
another program. This command does not erase the machine language area reserved
by the LIMIT statement.

Since the BASIC text area is automatically cleared by the LOAD command, it is
not necessary to execute this command before loading a BASIC program from
cassette tape.

2.3.2.7 RENUM
[Format]

Function

Example
[Example]

............................ (abbreviated format: REN.)

RENUM | Ln New line number
RENUM Ln [--------- Lo OId line number
RENUM Ln, Lo, n) T o Increment

This command renumbers the lines of a BASIC program. When this command is

executed, line numbers referenced in branch statements such as GOTO, GOSUB,
ON ~ GOTO, and ON ~ GOSUB are also reassigned.

R UL Bt o syt o et s Ty 2 2 Renumbers the lines of the current

program in memory so that they start
with 10 and are incremented in units
of 10.
RENLM 48 . . cvsvernscnpunsa Renumbers the lines of the current
program in memory so that they start
with 100 and incremented in units of 10.
RENUM 1909, 5@, 2 Renumbers lines of the current program
in memory starting with line numbef
50; line number 50 is renumbered to
100, and subsequent line numbers are
incremented in units of 20.

The example below shows the result of executing RENUM 100, 50, 20 for a sample
program.

(Before renumbering) (After renumbering)
50 A=1] 1900 A=1
60 A=A+1 n_)’l 20 A=A+1
79 PRINT A | 140 PRINT A
100 GOTO 69 160 GOTO 120

When specifying the new and old line numbers, the new line number specified must
be larger than the old line number. Note that an error will result if execution of this
command results in generation of a line number which is greater than 65535.

33

34

2.3.3 Control commands

2.3.3.1 RUN...

2.3.3.2 CONT ..

............................... (abbreviated format: R.)

RUN or RUN Ls

Ls Starting line number

This command executes the current program in the BASIC text area.

If the program is to be executed starting with the first program line, just enter
RUN and press the key. If execution is to begin with a line other than that
the lowest line number, type in RUN Ls (where Ls is the line number at which
execution is to start) and press the[CR]key.

When this command is executed, the BASIC interpreter clears all variables and
arrays before passing control to the BASIC program.

............................... (abbreviated format: C.)

CONT

The CONT command is used to resume execution of a program which has been
interrupted by pressing [SHIFT | + | BREAK | or by a STOP statement in the
program. This command can also be used to continue execution of a program which

has been interrupted by an END statement; however, in this case care must be taken
to ensure that lines following the END statement are not the lines of a subroutine.
Examples of situations in which the CONT command can and cannot be used are
shown in the table below.

Program continuation possible | Program continuation not possible
® Program execution stopped by ' ® Before a RUN command has been
pressing [SHIFT |+[BREAK . | executed.
I
® Program execution stopped by a | @ “READY” displayed due to an
STOP command. | error occurring during program
execution.
|
® Program execution stopped by ' ® Cassette tape operation interrupted
pressing | SHIFT |+| BREAK | by pressing | SHIFT |+ BREAK |.
while the program was a waiting '
input for an INPUT statement. ® Program execution stopped during
' execution of a MUSIC statement.
' ® Program execution stopped and
- 'READY" displayed after
; execution of an END statement.

2.3.3.3 BYE

2.3.3.4 KEY LIST

BYE

.................................. (abbreviated format: B.)

This command returns control of the computer from BASIC interpreter 1Z-013B

to the monitor program in RAM. (The monitor commands are explained starting
on page 99.)

..................... (abbreviated format: K. L.)

KEY LIST

This command displays a list of the character strings assigned to the definable
functions keys.

EEY LIST

DEF KEY (1) ="RUN"+CHRS$ (13>
DEF KEYEZ)="LI18T™

DEF KEY (3 ="AUTO"

DEF KEY (4) ="RENUM"
CEF KEY (B ="COLOR"
DEF KEY (8) ="CHRS$ ("'
DEF KEY (7) ="DEF KEY ("
DEF KEY (8) ="CONT"

DEF KEY (©) ="SAVE"

DEF KEY (1) ="LOAD"
READY

&

35

36

2.3.4 Assignment statement

LET

Function

LETv=¢ or v=e¢
v ... Numeric variable or array element, or string variable or array element.

e ... Numeric expression (consisting of one or more constants, variables, or array
elements) or string expression (consisting of one or more constants, variables,
or array elements).

This statement assigns the value (numeric or string) specified by e to the variable

or array element specified by v. As shown in the examples below, LET may be

omitted.

OK, here I go!

109 A=10 19 LET A=14

20 B=29 20 LET B=2g9

30 A=A+B 30 LET A=A+B

4 PRINT A 40 PRINT A

50 END 50 END

RUNJ

s I i The two programs above produce exactly

the same result.

The following are examples of incorrect use of the LET statement.
20 AS=A+B-- Invalid because different types of variables (string and
numeric) are specified on either sides of the “="" sign.
20 LOG (LK) = K] smm- Invalid because the left side of the statement
is not an numeric variable or array element.

2.3.5 Input/output statements
Input/output statements are the means by which data is submitted to the computer for processing,
and by which the results of processing are output to the TV screen or printer.

2.3.5.1 PRINT

Function

(PRINT | (variable 1 < J(: } variable) >
fl | constant f L, constant J --------
Lo, ’ 1 expression expression

This statement outputs the values of variables, constants, character strings, or
expressions to the display screen. Values are displayed starting at the cursor’s
current location on the screen. (To move the cursor down one line on the screen,
execute the PRINT statement without specifying any variables, constants, or ex-
pressions.)

To simplify key input when entering this statement, a question mark (?) may
be typed instead of the word PRINT.

Numeric data is displayed by this statement in one of two formats: real number
format or exponential format.

Read number format

Numeric values in the range from 1 x 1078 to 1 x 10® are displayed in real
number format.

—1. 9999
63698 7b7
[(BB EIEN| vernswnins smsmimomessi 59w srmsies wni sms s somsiboks 1x10-8
998909090999

Exponential format

Numbers which cannot be displayed in real number format are displayed in
exponential format.

_.81 4'] 5E+9 .. —0.31415X109
BT BBPBE =D et 0.513606 x 10~2°

A plus (+) or minus (—) sign is always displayed ahead of the exponent (the number
following “E’”) of a number displayed in exponential format.

Some special methods of using the PRINT statement are shown below.

PRINT "®" Clears the entire screen and moves the cursor to the home
position (the upper left corner of the screen).

PRINT "H" Moves the cursor to the home position without clearing the
screen,

PRINT"E" Moves the cursor one column to the right.

PRINT"EB" Movesthe cursor one column to the left.

PR INT"E" Moves the cursor up one line.

PRINT"EH" Movesthe cursor down one line.

37

PRINT '@OOOOBA" - Clears the screen, then displays the character ““A” at the begin-
ning of the sixth line from the top.

Note: The vertical bars {...| in the format description indicate that any one of the enclosed items may
be selected.

To enter the special characters for cursor control, press the | GRAPH | key; this places BASIC in the
graphic character input mode and changes the form of the cursor to “Ef”. Next, enter the characters

as follows.
............... Press the key. ﬁ/‘g’ -l e
............... Press the key. -
............... Press the key.
............... Press the key.
............... Press the key.
............... Press the key. L

Come home
immediately!

\

After entering a special character, press the[ALPHA |key to return from the graphic character input
mode to the alphanumeric input mode.

2.3.5.2 PRINTUSING ..::s658s05csasusssasns (abbreviated format: 2USI.)
PRINT USING " format string" ; variable < [; | variable...>

This statement displays data on the screen in a specific format. The format specifi-
cation consists of a character or string of characters in quotation marks, and is
specified immediately after the word USING as follows.

(1) Format specification strings for numeric values

(a) #

The number sign is used to specify the maximum number of digits to be
displayed. If the number of digits in the number displayed is smaller than
the number of # signs specified in ‘“‘format string”, numbers are right-
justified in the field defined by that string.
(Example:)
10 A=123
20 PRINT USING “####” ; A
RUNJ
123

38

®).

(c)

(@

A period may be included in a format string consisting of # signs to specify
the position in which the decimal point is to be displayed. The number of
signs to the right of the decimal point specifies the number of decimal
places to be displayed.

(Example:)

10 A=12.345 : B=6.789

20 PRINT USING "###.##" ;A

30 PRINT USING "###.##" ;B

RUNJ

_12.34

_.6.79

bl

Commas may also be included in “format string” to indicate positions in
which commas are to be displayed. Numbers are right-justified in the same
manner as when # signs are used alone.

(Example:)

10 A=6345123 : B=987324

20 PRINT USING ' #, ###, ### ;A

30 PRINT USING #, ##4#, ###"' ;B

RUNJ

6,345,123

....987,324

+and —

A plus (+) or minus (—) sign may be included at the end of ““format string”
to specify that the sign of the number is to be displayed in that position
instead of a space. For instance, PRINT USING " ####+" will cause the sign
to be displayed immediately after the number. (PRINT USING '####—"
causes a minus sign to be displayed following the number if the number is
negative; if the number is positive, only a space is displayed in that position.)
Further, a plus sign may be specified at the beginning of a format string to
indicate that the number’s sign is to be displayed in that position regardless
of whether it is positive or negative.

(Examples)

PRINT USING ' ####+" ;—13

et B

PRINT USING " +#### ;25

w28 “
(Note:)

Although a minus sign will be displayed if one is specified at the beginning
of the format string, it will have no relationship to the sign of the number.

v

39

(e) XX
Specifying a pair of asterisks at the beginning of the format string indicates
that asterisks are to be displayed in the positions of leading zeros.
(Example:)
10A=1234
20 PRINT USING " X X#### ; A
RUN J
X X1234

(H ££
Specifying a pair of pound signs at the beginning of the format string indi-
cates that a pound sign is to be displayed in the position immediately to the
left of the number.
(Example:)
10A=123
20 PRINT USING "£L£####" ; A
RUN J
i oo 123

& Tt TT
Four exponential operators may be included at the end of a format string
to control display of numbers in exponential format.
(Example:)
10A=51123
20 PRINT USING "##### 11 11" ;A
RUNJ
. 5.112E+04
In this case, the first number sign is reserved for display of the sign of the
number.

(h) Extended list of operands
A list of variables may be specified following a single PRINT USING state-
ment by separating them from each others with commas or semicolons.
When this is done, the format specified in 'format string" is used for display
of all resulting values.
(Example:)
I0A=53:B=69:C=7.123
20 PRINT USING '##.### ;A,B,C
RUNJ
«5.300..6.900,.,7.123

(2) Format specification for string values

(a) !
When the values being displayed are character strings, specifying an excla-
mation mark in “format string” causes just the first character of the string
specified to be displayed.
(Example:)
10 A$ = "CDE"
20 PRINT USING "!" ; AS
RUNJ
4

M&_...&
Specifying "& &" in the format string causes the first 2 + n charac-
ters of specified string expressions to be displayed (where n is the number
of spaces between the two ampersands). If fewer than 2 + n characters
are specified in a string expression, characters displayed are left-justified
in the field defined by "& ... &".
(Examples:)
10 A$ = "ABCDEFGH"
20 PRINT USING "& . oo.s &" ;AS
RUNJ
ABCDEF
10 A$ = "XY"'
20 PRINT USING "& ... &" ;A$
RUN J
XY

(3) String constant output function
When any character other than those described above is included in the format
string of a PRINT USING statement, that character is displayed together with
the value specified following the semicolon.
(Example:)
10 A=123
20 PRINT USING "DATA####" ;A
RUN J
DATA 123

(4) Separation of USING
Usually, PRINT and USING are specified adjacent to each other; however,
it is possible to use them separately within the same statement.
(Example:)
I10A=—-12:B=14:C=12
20 PRINT A;B; USING "####" ;C
Normal PRINT function USING function

RUNJ
_12] 141_11_le

41

42

2.3.5.3 INPUT

Function

................................ (abbreviated format: I.)

(numeric variable (numeric variable |
INPUT | string variable | ... or INPUT 'character string' ; | string variable ! .
| array element J | array element |
INPUT A INPUT "DATA A=" A
INPUT B$ INFUT*YES OR NO* [BB
INPUT X&) L NPUT " RKEY | N"§X €5

INPUT is one of the statements which is used for entering values for assignment to
variables during program execution. Program execution pauses when an INPUT
statement is encountered to allow values to be typed in from the keyboard. After
input has been completed, the values are substituted into specified variables by
pressing the key, then program execution resumes.

(Example:)

1@ INPUT A. B
20 C=A+B

82 PRINT C
490 END

When the program above is executed, a question mark is displayed and the cursor
blinks to indicate that the computer is waiting for data input; enter any arbitrary
number, then press the[CR| key. This assigns the value entered to variable A.

After doing this, the question mark will be displayed again. The reason for this
is that two variables (A and B) are specified in the INPUT statement on line 10,
but only one value has been entered (that which is substituted into variable A).
Enter another arbitrary number and press the key again; this substitutes the
second value entered into variable B and causes execution to go on to the next
line of the program. In the example above, subsequent lines add the values of A
and B, substitute the result into C, then display the contents of C.

Since the variables used in this example are numeric variables, the computer will
display the message ILLEGAL DATA ERROR if an attempt is made to enter any
characters other than numerics. The question mark is then redisplayed to prompt
the user to reenter a legal value (a value whose type is the same as that of the varia-
ble or array element into which it is to be substituted). Be sure to enter data whose
type matches that of the variable(s) specified in the INPUT statement.

During program execution, it may be difficult to remember what data is to be
entered when the question mark is displayed; therefore, prompt strings are usually
included in INPUT statements for display on the screen as a reminder. This is done
as shown in the program example below.

10 INPUT "A="; A
20 INPUT"B=".B
30 PRINT"A+B=" ;A+B

40 PRINT"A—-B=",A—B
50 PRINT"AXB=",AXB
60 PRINT"A/B=",;A/B
70 END

2.3.5.4 GET

Try running the program shown above. Inclusion of character strings in the PRINT
and INPUT statements provides a clear indication of the program’s operation.
Practical computer programs consist of combinations of sequences similar to the
one shown here. By combining commands, statements, and sequences in different
manners, you will soon find that there are many different methods of achieving
a desired result.

Vo Numeric variable or array element, or string variable or array element.
When this statement is encountered during program execution, the BASIC inter-
preter checks whether any key on the keyboard is being pressed and, if so, assigns
the corresponding value to the variable specified in v. Whereas the INPUT statement
prompts for entry of data and waits until that data has been entered before resuming
execution, the GET statement continues execution regardless of whether any key
is being pressed.

Although data is substituted into variable v by the GET statement if any keys are
pressed when the statement is executed, the variable will be left empty (O for a
numeric variable or null for a string variable) if no keys are pressed.

With numeric variables, this statement allows a single digit (from 0 to 9) to be
entered; with string variables, it allows a single character to be entered.

This statement can be extremely useful when you want to enter data without
pressing the key, as is often the case with game programs.

(Example:)

168 PRINT ANEXT GOT Y OR N *

20 GET AS$

8 LF wAS=EY " CTHEN B In the example above, execution
jumps from line 30 to line 50 if the
value of variable A$ is "Y".

4@ GOTO 2@ Line 40 unconditionaﬂy transfers exe-
50 PRINT "PROGRAM END "cution to line 20.
60 END

This program displays the prompt "NEXT GO? (Y OR N)' and waits for input.
When the Y key is pressed, execution moves to line 50 and the program ends.
Until that time, however, execution loops repeatedly between lines 20 and 40.
Now delete lines 30 and 40 and try executing the program again. As you can see,
execution is completed immediately regardless of whether any keys have been
pressed.

Note: When GET statements are executed in succession, a routine should be includ-
ed between them to ensure that each is completed before going on to the
next. The reason for this is that key chatter (vibration of the contacts of
the key switches) may result in two GET statements being executed simul-
taneously.

43

44

2-3:5.8 READ > DATR L soancatovandndin i daban et inus (abbreviated format: REA. ~ DA.)

Function

numeric variable | >
string variable e o T i S RS S
array element

READ (numeric variable | ¢
: | string variable s
| array element

DATA (numeric constant | <{| numeric constant | >
| string constant

string constant |

Like the INPUT and GET statements, the READ statement is used to submit data to
the computer for processing. However, unlike the INPUT and GET statements,
data is not entered from the keyboard, but is stored in the program itself in DATA
statements. More specifically, the function of the READ statement is to read succes-
sive items of data into variables from a list of values which follows a DATA state-
ment. When doing this, there must be a one-to-one correspondence between the
variables of the READ statements and the data items specified in the DATA state-
ments.

(Example 1)
19 READ A, B, C. D
20 PRINT A:;B:;C,;D

39 END

40 DATA 10, 100, bd, 69

RUN J

18 1008 D@ B@ e In this example, values specified in the

DATA statement are read into variables
A, B, C, and D by the READ statement,
then the values of those variable are
displayed.

(Example 2)

19 READ X&$, A1, Z$

o PRINT X&:A1 | Z$

30 END

A0 DATA A, 1., O s As shown by the example below, string
data included in DATA statements does
not need to be enclosed in quotation
marks.

RUN J

A_TC The READ statement in this example

picks successive data items from the list
specified in the DATA statement, then
substitutes each item into the correspond-
ing variable in the list following the
READ statement.

(Example 3)
19 DIM A (2
20 BEAD A @) , A1), AC
38 PRINT A &) : A A4) ;A
49 END
5@, DATA~3. 4,5
RUN J

8 & B

(Example 4)

19 READ A
2 BREAD B
309 DATA X

2
(2

The READ statement in this program
substitutes the numeric values following
the DATA statement into array elements
A(0), A(1), and A(2), then the PRINT
statement on line 30 displays the values
of those array elements.

The example above is incorrect because
(1) a numeric variable is specified by the
READ statement on line 10, but the value
specified following the DATA statement
is a string value, and (2) there is no data
which can be read by the READ statement
on line 20.

45

46

2.3.5.6 RESTORE

When

.................................

(abbreviated format: ... RES.)

RESTORE or RESTORE Ln

READ statements are executed, a pointer managed by the BASIC interpreter

is incremented to keep track of the next item of data to be read from DATA state-
ments. The RESTORE statement resets this pointer to (1) the beginning of the
first DATA statement in the program or (2) the beginning of the DATA statement
on a specified line.

10
20
3k

49

1. 2, 8
AA

DATA
DATA
READ
READ
RESTORE

READ A.B.C, D$. ES$
READ I,
RESTORE
READ M, N

RESTORE 269

READ O, P

DATA 1.2, 3. 4
DATA —1, =2, =3, -4

"'BB

An error will result if the number specified in Ln is the number of non-existent line.

10
2
30
40
50
69
V4%,
89
8L
100
110
129
130
140

X=33XRND (1)
FOR A=1 TO 5
READ M$
PRINT TAB @
PRINT TAB (37) ;
NEXT A
Y=1OXRND (1)
FOR A=1 TO Y
PRINT TAB (@ ; &
PRINT TAB (37 ;
RESTORE:GOTO 10
DATA" 4ON'", "[eZFFHe '
DATA'" ZEEZ', OFFFe
DATA'" WV’

This function creates random
numbers (see page 72).

o

;'@
..‘

TAB (XD MS$

¢ NEXT

Note: See page 62 for the TAB function and page 47 for the FOR . . . NEXT statement.

2.3.6 Loop and branch instructions
2230601 EOR SANEXT | o ombatnmisio o s sl s b <o SANEL B s s (abbreviated format: F. ~ N.)
FOR cv = iv TO fv < STEP sv >

NEXT <cv>

cv Control variable; a numeric variable or array element.

iv Initial value; a numeric expression.

fv Final value; a numeric expression.

sv Increment, or step value; a numeric expression (if omitted, 1 is assumed).
This statement repeats the instructions between FOR and NEXT a certain number

of times.

10 A=0

26 FOR N=g TO 14 STEP 2

30 A=A+

40 PRINT "N=";N,

50 PRINT "A=" A

60 NEXT N

(1) In the program above, O is assigned to N as the initial value.

(2) Next, lines 20 through 50 are executed and the values of variables A and N
displayed.

(3) In line 60, the value of N is increased by 2, after which the BASIC interpreter
checks to see whether N is greater than 10, the final value. If not, lines following
line 20 are repeated.

When the value of N exceeds 10, execution leaves the loop and subsequent instruc-

tions (on lines following line 60) are executed. The program above repeats the loop

6 times.

If < STEP sv > is omitted from the statement specification, the value of N is increas-

ed by 1 each time the loop is repeated. In the case of the program above, omitting

< STEP sv > in this manner would result in 11 repetitions of the loop.

FOR i N=O

Loop control Final value
variable of N

Increment
for N (step)

Initial value
of N

[Note |

2.3.6.2 GOTO

48

[Format]
[Function |

FOR . . . NEXT loops may be nested within other FOR . . . NEXT loops. When
doing this, inner loops must be completely included within outer ones. Further,
separate control variables must be used for each loop.

19 FOR X=1 TO 99— FOR A=1 TO 3 —
20 FOR Y=1 TO 97§|g FOR B=1 TO &
30 PRINT XXY; E !..E FOR C=1 TO 7-,‘5
A0 NEXT Y [= - (TGN S — 1‘
50 PRINT ~ 18 NEXT c——||)
60 NEXT X o NERT B —— s
70 END NEXT A —— [[G«BA
When loops C, B, and A all end at the
same point as in the example above, one
NEXT statement may be used to indicate
the end of all the loops.
Incorrect example:
FOR J=1 TO 19 r’FOR (=1 TOQ 18
—FOR J=K TO K+S8 PAEOR J=K . TO KR+G
LNEXT o LNEXT |
L MEXT. o
X Different control variables X Loops may not cross one
must be used in each loop. another.

The syntax of BASIC does not limit the number of levels to which loops may be
nested; however, space is required to store return addresses for each level, so the
number of levels is limited by the amount of available free space.

The CLR statement (see page 59) cannot be used within a FOR . . . NEXT loop.

................................. (abbreviated format: ... G.)

Ln. ... Destination line number

This statement unconditionally transfers program execution to the line number
specified in Ln. If Ln is the number of a line which contains executable statements
(statements other than REM or DATA statements), execution resumes with that
line; otherwise, execution resumes with the first executable statement following
line number Ln.

10 N=1

20 PRINT N

39 N=N-+1

4 GOTQ 2@ - seewacissames Transfers program execution to line 20.
59 END

Since execution of the program shown above will continue indefinitely, stop it
by pressing the [SHIFT |and | BREAK | keys together (this may be done at any

time to stop execution of a BASIC program). To resume execution, execute the
CONT 7 command.

The line number specified in a GOTO statement may not be that of a line included

within a FOR ... NEXT loop.
2:.3.6.3 GOSUB=RETURN .. i culilicnsmviwnas oo mmionis s (abbreviated format: GOS. ~ RET.)

GOSUB Ln
RETURN
Ln ... Destination line number

The GOSUB statement unconditionally transfers program execution to a BASIC
subroutine beginning at the line number specified in Ln; after execution of the
subroutine has been completed, execution is returned to the statement following
GOSUB when a RETURN statement is executed.
GOSUB ~ RETURN statements are frequently used when the same processing is
required at several different points in a program. In such cases, a subroutine which
performs this processing is included at some point in the program, and execution
is branched to this subroutine at appropriate points by means of the GOSUB state-
ment. After the required processing has been completed, execution is returned to
the main routine by the RETURN statement.

1900 X=10

110 [GOSUB 299 H
120 PRINT X i
130 END

DO X=X KD ’
210 RETURN

49

The syntax of BASIC imposes no limit on the extent to which subroutines can be
nested (that is, on the number of levels of subroutine calls which can be made from
other subroutines); however, in practice a limitation is imposed by the amount of
free space in memory which is available for storing return addresses.

5 B=5
i
30 GOSUB 100 <
40 PRINT A GOoSuBIo0

28 [éjo gt GG 00)
70 GOSUB 100 (A=B+C]
80 PRINT A

(00 A=B+C PRINTA |13 displayed.
110 RETURN g

|
1
|
i
|

Ow
o
CJ(_)N

1
i
1
i
'

\-(GOSUB |00

P L e
N

PRINTA | 12 displayed.
O

2.3.6.4 IESTHEN . cisbessmvunssasesssessessmss (abbreviated format: . .. IF ~ TH.)

IF ¢ THEN Ln
IF ¢ THEN statement
e: A relational expression or logical expression
Ln: Destination line number

IF . .. THEN statements are used to control branching of program execution accord-
ing to the result of a logical or relational expression. When the result of such an
expression is true, statements following THEN are executed. If a line number is
specified following THEN, program execution jumps to that line of the program if
the result of the expression is true.
If the result of the logical or relational expression is false, execution continues with
the program line following that containing the IF .. . THEN statement.

[IF | [Condition | | THEN || Statement or line number |

| Fer THEN 100
[FredHEN s @E@TO ') PeasGOT T
[HERL-RRE N e w=THEN <5
| F--THEN A=DBX/ assignment
[B THER - | =18 1 J=56
| e iz N ol ERRET
[FuesTHEN “READ
| Fre=THEN 1GQSUEB
FrenTiHENRETURRN
[F—=THEN STAF
[FesTHEN wEND

Lol

20 IF ““you = have good
THEN 50 balance’’

Examples of logical and relational expressions

Operator Sample application Explanation
|F A=X THEN:- |If the value of numeric variable A equals the
value of X, execute the statements following
1 THEN.
| IF A$="XYZ If the contents of string variable A$ equal
THEN:- “XYZ”, execute the statements following
THEN.
! > I A>X THEN:-- | If the value of variable A is greater than X,
i execute the statements following THEN.
< I A<X THEN:--- | If the value of variable A is less then X, execute

the statements following THEN.

<>or ><| |F A<>X THEN:-- | If the value of variable A is not equal to X,
! execute the statements following THEN.

>= 0 :>1 | F A> =X THEN:- | If the value of variable A is greater than or
‘ equal to X, execute the statements following

THEN.

<=or=<| | F A<=X THEN:-- | If the value of variable A is less than or equal to

| X, execute the statements following THEN.

Relational expressions

g X | | FCA>XOX(B>Y) | If the value of variable A is greater than X and
2 | THEN:-- | the value of variable B is greater than Y, execute
g | the statements following THEN.
g 4 | BCAZX)+(BZY) If the value of variable A is greater than X or
2 | THEN:-- the value of variable B is greater than Y, execute
3 ! | the statements following THEN.

52

Precautions on comparison of numeric values with BASIC 1Z-013B, numeric values
are internally represented in binary floating point representation; since such values
must be converted to other forms for processing or external display (such as in
decimal format with the PRINT statement), a certain amount of conversion error
can occur.

For example, when an arithmetic expression is evaluated whose mathematical result
is an integer, an integer value may not be returned upon completion of the opera-
tion if values other than integers are handled while calculations are being made.
Be especially sure to take this into consideration when evaluating relational expres-
sions using “="".

This need is illustrated by the sample program below, which returns FALSE after
testing for equality between 1 and 1/100 X 100.

19 A=1.100%129

20 |IF A=1 THEN PRINT "TRUE':GOTO 49
80 PRINT "BALGE"

4 PRINT "A=" A

50 END

RUN
FALSE
A=1

The fact that both “FALSE” and *“ A = 17 are displayed as the result of this pro-
gram showns that external representation of numbers may differ from the number’s
internal representation.

Therefore, a better method of checking for equality in the program example above
is as follows.

20 |F ABS (A—1) < .1E—8 THEN PRINT "TRUE
GOTO 40

2.83.6:.5 IF ~GOTOF I PIrnal IR, b Sa s e 5s (abbreviated format: IF ~ G.)

Function

IF e GOTO Lr

e: Relational expression or logical expression

Lr: Destination line number

This statement sequence evaluates the condition defined by relational or logical
expression e, then branches to the line number specified in Lr if the condition is
satisfied. As with the IF . . . THEN sequence, IF ~ GOTO is used for conditional
branching; when the specified condition is satisfied, program execution jumps to
the line number specified in Lr. If the condition is not satisfied, execution continues
with the next line of the program. (Any statements following IF ~ GOTO on the
same program line will be ignored.)

10 G=C .N=0J

2 INPUT "GRADE="; X

30 |F X=9099 GOTO 199

4 T=T+X:N=N+1

50 GOTO 290

T@@ PRAENIE MTe——eee—ae—— !

148 PRINKT *TaTAaL:"aT

12¢ PRINT "NO©. PEGRPLE: "N
18@8 PRINT “"AVERAGE: " ;TN
142 END
2:8.6,6 TFGOSUB! . o uubn i s oiobmhi s st aies s s s (abbreviated format: IF ~ GOS.)

IF e GOSUB Lr
e: Relational expression or logical expression
Lr: Destination line number

This statement evaluates the condition defined by relational or logical expression e,
then, if the condition is satisfied, branches to the subroutine beginning on the
line number specified in Lr. Upon completion of the subroutine, execution returns
to the first executable statement following the calling IF ~ GOSUB statement;
therefore, if multiple statements are included on the line with the IF ~ GOSUB
statement, execution returns to the first statement following IF ~ GOSUB.

1@ INPUT * X= "iX

2 |F. X<@ cO8UB 188 1 PRINT "X<g?

3 |IF X=g GOSUB 20 :PRINT"X=2"

A8 |F K>@ EO8UB. 308 PR INT "X=5"

o PRINT T .

860 GCOTO 18

1909 PRINT " X PROGRAM LINE 1@@ " :RETURN
200 PRINT " X PROGRAM LINE 282 "' :BETURN
300 PRINT " X PROGRAM LINE 3832¢g '":BETURN

53

54

2.3.6.7 ONGOTO .cinveioomsimms sieessminns s o sises (abbreviated format: ON~G.)

Function

ONe GOTOLr, <,Lr, ,Lrs,..... o Lt >

e ... Numeric variable, array element, or expression

Lri . List of destination line numbers

This statement branches execution to one of the line numbers following GOTO,
depending on the value of e.

The value of e indicates which of the line numbers following GOTO is to be used
for making the branch; in other words, if e is 1, execution branches to the first
line number in the list; if e is 2, execution branches to the second line number
in the list; and so forth. For example: ‘

100 ON A GOTO 200, 30Y, 400, 5OQ
Destination when J
Ais 1-
Ais?2
Ais3 ! l
Ais4

A~ ~

19 INPUT "NUMBER " ; A

20 ON A GOTO by, 69, 70
8 FPRINT"XXX" :GO0TO 18
6 PRINT"YYY" :GOTO 19
78 PRINT'ZZLZ" 1G0TO 18

RUN (if & decimal number such as 1 i2as
NUMBER < 1 /Jiﬁ specified, the decimal portion is truncated
X X X | before evaluating the statement.)
NUMBER < 2

YYY

NUMBER < &

When the value of e in an ON~GOTO statement is greater than the number of
line numbers specified following GOTO, execution continues with the next line
of the program.

This also applies if the value of e is less than 1 or negative.

Further, if the value of e is a non-integer, the decimal portion is truncated to obtain
an integer value before the statement is evaluated.

2.3.6.8 ON~GOSUB

Function

ON e GOSUB Lr; <,Lr,,Lr;,.....
e ... Numeric variable, array element, or expression
Lri . Destination line numbers

This statement branches execution to the subroutine beginning on one of the
line numbers following GOSUB, depending on the value of e. Operation of this
statement is basically the same as with the ON~GOTO statement, but all branches
are made to subroutines. Upon return from the subroutine, execution resumes

with the first executable statement following the ON~GOSUB statement which
made the call.

Let’s try using the ON~GOSUB statement in a scheduling program. The most
important point to note in the following program is that, a subroutine call is made
at line 180, even though line 180 itself is part of a subroutine (from line 170 to

190) which is called by line 90. Subroutines can be nested to many levels in this
manner.

19 A$=" ENGL ":B$=" MATH ":C$=" FREN "
20 D$=" 8&CI "IE$=" MUS "IFS=" GYM :
30 G$=" HIST " :H$=" ART "1 1$=" GEOG '
49 J$=" BUS "IK$=" H RM

50 INPUT "WHAT DAY<?" ; X$

60 FOR Z=1 TO 7:¥Y$=MID3$ (" SUNMONTUEWEDTHU
FRISAT", 1+8%(Z—1J, 82 i IF ¥$%=X% THEN X=£

78 NEXT Z

8d FOR Y=g TO 4:PRINT TABMB+6XY);Y+1;
9 NEXT Y:PRINT

1@@ ON X GOsSUB 18@,120,136,148,1850, 160,179
1190 PRINT:GOTO b@

1268 PRINT*MON ";ABS:BE:DPH . CHE; KE RETURN
138 PRINT*TUE *¢BS,BES 1 HE: HE D% : RETURN
14 PRINT 'WER "2CS3E8 ;1 18 A8 FS : BETURN
16¢ FRINT2THL Y BB DS FH 88 :ES . RETUBN
188 BRINT"FRI - *5A$ 0% 808 CE : RETURN
179 PRINT*"SAT ":BS:638 ;D% KS:RETURN

188 FOR Y¥=1 T0QO &6

198 ON Y GOSUB 12d, 13@, 142, 158, 166, 1 /749
200 PRINT :NEXT Y

210 RETURN

65

56

2.3.7 Definition statements

2.3.7.1 DIM

Function

2.3.7.2 DEFFN

Function

DIM 2, (i;) <, 8 (12) «vovvnoremennennnnnn. ai (im) >
DIM b, (iy,i1) <,bs (asja)s vovevoenrnenannnn bi (in, jn) >

1 el ey S Sor 1-dimensional array name (list)
o T 2-dimensional array name (table)
(U0 1951 19 | o (R RIS Dimensions

This statement is used to declare (define) arrays with from one to four dimensions
and to reserve space in memory for the number of dimensions declared (DIM:
dimension). Up to two characters can be specified as the array name, and subscripts
of any value may be specified to define the size of dimensions; however, the number
of dimensions which can be used is limited in practice by the amount of free
memory available.

(Examples:)

19 DIM A (19D

20 FOR J=@ TO 1009
30 READ A (DD

4l NEXT

B DATA B, 8@, 12,

(Examples:)

19 DIM A 1) ,BS 1),CH (1)

20 FOR J=@ TO 1 : READ A$ (U, B$ (WD
3 CH (J)=A D +" "+B$ (D

40 PRINT A), B W, CH W

50 NEXT J

69 END

70 DATA YOUNG, GIRL, WHITE, ROSE

Execution of the DIM statement sets the values of all elements of declared arrays
to O (for numeric arrays) or null (for string arrays). Therefore, this statement should
be executed before values are assigned to arrays.

Different names must be used for each array which is declared; for example, the
instruction DIM A(5), A(6) is not a legal array declaration.

All array declarations are nullified by execution of a CLR statement (see page 59)
and a NEW statement (see page 32).

DEF FNf (x)=¢

f ... Name assigned to the function being defined (one uppercase letter from A to Z)

X ... Argument (variable name)

e ... Numeric expression (constant, variable, array element, or function) or pre-
viously defined user function

The DEF FN statement is used to define user function FN f (x). Such functions
consist of combinations of functions which are intrinsic to BASIC.

2.3.7.3 DEF KEY

Function

DEF . ENA LX) =2 XX 123K XA s Defines 2X? + 3X + 1 as FNA
X).

DEF FENE (V) =1/2XKMXM T 2 -womwamsivive Defines 1/2MV? as FNE (V).

19 DEF FNB (X) =TAN (X—PA | (1) /&)

20 DEF FND (X) =FNB (X)/ C+ X--Defines function FNB using the
function defined on line 10.

(Incorrect definitions)

10 DEF FNK (XD=S8IN (X/3+PAI(1)/4), FNL (XDO=EXP(—=X12/K)

. .. . Only one user function can be defined by a single DEF FN statement.

Find the kinetic energy of a mass of 5.5 when it is imparted with initial accelerations
of 3.5,3.5 x 2, and 3.5 x 3.

10 DEF FNE (V) =1/2XMXV 12

20 M=5.5:Vv=3.5

38 PRINT FNE (VI . ENE (VX2) , FNE OVR3)
4 END

All user function definitions are cleared when the CLR statement and the NEW
statement is executed.

DEF KEY (k) = S$

| — Definable function key number (1 to 10)

S$..... Character string (up to 15 characters).

Character strings can be assigned to any of the ten function keys to allow strings
to be entered at any time just by pressing a single key. This statement is used to
define such strings and assign them to the definable function keys. Function key
numbers 1 to 5 are entered just by pressing the corresponding key at the top left
corner of the keyboard; keys 6 to 10 are entered by pressing the key
together with the corresponding key. The function key number (1 to 10) is specified
in k, and the string or command which is to be assigned to the key is specified
exactly as it is to be entered in S$. Execution of the DEF KEY statement cancels
the previous definition of the definable function key.

No other statement can be specified after a DEF KEY statement on the same line.

(Example:)
10 DEF KEY (M) =" | NPUT " rreeeeeerennes Defines key as INPUT
20 DEF KEY (2) ="RUN"+CHR$U3)--- Defines as RUNJ

Note: CHRS (13) indicates the ASCII code for[CR], and specifying it together with the string assigned to
a definable function key has the same effect as pressing the key. (See the description of the
CHRS function on page 78 and the ASCII code table on page 154.)

b7

2.3.8 Remark statement and control commands
2.3.8.1 REM

REM r

r Programmer’s remark

REM is a non-executable statement which is specified in a program line to cause
the BASIC interpreter to ignore the remainder of that line. Since REM statements
are non-executable, they may be included at any point in the program without
affecting the results of execution. REM statements are generally used to make a
program easier to read, or to add explanatory notes to a program.

Multiple statement program lines

When more than one statement is included on a single program line, each statement must be
separated from the one preceding it by a colon (:). Operation of the BASIC interpreter is
generally the same in such cases as when the same statements are specified on different lines.
For example, the two programs below produce exactly the same result.

19 A=bH

20 B=8 10 A=5:B=8:C=AXB:PRINT C
30 C=AXB

40 PRINT C

Note: Also note that program operation may differ when multiple statement lines are used as
shown below.

19 INPUT A

20 B=0 This program displays 1 if the value entered at
3d |IF 99<A THEN B="yline 10 is greater than or equal to 100, and 0
Al 2 RULNEE S if the value entered is less than 100.

50 END

19 INPUT A:B=gd: I F 99<A THEN B=1:PRINT B
20 END

This program displays 1 if the value entered is greater than or equal to 100, but nothing
at all if the value entered is less than 100. The reason for this is that statements follow-
ing THEN on line 10 are not executed if the IF condition is not satisfied.

58

2.3.8.2 STOP ..

2.3.8.3 END ...

2.3.8.4 CLR

.................................. (abbreviated format: S.)

STOP

Temporarily stops program execution, displays BREAK and READY, then waits for
entry of executable commands in the direct mode.

The STOP statement is used to temporarily interrupt program execution, and
may be inserted at as many points and locations in the program as required. Since
execution of the program is only interrupted temporarily, the PRINT statement can
be used in the direct mode to check the values stored in variables, after which
execution can be resumed by entering CONT J .

109 READ A, B

20 X=AXB
38 &TOPR
40 Y=A/B

5@ PRINT X. Y
6d DATA 15,5
78 END

RUN

BREAK IN 39

Unlike the END statement, no files are closed by the STOP statement. (See page 68
concerning procedures for opening and closing of files.)

.................................. (abbreviated format: E.)

END

The END statement terminates program execution and returns the BASIC inter-
preter to the command mode for input of direct mode commands. When this state-
ment is executed, READY is displayed to indicate that the BASIC interpreter is
ready. After the END statement has been executed, execution cannot be resumed by
executing the CONT command even if there are executable statements on program
lines following the END statement.

All open files are closed when the END statement is executed. (See page 68 concern-
ing procedures for opening and closing files.)

Differences between the STOP and END statements

Screen display Files Resumption of execution
sSToOP BREAK | N XXXX | Open filesare | Can be resumed by
READY not closed. executing CONT.
END READY Open Hiles are Cannot be resumed.
closed

CLR

The CLR command clears all variables and cancels all array definitions. All numeric
variables are cleared to 0, and null strings (" ") are placed in all string variables;
arrays are eliminated entirely by nullifying all previously executed DIM statements.
Therefore, DIM statements must be executed to redefine the dimensions of required
arrays before they can be used again.

60

2.3.8.5 TI$

The CLR command also cancels all function definitions made with the DEF FN
statement; therefore, it is also necessary to reexecute DEF FN statements to rede-
fine such functions before they can be used again.

CLR statements cannot be included in a FOR~NEXT loop or BASIC subroutine.

TI$ "hh mm ss"

TI$ is the name of the system string variable which contains the time of the com-
puter’s built-in clock.

This built-in variable is automatically incremented once each second, and the six
character string contained in this variable indicates the hour, minute, and second,
with two characters used for each. For example, if the string contained in TI$ is
"092035", the time is 9:20:35 A. M.

Variable TIS is automatically set to 00:00:00 when BASIC is loaded into the com-
puter. To set the current time of day, use the string assignment statement. For
example, the clock can be set to 7:00:00 P. M. by executing the following.

TI$ = "190000"

The clock is set to 7:00:00 and then restarted automatically when the CR key
is pressed.

The digits specified for the hour must be in the range from 00 to 23, and those
specified for the minute and second must each be in the range from 00 to 59.
The following program displays the current local time in various cities of the world.
19 PRINT "®"

20 DIM CE U1 ,.DU1D . EU1D . TS (1D

890 FOR 1=1 TO 1@ :READ C&Cl).DLIY :NEXT |
40 PRINT"ENTER NEW YORK TIME HOUR, MINUT
E. SECOND) *

50 INPUT B$:TI$S=BS . PRINT"'@®'

60 PRINT '"B": TS) =TI1%$

709 FOR 1=1 TO 19

8@ ELI) =VALCEFTS (TH (1) 2) 3 +D €D

@ IF E(l)=24 THEN E () =0

188 [F E (I} <@ THEN E (1)=24+E (12

118 TS C1)=BTRS (E CI12) +RIGHTS (TH (12, 42

12 |IF LEN(TS (1)) =5 THEN TS U)="0"+T$ CI)D
188 PRIBNT CE <1 :TABCIBEY ;LEFTHE LTS €13 5+ 22
148 PRINT*: " MIDECTE L) 8 2) " " iRIGHTS (
TS CI) s 2

158 NEXT 1:G60TC 6@

160 DATA - NEW YORK, @, MOSCOW, 8 RIO DE JANE
| RO, 2

178 DATA SYDNEY: 15 HONOLULLW —5, LONDON, &,
CAIRO, 7

180 DATA TOKYO, 14. SAN FRANC | &CO, —3, PARIS
» 6

2.3.8.6 CURSOR

Example

The TI$ variable cannot be specified in an INPUT statement. Further, after the time
changes from 23:59:59 to 00:00:00, the time ““00:00:01”" is not displayed.

................................. (abbreviated format: CU.)

CURSOR x, y
X ... X coordinate (0 to 39)
y ... Y coordinate (0 to 24)

This command is used to move the cursor to a specified position on the TV (display)
screen, and can be used together with the PRINT and INPUT statements to display
characters in any desired location.

In the system of screen coordinates used, the columns of the screen are numbered
from left to right, starting with O on the left side and ending with 39 on the right
side; lines of the screen are numbered from top to bottom, with 0 indicating the
top line of the screen and 24 indicating the bottom line. Thus, the cursor can be
moved to any desired position in the range from (0, 0), which indicates the top
left corner of the screen, to (39, 24) indicates the bottom right corner.

The following program moves an asterisk (X) about on the screen as the cursor
keys are pressed.

180 X=28:Y=0

19 PRINT"®"

28 CURBOR X, Y:PBRINT' X" ;

30 GET A$%:1F Ag="" THEN 30

40 CURSOR X, YIPRINT" ";

50 |IF AS="R" THEN Y=Y—-1 :REM "UP ”
60 IF A$="R" THEN Y=Y+1 :REM "DOWN .
70 |F AS="R" THEN X=X—-1 :REM "LEFT *
8d |IF A$="R" THEN X=X+1 :REM "RIGHT
QU |IF X<g THEN X=9

100 | F Y<Q THEN Y=g
116 | F X>38 THEN X=38
1280 |F Y=24 THEN Y=24
1858 GOTO 2@

If the value specified for either X or Y is other than an integer, it is converted to
an integer by truncating the decimal portion before the cursor is moved.

Other methods of moving the cursor which are used together with the PRINT
statement include the TAB and SPC functions. (See page 62 for a description of
the SPC function.)

0 8 X 39
0 i
i
|
10f il
¥

CURSOR 8.10

24

61

2.3.8.7 TAB

Format TAB (x)
X ... A numeric expression

Function The TAB function is used together with the PRINT statement to move the cursor
to the character position which is x + 1 positions from the left side of the screen.
(This is referred to as space tabulation.)

Example PRINT TAB (B) : "XYZ":TAB (1Q@) : "ABC"

0123456789012 <:{Not actually displayed.j
Laiiig iy 2% ¥ L BE

Note Tabulation can only be used to move the cursor to the right; therefore, nothing
happens if this function is used together with the PRINT statement when the cursor
is already to the right of the character position specified in (x).

(Example:)
PRINT TAB (B " X¥YZ2" :TAB(B) "ABG"
01234567890

e Y ZB0
2.3.8.8 SPC
Format SPC (n)
n... A numeric expression
Function Use together with the PRINT statement, this function outputs a string of n spaces

and thus moves the cursor n character positions to the right of its current position.

Example (Example 1)
PRINT SPC (5 ;"ABC"

012848667
PR ABC

(Example 2)
The following example illustrates the difference between the TAB and SPC func-
tions.

18 % TAB 2 : "ABQ" : TAB (&) ; "DER"
20 ° 8PC) ; "ABL cSPLULE) ["DEF"
01284667800123
B BOCDEF e s v
e BD G IER

2.3.8.9 SET, RESET

These statements are used to turn dots on or off at a specified position on the screen.

Format Function Range of X, Y coordinates

SET X Ya=5C >
X ... Numeric expression speci- Turns on the dots at

fying the X coordinate. the screen coordinates 0<xX<79
Y- ... Numeric expression speci- specified by X and Y. | = =

fying the Y coordinate. (SET) |
C ... Color code (0to 7).
RESET X Y Turns off the dots at
X ... Numeric expression speci- thuei screen, roordinates |

fying the X coordinate. fied by X and Y 0<Y<49
Y ... Numeric expression speci- UPRRIDE T ST

: 5 (RESET)
fying the Y coordinate. |

When a color code is specified, the color of the dots displayed by the SET statement is as follows.

O . v Black

5 Blue

@) ssrmana Red

@) » w0 Purple

4 Green

5) ..c0nn Light blue
[([) [E—— Yellow
) [White

Since four dots are turned on simultaneously by the SET statement, changing the color of any one
dot in that four dot group also causes the color of the other dots to change.
The SET and RESET statements can be use to produce a wide variety of interesting effects; some

examples are introduced below.

1. Turning on one dot on the screen. @) X = /9
Ole °
; 79,0
10 PRINT '@ e
20 X=79:Y=49
30 SET X. .2 <= Tumsdoison)
48 RESET X Y <ﬁTumsdotsoff & SET X 2o
50 GOTO 3@ RESET X.Y
2. Coloring the entire screen white.
109 PRINT'®R" v [0.49 79,49
20 FOR X=0@ TO 79 49 18 2

30 FOR Y= TO 49
a4 BET X Xs 7

50 NEXT Y, X

60 GOTO 1@

63

3. Drawing a rectangle around the edge of the screen.

19 PRINT '@’
20 FOR X=@ TO 79
30 SET X.O

49 SET X, 49

50 NEXT X

60 FOR Y=@ TO 49
70 SET @.Y

80 SET 79.Y

O NEXT Y

190 GOTO 100

4. A program which simulates the ripples produced by throwing a pebble into a pond.

18 X=a4f =085
2% DEF FNY (Z) =SQR (RXR—ZX2Z)
30 PRINT'®" :SET X,Y

49 R=R+5

5@ FOR Z=@ TO R

60 T=FNY)

70 SET X+Z., Y+T

80 SET X+Z,Y-T

9@ SET X—Z,Y+T

100 SET X—Z.Y-T

1190 NEXT Z

120 |F R<>25 THEN 40

130 GOTO 13Q

5. A program which simulates a ball bouncing off four walls.

19 PRINT"®"

20 FOR X=g TO /9

30 SET X, d:8ET X, 48

40 NEXT X

50 FOR Y=g TO 49

6@ SBET &, YISET 78.7%

70 NEXT Y '

8 X=79XRND (1) :Y=49XRND (1)
9g A=1:B=1

188 SET X.Y

118 | F X<2 @0s8UB Z29

120 |F X>78 GOSUB 209

188 [F Y<2 GOSUB 256

140 |F Y>48 GOSUB 250

1668 RESET X.Y

160 X=X+A:¥Y=Y+B:GOTO 199
200 A=—A:MUSIC"4+AQG": RETURN
250 B=—B:MUSIC"AQ": RETURN

As to JOY command, refer to the instruction manual of Joy Stick.
64

2.3.9 Music control statements
This section discusses the MUSIC and TEMPO statements which are used to control performance of
music by the computer. As its name implies, the TEMPO statement specifies the speed with which music is

performed. The notes (including half notes and upper and lower octaves) and duration of notes produced
are controlled by the MUSIC statement.

Tempo:

Melody:

Note specification: l octag] ‘ # (sharp) Hlote name |] duration |

Specified with TEMPO as a numeric variable or constant with a value from
1 (slow) to 7 (fast).

Specified with MUSIC as a string variable consisting of a collection of
notes.

2.3.9.1 MUSIC

Discussion

..................................... (abbreviated format: MU.)

MUSIC X$
X$... String data

Automatically performs music.
This statement outputs the melody or sound effects specified by the character string

or string variable of its argument to the speaker. The speed with which this melody-
is played is that which is specified with the TEMPO statement (see page 67).

The format for specification of each note is as follows:
< octave specification > < # (sharp) > note name < duration >

- The plus or minus signs are used to specify the octave. If neither is specified, the
middle range is assumed.

The three ranges of sounds which can be output by the computer are as shown in the
figure below. For example, the C notes (““do’”” on the 8-note C scale) indicated by
the black dots below are differentiated from each other by the octave specification.

LoWwiC .saeass —C

Low Middle High
| range ’| range J[range |

— No specification -+

65

66

Note specification
The symbols used to specify notes within each range are as follows:
CDEFGAB # R
The relationship between the 8-note scale (do, re, mi, fa, so, la, ti, do) and these
symbols are as shown below. The sharp symbol (#) is used to specify half notes.
Silent intervals are specified with “R”.
,ti

1LY

vl i il e
i i bl [l =l
c|o|e Flc|Aa|B
#C#D #F%G#%A R—nRest

Duration specification

The duration specification determines the length of the specified note. The dura-
tions from 1/32 to whole are specified as numbers from 0 to 9. (When R is specified,
this determines the length of the silent interval.)

- ST SN SR MRS A T e

Dotted Dotted Dotted Dotted
1/32 rest 1/16 rest 1/16 rest 1/4 rest 1/8 rest 1/4 rest 1/4 rest 1/2 rest 1/2 rest Whole rest

Dty ol T ARG e B Bl T s

Dotted Dotted Dotted Dotted
1/32 note 1/16 note 1/16 note 1/8 note 1/8 hotd 1/4 note 1/4 hote 1/2 note 112 note Whole note

O 1 2 3 4 5 6 7 8 o

When sucessive notes have the same duration, the duration specification can be
omitted for the second and following notes. If no duration is specified for the first
note, 1/4 notes are assumed.

Sound volume
The volume of sound produced cannot be controlled by the program, but can be
adjusted with the computer’s external volume control.

Let’s try assigning a string to SR$ to play the theme from the beginning of
Beethoven’s Serenade in D major (Opus 25).

SR$="+A3+#F1+A+B3A+D+#F1A+D3A+D
+#F1A+D3+#F1A+D+E+#F+GHA3R

v N N N

2.3.9.2 TEMPO

........................... (abbreviated format: TEM.)

TEMPO x

Xt

Numeric expression (1 to 7)

This statement sets the tempo with which music is played by the music statement.
If this statement is not executed, TEMPO 4 is assumed for execution of MUSIC

statements.
30 TEMPO 1 Slowest tempo (Lento, adagio)
30 TEMPO 4 Medium tempo (Moderato);
four times as fast as TEMPO 1.
39 TEMPO 7/ Fastesttempo..... (Motto allegro, presto);
seven times as fast as TEMPO 1.
190 REM Chopin’s mazourka
20 MM$S="A3" :M1$="AB+#CI3+D+E+#F+GC+#FO+G+ #
FA44+E34+D+#CB "
30 M2%="A3+D2RO+D1+E2+D+#C3B+#C7+#C3 "
40 M3I$="A3+#C2RO+#C1+D2+#CB3A+D/7+D3 "
5@ TEMRPO., 3
6 MUSIC MMS$. M1$. M2%, M1$8, M3%. M1$. M28, M1
$. M3
79 END

67

68

2.3.10 Data file input/output commands

Although the SAVE and LOAD commands can be used to write or read program text, other commands
are used to record or read the various types of data which is handled by programs. These commands
are described below.

Format Function
Opens a data file on cassette tape
WOPEN . prior to writing data to it. This
(abbreviated W.) WOPEN < file name > command also assigns a name to
the data file.
PRINT/T PRINT/T d, <. d,.d i 5 Writes data to cassette tape in the
: L EIEIENS g R R same format as it would be displayed
? >
(abbreviated ?/T) dn Numeric data or étrmg data by the PRINT statement.
Searches for the data file on cassette
ROPEN : tape with the specified name and
(abbreviated RO.) BIEEH . Tile reing | opens that file to prepare for reading
| data from it.
Used to input data from a cassette
file and pass it to the program (in a
INPUT/T INPUT/Tv, <,v,,V3,...vn> Ak . .
3 2 ? ; manner similar to that in which the
(abbreviated 1./T) vn Numeric data or string data INPUT statement i used to input
data from the keyboard).
CLOSE Statement which closes cassette data
(abbreviated CLO.) CLOSE files after writing or reading has
A ;. . been completed.

Unlike the LOAD and SAVE commands, no messages are displayed by execution of the WOPEN and
ROPEN statements.
If display of a message is desired, use the PRINT statement to define one in the program.

Note: When an ordinary cassette recorder is used, it may not be possible to record data files even if no
problems are encountered in storing or reading programs with the SAVE and LOAD commands.

(Example 1)

The following program writes the numbers from 1 to 99 on cassette tape.
1€ WOPEN "DATA'Y

20 FOR X=1 TO 99

89 PRINTZT X

40 NEXT X

5@ CLOSE

690 END

(Example 2)

The following program reads data from the data file prepared in Example 1 above. Before execut-
ing this program, be sure to rewind the cassette tape.

19 ROPEN DATA"

20 FOR X=1 TO 99

88 INPUTAZT A

40 PRINT A

50 NEXT X

640 CLOSE

790 END

(Example 3)
The following program creates a data file consisting of string data.

12 DIM N$ (B

20 N$ (1) ="BACH"

30 N$ (2) ="MOZART "

A N$ (8) ="BEETHOVEN"
50 N$ 4> ="CHOPIN"

60 N$ (&) ="BRAHMS"

70 WOPEN'"GREAT MUSICIAN®
89 FOR J=1 TO b

90 PRINT/T N$ (U

190 NEXT J

11@ ClLOSE

120 END

(Example 4)

The following program reads string data from the file created in Example 3. Before executing this
program, be sure to rewind the cassette tape.

209
210
220
23J
249
259
260
279

It is also

DIM M$ (B

ROPEN "GREAT MUSICIAN"
FLR k=1 .10 5

INPUT/T M$ (KD

PRINT M$ (K

NEXT) K

CLOSE

END

possible to create data files which include both numeric and string data. However, since an

error will occur if the type of data read does not match the type of variable specified in the INPUT/T
statement, it is generally best to limit files to one type of data or the other.

Note: It is possible to omit the file name when opening a sequential file with the WOPEN statement.
However, this is likely to result in errors if many files are included on the same tape; therefore,

it is

recommended that you make a habit of assigning file names to sequential data files.

69

70

The following program records student grades in English, French, science, and mathemetics to
sequential data cassette file.

10
2J
39
49
1%
6J
7
8J
o]%]
100
110
120
139
149
159
169
170
189
199

| NPUT "ENTER NO. OF STUDENTS" N
DIM N$ (N>, KN, END

DIM RN, 8 (ND

A$S="GRADE IS

FOR X=1 TO N

PRINT:PRINT "STUDENT NO. g 4
INPUT "ENTER STUDENT NAME: " ;N$ (XD
PRINT "ENG ;AS: INPUT K OO

PRINT "FREN";A$; : INPUT E OO

PRINT "8C] ":A3.::INPUT R LX)

PRINT "MATH":AS; : INPUT & (X)

NEXT X

WOPEN "GRADES < Opens data file “GRADES” for output on cassette tape.)
PRINT.T N <):(Writes the number of students in the class to the file.)

FOR A=1 1D K Writes grades
PRINTZT N$F X, KOO, E GO, RB K, 8LX)
NEXT X :
CLOSE <HCloses the cassette file.)
END

The following program reads the grade data written to the cassette file by the program shown above,
then calculates displays the grade average for each student and class averages for each of the various

subjects.
190
20
39
40
50
60
79
80
Q0
109
110
128
130
140
1 5@
1680
179
180
190
209
210
220
23
249
250

ROPEN"GRADES" <= Opens cassette file “GRADES” for input.)
INPUT.T N <=Reads the number of people in the class.)
DIM N$ (N>, KN, END

DIM RN, 8N

FOR X=1 TO N Reads student names and the grades for
INPUT /T N$ (XD . K XD English.

INBUTAT E X . BREXD .8 % Reads the grades for French, scicnoe]
NEXT X and mathematics.

ClLOSE Closes the file.

PRINT TAB @y ; "ENG "}

PRINT TABUMB ; "FREN";

PRINT TAB (2@ ; "SC|

PRINT TAB (25) ; "MATH"

FOR X=1 TO N

PRINT N$ XD ;TAB (1@ ;K OO

PRINT TAB (18> : E OO

PRINT TAB (20) ;R (XD ;

PRINT TAB (295 ;S (X) ;

PRINT TAB E&) ; (K (X0 +E XJ +R X2 +8 (X2) /4
K (@) =K (@ +K (XD 1 E (@ =E (@) +E (XD

R U@ =R @ +R (XD :8 (@ =8 (@ +8 XD

NEXT X

PRINT TAB (1@ ;K W) /N; TAB (15 ; E (@ N;
PRINT TAB (20 ;R @ /N; TAB (25) ;S (@ N
END

2.4 Built-in Function

BASIC

Function symbol Example Description
Absolute | ABS (X) | A= ABS (X) Assigns the absolute value of variable | X | to vairable A.
value Example: A=ABS (2.9)~>A=2.9
A=ABS(-5.5)>A=5.5
Sign SGN (X) | A=SGN X) Assigns the numeric sign of variable X to variable A.
If the value of X is negative, —1 is assigned to A;if X is O,
0 is assigned to A; and if X is positive, 1 is assigned to A.
I' 1 (X>0) Example: 1 is assigned to variable
A=10 X=0) A when A = SGN (0.4)
l_1 x<0) is executed.
Integer INT (X) | A=INT (X) Assigns the greatest integer value to A which is less than
conver- or equal to the value of variable X,
sion Examples: A=INT (3.87) —>A=3
A =1INT (0. 6) -A=0
A=INT (-3.87) »A=—-4
Trigono- | SIN (X) | A=SIN (X) Assigns the sine of X (where X is in radians) to variable A.
metric If the value of X is in degrees, it must be converted to
functions radians before this function is used to obtain the sine. Since
1 degree equals PI/180 radians, the value in radians is
A=SIN(30*PA(1/180) | obtained by multiplying the number of degrees by PAI(1)/
180. For example, 30° = 30 X PAI(1)/180 radians. The same
applies to the COS, TAN, and ATN functions.
COS (X) | A=COS (X) Assigns the cosine of X (where X is in radians) to variable A.
A=COS (200* PA(1)/180
TAN (X) | A=TAN (X) Assigns the tangent of X (where X is in radians) to
A=TAN(Y*PA(1)/180) | variable A.
ATN (X) | A= ATN (X) Assigns the arctangent in radians of X (tan™' X) to variable
A=180/PA(1)* ATN(X) | A. The value returned will be in the range from —PI/2 to
PI/2.
Square SQR (X) | A=SQR (X) Calculates the square root of X and assigns the result to
root variable A. X must be a positive number or 0.
Exponen- | EXP (X) | A=EXP (X) Calculates the value of ex and assigns the result to variable
tiation A.
Common | LOG (X) | A=L0G (X) Calculates the common logarithm of X (log,oX) and assigns
logarithm the result to variable A.
Natural |LN (X) | A=LN X) Calculates the natural logarithm of X (loge X) and assigns
logarithm the result to variable A.
Ratio of | PAI (X) | A =PAI (X) Assigns the value to variable A which is X times the value
circum- of PI.
ference to
diameter
Radians |RAD (X) | A= RAD (X) Converts the value of X (where X is in degrees) to radians

and assigns the result to variable A.

71

72

Examples of use of the built-in funcions

(Example 1)
Let’s try solving the various elements of a triangle with a BASIC program.

Angle A of the triangle shown in the figure at right is 30°,
angle B is a right angle, and side CA has a length of 12. The
following program finds all angles of the triangle, the
length of its sides, and its total area.

109 A=3J:B=9gd:CA=12

20 AB=CAXCOS (AXPA 11118
30 BC=CAXSIN (AXPAIM) 18D
40 S=ABXBC.2

bg C=18J—A—B

6L PRINT "AB=";AB, "BC=";BC, "CA=",;CA
79 PRINT "AREAS=":S

88 PRINT "A=" A, "B=";8B:, "€=":¢C

9y END

(Example 2)
Now let’s change line 50 of the program to use ATN, the function for finding the arctangent of a number,
to fine angle C from sides AB and BC.

109 A=30:B=9Ud:CA=12

20 AB=CAXCOS (AXPAI1 ()18

30 BC=CAXSIN (AXPA |18

40 S=ABXBC.2

5@ C=ATN (ABBC) X18JPA |1

6 PRINT "AB=";AB, "BC=",;BC, "CA=";CA

79 PRINT "AREAS=":S
8 PRINT "A=";A, "B=":;8, "C=";C
eg END
RND function
RND (X)
X .. Numeric expression

The RND function returns a pseudo-random number in the range from 0.00000001
to0 0.99999999.
When X is greater than O, the random number returned is the one which follows that
previously generated by the BASIC interpreter in a given pseudo-random number
series.
When X S 0, the BASIC Interpreter’s pseudo-random number generator is reinitia-
lized to start a new series, and the pseudo-random number returned is the first one
in that series. Reinitialization of the pseudo-random number series in this manner
can be used to allow simulations based on random numbers to be reproduced.

Example
[Example |

The RND function is often used in game programs to produce unpredicatable
numbers, as in games of chance. Let’s try using the RND function to investigate the
percentage of times each of the six sides of a die comes up by simulating the action
of throwing it a given number of times,

Since the sides of each die are numbered from 1 to 6, we must multiply the value
returned by the RND function by 6.

]
O<RND (1) €1 — O<BXRND (1) x8

Then we must use the INT function to convert the value obtained to an integer.
| NT (6XKBND €12) =0 1« 24 B« 404 B

The result will be an integer between 0 and 5; now 1 is added to obtain the numbers
which correspond to the number of dots on each of the 6 sides of a die.

INT (BXRND (1)) +1—-1, 2. 3. 4. 5. 6

This sequence is performed a specified number of times for each die thrown. Now
let’s incorporate the sequence into a program and check the results.

1@ PRINT "ENTER NO. OF -
TIMEE.BAE LERRENG 3 i ang o G o00OTio)

20 |INPUT N 0.99999999,

3 FOR J=1 TO N Here's how to obtain

40 R=INT (BXRND (1)) +1 e ey ol

5 IF R=1 THEN N1=N1+1 .

60 IF R=2 THEN N2=N2+1

70 |F R=3 THEN N3=N3+1

80 IF R=4 THEN N4=N4+1

9 IF R=5 THEN NB5=N5+1

100 IF R=6 THEN ne=Ne+1 =& ol or
110 NEXT J

120 P1=N1,/N:P2=N2,N:P3=N3/N

130 P4=N4/N:P5E=N5E/N:P6=N6N

142 PRINT P41, P2, P3, P4, PS5, P6

150 END

How about it? If the die is thrown enough times, the percentage of the time each
number appears should be about the same. Mathematically speaking, each number
should occur an average of once in six throws, or about 16.7% of the time. This
mathematical ideal is approached more closely as the number of throws is increased.

73

74

Now let’s try using the RND function in a program which tests your ability to solve
for the area of a triangle of random size. Here, the RND function is used to deter-
mine the length of each of the three sides of the triangle, then you compute the area
of the triangle yourself and submit your answer to the computer for checking.

19 DIM A @, LS D

20 FOR J=1 TO 4

30 READ L$ (J) :NEXT J

409 FOR J=1 TO 3

B A (J) =INT (2OXRND (1)) +1

6 NEXT J

70 |IF A () >=A2) +A (3> GOTO 49

S0 IF A@ >=AU)+A @3B GOTO 49

O IF A3 >=A 1) +A (2 GOTO 49

100 W= (A (1) +A (2 +A (3> 2

1190 T=W FOR J=1 TO 3

120 T=Tx W—A (J)D NEXT J

130 SS=S0OR (T) :S=INT (89

14 IF 85—-8>@. 8 THEN &=58+1

150 PRINT 'EOHOA’

160 PRINT SOLVYE FOR THE AREA OF THE
FOLLOWING TRIANGLE"

170 PRINT ROUND YOUR ANSWER TO THE
NEAREST WHOLE NUMBER'

182 PRINT

180 PRINT TAB & . "A

200 PRINT TAB & ; "N L TAB (1BY L& 1)
A (1D

219 PRINT TAB D ;"D N - TAB £18) ;L% (2
;A (20

22 PRINT TAB B ; "1 NNE s TAB U BY ; LE 3

LA 3D

230 PRINT TAB () ;"4 N

2490 PRINT TAB (3) ; "BUY NC

250 PRINT TAB (4) ; IC]

260 PRINT oon

279 PRINT TAB (3 ;L$ 4 ;

280 INPUT Y

290 | F Y=S THEN PRINT ok :GOTO
49

8@ |F Y85 THEN PRINT " TOO SMALL !
s GG 2

31g PRINT ! TOO LARGE!!

320 PRINT "@RA" ;

33@ PRINT TAB 24y | SPC 28D PRINT [1]

340 GOTO 270

350 DATA LENGTH SIDE AB=, LENGTH SIDE BC=

3600 DATA LENGTH SIDE CA=, AREAS OF TRIAN-—

GLE ABC IS AREAS OF TRIANGLE ABC IS

Note than specifying a value for X which is less than or equal to O will always result
in the same number for a given value of X. The reason for this is that specifying O or
a negative number reinitializes the pseudo-random number generator to the beginn-
ing of the random number series.

15

76

2.5 String Function

2.5.1 LEN
[Format |

Function

LEN (X$)

X$... String expression

This funcion returns the number of characters included in the string expression
represented by XS$. This value includes spaces which are not displayed on the screen
and any control characters in the string, as well as letters, numerals, and symbols.
(Example 1)

19 A$S= ABCDEFG

20 PRINT LEN (A$>

RUN
-

(Example 2) The following program uses the LEN funcition to draw squares on the
screen. .

190 < T P"ENTER 30R MORE ASTERISKS?

20 INPUT AS$

30 FOR =1 TO LENAS® —2
40 PRINT TAB (2 ;"X' ; SPC (LEN (A =20 ; "X'
50 NEXT |

60 PRINT TAB (2) ;A$:6GO0TO 20

(Example 3) The LEN function can also be used to produce a “parade” of charac-
ters as shown below.

19 S$="SHARP BASIC

20 FOR 1=1 TO LEN (&S$

30 ¥ RIGHTS (8%, 1)

40 NEXT |

50 END

RUN

C

[

SIC

SHARP BASIC

(Example 4)

PRINT LEN GTR$ (PATUDI J
O

PAI (1), the function which returns the value of the ratio of the circumference of a
circle to its diameter, contains the 8-digit constant 3.1415927 (approximately the
value of PI). When the length of the character string produced by converting this
constant with the STRS function is evaluated with the LEN function, a total string
length of 9 is returned.

2.5.2 LEFTS, MID$, and RIGHT$

The LEFTS, MID$, and RIGHTS functions are used to extract character strings from the left end, right
end, or middle of a character expression.

Format

: . . . Example
X8$: String expression Function X2 s 5 Remarks
m and n: Numeric expressions (when A$ = “ABCDEFG”)
Returns the character B$= LEFTS$ (AS, 2) 0< n< 255
string consisting of the n
characters making up the BH—- CDEFG
left of string expression
LEFTS (XS, n) XS8.
Substitutes 2 characters from
the left end of string variable
AS into string varible BS.
Thus, B$ = "AB".
Returns the character B$=MIDS (AS, 3, 3) 1S m< 255
string consisting of the n < <
characters making up the B$“‘ AB|CDE|FG 0= n's 255
MIDS$ (X$, m, n) n characters starting with

the mth character in string| Substitutes the 3 characters
expression X§. starting at the 3rd character
in string variable A$ into
string variable B$.

Returns the character B$ = RIGHTS (AS$, 2) 0< n< 255
string consisting of the n
characters making up the BEB«—’ A BC
right end of string ex-

RIGHTS (X$, n) pression X8. Substitutes 2 characters
from the right end of string
variable A§ into string

varible BS.
Thus, B$ = "FG".

2.5.3 ASC and CHR$

Format Function Example
ASC (x$) Returns the ASCII code for the first X=ASC (" A")
x$: String expression | character in string expression x$. Substitutes 65 (the ASCII code for the

letter A) into variable X.
Y=ASC (' [S]HARP ")

| Substitutes 83 (the ASCII code for S,
| the first letter in the string “SHARP”’)
B into vari_able X

CHRS (x) Returns the letter whose ASCII code | A$=CHRS$ (65)

x: Numeric expression | corresponds to the value of numeric Assigns A, the letter corresponding to
expression X. (No character is ASCII code 65, to string variable AS.
returned if the value specified for x is | This function can be used to display
less then 33; therefore, PRINT " . " characters which cannot be entered

or PRINT SPC (1) should beused to | from the keyboard as follows.
obtain spaces, rather than CHRS (32)). | PRINT CHRS$ (107) J
, This displays the graphic character &.

Let’s see, 89 is the ASCII code
forY,so...

Note: ASCII code is a standard code system which is frequently used with computers. This code uses
8 bit numbers to represent the letters of the alphabet, numerals, and symbols such as the dollar
sign and question mark. The full code set is presented in the table on page 154.

2.5.4 VAL and STR$

Format Function Example
STRS (x) Returns a string of ASCII characters A$=STRS (-12)
x: Numeric expression | representing the value of numeric Substitutes the character string '—12"
expression X. into string variable AS.

B$=STRS (70 X 33)
Substitutes the character string

2310 " into string variable BS.
C$=STRS (1200000 X 5000)
Substitutes the character string '6E +
09" into string variable C$.

Note: Positive numeric values are displayed with a
leading space to indicate that the plus sign
(+) has been omitted. However, this space
is not included in the character sting re-
turned by the STRS function.

VAL (x$) Converts an ASCII character repre- A=VAL ("123")

x$: String expression | sentation of a numeric value into a Converts the character string " 123 '
numeric value. This is the comple- into the number 123 and assigns it to
ment of the STR$ function. numeric variable A.

The following sample program illustrates use of some of the functions discussed above to display
numeric values in tabular format (with the decimal points aligned).

1. 284566
12. 3456
10

1

1234

If the values read from DATA statements were displayed using only the PRINT statement, the result
would appear as shown below.

In goes the

number 10. ..

19 FOR X=1 TO B

2d READ &

S0 |LL=5—LEN (8TR$ (I NTA) >
40 PRINT TAB (L) ;A

50 NEXT :END

68 DATA 1. 2834856, 12. 345656
72 DATA 128, 488, 1284, 66
8d DATA 12345. 6

1. 23456
12. 3456
1238, 456
1234. 56

120456, 8

2.6 Colordisplay statement

One of the greatest features of the MZ-700 is that it allows characters and graphics to be displayed using
any of up to 8 colors.

2.6.1 COLOR ..ot ssssennens o0 (Abbreviated format: COL.)

Function

COLORX,y,c < b>

XXcoordinate (0 to 39)

y Y coordinate (0 to 24)

¢Character color specification (0 to 7).

b Background color specification (0 to 7).

This statement is used to set the foreground and background colors for the character
at a specific position on the screen. Any of up to 8 different colors can be specified
for the character foregrounci (c) or background (b) as shown in the table below.

Color No. Color -
0 Black
1 Blue
2 Red
3 Purple
4 Green
5 Light blue
6 Yellow
¥ White |

(1) Changing the background color of the entire screen
GCOLOR. & w s samus (Changes the background color used

for display of characters to red.)

(2) Changing the foreground color of the entire screen (the color used for display

of all characters)
COLOR 383 s (Changes the color used for display of
all characters to purple.)

(3) Changing both the background and foreground colors for the entire screen
COLOR ,.%.9 caene (Changes the color used for display of
| all characters to blue and changes the

background used for display of chara-
cters to black.)

(4) Changing the background color at a specific screen location
COLOR 2, 2. .4 c.eo.- (Changes the background color at

coordinates 2, 2 to green.)

(5) Changing the foreground color at a specific screen location
COlLOR 8, 2. 7 asewss (Changes the foreground color at

coordinates 3, 2 to white.)

(6) Changing both the foreground and background color at a specific screen location
COLOR 4, 2, 4, 2 .as,- (Changes the foreground color at

coordinates 4, 2 to green and changes
the background color at that location
to red.)

80

2.6.2 Adding color specifications to the PRINT statement

Function

(PRINT [f, b] ‘ variable | ¢ | ; | l[variable ‘ [5] s >
by e ({ constant ; | ,) {constant ; |,
‘\ expression I 1 expression j
_or
(PRINT [f, b] USING 'format string" ;variable< | ; | variable»
. | L :
f Foreground (character color) specification (a number from 0 to 7)
b.... Background color specification (a number from 0 to 7)

Adding the color specifications to the PRINT and PRINT USING statements des-
cribed on pages 37 and 38 makes it possible to display characters in a variety of
colors. In the format above, f indicates the character foreground color, and b indi-
cates the character background color. If only the foreground color is specified, the
current background color is used for display of characters; this is done by specify-
ing the foreground color, followed by a comma.

If only the background color is specified, the current foreground color is used for
display of characters; in this case, a comma must precede the background color
specification.

(Example 1)

PRINT (B,) "ABCDE "Displays the letters “ABCDE” in
yellow against a background of light
blue.

PR | NTwe Cpdd; * BGIRad Displays the letters “FGHIJ” in yellow
against a background of green,

A=A NPT EZ< P R VAT vz Displays the letter “VWXYZ” in green

against a background of white.
(Example 2) Let’s try adding color to the automobile race program shown on page
46.
10 PRINT (1) "@"
20 O=INT (BGXRND (1)) +2: X=33XKRND 1)
3@ FOR A=1 T@.bB
40 READ M$
5@ PRINT TAB &) :"e"; TAB (X) ;
68 PRINT. @, 1) BMMB ;
72 PRINT 7, 1) TAB 87); "@
8d NEXT A
Qg Y=1OXRND (1)
1909 FOR A=1 TO Y
113 PRINT TAB (@) ; "@&";
129 PRINT TAB 37) = "€ : NEXT
130 RESTORE: GOTO 29
140 DATA" 4ON ", "[@EREEe "
150 DATA' BEE ', "R
160 DATA" NER»Z™ "

With ordinary PRINT statements (those without color specifications), the fore-
ground and background colors used for character display are those which have been
specified with the latest COLOR statement.

81

82

2.7 Color Plotter-Printer Commands

The color plotter-printer commands described below can be used with the MZ-731 or, when the MZ1P01
color-plotter printer is connected, with the MZ-710, MZ-711, or MZ-721. The color plotter-printer can be
used in either of two modes: The text mode (for printout of program lists, results of calculations, or
other character data), or the graphic mode (for drawing figures and graphs).

Further, any of four colors (black, blue, green, or red) can be used for printout of characters and
graphics. This capability is particularly useful when using the printer in the graphic mode.

2.7.1 General information about the color plotter-printer

(1) The color plotter-printer operates in either of two modes: The text mode (for printout of the results
of calculations, program lists, and other character data) and the graphic mode (used for drawing
figures and graphs). The printer will only operate in one mode at a time. (Graphic printer commands
are ignored while the printer is in the text mode, and vice versa.)

(2) Printer parameters are reset when the printer is switched from the graphics mode to the text mode.
(In other words, the pens’ X and Y coordinate settings are reinitialized.)

(3) The printer runs on power supplied from the main unit of the MZ-700, and is not equipped with a
separate power switch.

(4) The following switches are used to control operation of the printer.

a. Feedswitch Advances the paper.
b. Reésetswiteh is Resets (reinitializes) the printer.
c. Pen change switch Used when replacing the printer’s pens.

(5) There are four pen colors: Black, blue, green, and red.

(6) When the printer is used in the text mode, any of three different sizes of characters can be printed.
The largest size permits a maximum of 26 characters to be printed on one line, medium size permits a
maximum of 40 characters to be printed on one line, and the smallest size allows up to 80 characters
to be printed on one line.

Characters which can be printed when using the printer in the text mode are as shown below. No other
letters, symbols, or graphic characters can be output while the printer is in this mode.
" In most cases, hexadecimal ASCII

codes will be printed in a different QU HS2R 7 (IX+,—. /0123456789 : ; <=>?@ABCDEFGH
color if an attempt is made to print IJKLMNOPQRSTUUWXYZINIT¢ e~ tgh bxdrpcq
graphic characters with the PRINT/- gzwsui Okfv UBJN Um Y olpdd y{ “rg -E@
P statement or LIST/P command. HEHERL -2 "#$7& 7 ()%+,-./B0123456783: ;<=>7EA

BCDEFGHIJKLMNOPQRSTUUWXYZ[N]T¢ e~ tgh

...... =

Tog ~HOOEEBER)-2"#$x& " (JIXx+,-.,0123456/83:
<=2

2.7.2 Initial Printer Settings
The initial printer settings made when the BASIC interpreter 1Z-013B is started up are as follows.
(1) Pen color: Black
(2) Pen position: Left side of the carriage. (top line of 1 page.)
(3) Mode: Text mode
(4) Print size: 40 characters/line (standard size)
66 lines/page

2.7.3 Mode Specification Commands

These commands are used to place the printer in the text mode for printout of letters and numerics. This
is the mode which is effective when the power is turned on; the initial character size is 40 characters/line.
(B M (0 Y DY 2 N AL L IR, bt - o . 0 R s S (abbreviated format: M. TN)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 40 characters/line.
(Y MODE-TL oo s simme s i o 60 o mm 5 5 s et m 5 (abbreviated format: M. TL)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 26 characters/line.
(B)MODE TS JY o orcn s st e 0 o S s o w0 aon e & (s e 44 5 (abbreviated format: M. TS)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 80 characters/line.

X%x CHARACTER MODE XXX

80 character mode
ABCDEF GHIJKLMNOPGRS TLIVWKYR

40 character mode
ABCDEFGHIJKLMNOPQRSTUUWXYZ

26 character mode

ABCDEFGHIJKLMNOPQRSTUUWXYZ

(4) MODE IGR. ., covmmiss o 5000556 o 5 o s o e miior ol o0 co vm i mioms g st s (abreviated format: M. GR)

The MODE GR command is used to switch the printer from the text mode to the graphics mode for
printout of charts and graphs. When switching to this mode, it is necessary for the BASIC program being
executed to make a note of the character size being used immediately before the mode change is made.
The reason for this is in order to return to the text mode when the BREAK key is pressed or a STOP
command is encountered.

Note: Executing MODE command, every state returns to initial state excluding pen color and print size.

2.7.4 Pen color selection commands

(n :0 black
PCOLOR n n 12 :i“: (abbreviated format: PC.)
3) I cen
‘ n :3 red

This command specifies the color to be used for printout of characters or graphics. n is a number from
0 to 3, with O corresponding to black, 1 to blue, 2 to green, and 3 to red.
In text mode, executing PCOLOR in text mode every state is on initial state excluding pen color.
To keep currenit state execute PRINT/PCHRS(29) . .. bv s viin i iamnnn e s onmmamssssnsnns next color.

This command can be entered in either the text mode or graphics mode.

83

84

2.7.5 Text mode commands

TS A ISR s 3 converisprwmirssestsnssnine spomimein veg ol conlsast i oo el T B0 TS G Gl (abbreviated format: TE.)
Format TEST
Format This command causes the printer to print squares in each of the four different colors
to check the color specification, quantity of pen ink, and so forth. (Only usable in
the text mode.)

R —

L - L L

0 1 2 3 Vilus of 1. in PCOLOR 1
(Black) (Blue) (Green) (Red)

2.7.5.2 SKIP
SKIP n
n. .. A number in the range from —20 to 20
This command is used to feed the paper. Paper is fed n lines in the forward direction

when the value for n is positive; if the value specified for n is negative, the paper is
fed n lines in the reverse direction. Note that PRINTER MODE ERROR will occur
if this command is executed while the printer is in the graphics mode.

2.7.5.3 PAGE
PAGE n
n... An integer in the range ! ‘nf T2
This command specifies the number of lines per page. (Executable only in the text
mode.)
P 5 ¢ T LT E51 11 oy (s o s S RN SN = P WP afirors ps s T = = RN - (abbreviated format: L./P)
LIST/P or LIST/P <LS-Le>
sl o Starting line number
TEens, -2 2, Ending line number
This command lists all or part of the program lines in memory on the printer. See

the explanation of the LIST command on page 32 for an explanation of procedures
for specifying the range of lines to be printed. Note that, when graphic characters
are included in the program list, most of them will be printed in a different color as
hexadecimal ASCII codes. See page 154 for the printer ASCII codes.

This command can only be executed in the text mode.

2.7.5.5 PRINT P . . e e e e e e e e e e e e (abbreviated format: ? /P)
PRINT/P <I,, d,, I,, dy...... In, dn>
o s Output list (numeric or string expressions)
dn...... Delimiter
This command outputs the data in the output list to the printer. For details on using

this command, see the description of the PRINT command on page 37. See pages
85 for printout of graphic characters.

2.7.5.6. PRINT/PUSINGttt e e e (abbreviated format: ? /P USI.)
Except that output is directed to the printer, this is the same as the PRINT USING statement described
on page 38.

2.7.6 Graphic mode statements

The graphic mode statements become effective after the MODE GR statement has been executed. When
this statement is executed, the current pen location is set to the origin (X = 0, Y = 0). However, the origin
can be set to any location. Be careful not to specify a location which is out of the print area, as this may
damage the pen or cause other problems,

+Y

Current

pen location |(0,0)

Max. Y=999 Max. Y = 999
/_\+M
——\/—\/“ \/7

=

c (5]

Re) B

8 g

: =

° O

.0 3 —x | =20 20 |+x | 8

: :

B &

D(E a.

Min. Y = —999 L/\/

—Y
Min, Y = —999
X-Y coordinates after MODE GR has
been executed. The allowable range of X-=Y coordinates after the origin has
X is 0 to 480 and the allowable range been moved to the center of paper.
of Y is —999 to 999. (MOVE 240, —240: HSET)
Note: See page 88 for the HSET statement.
2.7.6.1 LINE
LINEx;, yv; < X3, ¥Y2,..., Xi, yi> or
LINE %n’ X1> YI <’ X23 YZs e ey Xis yl>
T0 e oo Integer from 1 to 16
XAl | e o Number indicating the X coordinate (xi = —480 to 480; the limit varies
depending on the current. pen location.)
Vil otk Number indicating the Y coordinate (yi=—999 to 999)

This statement draws a line from the current pen location to location (x,, y;), then
draws a line from (x;, y;) to (X5, ¥,), and so on. n specifies the type of line drawn
as shown below.

n = 1: solid line

n=2to 16: dotted line

If % is omitted, the previous value of n is assumed. The initial value of n is 1 (solid
line).

(Example 1) The following program draws a square with a side length of 240 units.

19 MODE GR e Switches to the graphic mode.
20 LINE 249, ereeens Draws a line from the origin to the center
of paper.

30 LINE 249, —240

49 L INE /@, —244

50 LINE @9, e Draws a line to the origin.

B0 NMOBE TN &~ s Returns to the text mode.

(Example 2) The following prograni draws the same square as the example above.
19 MODE GR

20 LINE 240, O, 240, —240, J, —249, 0, &

3 MODE TN

86

(Example 3) The following program draws a rectangle with a side length of 240 units.
1@ MODE GR

20 SQ=INT (120XSQR 3>
g LINE B2, 248, B, 128, 50, @, &
490 MODE TN

The lines indicated with n are as follows,
XXX LINE 1-16 XXX

N=1
N=2
___ N=3
___ N=4
_____________________________________ N=5
_______________________________ N=6
___________________________ N=2
R UL W = -
______________________ N=9
___________________ N=10
_________________ N=11
________________ N=12
_______________ N=13
______________ N=14
_____________ N=15
____________ N=16
2762 RIEINE, & omp o s manm s e 6 5 Sapne s 5 5 S eas s s 5y oo e skt i (abbreviated format: RL.)

RLINE X1, V1 < Xg, Vo, ... Xi,yi... >
RLINE %n9 X15 Y1, <9 X2, Y2’--'9Xi;yi--'>
L s o tonsras Integer from 1 to 16
XL wvie o us Number indicating the X coordinate (—480 to 480)

Vi cvaru s 2 Number indicating the Y coordinate (—999 to 999)

This statement draws a line from the current pen location to the location indicated
by relative coordinates x;, y;, then draws a line from that point to the location
indicated by relative coordinates x,, y,, and so on. n is the same as for the LINE
statement.

This program draws the same rectangle as example 3 above,

19 MODE GR
20 SO=INT (120XS0OR (3>)
SZ BLINE %1, 248, @, — 28, —8Q, — 24, 560
40 MODE TN
Initial pen location Initial pen location P it
""""" T et TR s (Y
T\w ©0 |, Q.0 |
: . ’ ;
: \ % S 120\/ 3 /,
| l\ // \\\ ,//
I \ l’ \\ /,
: \ 1120 20 | ‘

Figure drawn .
by LINE

2400 0,280 65} Figure drawn (540 0y <120, so 10,800
------ by RLINE -~

2.7.6.3 MOVE

2.7.6.4 RMOVE

2.7.6.5 PHOME ..

MOVEx,y
X s Integer indicating the X coordinate (—480 to 480)
AT ETAR Integer indicating the Y coordinate (—999 to 999)

This statement lifts the pen and moves it to the specified location (x, y).

The following program draws a cross with a side length of 480 units.

19 MODE GR

20 | wINE! 484, @

B NONME 248, 4@ oo Lifts the pen at (480, 0) and moves it to
240, 240).

4 L INE 249, —249

50 MODE TN

Be sure to advance the paper before executing this program.

...................... (abbreviated formed: RM.)

RMOVE x, y
D, ARSI Integer indicating relative X coordinate (—480 to 480)
Vs s e A Integer indicating relative Y coordinate (—999 to 999)

This statement lifts the pen and moves it to the location indicated by relative

coordinates (Ax, Ay)

The following program draws the same cross as the example for the MOVE state-

ment.

19 MODE GR

26 LINE 48&, @

S BMOME I =24 i 2 Lifts the pen at (480, 0), then moves it
—240 units in the X direction and 240
units in the Y direction.

44 | INE 249, —249

50 MODE TN

Be sure to advance the paper before executing this program.

... (abbreviated format: PH.)

This statement returns the pen to the origin.

The following example draws the same cross in red as the example for the MOVE

statement.

19 MODE GR

20 LINE 480, g MOVE 240, 240

309 LINE 249, —249

Ag PHOME = s Returns the pen to the origin.

50 PCOLOR 3

68 LINE @, 24d, 484, 240, 488, —244., B, —249, O,
&)

7 MODE TN

87

88

2.7.6.6 HSET ...

2.7.6.7 GPRINT

Function

.. (abbreviated format: H.)

HSET

This statement sets the current pen location as the new origin. With this feature, the
origin can be set to the location which is most appropriate for drawing figures. A
MOVE statement is frequently executed before executing this command.

10 MODE GR

20 MOVE 249, —2409

8@ H S E T Sets the new origin.

409 FOR |=1 TO 360 STEP 39

50 LINE 240XC0OS (PAICIXI/180),240XSIN (PAICTIXI/180)
60 PHOME

7 NEXT

80 MODE TN

... (abbreviated format: GP.)

GPRINT [n, @] , x$§

GPRINT x$

s 55 5 Integer indicating the character size (0 ~ 63)

(@Bt Integer indicating the direction in which lines of characters are printed.
(@=0~3)

X D Character

This statement prints the specified character using the specified size and direction.

80 characters can be printed on each line when n = 0; 40 characters can be printed

on each line when n = 1; and 26 characters can be printed on each line when n= 2.

When n and @ are omitted, the previous settings are assumed. Their initial values are

n=1and@=0.

18 MODE GR

20 GPRINT A smumesergees Prints ““A” in the graphic mode.

30 GPRINT (2, 2), "A' - Prints an upside down “A” in the 26
characters/line mode.

The following figures show various examples of printout.

N=0 N=3 ==
e

2.7.6.8 AXIS

... (abbreviated format: AX.)

AXISx, p, r

XE 2l Integer specifying the axis drawn (0 or 1)

s 2, noinsits Integer specifying the scale pitch (—999 to 999)

| PR Integer specifying the number of repetitions (1 to 255)

This statement draws the X-axis when x = 0 and the Y-axis when x = 1. The number
of scale marks specified in r are drawn with a pitch of p.

The following example draws the X and Y axes with scale marks from —240 to 240
at 10 unit intervals.

MMM DIEMG Rty e & wessaa Switches the printer to the graphic mode.

20 MOVE 249, @ « reeemeomss Lifts the pen and moves it to position A
(240, 0).

38 AX 18 &, =182, 4B Draws the Y-axis from position A to posi-

tion B with scale marks included at 10-
unit interval.

AF MOVE @, —24 st Lifts the pen and moves it to position C
(0, —240).
5@ AXIESTEs 16, A 8mresaig Draws the X-axis from position C to posi-

tion D with scale marks included at 10-
unit intervals.

60 MODE TN

The coordinates can be used in the same manner as ordinary Cartesian coordinates
after setting the point of intersection of the X and Y axes as the new origin. (X =
—240 to 240, Y = —240 to 240)

89

90

2.7.6.9 CIRCLE

Function

... (abbreviated format: CIL.)

CIRCLE x, y, 1, s, e, d

R ¥ swssns Location of the center (=999 to 999)
T o ddilt 2% S8 Radius (0 to 999)

SE fih: o o G Starting angle (in degree)

R T Ending angle (in degree)

. s Step angle (in degree)

This statement draws a circle or arc with a radius of r and a step of d at location
(x, y), starting at angle S and ending at angle e. A complete circle is drawn when
s=0,e=360and d=0.2.

Actually this statement draws a polygon; therefore, d must be as small as possible in
order to draw a smooth figure.

s must be smaller than e. When d = 0O, lines connecting the center and the starting
point and the center and the ending point are drawn.

109 MODE GR

20 L INE 4809, 0, 480, —480, ¥, —48J, 0. J
30 MOVE 249, —2409

40 HSET

50 CIRCLE 9, 9, 2409, &, 364, J. 2

60 CIRCLE 249, &, 244, 94, 279, J. 2

78 CIRCLE @, 249, 2418, 189, 368, 4. 2
80 CIRCLE —24¢, &, 240, 273, 454, @. 2
9y CIRCLE O, —240, 240, 0, 184, 9. 2
100 MODE TN

2.8 Machine Language Program Control
Statements

Several machine language program control statements are suported by the MZ-700 BASIC interpreter.
With these statements, machine language programs can be linked with a BASIC program.
Computer programming languages form a hierarchical structure as shown below. High level languages such
as BASIC automatically performs work required when lower level languages such as assembly language are
used. Although high level languages are convenient and easy to use, they cannot control the CPU directly.
The lowest level language (machine language) directly controls the CPU and provides high processing
speed, but considerable skill is required for coding long programs.
Machine language program control statements enable sophisticated programming techiques which make it
possible to utilize the advantages of both BASIC and machine language.
Machine language programs can be generated and loaded into the machine language program area (reserved
with the BASIC LIMIT statement) using the monitor or assembler and loader. Such machine language
programs can be called by BASIC programs with the USR () function. Machine language programs
can also be loaded into memory using a BASIC program which uses the POKE statement to write each
step in machine code. The resultant machine language program can then be called by BASIC programs
with the USR () function.

The memory map at bottom right outlines the concept of data access with POKE and PEEK, and of
calling machine language programs with USR ().

$0O000
SYSTEM
Assemble language USR L BASIC program
($BO0OO) S
Machine language
POKE PEEK
@ LIMIT
$B000 V [$SAFFF
Machine language
program area
Other high level languages $FFOO
All RAM in the
700 mode

91

92

2.8.1 LIMIT

Function

2.8.2 POKE

Function

... (Abbreviated format: LIM.)

atl ..z s = Address; either a decimal number from 0 to 65279 or a 4-digit hexa-
decimal number from $0000 to SFEFF.

This statement limits the memory area which can be used by the BASIC interpreter.

ad indicates the upper limit of the BASIC area, and the area from the following

address (ad + 1) to SFEFF (65279) can be used for machine language programs or

special data.

LIMIT S$SAFFF

Limits the BASIC program area to $AFFF.

Note The area from $FF00 to $SFFFF is used by the monitor as a work area, so it
cannot be used as the user area. The LIMIT statement must be used at the
beginning of a BASIC program.

Monitor
BASIC interpreter
BASIC
program area
$BOOO User area *—-LIMIT $AFFF
SFEFF

Use LIMIT MAX to cancel the limit set by LIMIT ad.

POKE ad, d

POKE@ ad, d

a2 ok Address: either a decimal number from 0 to 65535 or a hexadecimal num-

ber from $0000 to $FFFF.

(< [N Data to be written: a decimal number (0 to 255) or hexadecimal number
(300 to $FF)

This statement writes data byte d to address ad.

The POKE statement can write data to any memory location, regardless of the limit

setting by the LIMIT statement. Therefore, careless use of this statement can

destroy the monitor or BASIC interpreter.

The POKE®@ format is used to write data to an address in the user RAM area follow-

ing 53248 ($D000). (See page 125.)

POKE $D@@g, $5F

POKE 53248, 95

The two statements above perform the same funcition.

Note A POKE statement specifying an address after $D000 writes data into the

video RAM area.

2.8.3 PEEK

Function

Function

PEEK (ad)

PEEK®@ (ad)

ad Address in decimal or hexadecimal notation (0 to 65535 or $0000 to
$FFFF)

This function returns the contents of the specified address as a decimal number from
0 to 255. Use the PEEK@ format to PEEK a user RAM area following 53248
($DO000).

The following program displays data stored in the area from 40960 ($A000) to
40975 ($AOOF). ;

19 FOR AD= 4096g TO 40975
20 @? PEEK (AD)
30 NEXT AD

.. (Abbreviated format: U.)
USR (ad)
USR (ad, x9§)
A & e s Address (decimal or 4-digit hexadecimal)
> I String data

This is a special function which transfers control to a machine language program
which starts at the specified address. As with CALL ad, so control is returned to the
statement following the USR function if the machine language program includes a
return instruction (RET or RET . cc).

When x$ is specified, the starting address of the memory area containing x§ is
loaded into the DE register, then the length of x§ is loaded into the B register before
the machine language program is called. This makes it possible for a BASIC program
to pass string data to a machine language program.

93

2.8.5 Preparing machine language programs
A machine language program which fills the entire display screen with the characters supported by the
MZ-700 is presented in this section as an example.
The following BASIC program loads such a machine program into memory and calls it.

20
30
40
o0
60
/70
80
90

10€
10
120
138
140
150
160
178
180
198

200
218
220
230
240
250
260
229
280
290
300

L INIT
GOsuUB

USR($CBBG)

END
FOR I

READ M

$BFFE
515

=49152

POKE I,M

NEXT I
RETURN

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

197 :REM
213:REM

229 :REM

22,0 :REM
33,08, 208 :REN
1,232,3:REM
243 :REM
211,227 :REM
114 :REN

35 :REM

20 :REM
11:REM

1208 :REM

177 :REM
194,14, 192 :REM
211,225:RENM
251 :REM
225:REM

209 :RENM

193 :REM

281 :REM

STO

TO 4918!

LD (HLJ,D

PLISH
PUSH DE
PUSH HL

LD D,0

LD HL,DBoeeH
LD BC, @00
DI

ouT C(E3HI,A

INC HL

INC D

DEC BG

LD 4,8

OR C

JP NZ,5T0
ouT C(E1HI,A
El

POP HL

POP DE

POP BC

RET

Limits the BASIC area to $BFFF.

Calls the machine language program.

Reads data for the machine language program from DATA
statements and writes it into the machine language area.

Beginning of data for the machine language program.

Switches the memory block to video RAM. (See page
155).

Sets a display code to video RAM.

Switches the memory block to RAM. (See page 127.)

Returns to the BASIC program.

If the machine language program has been generated with the monitor and saved on cassette tape under
the file name DISPLAYCODE, use the following program to call the machine language program.

116 LIMIT SBFFF

1190 LOAD
120 USR ($CTIDDN

"D 1 SPLAYCODE"

94

2.9 /0O Statements

All external devices (including floppy disk drives) are connected to the MZ-700 through an optional
interface board. The optional universal interface board makes it possible for the user to connect external
devices such as an X-Y plotter, paper tape punch, and music synthesizer to the MZ-700.

A port address selection switch is provided on the universal interface card to allow any port address from
0 to 239 (00H to EFH) can be assigned to any devices. Addresses 240 to 255 are reserved for optional
peripheral devices supplied by Sharp.

The INP and OUT statements allow the user to transfer data from/to external devices through the
optional universal I/O card. The format of these statements is as follows.

INP #P, D......... Reads 8-bit data from port P, converts it into a decimal number and assigns
it to variable D.

OUT #B. D o500 54 Converts a decimal number in variable D to binary format and outputs it to
port D.

These statements greatly extend the range of applications of the MZ-700 series computers.

95

96

2.10 Other Statements
2.10.1 ON ERROR GOTOcocrurverrrrune. (Abbreviated format: ON ERR. G.)

ON ERROR GOTO Lr

Lr Destination line number (entry point of an error processing routine)
This statements causes execution to branch to line number Lr if an error occurs.
The IF ERN and IF ERL statement can be used in a trap routine starting at that line
to control subsequent processing according to the type of error and the line number
in which it occurred. Including a RESUME statement at the end of the error pro-
cessing routine makes it possible to return execution to the line at which the error
occurred. Executing an ON ERROR GOTO statement cancels the error trap line
number definied by the previous ON ERROR GOTO statement. The error trap line
number definition is also cancelled by executing a CLR statement.

2.10.2 IF ERN

IF relational expression using ERN THEN Lr
IF relational expression using ERN THEN statement
IF relational expression using ERN GOTO Lr

Lr Destination line number
This statement branches execution to the error processing (trap) routine starting at
line Lr or executes the statement following THEN when the result of <relational
expression using ERN> is true.
ERN is a special function which returns a number corresponding to the type of error
occurring. See page 159 for the error numbers.
The following shows an error processing routine beginning on line 1000 which causes
execution to branch to line 1200 if the error number is 5.
128 ON ERROR GOTQO 1 @& Declares the line number of the

error processing routine.

1000 |F ERN=5 THEN 1209 Branches to 1200 if a string
.. OVerﬂOW error haS Occurred.

2.10.3 IF ERL

Function

IF relational expression using ERL THEN Lr
IF relational expression using ERL THEN statement
IF relational expression using ERL GOTO Lr
Lr Destination line number
This statement branches execution to the routine starting at line Lr or executes the
statement following THEN when the result of <relational expression using ERL>
is true.
ERL is a special function which returns the line number at which an error occurred.

The following statement causes execution to branch to line 1300 if an error has
occurred on line 250.
1010 IF ERL = 250 THEN 1300
The following statement returns control to line 520 in the main routine if the error
number is 43 and the error line number is other then 450.
1020 IF (ERN = 43) X (ERL < > 450) THEN RESUME 520
29504 BESUNEcooossmmisoinmosmio (Abbreviated format: RESU.)
RESUME <NEXT>
RESUME Lr
Lr Line number or 0

Function
Discussion

2.10.5 SIZE

This statement returns control to the main routine from an error processing routine.
The system holds the number of the line on which the error occurred in memory
and returns program execution to that line or to another specified line after the
error is corrected.

The RESUME statement may be used in any of the following four forms:

RESUMIE:--wrmwrmssessises Returns to the error line.

RESUME NEXT - Returns to the line following the error line.
RESRIMES S retaas Returns to line Lr.

RESUNE @roe s Returns to the beginning of the main routine.

If the RESUME is encountered when no error has occurred, error 21 (RESUME
ERROR) occurs.

If the RESUME cannot be executed, error 20 (CAN’T RESUME ERROR) occurs.

PRINT SIZE

This is a special function which returns the number of bytes in memory which can
be used for storage of BASIC programs.

For example, PRINT SIZE displays the number of free bytes of memory area.

97

2.1

o

6 PLOTON ... (Abbreviated format: PL. ON)

Format PLOT ON

Function This statement makes it possible to use the color plotter-printer as a display unit.

Thus, the MZ-700 can be used without an external display screen.

This statement is effective only when the color plotter-printer is installed and the

MODE TN statement has been previously executed.

Example PLOT ON

Note A period “.” is printed to represent any characters which are not stored in the

color plotter-printer’s character generator (see page 156). The| INST |, [DEL] and
“ ” keys are disabled by executing this statement. [CTRL |+[G] can be used to
change the pen.

2.10.7 PLOTOFFeeeeeeeeeeeeeeeeeeeennens (Abbreviated format: PL. OFF)
PLOT OFF

This statement cancels PLOT ON made of plotter-printer operation.

[Function]
PLOT OFF

2.10.8 CONSOLEccnsssesens (Abbreviated format: CONS.)
CONSOLE <Is, In< ,Cs, Cn>>

Is : Starting line of the scroll area (@ REEERET PR R C S reeeeerreessieceniiiiriiieeaes 39

In : Number of lines within the scroll area O
Cs : Starting column of the scroll area
Cn: Number of columns in the scroll area s "
CONSOLE @. 25, @, 49 I
CONSOLE b, 18
CONSOLE @, 286. B, 80 4
CONSOLE @, 19, g, 19 '
CONSOLE
This statement specifies the size of the scroll area; i. e., the area which is cleared by
PRINT " ".
The first example specifies the entire screen as the scroll area. The second specifies
the area between lines 5 and 15 as the scroll area. The third specifies the area bet-
ween columns 5 and 30 as the scroll area. The fourth specifies the 10 x 10 positions
at the upper left corner of the screen as the scroll area.
This statement is useful for excluding the left and/or right edges of the image from
the display area. When they are hidden behind the edges of the screen.
The last example does not specify the scroll area. When the scroll area is not speci-
fied, it is possible to scroll the screen up or down.

24

However, this makes it harder to perform screen editing because the values of Cn
-and In become smaller.

98

2.11 Monitor.Function

The IOCS section of the BASIC Interpreter includes a monitor program to make it easy to enter
machine language programs. This monitor program uses the area from FFOOH to FFFFH as a stack area.

This monitor program includes the screen editor similar to that of BASIC which makes it possible to
change the contents of any address within the 64K RAM area as described below.

2.11.1 Editing format

: address = data data data
: (colon) ... Indicates that the line following can be edited.
address ... Indicates the starting address of the memory area whose contents can be changed.
(4 hexadecimal digits)
= ... Separates data from the address.
data ... 2-digit hexadecimal number or a semicolon *“ ;” plus the cahracter which is written in
the specified address. A blank is used to separate adjacent data items.

2.11.2 Printer switching command
X P

.. (P command)

This command switches data output with the D or F command between the printer and display. If the
printer is not connected to the computer, the message “ERR? ” is displayed and the monitor stands by
for input of another command. Check the printer connection or execute the P command again to switch
the output device to the display.

2.11.3 Dumpcommand ... i G (D command)
X D <start address < . end address >>

This command dumps the contents of memory from the starting address to the end address. If the end
address is omitted, the contents of the 128-byte block starting at the specified address are dumped. If
both addresses are omitted, it dumps the contents of the 128-byte block following memory block previously
dumped. The format in which data is dumped is as follows.

ZTHHHZHHQHHQHH HH HH HH HH HH ~#ABCDE. G.

Starting adress 8 bytes (Hexadecimal code) 8 bytes (Characters)

The contents of any location can be changed by moving the cursor to the corresponding byte, entering
the new data, and pressing the key.
Note Control codes are displayed as a period (.) in the character data field. Pressing the | BREAK | key

stops dump output, and pressing the [SHIFT | and | BREAK | keys simultaneously returns the
monitor to the command input mode.

99

100

2.11.4 Memory set commandmnrcsneremsseesssssssenns (M command)
X M [starting address]

This command is used to change the contents of memory. If the starting address is omitted, the address
currently indicated by the program counter is assumed. Press the[SHIFT] and [BREAK | keys together
to terminate this command.

When this command is entered, the starting address of the memory block and its contents are dispalyed
in the editing format described previously and the cursor is moved to the data to be changed. Enter the
new data and press the key; the following address and its contents are then displayed.

2.11.5 Fincommand ... veerresceeren. versasnsreseasasaees veeeen (F cOMmand)
X F [starting adress] . _ [end adress] _, [data] _ [data]

This command searches for the specified data string in the memory area from the starting address to
the end address. When found, the address of the string and its contents are dumped to the screen. This
command is terminated by simultaneously pressing the [SHIFT |and|[BREAK | keys.

2.11.6 SUDIroUtiN@ CaAll ... essessseseseseensnes (G command)
X G [call address]

This command calls the subroutine starting at the specified address. The stack pointer is located at
FFEEH.

2.11.7 Transfercommandeeeercensesresnssesnens (T command)
X T [starting address] _ [end address] _, [destination adress]

This address transfers the contents of memory between the starting address and the end address to the
memory area starting at the destination address.

2.11.8 Save comMmMaNdeeeeeeeeesesesenssesessessssseanens (S command)
X S[starting address], [end adress]. . [execution adress] : [file name]

This command saves the contents of the memory between the, starting address and the end address to
cassette tape under the specified file name.

2.11.9 Load command ... seesesesesasssessns (L command)
X L <load address > <: file name >

This command loads the specified file into memory, starting at the load address. If the load address is
omitted, the execution address contained in the file is assumed as the load address. If the file name is
omitted, the first file encountered on the tape is loaded. The message “ERR?”’ is displayed if a check sum
error is detected or the key is pressed during execution, then the monitor returns to the
command wait state input mode. The command input mode wait state is entered when execution is
wait state is entered when execution is completed.

2.11.10 Verify command
X V < file name >

.. (V command)

This command reads the specified file from cassette tape and compares it with the contents of memory.

This makes it possible to confirm that a program has been properly recorded with the SAVE command.

If any difference is found between data read from the tape and that contained in memory, the message
“Err ? ” is displayed.

2.11.11 Return commandceenevcsneeessssesssssssssssssssenss (R command)
XR

This command returns control to the system program which called the monitor program and restores
the SP (stack pointer) and HL register to the values which they contained when the monitor program was
called. Execution resumes with the command following BYE is executed.

This command cannot return control if the monitor has been called by a system program whose stack
pointer is between FFOOH to FFFFH, or if the stack pointer does not contain a return address. In such
cases, use the G command to call the warm start entry point.

101

ARTIESE 2] e e i riee ewne ran) BETE

=t wH: S CommEmbgA AT ot
ol piviiie Badl i 11 acde, ol ol ' peiiide e armew oind SN Sl gwe w0 - TopaTeen 5 ST

A mmma mW el] oo Beel 2leag Besems W =M L oy [smatemy B0 T ADS0e w4 TS

oy S Al i adbm TP aporen 17 Bl o wian) R p Telemimasae o F BT i S 120
ol W HPRSHEE wme gl e e Toe e mpeeh mereety g =04 FL ST ST o el J
1 PRI e apepiep oo st aese T | k= AT TR T T 5% -4 o e Ll

bt EGA . - SN ("1 N W ™

T MY 1 e e s n e BARAES ¢y DY EEE

- o
g e

v b el] Sed H fnaa i s : Gad e crsal T A B g v - Remawes mgl

Bttt SAFA 20 dile By @ pirepmed peds s Spipery o tees s illiee oo deean b ossillody o

g o o) o, Aemmualiers curks Tt wjel o8 ep A baag ORG antETD LA d v o Tl Mmoo
Rt rrioan ML SR) By

*

L MENTIO] araeee o et ... ENEmmCO TILISE TRV

a P R

A 2 -

BTN A1 T ekt s s ¥l « bt S L fpad Peoss 0 Y R s - g bepepTeg w00
s ey sl v et Sebasgdmin o4 " Al dekiline T b JF Boan - s e Y -
i Bl o E s el | Sfepagira. sfd dre = LamiinESSt . £

[~ TEICH ERAT IS LR (RMETREO B | TR R S T ST R e S b w2 [, ool
s o bemrtdm R M e mee el insnte, febe k1FTETL MY o W L cemmewl 0 B s

SiaLE gkt - neger 0 hgp wf heres e Bl e e

Chapter 3
Operating the MZ-700

3.1 Appearance of the MZ-700 Series Personal
Computers

3.1.1 MZ-731

® Front view
Color plotter-printer

Data recorder

Definable

< ~

L - G s
il S0 SR ¥ g“‘“%—————lnsertand

" Naul delete keys
s 4 7
T I\K' 7 7 Cursor
Typewrite keyboard ' control keys
m Rear view
B/W-color switch
Channel volume Composjte signal Color plotter-printer Power cable connector
E I output jack
RF signa Reset switch
output jack Data recorder

RGB signal
output connector

L i \V} i 5
Cassette tape recorder jacks External device connector olume control Power switch
Joy stick connectors External printer Frame ground terminal
connector

104

3.1.2 MZ-721

® Front view

Color plotter-printer
compartment cover

Data recorder

Definable
function keys

\——f———‘ Insert and

delete keys

Cursor
control keys

Keyboard

3.1.3 MZ-711

® Front view

Color plotter-printer
compartment cover

Data recorder
compartment cover

Definable
function keys

delete keys

>y Cursor
control keys

%——7’[’— Insert and

Keyboard

3.1.4 MZ-710

The MZ-710 is the same as the MZ-711 except that it does not include an RF signal output jack and
Composite signal output jack on the rear panel.

105

106

3.2 Connection to Display Unit

Be sure to turn off both the computer and display unit before connecting them.

3.2.1 Connecting a TV set to the MZ-700 (excluding the MZ-710)

Disconnect the antenna feeder from the UHF antenna terminals of the TV set. Plug the connection
cable provided into the RF signal output jack on the rear panel of the computer and connect the pin plugs
on the cable’s other end to the 75-ohm UHF antenna terminals on the TV set.

Back view of MZ-700 Back view of Home TV

Set the channel selection switch to the 36 £ 3 ch position, depending on which is not used in your area.

Note the following when using an ordinary TV set as a display unit.

Adjust controls (fine tuning, color control, etc.) of the TV set to optimum conditions before con-
necting it to the computer.

Note that color and quality of displayed images will be poorer with a TV set than when a special
color monitor unit is used. Further, note that images may be painted with the wrong colors or may
not be colored if the TV set is not properly adjusted.

Part of the screen may be omitted if vertical and horizontal scanning frequencies of the TV set do
not match those of the computer. This is not a problem with the computer; contact your TV dealer.
Part of the screen may not be visible if the image is not centered.

Be sure to remove the antenna feeder from the TV set before connecting it to the computer; other-
wise, the signal from the computer will radiate from the TV antenna, possibly interfering with other
TV sets.

Be sure to connect the computer to the 75-ohm antenna terminals of the TV set. If the cable pro-
vided cannot be used, be sure to use a 75-ohm coaxial cable.

Characters may be hard to read with certain combinations of foreground and background colors.
In such cases, switch the B/W-color switch to the B/W position to obtain higher contrast. The best
combination of the foreground and background colors is white for the foreground and black or
blue for the background.

No audio signal is included in the RF signal fed to the TV set, so sound cannot be output from the
speaker of the TV set.

3.2.2 Connecting the MZ-1D04 12-inch green display
to the computer (excluding the MZ-710)
Use the cable included with the MZ-1D04 green display to connect it to the computer. Plug the cable

into the composite signal jack on the computer’s rear panel, then set the B/W-COLOR switch to the B/W
position.

e

AR

e

Rear panel of the MZ-700 series computer Rear panel of the MZ-1D04
3.2.3 Connecting the MZ-1D05 14-inch color display
to the computer

Use the cable included with the MZ-1D05 color display to connect it to the computer. Plug the cable’s
DIN connector into the RGB signal output connector on the MZ-700.

Rear panel of the MZ-700 series computer Rear panel of the MZ-1D05

Pin assignments of the RGB signal output connector of the MZ-700 are as shown below.

GREEN BLUE
RED
CSYNC C VIDEO
VSYNC : HSYNC
GND

RGB signal output DIN connector
(viewed from the rear side)

107

108

3.3 Data Recorder

® Data recorder built into the MZ-731 and MZ-721

The built-in data recorder can be operated in the same manner as an ordinary cassette tape recorder.

Press this key to record programs and data.

Press this key to load programs and data.
Press this key to rewind the tape.
Press this key to fast-forward the tape.

STOP. EJECT Press this key to stop the tape, to release other keys when the tape stops after
loading or recording programs or data, or to eject the tape.

Cassette compartment

Tape counter

Counter reset button

= MZ-1T01

The MZ-1TO1 data recorder unit can be installed in the MZ-711 (MZ-710). Installation procedures are
as follows.

1. Turn off the computer’s power switch and unplug the power cable from the AC outlet.
2. Remove the two screws located on the left side of the rear panel to remove the data recorder com-
partment cover.

Polarity switch

Joint connector

3. Remove the joint connector cover.

4. Plug the connector of the MZ-1TO1 onto the 9-pin connector located at the left rear of the recorder
compartment of the MZ-711.

5. Position the data recorder in the recorder compartment and fasten it in place with the two screws.
When doing this, be careful to avoid catching the connector cable between the data recorder and
the computer, (otherwise, the screws cannot be tightened).

® Ordinary cassette tape recorder

Using commercially available audio cables with 3.5 mm mini-plugs, connect the WRITE jack of the
computer to the MIC jack of the cassette tape recorder and connect the computer’s READ jack to the
EXT SP or EAR jack of the cassette tape recorder.

Take note of the following when using an ordinary cassette tape recorder.

(1) The message ' £ RECORD. PLAY " does not appear when a SAVE command is entered.
Be sure to press the RECORD key on the recorder before entering this command. Press the STOP
key to stop the recorder after the message " READY " is displayed. Without depressing the STOP key,
the recorder is not stopped.

(2) The message ' £ PLAY ' does not appear when a LOAD command is entered. Be sure to start
playing the tape after entering the command. The message "READY" is displayed when loading is
completed.

(3) The level and tone controls of the cassette tape reocrder must be adjusted to appropriate levels. Some
cassette recorders (e.g. those with the automatic level control) may not be usable. In such cases,
please purchase the MZ-1TO1.

(4) The polarity of the head can make it impossible to load programs provided with the computer. Try
switching the head polarity if programs cannot be loaded.

(5) For any transfer or collation, use the tape recorder that was used for recording. If the tape recorder
for transfer or collation is different from that used for recording, no transfer nor collation may be
possible.

(6) Data written using an ordinary cassette recorder may not be readable with the data recorder. There-
fore, use of the MZ-1TO01 is recommended.

109

110

3.4 Color Plotter-Printer

Paper holder (left) Paper shaft Paper holder (right)

Printer cover Paper guide

Paper cutter

RESET PEN CHANGE

B o w

Reset switch Pen change switch Paper feed key

Plotter-printer (viewed from the top)

Tl

Paper inlet

Plotter-printer (viewed from the rear side)

® Loading roll paper

1. Remove the printer cover.

2. Cut the end of roll paper straight across and insert the end into the paper inlet. (Be careful to avoid
folding or wrinkling the end of the paper when doing this.)

3. Turn on MZ-731°s power switch and press the [+] (paper feed) key to feed paper until the top of
paper is 3 to 5 cm above the outlet.

4. Insert the paper shaft into the roll and mount it to the paper holders.

5. Set the printer cover so that the end of paper comes out through the paper cutter.

® To remove the roll from the printer for replacement, cut straight across the paper at the paper
inlet and press the paper feed key.

® Roll paper for the MZ-700 series computers is available at any Sharp dealer. Do not use paper other
than that specified.

The length of the paper is 23 to 25 meters, and the maximum roll diameter which can be loaded
is 50 mm. Paper will not feed properly if a roll with a greater diameter is used, resulting in poor
print quality.

Procedures for loading roll paper

~ = .
] . A-RZKATES
(C) Replace the printer cover.

v ’\\
wewevewes

i ' '

(B) Press the paper feed key to feed paper.

® Installing/replacing pens

1. Remove the printer cover and press the PEN CHANGE switch with a ball pen or the like; this causes
the pen holder to move to the right side of the printer for pen replacement.

2. Depress the pen eject lever to eject the pen which is at the top of the holder. When doing this, rest
your finger lightly on top of the pen while pushing the eject lever to prevent it from falling inside
the printer.

3. Insert a new pen.

4. Press the PEN CHANGE switch again to bring another pen to the top of the holder.

5. Replace all four pens (black, blue, green and red) in the same manner. When finished, press the
RESET switch to ready the printer for printing with the black pen.

Execute the BASIC TEST command to confirm that all colors are printed correctly.

Pen position
detection magnet

- -
_— Pen eject lever

112

= MZ-1P01

Installation of the MZ-1P01 color plotter printer (for models other than the MZ-731)

1. Turn off the computer’s power switch and unplug the power cable.

2. Remove the two screws located at the center of the rear panel to remove the printer compartment
cover.

3. Confirm that the printer switch on the printed circuit board is set to the INT position.

4. Plug the printer connector into the matching connector on the printed circuit board, then position
the printer in the printer compartment and fasten it in place with the two screws. When doing this,
be careful to avoid catching the connector cable between the data recorder and the computer (other-
wise, the screws cannot be tightened).

Printer connector
Printer switch
Power connector

[T { v ¢ B Y
CE 1 mad b g, .

ot

{ternal printer=—INT (color plotter-printer)

Connection of color plotter-printer to the M2-700
® Connecting an external printer (MZ-80P5(K))

The MZ-80P5(K) printer for the MZ-80K series computers can be connected to the MZ-700’s external
printer connector (see page 104) without any special interface card. Use an optional connection cable
for making the connection.

When using an external printer, the printer switch on the printed circuit board must be set to the
external printer position. Therefore, the color plotter-printer and the external printer cannot be used
simultaneously.

Note that if a program including color plotter-printer control statements is run with an external printer,
meaningless characters (control codes for the plotter-printer) will be printed.

113

114

3.5 Key Operation

) =i
SR A
: QE BB wiﬁ T4l F

H@_@!ﬂm\
3 3 2 3 2 e

l (SPACE)

3.5.1 Typewriter keyboard

Except for the special control keys, several characters are assigned to each key on the keyboard. The
character entered when a key is pressed depends on the input mode selected by the special keys.
The input modes are as follows.
(1) Normal mode This mode is automatically entered when the BASIC interpreter is loaded.
In this mode, the ASCII character (uppercase or lowercase) shown on top
of each key is entered when that key is pressed.

(2) Graphicmode This mode is entered when the key is pressed. In this mode,
the graphic pattern shown on the left front of each key is entered when
that key is pressed. The graphic pa'ttem shown on the right front of each
key is entered by pressing that key together with the shift key. Pressing the
key returns input to the normal mode.

Pressing the space bar enters a space regardless of the input mode.

For example characters entered by the C key in different input modes are as follows.

Normal mode: Uppercase C \ C

SH I FT]+I[Cl Lowercase c

| Graphic mode]
\[BHIFT]+@ &

The special keys are explained below.

Pressing this key allows shift position characters to be entered.
For alphabetic keys, the shift position characters are lowercase letters; for keys
other than alphabetic keys, the shift position characters are those shown on the
upper side of the key tops. In the GRAPH mode, the graphic pattern shown on the
right front of each key is entered.

Pressing this key enters a (carriage return) code, terminating the line and moving
the cursor to the beginning of the next line.

Pressing this key enters a BREAK code. Pressing it together with the key
stops execution of a program or operation of the data recorder.

Pressing this key changes the input mode from normal to graphic for input of
the graphic patterns shown on the left front of keys.

Pressing this key changes the input mode from graphic to normal.

The cursor symbol is ¥ in the normal mode and [in the graphic mode.

(1) Normal mode (alphanumeric mode)

Character entered by each key in the normal mode are as indicated by the screened areas in the figure
below.

MMHP‘!D—U - L
S EERULERELLES])
i e }ﬁuu;;u Sl |
E=noasns e s e
l (SPACE) j

—

When with the | SHIFT | key is pressed together with other keys, lowercase letters (or other symbols
indicated by the screen areas in the figure below) are entered.

=== =S ===

CLR HOME
()
= S A Y A Y
oa (=] III: I:[] =™ \|/HEB E:B EE[IB :;n A0\ & =7
ALPHA Q II
[m]=} EEi '“:1 l:u: J]:l EB‘E z@
CTRL A c R
val\l/oa ?EJ J:l
SHIFT @3@@”@@ . SHIFT
N/ X2\ O\ o= ‘»’ oo/ =8 xﬂ SE
=

1 (SPACE) j

RS,

E
It

1]

(2) Graphic mode

Pressing the key places the computer in the graphic input mode. Characters entered by
each key in the graphic mode are asindicated by the screened areas in the figure below. In this mode

pressing any of the cursor control keys, the INST/CLR key or the DEL/HOME key enters the symbols
,&,8, , @, or B, respectively.

w%wawwq

(SPACE)

J

CLR HOME
[:l ama @5 EB[[L‘ Eﬂ BE])HJE(Dm =5
£ -T ‘
D:J 2s\/8s\/80 l]:l IZ i
]f - = (le==
C;i‘x om\|/ @5 ‘J
LILE il '|
[xﬂ BE IB P
EAUESNS VAR L

When with the key is pressed together with other keys, symbols indicated by the screen
areas in the figure below are entered.

e e

/[’J;U_D[[=

MHMEM

3 BREAK
lZD TCE HE

ALPHA

il

ED DD

—

[
78 DH

l&ﬂ!__
EﬂH@HHHIQQIB

V‘JE]

L

(SPACE)

XE [SD

}gnl.-

n ~

SHIFT

CLR HOME

IQZ]

7

|

The cursor symbol is [in the graphic mode. To return the mode to normal, press the] ALPHA [key.

17

118

3.5.2 Definable function keys

Definable function keys

The five blue keys marked F1 to F5 above the typewriter keyboard are referred to as definable function

keys.

Certain character strings are automatically assigned to these keys as follows when the BASIC interpreter

is activated.

F1: "RUN" + CHRS (13)

FZ: "LIST"

F3: "AUTO®

F4: "RENUM'

F5: "COLOR
SHIFT + F1:
SHIFT + F2:
SHIFT + F3:
SHIFT + F4:
SHIFT + F5:

"CHRS (

'DEF KEY ('
CONT
SAVE

"LOAD"

When one of these keys is pressed, the character string assigned to that key is entered; thus, statements
which are frequently used can be entered just by pressing one key. The character string assigned to any
of the definable function keys can be changed by the DEF KEY statement. (See page 57, DEF KEY

statement.)

® Definable function key label

Labels indicating the character strings assigned to definable function keys can be placed under the
transparent cover located above these keys. The transparent sheet can easily be removed as shown below.

3.5.3 Cursor control keys and insert and delete keys

Cursor control keys and insert and delete keys

The cursor control keys are the four yellow keys at the right of the keyboard which are marked with

arrows.

Pressing these keys moves the cursor one position in the direction indicated by the arrow. These keys
are used when editing programs.

key have the following functions.

INST DEL
The | crr |and | yoMmE
INST

CLR

DEL

HOME

SHIFT |+ %"LSII

SHIFT |+ H%%E

See pages 18 and 19.

Inserts a space at the position of the cursor and shifts all following characters
one position to the right.. INST: insert.

Erases the character to the left of the cursor and shifts all following charac-
ters one position to the left. DEL: delete.

Clears the entire screen and returns the cursor to the screen’s upper left
corner. Pressing this key does not affect the program in memory. CLR: clear.
Returns the cursor to the upper left corner of the screen (does not affect
any characters displayed).

119

Chapter 4
Hardware

Notice: The contents of this chapter are for reference only, and Sharp cannot
assume responsibility for answering any questions about its contents.

4.1 MZ-700 System Diagram

The figure below shows the system configuration of the MZ-700 series computers.

RF and VIDEO terminal is not included in the MZ-710.

DT T 17

Power
PG gwitch 100V

—\ |
o |

Paws 5V emory controller ‘ gt
unit = e (CRTC) :> Videa RAM :>encoder :
l
[

| Character é VIDEO
E}_@et———. Ffese'gt generator : I s d
switch Sifeut =

Main
memory
64K bytes

MONITOR

ROM

il il it :

< Address bus
\—
, U U

fr O [JUfY i -

<~
N
Expansion 1/0 bus j

| L]
NZ L y < s
8253
” 8255 Tempo
co c1 c2 controller
1s 12h @
J > <>
Audi lifi Tempo/cursor | | | Coeeaier | | Joystick
el i oscillator | Keyboard circuit

N/

N

Printer
controller

<
_— ﬁ Cassette Joystick
[Printer bus terminal terminal

Il

Cassette
tape deck

122

4.2 Memory configuration

4.2.1 Memory map at power-on (80k mode)

$0000

$1000
$1200

$D0O0O0O

$0800

$EOOO

$FO0D

® The memory map is as shown above immediately after the power has been turned on. (The contents
of the V-RAM area from $D000 to $DFFF are not the same as those of MZ-80K.)

MON | TOR
(ROMD

MON I TOR WORK

SYSTEM
and
TEXT AREA
(D—RAM>

V-RAMKCHARACTER>
(S—RAM)

V—-RAM(COLOR DATA>
(S—RAM)

KEY and T |MER PORT

Enable

$0000

$1000

$0000

SYSTEM and TEXT AREA
D—-RAM

SYSTEM and
TEXT AREA
D—RAM

Disable

® The entry point of the monitor ROM is the same as that of the MZ-80K.

123

4.2.2 Memory map while loading system program (BASIC)

$0000 $0000
MON | TOR (ROM) |[] SYSTEM

$1000

A
SYSTEM R

BOOT PROGRAM [|

$D0000 $DOOO
V—RAM
V—RAM
$EOOO " YEY and TIMER PORT
SYSTEM
$SFOQO
Enable Disabie

® When the monitor LOAD command is entered, the bootstrap loader is loaded into the system RAM
area from ROM and control is transferred to that program.
e BOOT COMMAND : L

124

4.2.3 Memory map after the BASIC interpreter has been loaded

(MZ-700 mode)
$O000
MON | TOR
(ROM)
$1000
$DO0O
V—RAM
V—RAM
$EOQOO

KEY and T IMER PORT

$FO0O0

Disable

® The memory map is as shown above after the BASIC interpreter has been loaded.
® Bank switching is performed to access V-RAM or the KEY and TIMER PORT area.

$0000

$1000

$D0O0O

SYSTEM

BASIC

Enable

125

126

4.2.4 Memory map after manual reset

The memory map is as shown below after the reset switch on the rear panel has been pressed.

$0000

$1000

$D000

$EOCOO

$FO00

After pressing the reset switch together with the key, the memory map is as shown below.

$0000

$1000

$D0O00O

$EOOO

$FOO0O0

$0000
MON | TOR
(ROMD
$1000
SYSTEM
$D000
V—RAM
V—RAM

KEY and T IMER PORT

Enable

MON | TOR
(ROMD

SYSTEM

V—RAM

V—RAM

KEY and T IMER PORT

Disable

$OOOO
C

i $1000
|

| |$D000

SYSTEM

SYSTEM

Disable

SYSTEM

SYSTEM

MEMORY CHANGE

-

Enabie

® When the reset switch is pressed together with the key, addresses $0000 to $OFFF and

from $D000 to $FFFF are assigned to RAM.

® When the # command is entered after the reset switch has been pressed, the computer operates in
the same manner as after the reset switch has been pressed together with the | CTRL | key.

4.2.5 Bank switching

a) Memory blocks can be selected by outputting data to I/O ports as shown below.

SWITCHING
I/0 PORT $0000~S0FFF $D000~SFFFF Ll

$ EO SYSTEM AREA (D-RAM)

$E1 SYSTEM AREA (D-RAM)

$E2 | MONITOR (ROM)

$ E3 : V-RAM, KEY, TIMER

$ E4 MONITOR (ROM) V-RAM, KEY, TIMER

$ ES Inhibit
Return to the front of

$ E6 condition, where being
inhibitted by $ ES.

Note: Outputting data to I/O port $E4 performs the same function as pressing the reset switch.

b) Examples:
OUT ($EO0), A

Assigns addresses $0000 to $OFFF to RAM, but does not change execution address. The contents

of variable A do not affect the result.

OUT ($E4), A

Initializes memory to the state immediately after the power has been turned on.

Note: Since the program counter is not moved by the OUT statement, care must be taken when switch-
ing memory blocks if the program counter is located in the area from $0000 to $OFFF or from

$D000 to$FFFF.

127

128

4.2.6 Memory map when V-RAM is accessed
i) V-RAM (Video RAM) memory map

$DO0O

$0800

$EOOO

CHARACTER V—RAM
(2 Pages, 50 Lines)

COLOR DATA V—RAM

KEY and T IMER PORT

ii) Correspondence between V-RAM address
and location on the screen.

The MZ-700 has a 2K byte V-RAM area,
but only 1K byte of that area can be dis-
played on the screen at one time. The area
displayed can be changed by scrolling
the screen.

a) Area displayed immediately after reset

(or power-on): DOOO | «—— Address
1 «———Byte No.
1 2 3 39 40
1 1D000X | DOO1 PR o . o.com 0 CEECD D026 (D027 !
1 2 - ST T 39 40 |
-~ (D028 D029 |[DO2A DO4E | DQ4F |
41 42 43 80 |
_____________ I -
; | | ' | :
| I I ! I :
| I | I | :
jdmp e o
| | |
o S
I I I . ’ i
N | g U
-5 |D3CO |D3C1|D3C2 ﬂD3E6 D3E7
961 | 962 |963 | 999 | 1000
O
Line

b) Area displayed after the screen has been scrolled up one line from the end of V-RAM:

1 2 3 39 40
s eeealpgoiloone ~ ¢ T D026 [D027
e 1079|1080

> |D028]D029|D02A DO4E | DO4F
1087|1082|7083 1119|1120

D398
24 11961

=0
w | O©W

Mo oo
=g

)
2o
o
| oM
WS oo
N | o
o] -o
W | O
o | ©om
oo
2O | OD
~|om

©rm | OW
om | Ow

25 1

Note: The line consisting of bytes 1 to 40 is wrapped around to that consisting of bytes 1961 to 2000
as shown above.

iii) Scroll-up and scroll-down
a) The screen is scrolled up by pressing the and [t] keys together, and is scrolled down
by pressing the and [}] keys together.

b) Scroll-up and scroll-down

up

N .l
Scroll- /

A: Area which is displayed
on the screen (1K bytes)

—— —~—

|
B: V-RAM (2K bytes)

® During scrolling, the area which is displayed on the screen moves through the 2K byte V-
RAM area as shown above.

® The end of the V-RAM area is warpped around to the beginning of V-RAM as shown above.

® The cursor does not move on the screen during scrolling.

129

4.3 Memory Mapped I/0 ($E000-$SE008)

Addresses $E000 to $E008 are assigned to the 8255 programmable peripheral interface, 8253 pro-
grammable interval timer and other I/O control ICs so that various I/O devices (including music functions
using counter #0 of the 8253) can be accessed in the same manner as memory. The memory mapped I/O
chart is shown below.

CPU memory address | Controller Operation
$E000 Pa: Output
$E001 8755 Ps: Input
$E002 Pc: Input and output control by bit setting
$E003 Mode control
$E004 Co: Mode 3 (square wave rate generator)
$E005 8753 C,: Mode 2 (rate generator)
$E006 C,: Mode 0 (terminal counter)
$E007 Mode control
$E008 LS367, etc. | Tempo, joystick and HBLNK input

130

4.3.1 Signal system of the 8255

The 8255 outputs keyboard scan signals, input key data, and controls the cassette tape deck and cursor
blink timing.

8255
Key giata input '
Egl;;n;mm PSBO DS7 [S))
P8, Do Do
VBLK ————~ =@
5560UT ————{ PCs As -A
INTMSK=——| PC>
RDATA PCs Ao Ag
Data recorder MOTOR PCa y
control M—ON PCs RD EMR
WDATA PCi WR MW
CS CSEO
556R8T—=——iRA7
% e
oo || |1 amom——{As
terminals == c P A2
(10P) B P A1
A P Ao
9
Port Terminal | I/O | Active state |. Description of control Name of signal
PA, H |
PA o i | Keyboard scan signals
(SE000) PA, ouT H |
PA; H 1
PA, L Resets the cursor blink timer. 556 RST
PB, L :
PB; L '
PB, L L
PB PB,; L f ; A .
(SE001) PB, IN L ! Key scanning data input signals
PB; L |
PB L |
PB, L)
PC, OouT — Cassette tape write data WDATA
PC, ouT L Inhibits clock interrupts. INTMSK
pC* PC, ouT S Motor drive signal M—-ON
($E002) PC, IN H Indicates that the motor is on. MOTOR
PC, IN — Cassette tape read data RDATA
PCq IN — Cursor blink timer input signal 556 OUT
PC, IN - Vertical blanking signal VBLK

* Each output data bit can be independently set or reset.

131

182

4.3.2 Signal system of the 8253

The 8253 includes three counters # 0, # 1 and # 2. Counter # 0 is used for sound generation, and
counter # 1 and # 2 are used for the built-in clock.

Counter # 0 is used as a square wave rate generator (MODE 3) and counter # 1 is used as a rate genera-
tor (MODE 2). Counter # 2 is used for the interrupt on terminal count (MODE 0).

A 895 kHz pulse signal is applied to counter # 0, which devides the frequency to the specified value
according to the note information. This divided signal is output to the sound generator.

Counter # 1 counts a 15.7 kHz pulse signal and outputs a pulse to OUT1 every 1 second. Counter
2 counts the output signal from counter # 1 and outputs a high level pulse to OUT2 every 12 hours.
Since OUT?2 is connected to the interrupt terminal of the CPU, the CPU processes the interrupt every
12 hours.

8253
| NTMSK
TINTT
Gl)
CLK2 |[—
[?7 ouTq |——
Do CLKA1 BLNK (15. 61 1KH

| 3<]
OuUTO L ANP.

CLKO SO BKHz

SP.

4.4 Signal System of Color V-RAM

Color information of the MZ-700 is controlled in character units; that is, a 1-byte color information

table is assigned to each character displayed on the screen.
A color information table is shown in the figure below.

D~ Not used.

& 5 G :Green

Ds |cHArAcTER| R R :Red
B :Blue

Da B

Ds Not used.

D2 G

D1 |BACK R

Do B

/ \
CHARACTER BACK

Color information tables are accessed as follows.

—=R.G.B.

Color | i
8-bit shift register matrix :_j 3
(=]
e & ——=VIDEC
,]/\r Sync bS]
$O0O0 e signal 8 ———RF
Iph : Blanking ——-
S7EF Alphanumerics signal T
Color subcarrier (3.54MHz)
D6e~D4
D2~DO
$DO0O $0800
- COLOR
V—RAM V=RAM
$D7FF f\f $DFFF]/\[
Display address Display address

Characters displayed are stored at addresses $D000 to $D7FF of V-RAM, and color information tables
are stored at addresses $D800 to SDFFF of V-RAM.

133

vEL

IC 7F
s LS4 . S5v IC 2E
55 2 RESET P Z-80A IC 4E
Ri102 LS367
0 S04 330
13 12 8255 5 6 6 s 10 9
i s RESET I e s o A
151588 IC7F @ Ala : Aa
Lsi4 26| RESET anp 2 D . Ar3
+5V
ow: 3 R60 ? Arzf? 4 | —)
J— 3.3k
Tantalum e e RESET [anp 2 i3 Al
RS9 R7
3.3K 3: EE 353.3x Al z L 2 Alo
R Gl G2
NM!
is
5v o
INT
IC 4F
RIO9 c84
15K %" 6.0lu LS367
RFSH As 22 i s
is i Wi as 22 = 2 As
IRex iCex o——
ol2 WR ar PBL e _‘>_ 7 A7
IC BH i
v Lsa2i e 1 e - = o » Ae
B 0 5v IorRQ as [
5v 1A —_— 34
IC CH
R30 & RO7T< ICCH LS00 | Mie A
10K S K > LSOO 3
1
2 S
N T 13
RALT HALT D7
A3 A3 Ds L
Az Az Ds 2
Al Al Da |-
[
Ao Ao D3
BUS ® 02 2
D =
Vee Do 2
29 e |23
E_ GND BUSAK
e e s)
(i
Ls32 | &D IC7F IC 7F
5 _3@_—< 0 LS4 Lsia
EMR A@:(__ MREQ
CSE
13
W !
2 W
IC 6G

[(1) 3noad preoq NdD |

swelbeiq unai1) 002-ZIN SV

GEL

D3 ~ D6
+5v 11588
IcBJ Bt RIS
Lo it
i:l.&K fe—ie A
0 3 R32 C26 R58
L 330 w/50v 560
S Rit4 READ 8 5 6 13| 12
S 47K P-8 1
9 Cc3 €30
= ic 3¢ olp Ic 3¢ o c3c
82 CD4069
lopr1ev
c80
Io.on
Ic3C CD4069
1 EX WRITE
EX READ
Pes |2 4
WRITE
ci8 ic 3¢ READ
kK
i 2 . R33 s|| sense
FEER 8] == 13 220
GsE6 >——=4¢s PCa Ls00 c20 4| MoToR
EWR sz PCs 17 22p/16V r Os
TG 36 6 -
e I pca [INTMSK 0 SN ‘¥ Os
C
A >—2a, pc f2 i PR 5 5 = 10opsov ™ M LU
E o A
Ao Ao ICTE Rios Y
8255 35) pEsET Ls74 icac 1® IC 6E
w:ssr:wI 11 g ale— 7417 Lsaz
cL 8]
2200P - CA7 ~SF
I 13 :loov CSE 21p
Ble 2P —CsE2
10
ch:: A3 “1s | P CSE
= C44 c3 "
I:ooP |C(|‘5 iIODOD Az >—roA—21A oH——CSE 0
Ls "
sv
A IC AG
10K x 8 1 8253C . fs%"c')
= INTMSK >-:()
20) 3 — RILI
1 17
:E s :E 3 RIO6 _O,s L L our2 . L &
: .[
- 1 s5vo—M—-0 D De cLk2 b—]”’
PBo o] ps =>—3{ps GaTE2['® AM—4-—0 +5V
pe1 |2 W) i3 RI08
= % D4 Da ouTI 33K
PB2 = o =5 slos) GRS > ican
15
PB3 o] p2 =402 GATEI [& "
PBe |22 14 ? i .
o . D ————Di ouTOo
i L
Pm@ < po =200 cLKo PP—=< soin lecH . -
PBel SSE 1 >—2Ycs GaTEO - 1
P i i, 22| — 24 TR2
B7 O EMR RD Vee +5v 4 c4s8C TRl cs3
:) - w —2wr onp f2 sv o768, ol
1 1
PA% 0 9 ‘o] F— Y T sv iy
o paz 2 131 Py L 09 A6 19100 4 o
+5vo——7JVcc PAI [“le 7 o oAl e Rl e | 1
’L—GND PAO 24 A 6 |- o s IC7E " Srie
s e 6 M SL LS74 ~ RT3 18K
& s CSEZ >—t cK ouT DisC—4
* O IC6F L <ZRIIO
Fy 4 Lso2 ! " S8k
B 3 VLT THR
2 0] Ic6C o I TRGIE
e o o LS32 RESET i
(-1
&l | " ,j o— s IC BJ 150V
O EMR it 556
IC AE =
74LS145 By I8y
Ls367

[(T) ynoxo preoq NdD]

oEl

SEL
JPTI
Ao As Ai As Az Ao Az Al As Ai2 s Ai3 As A A7 Ass
v
ZSTJJIIWTMTI 2) s| | uf o] ia] 1
IA 1B 2A 2B 3A 3B 49A 4B |, IA 1B 2A 2B 3A 3B 4A 4B |
s S
IC6H S157 Is IcC6J SI57 3
G G|
Iy 2y 3y 4y 1Y _2Y 3y 4y
O EEEE DEEBERE
IC7G
S04
s<9
12 13 2 1 R—~—<s
IC7G S04
IR9: 10, 1 4 3 —_—
56 [s6 |56 |56 [56 |36 |56 WR
< = e ok
3 Toe S IC7G S04

s| 7| el 2| ul 1o i3] o
Ao Al Az A3 A4 As As A7

IC5H
2732

A

22
—<As

5v Vee Din Do
16} IC7H 4164C -3 14
c60 Vss Dour
33/16V,
Tantalum L I [I I]’ u_L
Al Az A3 As As Ae A7 CAS RAS WE "
Do D1
Ic74 4164C-3
ia
Dour
Al A2 A3 A4 As Ae A7 CAS RAS WE
Div D2
IC 8H 4164C-3
Dour|
Al Az A3 A4’As As A7 CAS RASWE
o f2 D3
Ic8J 4164C-3 i
Dout
Al Az A3 Aa As Ae A7 CAS RAS WE
pw [Da
ICSH 4i64C-3 23
Dour
Al Az A3 As As A A7 CASRASWE |,
Sv 0‘—1— Vee DiN Ds
C63 g IC9J 4164C -3 4
IO.Iu Vss Dour
s| Ao Al Az A3 As As Ac A7 CASRAS WE
S5v O—I Vee Din Ds
IC AH 4164C-3
T8 Dour
Ao Al Az A3 Aa As Ae A7 CAS RAS WE
S5v Vee D7
e IcAJ 4164C-3
-1y

[(€) ymoxo preoq NdD]

LE|

JP2

IC BD
Ls245

|

vio vio
L 17
QH QH
Llsin
ICAC LSI65
15 cl
ABCDEFG

i iz s Ja [z [a |5

9 flo | ILIQ (3 (2 (4
Do Di Dz D3 D4 Ds Ds D7
Vee Az
Aulvep) ICBC 2732 Al
(2716) B
GND Ao
s g I8
A3 As As As A7 As _As Aio
5 [« o [t [e3 o2 e
9 [0 ju [i3 pa |I5 |16 [i7
18 _ Ol 02 03 04 05 06 O7 08 53
S
OE ICBA 20I6P-1
WE
Ao Al A2 A3 A
8 |7 |6 |5

IC AD
Ls245

DIR_GATE|
| i

VBLK

IceD S
7417 2z°:

CIA

i3 {14 Jis

02 03 04

2016P -1

0s Os O7 08

s As A
CHENE

P2 P3 Ps Ps Ps P7

Ic 3A
LSI74

1D

20

3D L2
4D 15
5D 12
6D - 1o

CLK CLR

&

SIS7

,Icaa Lsio
5 12
@] 13
(504 IC4A LSIO
i LS04 =
] s
IC1A An 1
F ,IC4A_Lsio
> B
Al >———-2Y
Ic1c sv
Lso4 5\
=RE6 IC 7D
Sk Lso8
WA >— L o
EXWAIT >—d S

GT2

[() 1noxmd preoq NdO |

8El

P-1 IC 2H
= 7417 RaL,RA0
Ri3,RI2
ARDS \
9, Is_Dlz €0 Kol
R43,Ra2
ja2n RIS, Ri4
8 ARD7 3 4 yen
ICaH ——=Rpz
LS273 R45,R44
Ic 2H RI7,RI6
i g 7, ARD6 1] 10 ci2 RD6
o7 70 7Q!
R47,R46
Ds 2p 20 _— IC 2H RI9,RIB
o | o s 5 6 B o kDS
abc BLNK COLR HBLK SEL Ds [PN sale LIC 2H R49,R48
PoLOAD HSY N/PQ3sQ2 QI PRC WA VBLK RESET 5 L) sle s |arDa QVM R2L,R20 ™
0z 160 SQIE ic 20 74l FLR%0
D1 2lao aqf> a~ |ARD3 | 2 yeis” e
|46 |45 [aa |43 a2 fa1 |40 [30 [38 |37 |36 [35 |34 32 |31 i3 12
Do 5D 5Q IC 2J RS3,R52
Sk s |arD2)
P o e —WR I (RD2
e a8 3 S Ic2J Ronze
B a3 28 oRo ARDI 3{) 4 yeir o
P | L < MREG B
Py — e o - T i /7
pe~—32 I2———<-rFsh ‘ﬁ /
— IC7A 2 rAS G oy JAIRT /
P7 £ M60719 B osv LSI75 1o-JARDP // '-,%,%,H R33,R38
. RIILRIO
= 22 cso lao a0l AIRT g PR s e
55 21 GATE 13l3p 3q [ARDP / R57,R56
57 20 / R29,R28
[—<CL / i 0 ves _ ooe
= e CSE Ic5d cK_CL 7
59 18 120 LS42 / IC 2J
(@) 2 W—< o 1 7417
60| 17__R8l wi /
FS e T) Ea 1
» RD b "_7_0 =
o= R
Tk s 5 [7[e o i2]sfas e R 1,3 RO i laroa ’L sv
$3ss3s= = 2 ss= 3 Ao P 14 |ASTA
2 A TFETETT 1626 RESET O
7 e is, R34 R35
R72|R73 [R74 M:zo R‘a?s LSi25 10O+ SNS 430 430
Ao Ai Az A3 A4 As As A7 As A9 Ao Ail Aiz Ai3 Ais Ais R8 €7
10 IC 26 390 loop
6 5 STA I
23 V, 5v
53 G;cD 4 Ic 26
44 :abc (1-77) 2 =
R36 R37
13 IC 26 430 430
3 2 w STA
13 323% oo
sv : I I
RIOO _—
1K
S e i |
5V
N/P I R38~ R57 I
| RIO~R29 |
GATE ca ~ci8
GL | 430 |
l o I
17.7 MHz | ° |
| 390 |
! |
L e e e]

[(S) 3mox preoq NdD]

6ElL

+8 O
6.8
y 100
Sez20 710V Q3
=56
T~8.2K p/iov [t MDS
4."
Bizke a) £ aropesv
o e M b 3. -.——n—'vw——(sa) VIDEO OuT
W >
5.6K Yos
: 15K ¥o4 100p/10V
W—e 2.2K ﬁ')
39kl 7 os
! Wy 1
e NE T | 1e~zok i s
W MW\ SiK ﬁ: 82 =10k
e 2))ic2)® M VR|50K 1
7 =6.8K
‘I.‘g.K i:/ 47OP ==
e
icl
Hs O e 5.1K
W
lSW' 68< llsp
S m
5. a2 m L2z 130
A .{ a1 3 ~39K 2~io0
VRSOK I i
a [47on_ 33% !
5.6k |
=
I
oh T ' b 1t M—
3.9K 2.2~3.9 be 1905
150P 12p_ 8.2K 2RIk
Fsc O = =y M
_ L 330
2
18k S 2270 o 150P
it =
t8~27K] D3 Q1,02 2scle7sL or EQUIVALENT
174
L g —W—s) &l 03,05 25€945 or EQUIVALENT
1308 150P Q4 25A733 or EQUIVALENT
anE L DI~D6 1ssll9 or EQUIVALENT
L
=0 D7,D8 1SSI74 or EQUIVALENT
P Icl HD7404P or EQUIVALENT
A
Ic2 HD7486P or EQUIVALENT
Ic3 HD7474P or EQUIVALENT
ica HDI4066BP
Ic5,1c6 JUPCIO37H

pooud 10[0)) |

Imnodad Id

[3

ol

Fl

LI

TS00mA 20040

00
(000)

DI RI c7
1u/400

RBIS6 10/ 2W

c3
33uF/400

TI
Z00

w9 Llne
L | [100/0.5
<R3 [|
S220K/1W - —1
c10
=i 220P/2K
c8 c9
1000P 0.2/12

3.3K <
(2.1~3.9)

Q3
2SCI213D

ci1
O.lp

100(82)~~ 120)

Ciz2
6800P

74

D21
C82-004

+

c22 ? <
4700p f10S
R21

100

0.1p looop /10

L21
20075

oY)

PCI
PC-511

C24+£
1p/50

VR21

[31un 1omod]

Ll

P-1 P-5 P -10
=1 ARDP 1 +5V = RDP 2 GND
markl 2 | ARDI markl 2 | 48V markl 5 RDI 4| GND
3 ARD2 3 GND S RD2 6 GND
4 | ARD3 4 GND 7 RD3 8 GND
5 | ARDa 9 RD4 10 GND
6 | ARDs 1 RDs 12 GND
7 | ARDs 13 RD& 14 GND
8 | ARD7 15 RD7 16 GND
9 | ARDs 17 RDs 18 GND
>ﬂ5 AIRT 19 IRT 20 GND
11| GND 21 RDA 22 GND
12 | ARDA EE___§?Z 24 GND
13 | GND 25 FG 26 FG
14 | ASTA
15 | ALPS

mark

P-13

5V

VBLK

JA L

T
4] Lo win |-

JA2

| ono

P-4

5v

VBLK

JB |

JB 2

uldiw N

GND

P-1i
49 Ais NMI1 50
47 Ala EXINT 48
a5 Az 46
43 Az MREQ 44
41 Al GND 42
39 Ao IOrRQ 40
37 As GND 38
35 As RD 36
33 AT GND 34
31 As WR 32
29 As EXWAIT |30
27 Aa M 28
25 A3 GND 26
23 A2 HALT ;;4
21 A, EXRESET |22
19 Ao RESET |20
17 | BUS @ GND 18
15 D7 GND 16
13 De GND 14
1 Ds GND 12
9 D4 GND 10
7 D3 GND 8
5 D2 GND 6
3 DI GND 4
1 Do GND 2

)
1
o

Looooooooooool

GND
CSYNC
CVIDEO
HSYNC
VSYNC
GND
+5v

G

B

R
COLR
GND

[uonyeinSiyuod [euruiid) preoq NdD]

[Keyboard matrix circuit]

8255 outputs keyboard scan signals from port PA to the keyboard and reads key data from port PB.
The figure below snows the key matrix.

BRSNS RERS

@—D—J I S INST —{8REAK F
@5eiet 2z R ¥ B 2 ~ DELFcTRL Fa
|] I | | |
B £ @ S K C 3 = Fa
= Dgpria— « T LD 4 spP Fu
2
NG) U M E 5 0 F
:%OD °
| | | | |
: Vv N F & 9
| | | | |
D W O+ G 7 ?
(- CR X P H 8 /' |—{SHFT
Keyboard connector LED
0)eleIeIoICIRICIONVIVIICIOICICIICICID)
A i
GND

142

eyl

MAIN PWB
sl gz < .
0.04 <
Q3002
l{Rsoon T
>330 SW300! —nggB R3007 CNW3001
0.1/50vV
READ = - WRITE 560K (1/6W) @
[l T B E Q3001 " @
| o B8Bo &IVl R300 ©)
L= 4+ ===+ . R30e9 2) | REMOTE
v (5) | SENSE
ERASE ®|+5
HEAD D|WRITE
X 8) | READ
+
L—{@ B
RECORDZ | Q3001 25CI652Q SW3002
PLAYBACK eav S
HEAD L Q3002~Q3004 2SC202IR :
I\
s \J
o ~AAA 8- . &
Al'S
+ R3027 D3004 D3003
czol 1K > 2 o
i 10/6,3V 1S1555x 4 |
|35 —te——¢ ®
C3004 c3006 R30Iz 4 03002 . D3OI !
ﬁa’/“" 1000P 47K AT=m
150K R3019<|
_® " A 56
R30I0 €3005 R3014
220 0.1/50v 22K >+c s :
_— >1/50V 470/6 3V
c3007" o I l c2
IOOOF; l R30I12 @ 2 Tr| 0022 MOTOR
47 7
< 1
¢3008 R3022 ’l —‘\N\:——J
22/6.3v 5‘6Ki R3023 R? 2SD468C
2M (1/4wW) 50K
IC300I pPC358C VRI

MOTOR PWB '

[3moxr0 J9pI0das v1E(]]

vyl

— +5V ©- L4
(POWER) s
c3
GND @j ausiov|—
ap 4. -
+5V ©—
RI
L- GND @——1 3.3x4 40| 26/ 5
l_lrlw\,L, Vee Voo gg .
— ARD | O — : 2l p2o DBO '2 8 i — XD -
Tt ; I4 : = ox¢
ARDzO = ' P21 2 ‘5 5 Ic2 I3 oxg | X AXIS
[__Al M——e - 3 :6 51 Lei2s?7 M4 -OXA
R — FRte 47 : % oD
— Wt Z = > - 2:; Y AXIS
|
ARD4 O IL et 2 pzs 712 ! 13 —oYA
| | ICl RY 5
I | Loy 35 M5M8050H-059P 10K l
ARD5 O | | P24 %5 0—’W\:—l = 13P
2
[P 36 Plslse ‘a3 ol
ARD¢ © ® '] P2s Pl2 |==NC J._o DETECT SW
I15P l_lml\l—l Ple Z_i'NC
i O : 3 p2e Plo csale7sc SsdTasc f orev
——ANW\—9 RI8
L .) 220 Q7
ARDS O L 38 e0; RI4 / 2sB739cC
% 28 5.6K
Ql Pl NN 0
2SC458KC __ o SoL
iy INT 2SA673C RI7 DI D2
ARDP RS N 220 >
fog R20 ‘1 zZl
§ é 220 1ov
< o
RI = D3
ASTAO ?;I‘ Plr T ?9 10|k &] 404
las D
ARDAO— Pla To Q9 I1SI1588 x 4
GND NC 32 Pi5 2SD788C A
euozq _____________
Q2 7 7
ge 2SCA58KC al. EA 56 'Ir l
470 \ 4 RESET Vss -
—— R8 Xi X2 JL j ’
‘— SENS R7 560 T (L |
1 10K o 2 3 | PRESET rPAPER }PEN
FEED CHANGE
Ksor i ' T sw3 T SWI T Swa o
Cl XTAL=cC2 g |
lOpFI GMHZIKJPF _]

[31n0115 x03unad-19330[d 10[0)]

Monitor Commands and |bisa S

Subroutines

146

Monitor Commands

The monitor program starts immediately after the power is turned on and awaits input of a monitor
command. The monitor commands are listed below. In this chapter, [CR] indicates that the carriage return
key is to be pressed.

L command Loads cassette tape files into memory.

P command Outputs the specified character string to the printer. (Print)

M command Changes the contents of memory. (Memory correction)

Jcommand...... Transfers control to the specified address. (Jump)

S command Saves the contents of the specified memory block to cassette tape. (Save)

V command Compares the contents of cassette tape with the contents of memory.

command Transfers control to the RAM area. '

B command Makes the bell sound every time a key is pressed. Executing this command

again stops the bell.

® Configuration of the monitor work area

The configuration of the monitor work area from $1000 to $11FF is shown below.

$O0CO
Monitor
$1000 b—————
Stack area
$10F0O
Cassette tape
header area
$41 70 | =
Variable area
$11A3 |—
Key input data area
$1200
Free area

Note: The ROM monitor described in this chapter is not the same as the monitor function of the BASIC

interpreter.

5.2 Functions and Use of Monitor Commands

This section describes the functions and use of the eight monitor commands.

m Commands are executed when the key is pressed. Characters must be entered in the correct order.
If illegal characters (such as spaces) are included in a command string, the monitor rejects the command.

®m All numeric data must be entered in hexadecimal form at, and all data is displayed in hexadecimal form
at. Therefore, 1-byte data is represented with two hexadecimal digits and 2-byte data is represented
with a four hexadecimal digits. For example, the decimal number 21 is displayed as 15 and the decimal
number 10 must be typed in as OA. The upper digit "0" cannot be omitted.

m If the number of characters typed as an operand exceeds the specified number, excess characters are
discarded.

®m Each command can access any location of memory. Therefore, the monitor program may be changed
if the commands are used carelessly. Since this can result in loss of control over the system, be careful
to avoid changing the contents of the monitor program.

5.2.1 L command

L

This command loads the first machine language file encountered on the cassette
tape into memory. After the L command is entered, the display changes as follows.

XL J
i PLAY

Press the key of the data recorder. When a machine language program is
found, the message “LOADING program-name” is displayed. For example, the
following message is displayed during loading of the BASIC interpreter.

LOADING BASIC

147

5.2.2 P command (P : Printer)
This command is used as follows to control the plotter printer:

XPABCJ

Prints the letters “ABC”.
XP&TJ

Prints the test pattern.
XP&SJ

Sets the line width (character size) to 80 characters/line.
XP&LJ

Sets the line width (character size) to 40 characters/line.
XP&GJ

Switches the printer to the graphic mode.
XP&CJ

Changes the pen color.

5.2.3 M command (M : Memory modification)
Mhhhh

8 0 starting address

This command is used to change the contents of memory a byte at a time, starting
at the specified address.

XMCOOQO J

COugd OF FF

COu1 OO0 FF

Coo2 OO0 FF

COI3 O FF

CcCoo4 00 [SHIFT]+ [BREAK
XMCO10J

CO10 00 88

CO11 Q00 88

CO12 00 88

Co13 00 88

Cyd14 @O [SHIFT]+ [BREAK
X

To terminate the M command, simultaneously press the| SHIFT |and[BREAK |keys.

148 s

5.2.4 Jcommand (J : Jump)

J hhhh
hhhh destination address

This command transfers control to the specified address; i.e., it sets the specified
address in the program counter.

XJ1 2000 0 e Jumps to address $1200.

5.2.5 S command (S : Save)

Function

Shhhhh’h’h’h’h” h”h”h”

hhhh-oeeoee. starting address

h'h' h’ h'----end address

h"h"h" h"--- execution address
Upon execution, this command prompts for entry of a file name, then saves the
contents of memory from hhhh to h’> h’ h’ h’ on cassette tape under the specified
file name. Assume that a machine language program in the area from $6000 to
$60A3 whose execution address is at $6050 is to be saved under file name "MFILE" ;
the command is then entered as follows.

X SlE0I0)E0IAEBIE0IE]I0] J
F I LENAMESY MFELILUE
i RECORD.PLAY

Confirm that a blank cassette tape is loaded in the data recorder and press the
RECORD | key.

If the write protect tab of the cassette tape is removed, the | RECORD | key cannot
be pressed. Replace it with another cassette.

This command can only be used to save machine language programs.

WRITING MFILE
oK |
=

Note: To abort recording, hold down both the and keys
until the prompt ““ X ” appeas.

149

150

5.2.6 Vcommand (V : Verify)

\'
Compares a machine language cassette file saved using the S command with the
original program in memory.

XV J
& PLAY
DK

Press the PLAY key to read the cassette tape file when the prompt “2 PLAY”
is displayed. The message "OK" is displayed when the contents of the cassette
file matches that of the original program; otherwise, the message '"CHECK SUM
ER." isdisplayed.

It is recommended to that this command be executed immediately after recording
a program with the S command.

5.2.7 # command

Format

Function

=

After pressing the RESET switch, executing this command produces the same effect
as simultaneoulsy pressing the RESET switch and the | CTRL | key.

X#J

5.2.8 B command (B : Bell)

Format

Function

B

XxXBJ

Executing this command once causes the bell to ring each time a key is pressed.
Executing it again disables the bell.

5.3 Monitor Subroutines

The following subroutines are provided for Monitor 1Z-013A. Each subroutine name symbolically
represents the function of the corresponding subroutine. These subroutines can be called from user
programs.

Registers saved are those whose contents are restored when control is returned to the calling program.
The contents of other registers are changed by execution of the subroutine.

! : Register
Name and entry point (hex.) Function ety
CALL LETNL s i . Other
(0006) Moves the cursor to the beginning of the next line. i K
CALL PRINTS . i Other
(000C) Displays a space at the cursor position. sian AR

Displays the character corresponding to the ASCII code stored
in ACC at the cursor position. See Appendix A. 1 for the
CALL PRINTS ASCII codes. No character is displayed when code OD (carriage | Other

(0012) return) or 11 to 16 (the cursor control codes) is entered, but than AF
the corresponding function is performed (a carriage return for
OD and cursor movement for 11 to 16).

Displays a message, starting at the position of the cursor. The
starting address of the area in which the message is stored must

be set in the DE register before calling this subroutine, and the
C?{;(I)Jll;'l)SG message must end with a carriage return code (0D). i\ellisters
The carriage return is not executed. g
The cursor is moved if any cursor control codes (11 to 16) are
included in the message.
CALL BELL . . | Other
(003E) Briefly sounds high A (about 880 Hz). AF
Plays music according to music data stored in the memory area
starting at the address indicated in the DE register. The music
data must be in the same format as that for the MUSIC state-
CALL MELDY ment of the BASIC, and must end with OD or C8. Other
(0030) When play is completed, control is returned to the calling pro- | than AF
gram with the C flag set to 0; when play is interrupted with
the key, control is returned with the C flag set \,
' to 1. l
Sets the musical tempo according to the tempo data stored in
' the accumulator (ACC).
i ACC <01 Slowest speed
CALL XTEMP & i All
(0041) ,; ACC <+ 04 Middle speed veiitans
1 ACC <07 Highest speed
| Note that the data in the accumulator is not the ASCII code
corresponding to 1 to 7 but the binary code.
Generates a continuous sound of the specified frequency.
The frequency is given by the following equation.
CAIb]'(')x‘S)TA freq. = 895 kHz/nn’. BD% s
(Here, nn’ is a 2-byte number stored in addresses 11A1 and
11A2 (nin 11A2 and n’ in 11A1).

161

Name and entry point (hex.) Function Rseag‘: ztder
CALL MSTP . . Other
(0047) Stops the sound generated with the CALL MSTA subroutine. than AF
Sets and starts the built-in clock. Registers must be set as
CALL TIMST follows before this routine is called. Oth
(0033 ACC « 0 (AM), ACC < 1 (PM) thanerAF
) DE <« 4-digit hexadecimal number representing the time in
seconds.
Reads the built-in clock and returns the time as follows. Other
CALL TIMRD ACC <0 (AM), ACC < 1 (PM) than AF
(003B) DE < 4-digit hexadecimal number representing the time in 4 DE
seconds. p
CALL BRKEY Chgcks whether the | SHIFT | and [BREAK | 1.<eys areboth | y4por
(001E) being pressed. The Z flag is set when they are being pressed than AF
simultaneoulsy; otherwise, it is reset.
Reads one line of data from the keyboard and stores it in the
memory area starting at the address indicated in the DE
register. This routine stops reading data when the RETURN
key is pressed, then appends a carriage return code (0D) to
the end of the data read.
A maximum of 80 characters (including the carriage return
CA(I(‘)I(‘)(%E):TL code) can be entered in one line, All_ "
Characters keyed in are echoed back to the display, and cursor TEESERR
control codes can be included in the line.
When the and keys are pressed
simultaneously, BREAK code is stored in the address indicated
in the DE register and a carriage return code is stored in the
subsequent address.
Reads a character code (ASCII) from the keyboard. Other
If no key is pressed, control is returned to the calling program | than AF
with 00 set in ACC.
No provision is made to avoid data read errors due to key
chatter, and characters entered are not echoed back to
CAIEI(;(SI;:JKY the display.
When any of the special keys (such as or) are pressed, this
subroutine returns a code to ACC which is different from the correspond-
ing ASCII code as shown below. Here, display codes are used to address
characters stored in the cahracter generator, and are different from the
ASCII codes.
Special key Code set in ACC Display code
DEL 60 c7
INST 61 C8
ALPHA 62 C9
Special key read BRS?K 22 gg
with GETKY 1 C1
12 C2
= 13 C3
a8 14 C4
HOME 15 C5
CLR 16 Cé6

Name and entry point (hex.)

Function

Register

saved
CALL ASC Sets the ASCII character corresponding to the hexadecimal Other
(03DA) number represented by the lower 4 bits of data in ACC. than AF
Converts the 8 data bits stored in ACC into a hexadecimal
number (assuming that the data is an ASCII character), then
C?g;.,FI;:EX sets the hexadecimal number in the lower 4 bits of ACC. :)hthe;F
The C flag is set to 0 when a hexadecimal number is set in A
ACC; otherwise, it is set to 1.
Converts a string of 4 ASCII characters into a hexadecimal
number and sets it in the HL register. The call and return
conditions are as follows.
DE <« Starting adress of the memory area which contains Other
CAIZI(')' (g{;?EX the ASCII character string than AF
(e.g" i 3 Il 1] 1] sAi.‘ 1] 5 Il) and HL
CALL HLHEX i
CF=0 HL <« hexadecimal number (e.g., HL =31A5#)
CEF =1 The contents of HL are not assured.
Converts a string of 2 ASCII characters into a hexadecimal
number and sets it in ACC. The call and return conditions
are as follows. Oth
CALL 2HEX DE <« Starting adress of the memory area which contains tht ej&F
(041F) the ASCII character string. (e.g., "3" '"A") anE
CALL 2HEX T an
CF =0 ACC <« hexadecimal number (e.g., ACC = 3An)
CF =1 The contents of the ACC are not assured.
Blinks the cursor to prompt for key input. When a key is
29
CA{“J"QI'?";EY pressed, the corresponding display code is set in ACC and g}therAF
control is returned to the calling program. s
Converts ASCII codes into display codes. The call and return
9 conditions are as follows.
CA%(%B‘]Q'))CN ACC < ASCII code - ?hthe;F
CALL ? ADCN Al
ACC <« Display code
Converts display codes into ASCII codes. The call and return
CALL 7DACN conditions a.re as follows. Otfies
(OBCE) ACC <« Display code shan A
CALL ? DACN L
ACC <« ASCII code
CALL ?BLNK Detects the vertical blanking period. Control is returned to the | All
(ODA6) calling program when the vertical blanking period is entered. registers
Controls display as follows.
CALL ?DPCT BACC @1 39 cons 155 . Comtdl | A
(0DDC) COs | Scrolling (6t Same as the [CLR]| key. registers
4 | Same as the [key. - CTn Same as the | DEL | key.
| Same as the key. C81 Same as the | INST | key.
.| Same as the [key. - C9u Same as the [ALPHA | key.
| Same as the B key. CDH Same as the key.
'C5H | Sameasthe [HOME]| key. | =~
Sets the current cursor location in the HL register. The return Oth
CALL ?PONT conditions are as follows. thalleI;XF
(OFB1) CALL ? PONT and HL

HL < Cursor location (binary)

153

154

A.1

Code Tables

m ASCII code table

MSD is an abbreviation for most significant digit, and represents the upper 4 bits of each code; LSD
is an abbreviation for least significant digit, and represents the lower 4 bits of each code. Codes 11u to
161 are cursor control codes. For example, executing CALL PRNT (a monitor subroutine) with 15+ set
in ACC returns the cursor to the home position. (is not displayed.)

0 0000 E@@@Em;@nm[ﬂgm
oo | BT 0@ H BB E RO S @ e
2 o010 | EY[7)[2]|[B)|[R]|X| D O]|(e]|(2]|[U)| md| BB\ D&
3 001 @@@EUWImDB}E@
< oo | RS][4 DMK = N B 0|01 5|0
it = %) (5] [E] (V] | L& o] B LLO| 4
s ono | @ [&)|6)|[FV|¥ X0 RESNFOE8|X
7 0111 HiiEIEC N InlEI= R =i e
8 1000 IBWX@EF‘Bl.E[ﬂ*
s 1001 D]\ (9| []|Ly]|nd| NJ| LA | LA [K] | [A]| 97| | W] | LT
A 1010 MLZEBQ@L‘ODDB@
B 1011 |G K] DK I~ x| [v] [3)| (B | 2| 0| &)
c 1100 B MINZENIET S o N
D 1101 ([CR] BE@@@@BEEE
E 1110 LJIB]IN] ER 20 32| (8] 1| &) |aB | A |
P11 7)2]|[o]|[«]|=|]| Fi[e)| 31| N| | M= | O | [

® Display code table

The display codes are used to address character patterns stored in the character generator. These codes
must be transferred to video-RAM to display characters.
Monitor subroutines PRNT (0012+) and MSG (0015n) convert ASCII codes into display codes and
transfer them to the V-RAM location indicated for the cursor.
Codes Cln to C6w are for controlling the cursor.

o o000 Iis2) [P 0]\ O[] @ D|[| [P N| O (2 B8 | S ==
. w0 (&)@ 0[@|0MW0 =SB ED -
2 0010 EEZDBEBDEEMEQE
3 0011 C§3D.E@DEE@‘EN@
« o100 |[D]|[T]|[4] & |(¢]|3|[$)|3|[d]| 2]]| K& o | R o]
5 0101 @US[D%[]]EEEEE
6 0110 EEGD@EZIL&E@
7 - G Ak GW7U@ZE®§WQUEEEE
8 1000 ﬂIXBQ@ITEFXEBEE@B
9 1001 IYQEH\)EUI)LSQ;:E@@
A 1010 JZ—QU*+5QZQEBE@
B 1011 K=ﬂQ*ﬂkE@@£@E@
c oo ([L]{OY|[5]|d|R] L™ |[1][[A|[0]| L] D[] |HH| [ual
o 1101 M| F]|[Z]|O0|N|RD| X | (0 |[m]| B |[0]| HB|[¥| (4| =] &
: o |NELCdEnensEEens =
ro1n ([O]|B8IG A DSICR[o]| N0 [© | pnd| 3 | 58]

18b

® ASCII code table for color plotter-printer

Graphic characters other than those shown above cannot be printed, but the corresponding hexadecimal
code is printed in a different pen color.

MSD ¥

0 # @] e

! W21 1A0 a

: 1" 2|IBIR]| P48

: PIEISICS Swim

4 s 1410 T ~|S

5 H| %ol E|L vl

: &0 F U N dE T

; "1/ 1GIW 9| 0] |7

: [8IH|X h O] |

9 DL LT KA |
. T) hlflo

; +15 K[L XV a il
c s | <|L |\ e 4z
D - =ML ~NUulY

E > IN|T P B <

F /172101 € g s d el T

156

A.2 MZ-700 Series Computer Specifications
A.2.1 MZ-700

CPU: SHARP LHOO80A (Z80A)
Clock: 3.5 MHz
Memory: ROM 4K bytes (ROM)

2K bytes (character generator)
RAM 64K bytes (program area)
4K bytes (video RAM)
Video output: (Except MZ-710)
PAL system
RGB signal
Composite signal (B/W)
RF signal (UHF 36 + 3 CH, B/W)
MZ-710 is available only for connecting with RGB signal.

Screen size: 40 characters x 25 lines
8 x 8 dot character matrix
Colors: 8 colors for characters

8 colors for background
Music function: Built in (500 mW max. output)

Clock: Built in (24 hour clock, no backup)
Keys: 69 keys
ASCII standard

Definable function keys, cursor control keys
Editing function: Screen editor
(cursor control, home, clear, insert, and delete)

Temperature: Operating; 0 ~ 35°C
Storage; —20~ 60°C
Humidity: Operating; 85% or less
Storage; 85% or less
Dimensions: MZ-731; 400 (W) x 305 (D) x 102 (H) mm

MZ-721; 440 (W) x 305 (D) x 86 (H) mm
MZ-711; 440 (W) x 305 (D) x 86 (H) mm

Weight: MZ-731; 4.6 kg
MZ-721; 4.0 kg
MZ-711; 3.6 kg
Accessories: Cassette tape (BASIC (side A) Application programs (side B))

Owners manual, function labels, power cable, TV connection cable (except MZ-710)
Attachments for the color plotter-printer are listed later.

167

A.2.2 CPU board specifications

CPU: LHOO80A (Z8OA) ... 1
PPI: BIDISIS, s 0 531 o0 i i e e e 051 91 o s e A1 BB 1
PIT: BB e s 5 e 6 B TN 56 e 1
Memory controller
(CRTC): MBOTTD « cowwmis s pnonmsssesansnsssysss 1
ROM: Monitor 4K byte ROM 1
Character generator 2K byte ROM......... 1
RAM: 64Kbits D-RAM...................... 8
2Kbyte S-RAMcun... 2
I/O bus: EBapanloni IO DU . . cuncivnsnmmmes i suns 1
Printer I/Obuscoiviiiiienn. 2 (Cannot be used at the same time)
Cassette READ/WRITE terminals 2
Joystick terminal 2

A.2.3 Color plotter-printer specifications

Printing system: 4 selectable colors using ball point pens

Colors: 1. Black, 2. Blue, 3. Green, 4. Red

Printing speed; Average 10 characters/second when printing with the smallest size characters.
Line width: 80 columns, 40 columns, or 26 columns (selected by software)

Number of

characters: 115 (including ASCII characters)

Resolution: 0.2 mm

Accessories: Roll paper (1), Ball pens (black, blue, green red) Paper holders (left and right)

Roll shaft (1), Paper guide (1)

A.2.4 Data recorder specifications

Type: IEC standard compact cassette mechanism
Recording/

playback system: 2 track, 1 channel monophonic

Rated speed: 4.8 cm/s +3.5%

Type of control

switches: Piano type

Control switches: PLAY, FF, REW, STOP/EJECT, and REC keys and counter reset button
Data transfer

method: Sharp PWM method

Data transfer

rate: 1200 bps (typ.)

Tape: Ordinary audio cassette tape

A.2.5 Power supply specifications

(Supplies power to the color plotter-printer and data recorder, as well as to the main unit.)
Input: 240/220 V £10%, 50/60 Hz, 20 W
Output: 5V

168

A.3 BASIC Error Message List

The BASIC interpreter displays an error message in one of the following formats when an error occurs

during operation.

1. <error type > error

2. < error type > error in line number (Run mode error)

(Direct mode error)

Error messages in format 1 are issued when an error is detected during execution of a direct command
or entry of a program. Error messages in format 2 are issued when an error is detected during program

execution.

Error messages which may be displayed are shown below.

SYNTAX
Error No. Message displayed Description
1 SYNTAX ERROR Syntax error
2 OVER FLOW ERROR Numeric data used is out of the specified range, or
an overflow occurred.
3 ILLEGAL DATA ERROR Illegal constant or variable was used.
5 STRING LENGTH ERROR String length exceeded 255 characters.
6 MEMORY CAPACITY ERROR Memory capacity is insufficient.
7 ARRAY DEF. ERROR An attempt was made to redefine an array to a
size greater than that defined previously.
8 LINELENGTH ERROR The length of a line was too long.
10 GOSUB NESTING ERROR ' The number of levels of GOSUB nesting exceeded
| the limit determined by the usable memory space.
11 FOR~NEXT ERROR | The number of levels of FOR~NEXT loops exceed-
| ed the limit determined by the usable memory area.
12 DEF FN NESTING ERROR | The number of levels of DEF FN nesting exceeded
the limit.
13 NEXT ERROR NEXT was used without a corresponding FOR.
14 RETURN ERROR RETURN was used without a corresponding GOSUB.
15 UN DEF. FUNCTION ERROR | An undefined function was called.
16 UN DEF. LINE NUM. ERROR] An unused line number was referenced.
17 CAN’T CONTINUE | CONT command cannot be executed.
18 MEMORY PROTECTION An attempt was made to write data to the BASIC,
control area.
19 INSTRUCTION ERROR | Direct mode commands and statements are mixed
together.
20 CAN’T RESUME ERROR RESUME cannot be executed.
o RESUME ERROR | An attempt was made to execute RESUME when no
] error had occurred.
24 READ ERROR . READ was used without a corresponding DATA
| statement.
43 ALREADY OPEN ERROR An OPEN statement was issued to a file which was
already open.
63 OUT OF FILE ERROR Out of file during file read.
65 PRINTER IS NOT READY Printer is not connected.
68 PRINTER MODE ERROR Color plotter-printer mode error.
70 CHECK SUM ERROR

Check sum error (during tape read).

158

A.4 Z80A Instruction Set

A summary of the Z80A instructions are given below for reference.

Symbolic

160

Mnemonic ggg‘&otl:gn Op-code Mnemonic operation Op-code
8-bit load group LD HL, (nn) H—(nn+1) 00 101 010
L<—(nn) — n —
L@ rer’ [0H I < 8 , «— n =
LB ren ren 00 r 110 LD dd, (nn) ddu—(nn+1) | 11 101 101
— n - dd, «—(nn) [01dd1 011
LD AHL) r<—(HL) 01 © 10 - n —
LD r, (IX+d) r—(X+d) 11 011 101 — n -
01 r 110 LD IX, (nn) IXe—(nn+1) 11 011 101
— d — X —(nn) 00 101 010
LD r, (Y +d) r—(Y+d) 11 111 10 | < n —
0T © 10 = n ==
— d — LD 1Y, (nn) IYu—(nn+1) 11 111 101
LB CHL), F (HL)<r 01 998 « Y <—(nn) 00 101 010
LD (X+d),r UX+d)<r 11 011 101 — n —
01 110 r — n -
— d - LD (nn), HL (nn+1)«H 00 100 010
LD UY+d),r AY+d)er 11 111 101 (nn) <L — n -
01110 r &=~ i ~>
— d — LD (nn), dd (nn+1)«<dd, 11 101 101
LD (HL), n (HL)<n 00 110 110 (nn)«—ad, | 01ddo 011
L r] — - n e
LD (X+d),n (X+d)en 11 011 101 — n -
00 110 110 LD (nn), IX (nn+1)<—IXy 11 011 101
— d — nn)<«—IX, 00 100 010
- n —_ -« n s
LD UY+d),n AY+d)en 11 111 101 | < n -
00 110 110 LD (nn), IY (nn+1)<IYy 11 111 101
— d = (Nn) <Y 00 100 G10
«— n — « n —_—
LD A, (BC) A—(BC) 00 001 010 — n -
LD A, (DE) A<—(DE) 00 011 010 LD SP, HL SP«HL 11 111 001
LD A, (nn) A<—(nn) 00 111 010 LD SP, IX SP+IX 11 011 101
— n — 11 111 001
— n — LD SP, IY SP<IY 11 491 101
LD (BC), A (BCY«A 00 000 010 11 111 001
LD (DB, A (DE)<—A 00 010 010 PUSH qg (SP—2)<aaq, 11.ag0 101
LD (nn), A (nn)«<A 00 110 010 (SP—1)<—qaq.
— n - PUSH IX (SP—2)<—IX. 11 011 101
— n — (SP—1)—IXy 11 100 101
LO A,l A 11 101 101 PUSH IY (SP—2)«IY, 4t 400
01 010 111 (SP—=1)<IY4 11 100 101
LD AR AR 11 101 101 POP qa agu—(SP+1) 11 ga0 001
01 011 1M agL<—(SP)
LD I,A l—A 11 101 101 POP IX IXu—(SP+1) 11 011 101
01 000 111 IX_ «—(SP) 11 100 001
LD R, A R<—A 11 101 101 POP IY Yy (SP+1) 11 111 101
01 001 111 Y «—(SP) 11 100 001
16-bit load group Exchange group and block transfer and search group
LD dd,nn dd«nn 00 dd0 001 EX DE, HL | DE<HL 11 101 011
— n — EX AF, AF | AF>AF 00 001 000
— n — EXX (BCY«(BCH 11 011 001
LD IX,nn IX<nn 11 011 101 (OB« (DE)
06 100 001 (HL«<HLD |
— n - EX (SP), HL H-(SP+1) | 11 100 011
— n — | L(SP)
LD IV, nn IY<—nn 11 111 101 EX (SP), IX Xy (SP+1) 11 011 101
00 100 001 IX <(SP) | 11100 0N
— n - EX (SP), IY IYw—>(SP+1) i 11 111 101
«= [Y < (SP) | 11100 011

Mnemonic ggg‘rpaotlllgn Op-code Mnemonic g;g‘g‘l’i‘gn Op-code
LDI (DE)«—(HL) 11101 101 [= - s
DE—DE+1 10 100 000 DEC m me—m—1 \ 01
HL<—HL+1 S
1 BC—BC—1 General purpose arithmetic and control group
LDIR (OBE)<—(HL) 11 101 101
DE«DE+1 10 110 000 DAA Decimal adjustment 00 100 111
| HL—HL+1 upon contents of A
| BC—BC—1 after add or subtract
Repeat until BC=0 | CPL A—A 00 101 111
LDD (DEY«(HL |11 101 101 NEG A—A +1 11 101 101
DE<DE—1 | 10 101 000 1 i 01 000 100
HL<HL—1 GOF CY<CY 00 114119
* BC—BC—1 SCF CY<1 00 110 111
i LDDR (DE)«(HL) 11 101 101 NOP No operation, but 00 000 000
| DE«-DE—1 10 111 000 PC Is Incremented.
HLe—HL—1 HALT CPU halted [01110 110
BC—BC—1 DI IFF<0 s 11 110 011
Repeat until BC=0 El IFFe1 | 11111 o1
| CPI A—(HL) [11101 101 IMO Set interrupt | 11101 101
HLHL+1 | 10 100 001 mode 0 | 01 000 110
{ BC«—BC—1 M1 Set interrupt 11 101 101
CPIR A—(HL 11 101 101 mode 1 01 010 110
| HLe—HL+1 10 110 001 IM2 Set interrupt [11101 101
i BC«<BC—1 mode -2 01 011 110
\ | Repeat until A=
' (HL) or BC=0 16-bit arithmetic group
| cPD A—(HL) 11101 101
i HL<—HL -1 10 101 001 ADD HL, ss HL<-HL+ss 00 ss1 001
BC«BC—1 ADC HL, ss HL<«HL +88+CY 11 101 101
| CPDR | A—CHLD | 11101 00% 01ss1 010
‘ HL<—HL—1 | 10 111 001 SBC HL, ss HL<HL—ss—CY 11 101 101
i | BC—BC—1 r 01880 010
| Repeat until A= | ADD IX, pp IX<—IX +pp 11 011 101
| (HL) or BC=0 1 00 pp1 001
ADD Y, rr IYeIY -+ 11 M1 191
8-bit arithmetic and logical group | 00 rr1 001
INC ss Sg<—ss+1 00 ssO 011
| ADD A, r A—A+r 10000 r INC IX IX<—IX + 1 11 011 101
| AD A,n A—A+n 11000 110 00 100 011
~ n — INC 1Y Yl +1 11 111 101
ADD A, (HL) A—A+(HL) 10000 110 | 00100 011
ADD A, (IX+d) AA, (IX+d) 11 011 101 DEC ss ss<s8—1 | 00ss1 011
10000 110 DEC IX X< IX —1 11 011 101
— a - 00 101 011
| ADD A, UY+d) AA+UY +d) 11 111 101 DEC IY IY<1Y—1 |11 111 101
| 10 000 110 | 00101 OM
“ «— g >
| ADC A,s A—A+s+CY 001 Rotate and shift group
\| SUB s | A-A—s 010)
SBC A, s | A~A—s—0CY 011 RLCA ; =) 00 000 111
| AND s | A=ANS 7100 ‘ =
|OR s | A—AVs 110 RLA . 00 010 111
| XOR s | A—A@s 701, 7ok
CPs | A—s . RRCA == 00 001 111
| INC r P4 06 r 100
| INC (HL) (HL)«—(HL) +1 00 110 100 RRA - — 00 011 111
LINC (X +d) | X +ad) 11 011 101 =
| | —(X+d)+1 00 110100 RLC r (1);%% 011
‘ ‘ — d — | r
LINC (Y +d) | Gy +a) 11 111 101 RLC (HL) 11 001 011
‘ | —y+a)+1 00 110 100 ‘ | 00[000 110

161

Symbolic

Symbolic

162

(SP—2)—PCL
PCH'_'O
PCil<p

Mnemonic operation Op-code Mnemonic operation Op-code
RLC (X+d) 11 011 101 Jump group
11 001 011
— o == JP nn PC«nn 11 000 011
00 [000; 110 — n -
RLC (Y+d) 1 911 &= i ==
11 001 0OM JP cc,nn If condition cc is 1M cc 010
= d = true, PC<—hn: & [=»
oo@ 110 otherwise, continue “— n —=
o JR e PC—PC+e 00 011 000
RLm g Yy 010 — -2 —
7<0 o JR C,e If C=0, continue. 00 111 000
RRC m | | 001 If ©=1, — e2 —
— PC—PC+e
= JR Z.e If =0, continue. 00 101 000
SLA m W [100] If Cc=1, — 5P =
5 . PC—PC+e
SRA m 7*0 101
o JR NC, e If C=1, continue. 00 110 000
SRL m 0-{7=0 [111] I C =0, — e-2 —
PC<—PC+e
RLD A 11 101 101
I 01 101 111 JR NZ, e If Z=1, continue. 00 100 000
i {l] -
HD If z=0, — e-2 —
RRD A 11 101 101 PC—PC+e
01 100 111
> JP (HL) PC«—HL 11 101 001
JP (XD PC+«IX 11 011 101
Bit set, reset and test group 11 101 001
JP YD) PC+IY 11 119 101
BIT b,r Z<rb 11 001 011 11 101 001
01 b r DJUNZ e B«B—1 00 010 000
BIT b, (HL) Z<—(HL)b 11 011 01 If B=0, continue; — e-2 —
01 b 110 otherwise,
BIT b, (IX+d) Z<—(X+d)b 11 011 101 PC—PC+e
11 001 011
«— d —
01 b 110 Call and return group
BIT b, (Y+d) Z<(Y+d)b 11 111 101
11 001 011 CALL nn (SP—1)«PCy 11 001 101
«— d — (SP—Z)(—PCL «— n —
01 b 110 PC«-nn «— n -
SET b, r ro=1 11 001 011 CALL 66, nn If condition cc is 11 cc 100
1 b r false, continue; — n —
SET b, (HL) (HLb<1 11 001 011 otherwise same — n -
1 b 110 as CALL nn.
SET b, (IX+d) (X+dDb«1 11 001 101 RET PCL—(SP) 11 001 001
11 001 011 PCh—(SP+1)
= d = RET ¢c If condition cc is 11 ce 000
[l o 110 false, continue;
SET b, QY+d) AY+d)b<1 11 111 101 otherwise same
11 001 011 as RET.
«— d - RETI Return from 11 101 101
1 b 110 interrupt 01 001 101
RES b, m mb<«0 RETN Return from NMI. 11 101 101
01 000 101
RST p (SP—1)<—PCHx M & 111

Mnemonic gzg‘fail:gn Op-code Mnemonic gggr?acz:gn Op-code
Input and output group |ouT (M), A i (M«—A {11 010 011
1 =B
LIN A, () A«(n) [w e e o peuT (e | (C)er 11 101 101
1 i e i { 01 r 001
|IN P (O | r<(C | 11101 107 OuUT!I } (C)—(HL) 11 101 101
| | 01 r 000 B—B-1 10 100 011
| INI (HL)—(C | 11101 101 \HL<—HL_+’I
! | B—B—1 | 10 100 010 OTIR | (CY—(HL) 11 101 101
| HLHL +1 ? | | BeB—1 10 110 011
L INIR L (HL<—(® 11 101 101 | HL—HL +1
i B—B—1 10 110 010 . Repeat until B=0
i HL—HL+1 ouTD (C)=(HL 11101 101
j | Repeat until B=0 B—B—1 10 101 011
| IND | (HL+—(C) 11 101 101 HLe—HL—1
i | B—B—1 10 101 010 OTDR (C)—(HL 14,900 101
5 | HLe—HL—1 B—B—1 10 111 011
INDR KGIBIE() 11 101 101 HL—HL—1
;‘ B—B—1 10 111 010 | Repeat until B=0
HL—HL—1
| | Repeat until B=0

(Note) The meanings of symbols used in the above table are as follows.

o |Register dd, ss IRegister* pair [o]e] | Register pair pp (Register pair
000 | B 00 BC 00 BC 00 BC
007 c 01 DE 01 DE 01 DE
010 1 D 10 HL 10 HL 10 I X
013 | E 11 SP 11 AF 1 SP
00 | H
101 | L
m1 | A
rr | Register pair b Bit set ce Condition t o
00] BC 000 0 000 | NZ non zero 000 | OOH
01 | DE 001 1 007 Z zero 001 08 H
10 | Y 010 2 010 NC non carry 010 | 10H
7o SP 011 3 011 C carry 011 18H
100 4 100 PO parity odd 100 | 20H
A : AND operation 101 5 101 PE parity even 101 | 28H
v : OR operation 110 6 110 P sign positive 110 | 30H
@ : Exclusive OR operation 111 7 111 M sign negative 111 | 38H

s: 1,n, (HL), IX + d), IY + d)

CY: Carry flip-flop

(register pair)u: Upper 8 bits of register pair

m : 1, (HL), (IX + d), IY + d)
mb : Bit b or location m
(register pair): Lower 8 bits of register pair

For op-codes ADC, SUB, SBC, AND, OR, XOR and CP, the bits in [__] replace [_] in the ADD set.
For op-code DEC, [__] replaces [_] in the INC set.
Similar operations apply to op-codes of the rotate and shift group and bit set, reset and test group.

163

164

A.5 Monitor Program Assembly List

An assembly listing of the MONITOR 1Z-013A is provided on the following pages.
This assembly list was produced with the Z80 assembler contained in the floppy DOS. The meanings of
symbols in the list are as follows.

Relative address ~ Assembler message
' Mnemonic (op-code)

Relocatable ' 1
object code | Label | Operand Comment
| 1} {
[N |
TN Ik
TG DE
T D
=)
25 024R i
28 DEAR i
27 ODEAR sOREG 0ZaBH 5 MLDEST
]
H MEL.ODY START & STOR
MLDST: ENT
YR TAT A A | (] Hi.e (FRATIO
L f;' fﬁl] H
(R sl
JR ZyMLDSE
1
37 X DE . HL.
S B Dy - X Lo i CORNTO
39 0O2R7 (Y] (HLY s E
40 O2R8 [(HLY - D
41 D2B? LD i d
4 PO D
4.5 JdFR MLDSL
£ 4 H
4 MLDEF: ENT
iy .0 g BdH 3 OMODE SET (8253 0O
47 Lo (CONTFY v A 0 EOO7H
48 0ECE EOF (&)
4% DZC4 EFROBED MLIDSEL s L CEUNDGY o A i EOOEH
oo Q207 6% FET 3 TEHRD RESET

Since the starting address of Monitor 1Z-013A is set to $0000, relocatable addresses and object codes
in the assembly list can be assumed as absolute addresses and object code, respectively.

This assembly list is provided for reference, only and the Sharp Corporation can assume no responsi-
bility for answering any question about it.
Note that this monitor differs from the monitor program included in the BASIC interpreter.

g9l

01
02
[
04
e}=]
0é&
a7
08
a9
10
11
12
p B
14
15
16
17
i8
19
20
21
22
P3
24
25
)

26
27
28
29
0

L3

0000
QOO0
QOO0

790 ASSEMELER SE-7201

QOO0
QOO0
QOO0
QOO0
0000
Q000
Q003
QOO0
Q006
D006
Q009
0009
QO0C
000C
Q0O0OF
QOOF
0012
o012
0015
Q015

Q018
0018
001K
Q01K
Q01E
O0O1E
0021
0021
0024

S 0024

Q027
Q027
002A
Q02A
GO2D

OO3R
D03R

0044
0047
Q047
O04A
D046

C344A00

CIE&LO7

CHOEO?

C31809

C32009

C32409

CE3509

CZA108
C3ERDO8
CIZ20A
33604
CI7504
C3D804
CEF804
CIe805
E3C701
CZ0gns
(8]0

alu)
C33810

CEE803

37705

CIES

CHEARDZ

C3ZBEOZ

H
H
H
B
M

ONIT:
GETL:
LETNL=
NL.=
FPRNTS:
FRNTT:
FRNT*

MSG:

MSGX:

GETEY:=
BREEY
WRINF:
WRDAT
RDINF:
RDDAT:
VERFY:
MEL.DY

TIMST:

<1Z-013Ax

ENT
JF
ENT
JFE
ENT
JF
ENT
JE
ENT
JP
ENT
JF
ENT
JP
ENT
JP

ENT
JP
ENT

ENT
JF
ENT
JF
ENT
IF
ENT
JF
ENT
ap
ENT
ap
ENT
IF
ENT
JF
NOF
NOF
JF
ENT
IF
ENT
IF
ENT
JF
ENT
Ip
ENT
JF

FAGE

(MZ-700)

REV.

START
TEETL
FLTNL
PNL

PFRTS
PRRTT
PRRNT

THMSGE

PMSGX
?GET
PERE
TWRI
TWRD
TRDI
TRDD
PWRFY
FMLDY

?TMST

1038H
TTHMRD
PREL

PTEMF
MLDST

MLDSF

83.4.

01

MONITOR FROGRAM 1Z-013A

FOR FAL

g

-

-

an

-

Q4.07.83

MONITOR ON

GET LINE (END‘CR")

NEW LINE

FRINT SFACE

PRINT TAE

1 CHARACTER FRINT

1 LINE FRINT (END“ODH*

RST 3

GET KEY

GET BREAK

WRITE INFORMATION
WRITE DATA

READ INFORMATION
READ DATA
VERIFING CHMT

RST &

TIME SET

INTERRUFT ROUTINE
TIME READ

BELL ON

TEMPO SET' ¢1237)
MELODY START

MELODY STOF

L2

01 004A
02 0044
03 004A
04 004D
Q5 004F
06 QOS2
07 0055
08 0057
Q09 0059
10 OO0SB
11 O0SH
2 005D
13 0060
14 006F
15 0066
16 0068
17 Q0&R
18 DO&E
19 006E
20 006D
21 006F
22 0070
23 0070
24 0070
25 0072
28 0075
27 0078
28 007A
29 007D
30 007F
31 0082
32 0085
I3 0088
34 008A
35 008D
34 0090
37 0092
38 009D
39 0098
40 OD9R
41 O0O9E
42 O09F
3 00A2
44 00DAZ2
45 00A4
44 QOART
47 0OO0AA
48 DOAR
49 OOAD
S50 00AD
51 OQORO
D0B2
£ OORS
54 O0RY
OORE
Q0BT
OORD

=8 O00RF

80 ASSEMELER SE-7201

31F010
EDS6
CD3IEOT
CD3I20A
3019
FE20
2015

D3E1
Y1FOFF
2146B00
Q10500
EDEO
C3FOFF

D3IEQ
CZ00
00

Q&FF
21F110
CDD8OF
ZE16
CD1200
BE71
2100D8
CDDS09
218D0O3
3ECE
323810
223910
JEO4
329E11
CDBEOZ
CDOR00
11E706
DF
CD770%

FEOD

28EC
FE4A

 282E

START:

CMYO:

85:

8Tis

ST2:

£1Z-013A%

ENT
LD
M
CALL
CALL
JR
CF
JR
ENT
auT
LD
LD
LD
LDIR
JP

ENT

DEFW
DEFW
DEFE

ENT
LD
LD
CALL

CALL
LD
LD
CALL
LD
LD
LD
LD
LD
LD
CALL
CALL
.
RST
CALL
ENT
LD
LD
LD
LD
JR
ENT
CALL
LD
CAaLL

CALL
LD
INC
CF
JR

JR

FAGE 02

SF. SF
1
PMODE
TERE
NC.STO
20H
NZ,STO

(E1H) - A
DE.FFFOH
HL s $MCF
BC,OZ

FFFOH

EODZH
QOCEH
QOH

E.FFH

HL s NAME
PCLER

Ay 16H
FRNT
As71H

HL « DE0OH
#CLRB

HLs TIMIN
A,C3H
(1038H) . A
(1039H) J HL
A, 04
(TEMFW) s A
MLDSF

NL.
DE.MSG?E

Ry

?BEL

A O1H
(SWRK) s A
HL s ESOOH
(HL) s A
FDZ

L

Al 2AH
FRNT
DE.RUFER
GETL
As (DE)
DE

ODH
Z,8T1
oy #
Z,GaTo

an cam an can

an wn e

cas can an - can

an an an an an

04.07.83

STACK SET (10FOH)
IM 1 SET

8255, 8253 MODE SET
CITRE ?

KEY IS CTRL KEY
DOOOH-FFFFH 1S DRAM
TRANS. ADR.

MEMORY CHANG FROGRAM
BYTE SIZE

JUMF $FFFO
QOOOH-0OFFFH 1S DRAM

OUT (EOH) . A
JPQ000H

BUFFER CLEAR
10F1H~11FOH CLEAR

LASTER CLR.

BACK:BLUE CHA.:WRITE
COLOR ADDRESS

INTERRUFT JUMF ROUTINE

NORMAL. TEMFO
MEL.ODY STOF

¥¥ MONITOR 1Z-013A XK
CALL MGX

KEY IN SILENT
USR ROM 7
ROM CHECK

% PRINT

GET LINE WORE (11A3ZH)

JUMP

991

¥¥ ZI80 ASSEMELER SR-7201

01 00CS FEA4C

QOCHE
0OeD
QOCF
7 00D1
Q0ODE
Q0DS FESO
00D7 287C
00OD? FE4D
QODR CAABDT
QOODE FESZ
DOED CASEOF
5 OQE3 FESé
QOES CACROF
QO0EB8 FE44
DOEA CAZ90D
QOED

OOED

OOED

DOF 1

OF 1 18C8
OOF
DOF3S
OOF3
DOF3 CD3Do1
DOF6 E9
DOOF7

OOF7

alnlow
DOFT ZA9DLL
OOFA 1F
D0FR 3F
OOFC 17
18A%

QOFF
QOFF 2100F0

0104 20A7
2104 E?
0107

0107
D107
09107
G107 FEO;
D109 28A2
O10B 114701
D10E DF

10F 18%9C
111
131

CDDa04
I8FL

“£1Z-013AF PAGE OF

CF -
IR Z.L0AD
- i
IR Z4FD
e S
IR 1,56
CF g
IR Z.CMYD
CF e
IR 7,FTEST
CF M
JE 74 MCOR
P g
IF 7, SAVE
o Pl
Ip 7, VRFY
CF p-
IF Z+ DUMF
' DEFS +4
' IR sT2
i JUMF COMMAND
GO0TO: CALL HEXIY
Ip (HL)
i KEY SOUND ON OFF
5G: LD Ais { SWRE)
RRA
CCF
RLA
IR S5+2
;
i FLOFFY
H
FD= LD HL« FOOOH
FD2: LD A (HL)
OF: A
IR NZ.ST1
FD1: IR CHL)
i ERROR (LOADING)
PER: ENT
CP O2H
IR ZyST1
LD DE. MSBE1
RST 3
IR ST1
i LOAD COMMAND
LOAD: CALL PRDI
IR C» 7ER

.

04.07.83

LOAD FROGRAM

FLOFFPY ACCESS

KEY IN BELL

CHANG MEMORY

FRINTER TEST

MEMORY CORRECTION

SAVED DATA

VERIFYING DATA

DUMF DATA

NOT COMMAND

DD = SOUND WORE

CHENGE MODE

FLOFPFY I/0 CHECE

A=02H @ BREAK IN

CHECE. SUM ERROR
CALL MSGX

¥¥ 280 ASSEMELER SH-7201

G114 CDOR0OD
0119 11A009
11C DF
211D 11F110
0120 DF
2121 CDF804
0124 ZIB8E1L
D124 2A04611
0129 7C
0124 FE12
012C 3I8E1
012E E9

T D12F
012F

5 012F
O12F
012F

18 D212F

19" G12F

20 012F

21 012F
012F EZ
01730
D131
0134
D137
0138
0134 2
Q120
D13
O13D
013D
013D
213D
013D
013D FDEZ
O13F F1
2140 CD1004
147 I8CA

50 0185
Bl Q1N
82 01855

£1Z-013A% FAGE 04 04,07.83

LOAO: CALL NL

Il an cax ocan an can an caz cas

T en v cax cam s

LD DE.MSG72 5 LOADING
RST 3 i CALL MSGX
LD DE » NAME i FILE NAME
RST d i CALL MSGX
CALL ?RDD
JR C,7ER
LD HL « { EXADR) i EXECUTE ADDRESS
LD AsH
CF 12H i EXECUTE CHECE
JR C.LO0AD-2
JF {HL)

GETLINE AND BREAE IN CHECK

EXIT BREAE IN THEN JUMF (ST1)
ACC=TOF OF LINE DATA
GETL® ENT
EX {8F) 5 HL
FOF BC i STACE LOAD
LD DE ., BUFER i MONITOR GETLINE RUFF
CAaLL GETL
LD AL {DE)
CP 1EH i BREAE CODE
JR Z,L.0AD-2 i JFP Z.STL
JF (HL)
ASCII TO HEX CONVERT
INFUT (DE)=ASCII
CY=1 THEN JUMF (ST1)
EXIY: ENT

EX (SF) . IY
FOF AF
CALL HLHEX
IR C.LDAD-2 i JF C.8T1
JF ¢ I

MSGE1: ENT

e ax cmz ma can s cms cas an an mm

DEFM “CHECE. SUM ER. ~

DEFH <DH

FLOTTER FRINTER TEST COMMAND
(DFG23)
Z=CONTROL COMMANDS GROUF
C=FEN CHENGE
G=GRAFH MODE
=80 CHA. IN 1 LINE
L=40 CHA. IN | LINE
T=FPLOTTER TEST
IN (DE)=FRINT DATA

L9l

01
02
0=
04
[a}]

07

15

29

DE)

o7

L2

0155
0155
0155
0156
0158
Q15A
Q1SR
Q15C
Q15E
0140
0162
0164
0166
0148
016A
01&4C
016E
Q170
Q170
0173
0176
0174

3 0179

Q0178
017E
017E
0180
Q180
0182
0184
0184
0186
0189
Q18R
0188

018D
018F
018F
018F
018F
018F
018F
O18F
018F
0191
0192
0195
0194
0198
Q194
019C
Q19E

» O1A1

01A2
01A4
QLAS
0O1AS
01AS
O1AS
O1AS

280 ASSEMBLER SB-7201

1A

FEZ24
2016
13

1A

FE4C
2816
FES3
2817
FE4Z
2823
FE47
2818
FES4
2810

CDASO1
CZADOO

117004
18FS

11DS03
18F0O

3EO4
1802

IEOZ
CDBFO1
18CF

3EL1D

18F7

QEOQ
47
CDB&O1
78
DIFF
3EBO
DIFE
QEO1L
CDE&O1
AF
DIFE
ce

H
PTES

FTST

[~ e can ue can cawn wn am

FRN

€1Z-013A> PAGE 05
T: ENT
LD Ay (DE)
CcF g
IR NZ,PTST1
0 INC DE
LD A, (DE)
cF e
IR Zy.LFT
CF g
JR ZyuuLPT
CcF e
IR Z.FEN
CF G
IR Z,FLOT
&P gl
IR Z,PTRN
1: CALL FPMSG
ap ST1
: LD DE,LLFT
IR PTST1
T: LD DE,SLPT
IR FTST1
t LD Ay O4H
IR FLOT+2
i kD A, O2H
CALL LPRNT
IR FTSTO
LD As 1DH
IR FLOT+2

1CHA. FRINT TO $LFT

IN: ACC FRINT DATA

T: LD C,0
LD By A
caLL RDA
LD AsB
ouTt {FFH) A
LD AsBOH
ouT {(FEH) . A
LD C,0O1H
CALL RDA
XOR A
ouT (FEH): A
RET

$LPT MSG.

IN: DE DATA LOW ADR.
ODH MSG. END

an an - -

an . - - -

- - ae

.

04.07.83

80 IN 1 LINE
80 IN 1LINE
PEN CHENGE
GRAFH MODE

TEST

FLOT MESSAGE

01-09-09-0B-0D

01-09-09-09-0D

TEST PATTERN

GRAFH CODE

1 CHENGE CODE (TEXT MO

RDA TEST
FRINT DATA STORE

DATA OUT
RDF HIGH
RDA TEST

RDF LOW

01
02
(3
04
0%
(a1}
07
08

10
11
12
13
14
15
14
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

44
4%
46
47
48
49
=0
=31
52
53
54
55
=1
57
=8
o9
18]

¥

01A%
D1AS
01A7
01A8
01A%
Q1AC
01AD
01AE
01BO
Q1R2
O1E3
Q1R4
01BS
01B&
01B&
01B&
Q1R4
01B6
Q1B&
01EB6
0188
01BRA
O1BE
0O1RC
O1HF
01c1
01C4
01C7
01C7
01C7
01C7
01c7
01C7
01C7
01C7
01c7
01C7
01C7
01C7
oics
01Cc9
01CA
21CC
01CF
21D1
01D2
01D4
01D6
01D8
01DA
21DC
0O1DE
D1ED
O1EZ2
O1E4
D1E6
D1ESQ
O1EA
O1EC
O1EF

780 ASSEMBLER SB-7201

b=
CS
Fo
1A
CDBFO1
1A
13
FEOD
20F6
.
C1
D1
co

DEFE
E&OD
B9

ca
CD1EOO
20F3S
Z1FO10
C3ADOO

(i
DS
ES
3EO2
I2A011
0601
1A
FEOD
283k
FEC8B
2837
FECF
2827
FEZ2D
2823
FEZE
2827
EED7
2823
FE23
2146C02
2004

FMSG: PUSH
PUSH
FUSH
FMSG1: LD
CALL
LD
INC
cP
IR
FOP
FOP
FOP
RET

T s wn cew an s can

DA? IN
AND
CF
RET
CALL
JR
LD
JP

ORG 01C7H

MELODY

P

<1Z-013Ax

RDA CHECK

PAGE 06& 04.07.83
DE

EC

AF)

A, (DE) ; ACC=DATA
LFRNT

Ay (DE)

DE

ODH i END 7
NZ,FMSG1

AF

EC

DE

BREEY IN TO MONITOR RETURN
IN: C RDA CODE

Al (FE)
ODH

c

Z
BRKEY
NZ,RDA
SF. SP
ST1

DE=DATA LOW ADR.
EXIT CF=1 BREAE

CF=0 Ok

?MLDY: ENT
FUSH BC
FUSH DE
PUSH HL
LD A\ O2H
LD (OCTV) s A
LD B.O1

MLD1: LD As (DE)
EP ODH i CR
JR Z,MLD4
CF C8H i END MARK
JR Z,MLD4
CP CFH i UNDER OCTAVE
JR ZsMLD2
CF 2DH p =
JR Z,MLD2
CP ZEBEH § |
JR ZsMLDE
CF D7H i UFPER OCTAVE
JR ZsMLD=E
CF 23H 5 "#" HANON
LD HL.s MTEL
JR NZ, +6

891

01
02
03
04
Q5
Q4
07
08
09
10
14

)
2

13

15

Xk

QO1F1
Q1F 4
O1FS
Q1F8
O1FA
QO1FD
O1FF
0202
0203
0205
0207
020A
020R
Q20D
0Z20F
0211
0214
0215
0218
0219
021C
021C
021C
021C
021C
021C
021C
021C
021D
QO21F
0220
0221
0223
0224

0225

O22F 2

Z80 ASSEMBLER SE-

218402
13
Cpicoz
38D7
conesonz
3815
CDAROZ
41
i8CcC
3EQOF
32A011
1=
18C4
IEOL
18F&6
cDCaonz
FS
CDBREOZ
Fl
CI9R0S

CS
0608

201

MLDZ2:

MLDZ:

MLD4:
MLDS:

(O an an can an s an

ONF1:

ONF2:

<1Z-013A>

LD
INC
CAL.L
JR
CaLL
JR
CALL
LD
JR
LD
LD
INC
JR
LD
JR
CALL
FUSH
CALL
FOF
JP

FAGE 07

HL « M#TEL

DE

ONFU H
CsMLD1
RYTHM

CyMLDS
MLDST i
E.C

MLD1

Ay +3

(OCTV) - A

DE

MLD1

Asl

MLDZ2+2

RYTHHM

AF

MLDSP

AF

RET3

ONFU TO RATIO CONY

EXIT (RATIO)=RATIO VALUE
C=0ONTYDXTEMFO

ENT
FUSH
LD
LD
CP
IR
INC
INC
INC
DJINZ
SCF
INC
FOF
RET
INC
FUSH
LD
INC
LD
EX
LD
OR
IR
LD
DEC
JR
ADD
JR
LD
LD
L.D
DEC
FOP
INC

EBC

E.8

A« {DE)
(HL)
Z, ONF2
HL

HL

HL

g

DE
BC

HL.

DE

Es (HL)

HL

D (HL)

DE. HL

AsH

A

Zy+11

A, (OCTV) i
A

Z,+5

HL» HL

-4

(RATIO) JHL i
HL+ OCTY

(HL) » 2

HL

DE

DE

04.07.83

ONTYO SET

MELODY START

11A0H OCTAVE WORE

11A1H ONFU RATIO

L2

0244

Q248
024C
024E
Q250
Q252
Q253
Q253
0256
0257
0259
0254

Z890 ASSEMELER SB-7201

20
21
bl
22
24
25

28

0260
0263
02464
0265
Q246646
02468
0269
026A
O24E
026C
Q2460
026C
02&6C
026D
026F

0270

0272
0273

275
0276
0z278
0279

10FD

47
B60%
41
ECO4
42
6404

DOO0

43
CFo7
44
FS04
45
IE06
46
DAOS
47
ET0S

41

ONPZ:

i
MTEL:

M#TEL 2

<1Z-013A*

LD
L.D
AND
CF
JR
LD
IR
INC
LD
AND
LD
LD
ADD
LD
LD
LD
LD
XOR
ADD
DJINZ
FOF
LD
XOR
RET

ENT

DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFER
DEFW
DEFE
DEFW
DEFE
DEFW
ENT

DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE

FAGE 08

As (DE)
E. A
FOH
IOH
Z,+5
Ay tHL)
+7

DE

A!E‘
OFH
(HL) - A
HL, OFTEL
AsL
L.A

C. (HL)
Ay (TEMFW)
E. A

A

ALC

=,

BC

Crr

a

43H
0846H
44H
075FH
45H
0691H
46H
06ZEEH
47H
0586H
41H
04ECH
42H
0464H
S2H

O

473H
O7CFH
44H
DEFSH
45H
D&633H
46H
OSDAH
47H
DTETH
41H
O4A5H

a

ax

-

04.07.83

ONTYO 7

HL=0NTYO

HL=0ONTYOD

R

#C

#D

#E

#F

#6

#A

#E

#R

691

01
02
03
04
05
04
07
08
a9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
28
24
27
28
29
30
31
32
33
34

]

I6
37
28
39
40
41

4z
4%
a4
45
44
47
48
49
50
51

52
53
54
s
=7
=58
59
AHO

Kk

029A
029C
o Je.ird
029D
029E
QRB9F
O2A0
0271
02A2
Q2AF
0274
Q2AS
02A6
02A4
0246
D2hé&
02A6
D2Ab
02A6
Q2A7
0OZA8
Q249
02AA
O2ARB
0O2AR
QZAE
0O2AR
O2AR
O2AR
QZAB
0ZAR
Q2AR
02AE
Q2AF
02RO
Q2B2
0OZB3
D284
0287
0288
0289
OZ2ER
QO2EC
0OZEE
0O2BE
OBE
0O2C0
02C3
02C4
02C7
02C8
QO2C8
0z2C8
02C8
02C8
02C8
02C8
02Cc8
02C8
0208

280 ASSEMELER SB-7201

QOO0

o1
0z
0z
04
06
08
oC
10
18

20

13
13
13
13

ce

26A111
7C

B7
280C
DS

EER
2104E0
73

72
SEO1
D1
1806

IEZS
3207E0
AF
JZ20BEO
ce

2L00EDQ

<1Z-013A> PAGE 09
DEFW]

OFTBL: ENT
DEFE 1
DEFE 2
DEFE 3
DEFE 4
DEFE 6
DEFE 8

DEFB OCH

DEFE 10H

DEFE 18H

DEFE 20H

INCREMENT DE REG.

H
H
H
H
H

4DE: ENT
INC DE
INC DE
INC DE
INC DE
RET

10RG O2AEH 3 MLDST

MELODY START % STOF

MLDST: ENT

LD HL. (RATIO)
LD AxH
OR A
JR Z+MLDSF
PUSH DE
EX DE s HL
LD HL ; CONTO
LD (HL) - E
LD (HL) D
LD Asl
FOF DE
JR MLDS1

b

MLDSF: ENT
LD As 36H
LD (CONTF) » A
XOR A

MLDS1: LD (SUNDG) « A
RET

H

H RHYTHM

H

i B=COUNT DATA

i IN

H EXIT CF=1 BREAK

5 CF=0 Ok

RYTHM: ENT
L.D HL s EEYFA

04.07.83

MODE SET (82573
EOO7H

EOQOBH
TEHRO RESET

EQOOH

co

01
a2
03
04
0=
[8]-}
Q7
08
09
10
11
12
1=
14
15
14
17
18
19
20
21

22

A

25

ped-]
27
28
29
30
31
32
33
34
34
37
8
9
40
41
42
473

45

¥

0O2CH
Q2CD
0O2CE
O2CF
02D1
02D
02D4
02DS
02D8
02D9
QZDE
QZ2DE
02DF
02E1
Q2E3
OZE4
0O2ET
O2ES
Q2ES
Q2ES
OZES
QZES
02ES
Q2ES
02E6
Q2E7
02E9
Q2EA
0O2EC
QZED
02F0
Q2F 1
0O2F2
02F3
O2F3
Q2F3
Q2F=
O2FZ
Q2F3
0O2F3
0O2F3
0O2F3
D2F3
O2F &6
0ZF9
02FA
QZFB
02FC
QZFD
0O2FF
0Z00

0302

780 ASSEMBLER SB-7201

z6F8
23
7E
Es81
2002
37

co
SAOGED
oF
38FA
SA0BED
oF
S0FA
10F2
AF

co

FS

(03=]
E&OF
47
IEOQ8
0
329E11
C1

Fd

co

217311
IA7211
a5

) an e an an an

TEMF:

- MANG:

“1Z-Q13A%

LD
INC
LD
AND
JR
SCF
RET
LD
RRCA
JR
LD
RRCA
JR
DJINZ
XOR
RET

TEMFO SET

FAGE 10 04.07.83
(HL) + F8H

HL

Ay (HL)

81H 3 BREAE IN CHECE

NZ,+4

Ay { TEMF) EQO8H

TEMFO OUT

-

C,—4
A: (TEMF)

NC.—4
=32

A

ACC=VALUE (1-7)

ENT
FUSH
FUSH
AND
LD
LD
SUE
LD
FOF
FOF
RET

AF

BC

OFH

By A

A8

E

{ TEMFW) s A
EC

AF

CRT MANAGMENT

EXIT

HL.: DSFXY H=Ya.L=X
DE:MANG ADR. (ON DSFXY)

A IMANG DATA
CY:MANG=1

ENT
LD
LD
ADD
LD
LD
INC

OR
RR
RRCA
EX
LD
RET

ORG O3I08H

CRT MANG.
DSFXY+1

HL » MANG
Ax (1172H)
AsL

LaA

Ay (HL)

HL.

(HL)

(HL)

{HL)

DE,HL
HL, (DSFXY)

FOINTER

0L1L

01
a2
03
04
0%

07
08
10

13

¥¥ 780 ASSEMBLER SE-~-7201

0308
G308
0308
Q308

04 050

F3

cs

DS

ES
I29E11
JEFO
FR9C11
21C0A8
AF
EDS2

ES

00

EB
2107E0
QI20 34674

I 0322 36BO

0324 2H
QZ25 73
0324 72
2B
36H0A
T600
23
23
T480
2B
4E
ZE
I BA
20FE
29
EBE
20F7
2R
fals]
00

w wn can cam am aw

L]
?TMST:

TTMSL:

PTHMS2:

<1Z-013Ax

TIME SET

ACC=0 :
=1
DE=SEC:

ENT
DI
FUSH
FUSH
FUSH
LD
LD
LD
LD
XOR
SEC

FUSH
NOF
EX
LD
LD
LD
DEC
LD
LD
DEC
LD
LD
INC
INC
LD
DEC
LD
LD
CF
JR
LD
CF
JR
DEC
NOF
NOF
NOF
LD
LD
INC
FOF
LD
LD
CF
JR
LD
CF
JR
FOF
FOF
FOF
EI1
RET

FAGE 11

AM
FM
EINARY

EBC

DE

HL
(AMPM) » A
A, FOH
{TIMFG) s A
HL.» ABCOH
a

HL..DE

HL

DE s HL

HL . CONTF
CHL) » 74H
(HL) 2 BOH
HL
(HL) - E
(HL) «D
HL
{HL) « OAH
(HL) -0
HL

HL
(HL) . 80H
HL

C, (HL)
As (HL)

D

NZ . ?TMS1
A C

E
NZ.?TMS1
HL

(HL) s FEH
{HL) « 3CH
HL.

DE

C, (HL)
A, (HL)

D
NZ,?THMSZ2
AsC

E
NZ,?TME2
HL

DE

BOC

04.07.83

AMFM DATA

TIME FLAG
12H

COUNT DATA = 1ZH-IN DA

EQO7H

CONTZ

CONT1

CONTF

CONTZ2

1SEC

a1l
o2
0=
a4
05
[2°)
Q7
08
09
10
11
12

1=
14

15

17

25

L8]

0352
0352
0352
0352
0352
0352
0353
0355
0356
0356
0I56
3564
0358
0358
0358
0358
0358
0358
0358
0358
0358
0358
0359
O35C
OZSE
QZSF
0360
D361
0362

Z80 ASSEMELER SEH-7201

D7
413=0
aD

ES
2107E0
34680
2R

F3

SE

=1

FE

7H

B2
280E
AF
21C0A8
EDS2
3810
EER
JAYB11
El

()
11C0A8
IAFBELL
EEO1
El

ce

F3
2106E0
7E

2F

HE

E

2F

e can can aw

J

PRELD: ENT
DEFE
DEFM
DEFE

DEFS
ORG OZ58H

H
i
H
H
H
H
H
H
?

TMRD: ENT
FUSH
LD
LD
DEC
DI
LD
LD
El
LD
OR
JR
XOR
LD
SEC
JR
EX
LD
FOF
RET
PTMR1: LD
LD
XOR
FOF
RET
?TMR2: DI
L.D
LD
CPL
LD
LD
CPL
LD
EX
INC
JR

TIMIN: ENT

<1Z-013A%

BELL DATA

TIME READ

FAGE 12 04.07.83
D7H

A0 T

ODH

+2

EXIT ACC=0 :AM

=1 FM

DE=SEC. EINARY

HL
HL » CONTF
(HL) 2 BOH
HL i CONT2

E» (HL)
D, (HL)

A E

D

Zy PTMR1

A

HL , AGCOH
HL.,DE

C. ?TMR2

DE s HL

Ay CAMPHM)
HL

DE. ABCOH i 12H
As CAMPM)

1

HL

HL.» CONTZ2
Ay (HL)

Eaf
Aa (HL)

DsA

DE
PTMR1+3

TIME INTERRUFT

LL1L

¥x 780 ASSEMBLER SB-7201

01 OF8D FS

02 O38E CS5

0F OF8F DS

04 Q390 ES

0% 0Z91 219B11
046 0OFP4 TE

07 0OE95 EEO1
08 0E97 F7

09 0398 2107E0Q
10 O3Z9R Z480
11 OF9D 2R

12 QZ9E ES

13 O3F9F SE

14 OZA0 54

15 03A1 21COAB
146 0ZA4 19

17 QO3IAS 2R

18 O03A4 2R

19 03A7 ER

20 03A8 E1

21 03A? 73

22 03AA 72

27 0ZAR EIl

24 03ZAC D1

25 03ZAD C1

26 03AE F1

27 O3AF FB

28 Q3BO C9

29 03B1

F0 0O3BR1

31 O3E1

32 03B1

33 03B1

34 0O3B1

35 03ZB1 CDR009
36 03R4 T7E

37 O3BS CDC303
38 03ZB8 7E

39 03ZB9? C9?

40 OIBA

41 OIBA

42 O3BA

4= O3BA

44 O3ZBA

4% OZBA

44 O3ZBA

47 O3BA

48 0O3ZBA 7C

49 0O3BR CDCI0OZX
20 OZBE 7D

ES
OF

<1Z-013A* PAGE 13
FUSH AF
FUSH EC
FUSH DE
PUSH HE,
LD HL s AMFM
LD Ay (HL)
X0OR 1
LD (HL) s A
LD HL s CONTF
LD (HL) , 80H
DEC HL
FUSH HL
LD Es (HL)
LD D, {HL)
LD HL.. ABCOH
ADD HL . DE
DEC HL
DEC HL
EX DE,HL
FOF HL
LD (HL) ,E
LD (HL),D
FOF HL.
FOF DE
FOF BC
FaF AF
EI
RET

SFACE FRINT AND DISF ACC

INFUT:HL=DISF. ADR.

) en w mn e e

FHEX: ENT
CALL PFRTS
LD Ay (HL)
cAaLL FPRTHX
LD Ay (HL)
RET

ORG OZBAH

(ASCII FRINT) FOR HL

an an mn s mw can am

FRTHL: ENT
LD AsH
CALL FPRTHX
LD AsL
IR FRTHX
DEFS +2

ORG O3ZCEH: PRTHX

(ASCII PRINT) FOR ACC

T3 oer an an can

RTHX: ENT
FUSH AF
RRCA

5

04.07.83

CONTZ2

SP.PRINT

DSF OF ACC (ASCII)

01
02
03
04
05
alc)
07
08
09
10
11
12
13
14
15
16
17

22
23
24
25
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
4%
44
45
46
47
48
49
S0
=1
52
53
54

55

¥k

O3CT
Q3Cs
03C7
03C8

ICE
QICE
O3CF
QO3DZ
03DZ
OZDE
03D%
QDS
Q3DS
0IDS
OIDS

IDS
03D&

QO3IF0
QEF1

S6 C

E57
=8
59
&0

OZFE

Z80 ASSEMBLER SE-7201

OF
OF
OF
CDDAOZE
CD1200
F1
CDDAOE
C31200

o1
09
09
09
oD

E&OF
FEOA
3802
C&607

Co630
ce

D&ZO
D8
FEDA
3F
DO
D&G7
FEL10
IF
D8
FEDA
ce

18EA

<1Z-013A>* FAGE 14

RRCA

RRCA

RRCA

CALL ASC

CALL FRNT

FOP AF

CALL ASC

JP FRNT

80 CHA. 1 LINE CODE (DATAR)

) e can can e e

LFT: ENT
DEFE O1H H
DEFE QO9H
DEFE O9H
DEFE QO9H
DEFE ODH

an an

ORG OIDAH;ASC

HEXADECIMAL TO ASCII
IN : ACC (D3-D0)=HEXADECIMAL
EXIT: ACC = ASCII

Do e an an s

SC: ENT
AND OFH
CF OAH
JR C+NOADD
ADD As7

NOADD: ENT
ADD As JOH
RET

ASCII TO HEXADECIMAL
IN = ACC ASCII

3
&
g ' =
: EXIT : ACC = HEXADECIMAL
§ CY = 1 ERROR
HEXJ: ENT

SUR I0H

RET c

cF OAH

CCF

RET NC

SUB 7

cP 10H

CCF

RET c

cP OAH

RET

DEFS +4
$0RG OZF9HS HEX
HEX: ENT

IR HEXJ

04.07.83

TEXT MODE

cLl

01
Q2
0%
04
0%
Qb
07
08
09
10
It
12
i3
14
15
146
17
18
19
20
21
22

~

23
24
25
28
27
28
29
30

X¥

OIFE
QIFER
OIFR
OIFE
OIFD
QIFD
0401
0402
0402
Q404
0408
O40R
040C
040C
040C
Q410
0410
0410
0410
Q410
0410
0410
0410
0414
0410
0410
0411
0414
0416
0417
O41A
041C
041D
QO41E
041F
O41F
0O41F
Q41F
QO41F
O41F
O41F
Q41F
O41F
O41F

5 041F

O41F
041F
0420

0421

Z80 ASSEMELER SE-7201

<1Z-013A%

FAGE 15

0427

i FRASS FLAY MESSAGE
MSG#1: ENT
720 DEFW 207FH
MEGHZ: ENT
S04C4 159 DEFM “PLAY ~
oD DEFE ODH
MSGHE: ENT
7FR0 DEFW 207FH
S5245434F DEFM “RECORD. *
S52442E
oD DEFE ODH
H
H
DEFS +4
10RG 0410HIHLHEX
- i
i .
i 4 ASCII TO (HL)
H
i IN DE=DATA LOW ADR.
i EXIT CF=0 & Ok
H =1 0OUT
]
HLHEX: ENT
D= FUSH DE
CD1F04 CALL 2HEX
3807 JR C.+9
&7 LD HsA
CDI1FO4 CALL ZHEX
3801 JR Cy+3
&F LD LsA
D1 HL1: FOP DE
ce RET
$0RG O41FH: 2HEX
§
i 2 ASCII TO (ACC)
H
H IN DE=DATA LOW ADR.
H EXIT CF=0 : Ok
H =1 & 0OUT
.
2HEX: ENT
E5 FUSH EC
1A LD Ay { DE)
13 INC DE
CALL HEX
JR Ca+15
aF RRCA
RRCA
RRCA
RRCA
LD Csfr
L.D Aa (DE)
ING BE
CAL.L HEX
JR Ca+3

04.07.83

FRESS RECORD

¥ ¥

0433
0474

L 0435

043564
0436
D436
Q436
Q438
04736
D437

0438

2 D439
2 043A

Q43C
O43E
0441
0444
0447
0447

Q44C 7

044D
0O44F

3 0451

0454
0455
0458
0459
Q45C
045D
D45E
0461
04464
0467
04467
0467
046K
D46F
Q470
Q470
0470
0470

2 D470
T 0470

0470
0471
0472

0475
Q475
047%
0475

4 04773

0475
0475

7 0475

0475
D475
0476

7890 ASSEMBLER SRE-7201 <1Z-Q13A> FAGE 1&
Bl (a] C
(05 | 2HE1: FOF RC
E? RET
H
i WRITE INFORMATION
{4
TWRI: ENT
F3 DI
DS FUSH DE
Cs FUSH EC
ES FUSH HL
16D7 LD D.D7H
IECE LD E.CCH
21F010 LD HL . IBUFE
018000 LD BC.80H
CD1AD7 WRI1: CALL CESUM
CD9F D& CAL.L MOTOR
818 JR CaWRIZ
TH LD AE
FEGE: CF CCH
200D JR NZyWRIZ2
CDOROO CALL NL.
DS FUSH DE
116704 LD DE.MSG#7
DF RST 3
11F110 LD DE . NAME
DF RST 3
D1 FOF DE
CD7A07 WRIZ2: CALL GAF
CDBAO4 CALL WTAFE
C3I5405 WRIZ: JFR RET2
MSG#7: ENT
S57524954 DEFM “WRITING
4P4E4720
a0 DEFEH ODH
L
i
H 40 CHA.
LLFT: ENT
o1 DEFE O1H
a9 DEFE O9H
09 DEFE O9H
DEFE OBH
DEFE ODH
i0RG 0475H
H
i WRITE DATA
H i 0Ok
H =1 & RREAK
.
TWRD s ENT
DI
DS FUSH DE

04.07.83

W
g

10FOH

WRITE BYTE SIZE

CHECE:
MOTOR

SuUM
On

WRITING

CALL MSGX
FILE NAME
CALL MSGX

IN 1 LINE CODE (DATA)

TEXT MODE

eLl

¥k Z80D ASSEMELER SB-7201 <1Z-013ZAF FPAGE 17 04,07 .83 ¥¥ Z80 ASSEMELER SH- <1Z-013A> FAGE 18 04.07.8%
1 0477 C5 FUSH RBC ©1 04DF C1 FOF EC
02 0478 ES FUSH HL 02 D4D4 D1 FOF DE
% 0479 146D7 b D.D7H HE " 03 04D5 C? RET
04 047B 1ESES LD E.S3H § a5 04 04D& H
5 047D ED4ABOZ11 LD BC. (SIZE) i WRITE DATA BYTE SIZE 05 04Dé §
Db 0481 2A0411 LD HL« {DTADR) i WRITE DATA ADDRESS D& 04D §
w7 0484 78 LD AR 07 04D6 H
08 048% Bl ORrR C 08 04D& H
09 0486 284A IR Z.RET1L 0% 04D8 ORG 04D8BH
18EBA JR WRI1 10 04D8 H
H 11 04D8 H
H 12 04D8 H FREAD INFORMATION (FROM $CHMT)
H TAFE WRITE I 04D8 i
H 14 04D8 H EXIT ACC=0 @ 0OK CF=D
H RC=BYTE SIZE 15 04D8 H =1 * ER CF=1
H HL=DATA LOW ADR. 14 04D8 H =2 @ BREAK CF=1
3 17 ©4D8B H
H EXIT CF=0Q & 0k 18 04D8 PRDI: ENT
H] =1 i EREAEK 19 04D8 FZ DI
] 20 04D? DS FUSH DE
DS WTAFE: FUSH DE 21 04DA CT FUSH EC
{ 5= FUSH BC 22 04DE ES FUSH HL.
ES FUSH HL 23 04DC 16D2 LD D.D2H H
1602 () D, 2 24 0O4DE 1ECC LD E.CCH H
3EF8 LD A FBH 25 O4E0Q 018000 LD EC,80H
ZRO0ED LD {(EEYFA) s A 3 EODOH 26 Q04EZ 21F010 LD HL s IBUFE
7= WTAFL1: LD Ax (HL) 27 04Eé6 RD1: ENT
G495 CD&TOT CALL WEBYTE i 1 BYTE WRITE 28 04E& CDIFO& CALL MOTOR
0498 TAOIED LD As (EEYFR) 3 EQOILH 29 04E? DA7205 JF CyRTF6
049 E&81 AND 81H i SHIFT % EBREAK 0 0D4EC CDSRO& CALL TMARE
049D CZAS504 JF NZ,WTAF2 31 O4EF DA7205 JRE C.RTF6&
O4A0 02 LD Al O2H i BREAE IN CODE 2 04F2 CDOEOS CALL RTAPE
G4A2 = SCF I3 04F5 C3IS40% JP RTF4
D443 182D JR WTAFS 34 04F8 H
i O4a5 23 WTAF2: INC HL. 35 04F8 H
04446 OB DEC EC Z4 04F8 H
044a7 78 LD A B I7 04F8 sORG 04FBH
0448 Bl OR c 8 04F8 H
04A7 C29404 JF NZ s WTAF1 39 04F8 H
40 044C 2649711 LD HL.y ¢ SUMDT) i SUM DATA SET 40 04F8 H READ DATA (FROM $CMT)
41 044AF 7C LD AsH 41 04FB H
42 D4BD CDATOTF CALL WBYTE 42 04F8 H EXIT SAME UF
43 04B3Z 7D LD AL I 04F8 H
44 0O4B4 CD&T70O7 CALL WRYTE Q4F8 PRDD:= ENT
4% 04E7 CDLIADA CALL L.ONG 04F8 F3 DI
4dh O4BA LG DEC D 04F9 FUSH DE
47 O4BR C2C204 JFP NZy+7 O4FA FUSH EC
48 04RE BT ar A Q4FB FPUSH HL
49 04EF C3D204 JF WTAFZ D4FC LD D.DZ2H H
S0 0402 0600 LD R, QO4FE - LD E, S3H H
o} CDO10A CALL SHORT 0500 ED4ROZ11 LD BC. (SIZE)
05 DEC B 0504 200411 LD HLa { DTADR)
C2C404 JF NZ, -4 0507 78 LD A B
E1l FOF HL 0508 H1 OR E
{2 § FOF EBC 0509 CAS405 JFP Z,RTF4
CcS FUSH BC 1808 JR RD1
ki ES FUSH HL. H
58 04CF CE9404 JF WTAF1 H
59 04D2 WTAFZ: i H READ TAFE
& 3402 E1L RET1: FOF HL QSOE H

vl

01
02

¥% 780 ASSEMELER SR-7201

OS0E
Q0S0OE

03 0S0E
04 OS0E
05 QSE0E
D& OE0E
07 0S0E
08 0S0E
09 0S0E
10 OS0F
11 0510
12 0511
13 0513
14 0513
15 0516
146 0519
17 0519
18 051C
19 0S51E
20 0521
21 0522
22 0524
2T 0ER7
24 03528
25 0528
26 05ZE
27 052F
28 0530
29 0531
30 0532
31 0532
32 0535
I3 0TE7
34 0538
&5 0559
36 0S3EA
37 0S53R
38 053C
39 OS3E
40 0541
Q544
2 0546
: 0547
0540
0540
054D
O54F
OS50
O5E1

STOOS5E

0556

OEST

O5EA

DasE

QOSSR

DS
Co
ES
2602

DI101ED
1102EQ

CDhO106
854
CD4A0A
1A
E&20
CA190%
4
210000
229711
El

Ci

[n=]

ES

CD24046
387E
77

23

[a):]

78

Bl
20F4
2A9711
CD2406
z82C
SF
CD2404
3826
ED
2016
7H

BC

2012

AF

El
Cc1
D1
CDOOOT

«1Z-013A» PAGE 19
H IN BC=SIZE
H DE=L0OAD ADR.
§ EXIT ACC=0Q : 0K CF=0
] =1 ¢ ER =1
H =2 ! BREAK=1
.
RTAFE: ENT
FUSH DE
PUSH BC
FUSH HL
LD Ha 2 5
RTF1: ENT
LD BC.EEYFE
LD DE.CSTR
RTR2: ENT
CALL EDGE H
JR C.RTFé&
CALL DLYZ H
LD As (DE) H
AND 20H
JP Z.RTPZ
LD DsH
LD HL.s O
LD {SUMDT) s HL
FOF HL H
FOP BC
FUSH BC
FUSH HL
RTF3: ENT
CALL REBYTE H
JR C«RTF&
LD (HL) <A
INC HL
DEC BC
LD AsE
OR c
JR NZ 4 RTFZ
LD HL.» { SUMDT) H
CALL REYTE H
JR CsRTR&
LD EsA
CALL REBYTE H
JR C:RTF6
CF L
JR NZ.RTFS
LD AE
CF H
JR NZsRTFS
RTF8: ENT
XOR A
RTF4: ENT
RETZ2: ENT
FOF HL
FOF BC
FOF DE
CAL.L MSTOF
FUSH AF
LD A {TIMFG) H
Ccr FOH

04.07.83

TWICE WRITE

120 EDGE DETECT

CALL DLYZ2X3I
DATA (1EIT) READ

1BYTE READ

CHECE. SUM
CHECE SUM DATA

CHECE SUM DATA

INT. CHECE

ok

0560
0562
0563
05464
0565
0565
0S6%
0564
0568
0569
056
QS6E
0OS6E
QS70
0572
Q572
0574
0574
0575
0577
0577
AS77
0577
0577
0577
0578
0578
0570
057D
QS7E
0S7E
QS7E
0S7E
QS7E
0S7E
QS7E
0581
0584
0586
0587
0587

2 0587

0587
0587
0587
0588
0588
0588
0=88
0588
0588
0588
0588
0588
0588
0588
0=89
O58A
058R
0580

Z80 ASSEMBLER SE-7201

2001
FH
Bl
ce

15
2806
62
CDEZOF
18AS

3EO1
1802

JEOZ2

37
18DD

DS
115203
F7
D1
ce

CDFFOQ%9
CDCAO8
FEFOQ
ce

F3
D5
(=]
ES
ED4ROZ211

«1Z-013Ax PAGE 20 04.07.83
JR NZ,+3
El
POF AF
RET
L]
RTPS: ENT
DEC D
JR Z,RTFP7
LD HsD
CALL GAFCE
JR RTF1
RTP7: ENT
LD Asl
JR RTP?
RTF&: ENT
LD A2
RTF9: ENT
SCF
JR RTF4
H
H
§ BELL
L]
TBEL: ENT
FUSH DE
LD DE. 7BELD
RST 6 i CALL MELDY
FOF DE
RET

FLASING AND KEYIN
EXIT:ACC INFUT KEY DATA(DSF.CODE)
H=FOH THEN NO KEYIN(Z FLG.)

T oas we e

LEEY: ENT
CALL ?FLAS
CALL ?KEY

P FOH
RET

3

H

;

i DEFS +1

ORG 0S88H

VERIFY (FROM $CMT)-

A% an can aw e an can an caw

EXIT ACC =0 : OK CF=0
=1 3 ER CF=1
=2 : BREAK CF=1
PVRFY: ENT
DI
FUSH DE
FUSH EC
FUSH HL
LD BC (SIZE)

GLl

01
o2
03
04
05
08
07
08
09
10
11
12
13
14
15
14
17
18
19
20
21
22
23
24

25

24
27
28
29
=0
31

I3
4

[RERRY
o

36
37
38
39
40
41
42
4%
44
45
44
47
43
49
50
=1
52
=3
54
56
=7
=g
59
&0

L2

0590
(8=
0595
0597
098
Q=599
Q=R
OS9E
0O5A1
QSRS
0OSA6
Q5A8
OSAR
QSARD
OSAD
OSAD
OSAD
OSAD
0OSAD
OSAD
OSAD
O%AD
OSAD
OSAD
0OSAD
05AD
OSAD
QSAE
OSAF
QSRO
osSB2
OSR2
OSES
ok <1
0OSBB
OSER
OSBE
O5C1
0sc2
Q5C4
QsC7
0=C8
0SC?
OSCA
OSCE
OECC
osCe
QSCF
0=D1

QZD2 2

05D4
OSEDS
O=D6
0ED7
OSDB
QEDA
OSDD
OSED
0SE1L
OSES

Z80 ASSEMELER SB-7201 <1Z-013A:* PAGE 21
2A0411 LD HLs (DTADR)
14D2 LD DsD2H H
1ESS LD E.53H H
78 LD A B
Bl OR c
2889 JR ZsRTF4
CD1AO7 cALL CESUM
CD9FDa CALL MOTOR
38CF JR CsRTF6
CDSEDS CALL TMARE H
38CA JR C,RTF6
CDADOS CALL TVRFY
18A7 JR RTF4

H
§
H DATA VERIFY
H]
H BC=SIZE
H HL=DATA LOW ADR
H CSMDT=CHECE. SUM
H EXIT ACC=0 & Ok CF=0
H =1 & ER =1
H =2 ¢ BREAK=1
3
:
TVRFY: ENT
DS FUSH DE
CS FUSH BC
ES FUSH HL
2602 LD Hy2
TVF1: ENT
DQ101EQ LD BC,KEYFE
1102E0 LD DE.CSTR
TVF2: ENT
CDO106 CALL EDGE
DA720% JF C.RTF&
CD4A0A CALL DLYZ H
1A L.D A, (DE)
E&20 AND 20H
CABR80S JP Z,TVF2
54 LD DasH
Eil PaR HL
£1 FOF BC
CS FUSH EC
ES PUSH HL
TVF3: ENT
CD2406 CALL REBYTE
JR C.RTF&
CF (HL)
JR NZ s RTF7
INC HL
DEC BC
L.D AR
(a] C
20F2 JR NZsTVFZ
2A9911 LD HLs (CSMDT)
CD2406 CALL REYTE
BC cP H
208E JR NZsRTF7
CD24064 CALL REYTE

04.07.83

SR
g

TAFE MARE DETECT

CALL DLYZ2%Z

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
22
23
24
25
26
27
28

29.

30
31
32
33
34
IS
36
37
za
9
40
41
4z
4%
44
45
44
47
48
49
S0
51

52

o3
54
o5

bt}

=8
=0
&

Xk

0OSES
OSE7
OSE?
OSEA
OSED
QOSEE
QSFO
QIFO
OSFO
QSFO
OSFO
Q5F1
05F4
QEF7
OSF8
QSF?
OSFA
QOSFA
QSFA
OSFA
QSFA
QSFA
OSFD
0600
0801
0601
0&01
0601
0&01
04601
0601
0601
0601
0601
0601
Da01
0601
Q603
0606
0&a0n7
0607
0608
060A
Q600
060D
Q&0E
Q60F
0611
0613
06173
0614
0616
0618
04619
061A
Q&61R
061D
O61F
0620
DEZ0

Z80 ASSEMBELER SE-7201

EBD
2085
13
CASZ0S
&2
18C2

FS
FABELL
CDE10OF
77
B
ce

CDOR00
CDEBAOQS
ce

JEF8B
IZ200E0Q
00

0A
E&681
2002
37
ce
1A
E&20
20F4

QA
E&B1
2002
37
ce
1A
E&Z20
28F4
ce

P

?LOAD:

J

NEW

LFHL:

[T] s can sen e wn as can un can as caw

DGE:

EDG1:

EDG2:

“1Z-013Ax

cP
JR
DEC
JF
LD
JR

ENT
FUSH
LD
CALL
LD
FOF
RET

PAGE 22

L.,
NZ.RTF7
D
Z.RTFP8
H«D
TVF1

FLASHING DATA LOAD

AF

Ay (FLAGH)
PFONT
(HL) . A
AF

LINE AND PRINT HL REG. (ASCII)

ENT
CAaLL
CALL
RET

EDGE

ENT
LD
LD
NOF
ENT
LD
AND
JR
SCF
RET
LD
AND
JR
ENT
LD
AND
JR
SCF
RET
LD
AND
JR
RET

NL
FRTHL

ORG 0&Q1HIEDGE

(TAFE DATA EDGE DETECT)

BC=KEYFB ($EQO1)
DE=CSTR
EXIT CF=0 0Ok =

{(SEOQ02)
CF=1 BREAK
AsFBH H
(KEYFA) s A
A (BC)
81H i SHIFT %
NZ, +4
As (DE)
20H
NZ+EDG1 i CSTR DS
Al (BC) i 8
81H i 9
NZy+4 i 10/14
Ax (DE) 1 8
20H i 9
Z,EDG2 i CSTR DS
O L

04.07.83

BREAK KEY IN

EREAE!

=1

110/14

9Lt

¥¥ Z80 ASSEMBLER SH-7201 <1Z-013A> PAGE 23 04.07.83 ¥x I80 ASSEMEBLER SE-7201 <1Z-013ZAF> PAGE 24 04.07.83
01 0620 DEFS +4 CS FUSH EC i ORG 0D6SEH
02 0624 $0RG 0&24H3REBYTE DS FUSH DE
03 0624 H ES FUSH HL.
04 0624 H 212828 LD HL . 2828H
05 0624 H 1 BYTE READ 05 0664 7H LD AE
04 DH24 H 0& 04465 FECC CF CCH §
07 0624 H EXIT SUMDT=STORE 07 0667 2BOZ JR Z,+5
08 0424 H CF=1 : EBREAE 08 06469 211414 LD HLs1414H
09 0624 H 09 0646C 229511 LD (TMCNT) 2 HL
10 0424 H CF=0 * DATA=ACC 10 Q&&6F D101EOQ LD EC.EEYFE
0624 H 11 0672 1102E0 LD DE.CSTR
2 04624 REYTE: ENT 12 0475 TM1: ENT
I 0624 CS FUSH BC 13 0675 2A9511 LD HL» (TMCNT)
DH2E DS FUSH DE 14 0478 TM2: ENT
0626 ES FUSH HL 15 0678 CDO106 CALL EDGE
DOE2T7 210008 LD HL » O800H 14 047R 381E JR CsTM4
Q62A 0101E0Q LD EC, KEYFE i KEY DATA $EO0O1 17 067D CD4AOA CALL DLYZE i CALL DLY2x3
D482D 1102EQ LD DE.CSTR i STAFE DATA $E0O2 18 0680 1A LD A, (DE)
0670 REY1: ENT 19 0681 E&20 AND 20H
0&30 CDO10& CALL EDGE i 41 OR 101 20 0483 28F0 JR Z,THM1
06T DAT406 JF CsRBYZ i 13 21 0683 25 DEC H
2 Q&34 CDAR0A CALL DLYZ i 20+18%63+33 22 0688 20F0 JR NZ,TMZ2
0639 1A LD As (DE) i DATA READ :8 TMZ: ENT
D&TA EHZO AND 20H CDO104& CALL EDGE
D6IC CAR4906 JFE Z.REBYZ2 I80E JR C.TM4
D&63F FUSH HL CD4ADA CALL DLY3 i CALL DLYZ2%3
0640 LD HL. (SUMDT) 1A LD A. (DE)
D647 INC HL E&20 AND 20H
0644 LD (SUMDT) » HL. 3 20EO JR NZ,TM1
Q&47 FOF HL. 2D DEC [
0648 = SCF 20F0 JR NZ s TMZ
05649 REYZ2: ENT CDO10& CALL EDGE
. 0649 7D LD AsL RETZ: ENT
Q&64A 17 RLA TM4: ENT
064RB 6F LD L.A El FOP HL
DH4C 25 DEC H D1 FOF DE
JF NZ,REY1 Cc1 FOF EBC
CDO104 CAL.L EDGE c9 RET
7D LD AnL H
REYZ: ENT H
El FOF HL H MOTOR ON
D1 FOF DE ;
Cc1 FOF EC H IN D=3aW® :WRITE
0657 C9 RET H =aR? :READ
0658 H H EXIT CF=0 :0kK
Q458 H H =1 :BREAK
0658 i TAFE MAREK DETECT MOTOR: ENT
0458 H Ca FUSH BC
0658 H E=9LD : INFORMATION 49 06A0 DS FUSH DE
0658 H =359 *DATA D0 06A1 ES FUSH HL
0658 H EXIT CF=0 :0K Sl O6A2 060A (B Bl 10
0658 H =1 :BREAK £ D6AF MOT1: ENT
0658 H 53 06A4 TA0ZE0 LD A (CSTR)
0658 DEFS +7 54 D4AT7 EbL0 AND 10H
O65H H S5 06A9 2B0OE JR Z.MOT4
DH5H THMARL 2 ENT Sih DAHAKR MOT2: ENT
H o7 0O6AR QO&FF L.D B.FFH i 2 SEC DELAY
$0RG D&5EH =8 04AD CDI4&LO9 CALIL. DLY12 i 7 MSEC DELAY
= H 59 OQ6ER0D 1802 JR +4 iMOTOR ENTRY ADJUST
D 045R CDE20F CALL GAFCE 50 04B2 18ER JR MOTOR i ORG O&E2H

LL)

¥k 780 ASSEMELER SE-7201 <1Z-017A* FAGE 25 04.07.83 ¥¥ 780 ASSEMBLER SE-7201 «<1Z-013Ar FPAGE 24 O4.07.83
06B4 10F7 DINZ s 01 070A 280FR JR ZyMSTE
O4B4 AF XOR A Q2 0700 MET2: ENT
0O6R7 MOT7+ ENT 03 070C IEOL LD Ay O6H
06B7 18EZ2 JR RETS a4 070E I20IZEQ LD (CSTFT) < A
0O6E? MOT4: ENT 05 0711 3 INC A
Q6LRY ZIE0NSH LD A, 0&H 046 0712 FR0IEQ LD {CSTFT) A
0O6BE 2103E0 LD HL.CSTFT 07 0715 10EE DJINZ MST1
Q&BE 77 LD (HL) A 08 0717 MST3: ENT
O6BF 3C INC A 09 0717 CIELOE JF PRSTR1
Q64C0 77 LD o (HLY.A 10 071A H
06C1 10E1 DJINZ MOT1 11 071A H
0&6C3E CDOOO CALL NL 12 071A H
06C6 7A L.D A.D 13 071A H
06C7 FED7 cF D7H I 14 071A H CHECE. SUM
06CY? 2805 JR Z,MOT8 15 071A H
04CE 11FROZ LD DE,MSG#1 i FLAY MARE 16 0714 H IN BC=81ZE
06CE 1807 JR MOTS 17 071A H HL=DATA ADR.
Q&6D0 moTa: ENT 18 0714 H EXIT SUMDT=STORE
06D0 110204 LD DE s MSG#3 s "RECORD." 19 071A H CSMDT=STORE
Q4D3 DF RST 3 ;3 CALL MSGX 20 071A H
06D4 11FDOZ LD DE, MSG#2 i "FLAY" 21 071A CESUM: ENT
046D7 MOT?: ENT 22 071A CS FUSH HC
0&6D7 DF RST = 3 CALL MSGX 23 071R DS FUSH DE
046D8 MOTS: ENT 24 071C ES FUSH HL
06D8 ZA0ZEO LD As (CSTR) 25 071D 110000 L.D DE,O
D4DR E&10 AND 10H 26 0720 CrS1: ENT
046DD 20CC JR NZ.MOT2 27 0720 78 LD A:B
Q4DF CD320A CALL PERE 28 0721 Bl OR (4
06EZ2 20F4 JR NZ,MOTS 29 0722 200B JR NZ.CKES2
Q&E4 =7 SCF 30 0724 ER EX DEsHL
31 O&ES 18D0O JR MOT7 31 0725 229711 LD (SUMDT) « HL
32 Q&E7 H 32 0728 229911 LD {CSMDT) s HL
33 06E7 H INITIAL MESSAGE 33 072B E1 FOFP HL
34 Q&ET H 34 072C D1 FOF DE
35 06E7 MSG?3: ENT 35 072D C1t FOF EC
36 Q&4ET Z2AZA2020 DEFM “XK¥ MONITOR 1Z-013A %% 36 072E C9 RET
37 OQ&LEB 4DAF4EA49 37 0O72F CKS2: ENT
38 04EF S44F5220 O72F 7E LD As (HL)
39 06F3 I1SAZDI0 0730 CS FUSH EC
40 0Q&F7 F1IZ4120 O731 0608 LD EH.+8
41 O&LFB 202A2A 0733 CESZ: ENT
42 0&4FE OD DEFE ODH Q733 07 RLCA
43 O6FF H 0734 =001 JR NC,+3
44 Q&FF H 07346 13 INC DE
45 O6FF DEFS +1 T 0737 10FA DJINZ CESTE
44 Q700 § 0739 C1 POF BC
47 0700 H O73A 23 INC HL.
48 Q700 s0RG O700H: MSTOF QO73EF OB DEC EC
49 Q700 H 073C 18EZ2 JR CES1
50 0700 i 073E H
D1 0700 i MOTOR STOP CO73E H MODE SET OF EEYFORT
52 Q700 H m2 073E H
53 0700 MSTOP: ENT 3 O73E ?MODE: ENT
54 0700 FS FUSH AF O73E 2103IEOQ LD HL .y KEYFF
55 0701 CS FUSH EC 0741 368BA LD (HL) » BAH i 10001010
56 Q702 DI FUSH DE Q7473 Fb&OT LD (HL) . O7H i PCE=1
57 Q703 060A LD EBal0 D745 T605 LD (HL) y O5H i FC2=1
m8 0705 MST1: ENT 0747 VGOFF: ENT
59 0705 IA0ZEO LD A (CSTR) 0747 H
&0 O708 E&10 AND 10H 0747 C9 RET

8LL

01
Q2
O3
04
Q5
al)
07
08
09
10
14
12
13
14
15
14
17
18
19
20
21
22
23
24
25
24
27
28
29
30

31

37

4%

45

¥k

0748
0748
0748
0759
0759
0759
07359
0759
0759
0759

0735R

Q75C
075F
07460
0760
0760
0760
0760
0762
Q763
0766
Q747
0767
A767
0767
07467
0767
Q747
0767
07467
0768
Q746A
076D
Q76D
0O76E
Q0771
0774
A775
0778
a779
077A

2 Q77AR

077A
Q77A
077A
077A
077A
a77A
077A
Q778
077C
Q77D
0780
0783
0785
0788
078E
D7 8E
0O78E
0791

280 ASSEMBLER SB-7201

JELS

C25B07
ce

JELE
3D
C26207
ce

CS
0608
CD1iA0A

a7
DC1ACA
D4010A
05
C24D0O7
c1
ce

CS

DI

7H
D1FOSE
112828
FECC
CABEOQ7
O1F8ZA
111414

CDGOLOA
OF

<1Z-013Ax

DEFS = 154

ORG O759HiDLY1

[e o can can e

107 MICRO SEC DELY
LY1: ENT
LD Ay 15H
DEC A
JFP NZ,-1
RET

H
$0ORG 0760H;DLYZ2
H

DLYZ2: ENT

LD Ay 13H
DEC A

JE NZ,-1
RET

1 BYTE WRITE

£ car we ver can wn wm e

BYTE: ENT
FUSH BC
LD EB.+8

CALL LONG
WEY1: ENT

RLCA

CALL C, LONG

CALL NC, SHORT

DEC B

JE NZs WEY1
FOF BC

RET

GAF + TAFEMARE

E=2L2 LONG GAF
=953 SHORT GAF

) e an can oww an can es

AF ENT
FUSH EBC
FUSH DE
LD AsE
LD BC, S5F0OH
LD DE, 2828H
CP CCH
JF Z,GAF1
L.D BC, 2AF8H
L.D DE. 1414H
GAF1 Y ENT
CAL.L SHORT
DEC BC

PAGE 27

b

04,.07.83

18%21+20

18%19+20

01
02
0=
04
2}
[a2]
07
g
09
10
11
12
13
14
15
14
17
18
19
20
21
22
23
24
25

‘26

2

28
29
30

32

33
34
30
6
37
8

40
41
42

44
45
46
a7
48
49
50
51
52
53
54
55
56
57
s
59
50

Xk

0792
Q793
0794
0794
0796
0799
079A
Q79C
079C
Q79F
07A0
O7A2
07AS
D7A4
0747
0748
0748
a7A8
07AB
07A8
D7A8
Q7AKR
O7AR
O7AE
0781
0784
Q7H7
0O7BA
QO7BC
O7BF
Q7C0O
07C3
Q7CS
07C6
a7c8
07C9
0O7CA
o7CcC
07CE
O7D1
Q7D3
07D4
a7D4
0O7D5
07D7
a7D7
o708
a7D9
O7DE
O7DH
07DB
O7DE
O7DB
Q7E&
O7E6
Q7E&
0O7E6
O7E4
O7E6
O7EA

780 ASSEMBLER SH-7201

7B
Bl
20F8

CD1AOA
15
20FA

CDho104a
iD
20FA
CD1AOA
D1

Ci1

ce

CDZDO1

CDFAOQS
CDE1073
CD2009
CDZFO1
CD1004
3B1E
CDA&DZ2
13
CD1F04
3BES6
BE
20E3F
13

1A
FEOQOD
2806
CD1FOQ4
808
7oy

23
18D4
&0

&9
18D0

“1Z—-013A> FAGE 28
LD AsB
OR e
JR NZ, -6
GAPZ2: ENT
CALL LONG
DEC D
JR NZ. -4
GAF3: ENT
CALL SHORT
DEC E
JR NZ,-4
CALL LONG
FOP DE
FOP EC
RET
.
H MEMORY CORRECTION
H COMMAND “M~
.
MCOR: ENT
CALL HEXIY
MCR1# ENT
CALL NLFHL
CALL SPHEX
CALL ?FRTS
CALL BGETL
CALL HLHEX
JR C.MCR3
CALL «4DE
INC DE
CALL 2HEX
JR C.MCR1
CP (HL)
JR NZsMCR1
INC DE
LD As (DE)
cP ODH
JR ZsMCR2
CALL ZHEX
JR CsMCR1
LD (HL) A
MCR2: ENT
INC HL
JR MCR1
.
MCR3: LD H: B
LD L.C
IR MCR1
H
Ll
.
H
ORG O7ESH

GET 1 LINE STATEMENT

X

DE = DATA STORE LOW ADR.

-

a

04.07.83

CRRECTION ADR.
COR. ADR. PRINT
ACC = ASCII DISF.
SPACE FRINT

GET DATA % CHECK
HLEASCII(DE)

(INC DE) ¥4

DATA CHECEK

NOT CORRECTION 7
ACCEHL(ASCIT)

DATA CORRECT

MEMORY ADR.

DATA

6L1

01
0z
03
04
05
b
07
08
09
10
11
12
13
14
15
16
17
18
1%
20
21

22

23
24
25

26
2

28
29
0
31
32
33
34
36
37
I8
9
40
41
42
43
44
4%
44
47
48
49
G0

S5

Sé
57
jat=]
=9
&

k¥ Z90 ASSEMELER SHB-7201

O7E6
Q7E&
0O7E6
0O7ES
0O7E6
Q7E7
07E8
O7ER
0O7EA
O7EA
O7ED
Q7ED
O7EE
O7EF
Q7F2
Q7F3=
07F6
QA7F7
O7FA
A7FC
O7FE
A7FF
0800
0802
0804
0804
0808
Q80K
080D
080F
0811
0817%
0B1S
0816
0818
0818
081ER
81D
081D
0820
0822
0822
0822
0822
0823
0824
0826
0827
0829
082k
0828
082k

Fo
Co
ES
DS

CDEZO?

FS

47
3A9D11
OF
DA4770Q5
78
217011
E&FO
FECO
D1

78
2016
FECD
2855
FECE
CAZZ08
FECF
2809
FEC7
Z00A
CEIR
78
FO0E

CDERZOD
18CD

CDDCOD
18c8

El
ES
J61E

23

25

60D
185%

082C 30

082E
0830
0830
0BIO
0830

0830

CD9609

<1Z-013A> PAGE 29
H (END =CR)
H
TGETL: ENT
FUSH AF
FUSH EC
FUSH HL
PUSH DE
GETL1: ENT
CALL TPREY
AUTOZ: ENT
FUSH AF
LD E. A
LD Ay (SWRE)
RRCA
CALL NC, THEL
LD A.B
LD HL » KEANAF
AND FOH
CFP COH
FOF DE
LD AsH
JR NZ.GETLZ2
CF CDH
IR Z,GETLZ
CF CBH
JF Z.GETLC
CF CFH
JR Z.GETLZ
[o C7H
JR NC,GETLS
FR E
LD AsB
JR NCyGETLS
GETL2: ENT
CALL ?DSF
IR GETL1
GETLS: ENT
CALL PDFCT
JR GETL.1
L]
b BREAE IN
H
GETLC: FOP HL
PUSH HL
L.D (HL) . 1BH
INC HL
L.D (HL) » ODH
JR GETLR
i GETLA
s
GETLA: RRCA
IR NC,sGETL6
IR GETLERE

SWEF: CALL

DELAY 7M SEC AND SWEF

DLY1Z

04.07.83

ENTRY EEY

IN EEY DATA SAVE

BELL WORE

ENTRY BELL

KANA % GRAPH FLAG

Ereg=FLAGreg

CR

BREAE!

NIKO MARE WH.

CRT EDITION

cy ?

CRT CONTROL.

BREAK CODE

CY€D7

36

39

45

3 0860

¥ 780 ASSEMELER SR-7201

0833 CDSO0A

0838 C9
0837
0837
0837
Q85H
085K
Q85H
OBSE
Q85RB

Q85E CDF3I0Z
0OBSE 0628
I0Ce

0B6Z2 25

0863 0650
086% 2E00
0847 CDB4OF

086A D1
Q86R DI
086C 7E

086D CDCEOR

0870 12
0871 23
0872 13

Q873 10F7

0875 ER

Q8746 F60D

0878 2R
0879 7E
087A

087E CDOEDS

0881 D1
882 E1l
088% Ci
0884 F1
088% C?

Q893
0B9E
0893
0893

I 0893

0893
Q893
0893
0893 F3
0894 CS
089% DD

r 0894 1A

FE20

28F8

) can cax can an can

CALL
RET

DEFS

“1Z-013Ax

FAGE 30

PSWEF

Ib

DRG OBSEH:GETLZ

ETL3: CALL
LD
JR
DEC

GETLE: LD
GETL&6: LD

CALL
FOF
FUSH

GETLZ: LD

CALL
LD
INC
INC
DJINZ
EX

GETLU: LD

) ee can

B

DEC
LD
CF

CR AND NEW

JR

- MANG

E, 40
NCsGETLA
H

E. 80

LaO
TENT1

DE

DE

Ay (HL)
TDACN
(DE)sA
HL

DE

GETLZ
DE.HL
(HL) » ODH
HL.

Ay (HL)
20H

LINE

Z.GETLU

NEW LINE RETURN

ETLR: CALL
POP
FOF
FOP
FOP
RET

DEFS
ORG 0893H

PLTNL
DE
HL
EBC
AF

+13

MESSAGE FRINT

DE FRINT DATA LOW ADR.

END=CR

MSG: ENT
FPUSH
FUSH
FUSH

SG1: LD

AF
EBEC
DE
A. (DE)

04.07.83

CR
1LINE

BEFORE L.INE
2 LINE

STORE TOF ADR.

SFACE THEN CR

081

*ok

01 0897
02 0899
0% 089B
04 089E
Q5 089F
04 08A1
07 08A1
08 08A1
0% 08A1
10 08A1
11 0BAl
12 08A1
13 08A1
QgAz2
5 0BAZ
08A4
0O8AS
08A7
0BAA
Q08AD
08RO
QO8HR1
S 08RE
08HB3
08B3
O8B3
08R6
O8E8
08E8
O8HS8

08EBA
O8BR
0O8ED
QO8ED
0O8BD
0O8ED
O8ERD
0O8RD
O8RD
0O8RD
2 08ERD
= 08ERD
0OBRD
O8HD
0geon
0acz2
08C3
O8CS
08Cse
08cs
2 0BC8

&0 0BCA

31 0O8B8 =

280 ASSEMELER SB-7201

FEOD
280C
CDZE509
13

18F5

FS

CS

DS

1A
FEOD
CAE&LDE
CDESOR
CD&CO9
13
18F1

112A0C
1842

CDCADE
D&F G
c8
C&FO
CICEOR

“1Z-013A/ FAGE 31

cP ODH

JR Z.MSGX2

CALL PFRNT

INC DE

JR MSG1
ORG 0O8A1H

ALL FRINT MESSAGE

) wn s can o ces wn

MSEGX: ENT

FUSH AF
FUSH BC
FUSH DE

MSGX1: LD A, (DE)
CF ODH

MSGX2: JF Z, ?RSTR1
CALL ?ADCN
CALL FRNT3
INC DE
JR MSGX1

TOF OF KEYTELS

an an can

7EYSM: LD DE.KTBELS
JR EYS

i

i BREAE. CODE IN

i

#BRE: LD Ay CEBH
OR A
JR ?EYL

ORG 0O8EDH

GETEEY

NOT ECHD BACK

EXIT:ACC=ASCII CODE

JJ an cas can aw caw can wn aw can can

PEET: ENT
CALL PEEY
SUR FOH
RET z
ADD AsFOH
JP ?DACN
i
b
DEFS +2

ORG O8CAH: PEEY

1KEY INFUT

04.07.83

CR

BREAE. CODE

KEY IN (DISFLAY CODE)
NOT KEYIN CODE

DIAFLAY TO ASCII CODE

IN B = KEY MODE(SHIFT.CTRL,RBREAK)

o1
02
03
04
05
04
07
08
09

40

¥ K

0BCA
08CA
08CA
08CA
08CcA
08cA
0gcaA
0gca
0BCE
08ce
08CcDh
08D0
08D1
gDz
08D4
08D&
08Dé
08D7
0808
08D
08DA
Q8DA
O8DA
08DD
O8DE
0OBEQ
08E2
OBE4
O8ES
0OBE7
08E?
OBEC
O8ED
Q8FO0
Q8F 1
0BF2
O8F 3
0BFS
Q8F7
0OBFA
O8FA
OBFE

* O8FH

OBFC
Q8FE
OBFE
0900
0902
D05
006
007
0909
0909
096C
OF0E
OP0E
QP0E
QF0E
0OF0E
OP0E

780 ASSEMBLER SE-7201

Co

DI

ES
CD3008
78

07
38046
IEFOQ

E1l
D1
Ci
ce

11EAOR
78
FES8
28D&6
2800
&9
CR&F
200E
IA7011
OF
DAFEOQS
78

i s

17
Z8BE
18073
11AADC

19

7E
1808

CE70
2807
11E90C
19

37
18F2

116A0C
18EC

L) A can an an un am

PHEY:

Y1

?EYS5:

PEYSS:

TEYGRF

H
H
i
E]
H
H

EXIT

w1 Z-013Ak

c

FAGE T2 04.07.83

KEY DATA (COLUMN 2 ROW)

ACC=DISFLAY CODE

IF NO EEY

ACC=FOH

IF CY=1 THEN ATTRIBUTE ON

ENT
PUSH
FUSH
PUSH
CALL
LD
RLCA
IR
LD
ENT
FOP
FOF
FOF
RET

ENT
LD
LD
CP
IR
LD
LD
BIT
JR
LD
RRCA
JF
LD
RLA
RLA
JR
JR
LD
ENT
ADD
ENT
LD
JR
ENT
EBIT
JR
LD
ADD
SCF
JR

LD
JR

$0RG O90EH

(SMALL+ HIRAEANA)

EBEC
DE
HL.
DSWEF i DELAY AND KEY SWEFP
A B

C,7EYZ
Ay FOH

HL
DE
BC

DE.ETEL i NORMAL KEY TAELE
AsB

88H i BREAK IN

Z, #BRE

Hy @ i HL=ROW & COLUMN
L.C

ThA i CTRL CHECK

NZ, ?EYS-3

A {EANAF) i O=NR.,1=GRAFH

Cs PEYGRF i GRAFH MODE
AR i CTRL EEY CHECE

CONTROL KEY TABLE

HL «DE

TABLE

an

fis (HL)
THY1

6B
Zy PEYGRS
DE.ETEBLG
HL « DE

TEYSS

DE.

TEYS

181l

o1
02
03
04
05
D4
Q7
08
09
10
11
12
13
14
15
146
17
18
19
20
21
22
23
24
25
26
27
28

30

*K

090E
OF0E
QOF0E
QP0E
0OR0E
QPOF
0912
Q914
0216
0918
018
Q918
0?18
0918
01C
091D
091F
QP20
020
Q920
0920
Q920
0920
0922
0924
0924
0924
0924
0924
0927
092A
092k
092C
O92E
Q930
0932
0935
0935
0935
0935
Q935
0935

T 0935

0935
0937
0939
Q93A
O93E
093C
O93F
Q940
0941
0742
0942
0942
0942
0945

‘0946

0944
09446

Z80 ASSEMELER SE-7201 <1Z-013A> PAGE

AF
329411
ZECD
1843

IA9411
B7

cs
18EF

IEZO

1811

CDOCOO
IA9411
B7

c8
D6OA
Z9F 4
20FA

FEOD
28D5
cs

aF

47
CD4609
78

c1

9

4F4E21
oD

(2
12

H NEWLINE
H
PLTNL: ENT
XOR A
LD (DFRNT) s A H
LD AXCDH H
JR FPRNTS
DEFS &2
$0RG 0918H
PNL2 ENT
LD A (DFRNT)
al A
RET z
JR PLTNL
DEFS +1

ORG 0O920H

i PRINT SPACE
;

FRTS: ENT
LD AL 20H
IR PPRNT

H FPRINT TAE

.

FFRTT: ENT
CALL FRNTS
LD A, (DPRNT)
OR A
RET z
SUE +10
JR Cy—10
JR NZy -4
DEFS +3

ORG 0935H

FRINT

IN ACC = PRINT DATA (ASCII)

an cam sem o ae e

PRFRNT: ENT
CF ODH H
JR Zs 7LTHNL
FUSH BC
LD CsA
LD EsA
CALL ?PRT
LD AR
FOF BC
RET

MSGOK: ENT
DEFM 0Kt -
DEFE ODH

ORG 0946&H

PRINT ROUTINE

ROW FOINTER
CR

CR

01
0z
O3
04
05
b6
07
08
09
10
11

1z
13
14
15
14
17
18
19
20
2
22
23
24
25
26
27

L$)

094646
0944
0946
0946
0946
0947
094A
OF4ER
094D
094E
0950
09E2
0953
Q955
0957
0959
0959
Q=0
095E
D960
0962
0964
0966
067
0968
O9&6ER
096C
0940

Q975
0977
0979
0O97B
O97R
0O97R
O97R
0O97RB
OF7H
Q97ER
0978

z O97EB

O97E
0980
0980
0980
0980
0980
0280

79
CDESOE
aF
FEFO
c8
E&FO
FECO
79
2017
FEC7
013

CDDCOD
FEC3
2B0OF
FECS
2803
FEC&
co

AF
329411
ce

CDBZOD

FESO
38F1
D6SO
18ED

3ABEL1
186F

CE&F
2802
E7

5 C9

JE20
E7
37
ce

Z80 ASSEMELER SE-7201

<1Z-01ZA* PAGE 24 04,07.83

H 1 CHA.
H INFUT:C=ASCII DATA (7?DSF+?DFCT)
H
TPRT: ENT
LD A,C
CALL FADCN § ASCII TO DSFLAY
LD CsA
EP FOH
RET Z 5 ZERD=ILLEGAL DATA
AND FOH § MSD CHECK
CFP COH
LD A, C
IR NZ,FRNTZ
cP C7H
JR NC, FPRNTZ i CRT EDITOR
PRNTS: ENT
CALL ?DFCT
CF C3H
IR Z,PRNT4
CP CSH i HOME
JR Z.PRNT2
CP Cé&H i CLR
RET NZ
FRNT2: XOR A
LD (DFRNT) s A
RET
FRNT3: ENT
CALL ?DSF
FRNT4: LD Ay (DFRNT) i TAR FOINT+1
INC A
CF +80
JR CsFRNTZ2+1
SUE +80
JR FRENTZ+1
H
H
H
H
H
H FLASSING EBYPASS 1
FLAS1: ENT
LD As (FLASH)
JR FLASZ

) e an ae e s

HREAE SUBROUTINE BYFASS 1

CTRL OR NOT EEY

‘ENT

BIT SaA i NOT OR CTRL
JR ZyPBRET i CTRL

OR A i NOTEEY A=7FH
RET

LD As 20H § CTRL DS=1

OR A i ZEROD FLG. CLR
SCF

RET

8l

L2 4

01 O98R
02 098H
03 098F
04 0993
05 0995
06 0996
07 09946
08 0996
09 0994
10 0996
11 0997
12 0999
T 099C
099E
099F
09A0
D9A0
09A0
QA0
QA0
OPA0
OFA0
09A4
09A8
09A9
OPAP
0OPAF
09A%
2% 09A%

4

35 O9RO
& DFBO
7 OFBO

=8 O9R3

Z80 ASSEMBLER SE-7201

44£494C45
4E414D45
3FZ20

oD

C=
Q615
CD4A0A
10FB
C1

ce

4C4AF4144
494E4720
oD

IET9
D
CZAEBO?
ce

» ES

O9BC
OFEF
09Cc1
o9C2
60 O9CH

CDR20R
CD7ENS
20FB

CD7EOS
28FE
&7
CD?4609
ChCAOB

“1Z-013Ax FAGE 35

MSGSY: ENT

DEFM ‘FILENAME? -
DEFE ODH

i DLY 7 MSEC

i

DLY12% ENT
FPUSH EC
LD B, 15H
CALL DLYZ
DJINZ -3
FOP BC
RET

H

H

H LOADING MESSAGE

B

MSGT2: ENT

DEFM “LOADING

DEFE ODH

DELAY FOR LONG FULSE

[wr can can ocan am

LY4: ENT
LD Ay T9H
DEC A
JF NZ,-1
RET

i

H
DEFS +3

ORG O9EBIH; ?PHEY

EEY BOAD SEARCH
% DISFLAY CODE CONV.

EXIT A = DISPLAY CODE
CY= GRAFH MODE
WITH CURSOR DISFLAY

) an cax cax as au an ws can aw an cam

FTEEYE ENT
FUSH HL.
CALL THAVE
ESL1: ENT
CALL FLEEY
JR NZ,.KSL.1
ESLZ: ENT
CALL FLEEY
JR Z,ESLZ2
LD H:A
CALL DLY1Z2
CaLL TEEY

an

04.07.83

18%89+20

KEY
EEY IN THEN JUMF

NOT EEY IN THEN JUMF

DELAY CHATTER

L2 4

09Cc8
09Cce
09CA
Q9CH
Q0?CD
O9CE
09CF
a9D2
Q9D
09D4
09D4
2 09D4
I 09D4
09D4
09D4
O9DE
09DS
2908
0?08
20 09D
21 09DA
22 09DA
23 O9DE
24 a9DC
2% 09DD
O9DE
O9DF
O9E1
O9E2
OFES
O9EX
2 Q9E3
OPE
T4 0O9EZ
35 O9E3F
36 O9ED
7 O9E3

S0 O9FG
S1 09F4

O9F6

280 ASSEMELER SE-7201

FS
EC

E1
20EF
ES

F1
CDFOOS
E1

co

AF
010008

D=
57

72
23
OR
78
=1
20F9
D1
co

CDB10OF
7T

El

Fi
€9

1BE2

;
;
#CLROG:
#CLRE:

CLEAR:

CLEAR1:

2] mm cam e can canocam

FLS:

FLASZ2:

FLAGH:

FUSH
CF
FOF
IR
FUSH
POF
CALL
FOF
RET

CLEAR 2

ENT
XOR
ENT
LD
ENT
FUSH
LD
ENT
LD
INC
DEC
LD
OrR
JR
FOP
RET

FLASHING

ENT
FUSH
FUSH
LD
RLCA
RLCA
JR
LD
ENT
CALL
LD
ENT
FOF
FOF
RET

DEFS

10RG O9FF 3

i
TFLAGH

ENT
JR

2

FAGE 36
AF

HL
NZ,ESLZ
HL

AF
PLOAD
HL

A
BC, 0800H

DE
D:A

(HL)sD
HL

EC

AR

Cc

NZ, CLEAR1
DE

AF
HL.
As (EEYFC)

C.FLASL
As (FLSDT)

PRONT
(HL) 2 A

HL
AF

+9

PFLAS

PFLS

04,07.83

CHATER CHECH

IN EEY DATA
FLSHING DATA LOAD

; CY FLG.
i BC = CLR BYTE SIZE
i A = CLR DATA

i DISFLAY POSITION

€81

¥¥ 790 ASSEMELER SE-7201 <1Z-0134r FPAGE 37 04.07.8% ¥X Z80 ASSEMELER SE-7201 <1Z-013A:x PAGE 38 04,07 .8%
oAl 3 01 DA42 3004 JR NC, ?BRE 1 i BREAK 7
0A01 ; 02 0A44 TEAD LD Ay 40H ; SHIFT Dé&=1
0AD1L H 03 0A46 37 SCF
0A0L i SHORT AND LONG PULSE FOR 1 BIT WRITE 04 0A47 C9 RET
OAD1 3 05 0A48 3
QA0 SHORT: ENT 06 0A48 H
0AOL FS FUSH AF ;12 07 0A48 AF 7BRK1: XOR A i SHIFT 7
0A02 3EO3 LD Ay O3H 1 9 08 0A49 C9 RET
0A04 I203IEQ LD (CSTPT) »A 3 $E0O3 PC3=1:16 09 0A4A §
0A07 CDS9O7 CALL DLY1 i PO+18X21+20 10 0A4A ;
OAOA CDS907 CALL DLY1 i 20+18X21+20 11 0A4A i F20 U SEC DELAY
0AOD IE02 LD Ay 02H HI 12 0A4A H
I OAOF I203E0 LD (CSTFT) »A 5 $E00Z PC3I=0:16 13 0A4A DLYZ: ENT
0A12 CDS907 CALL DLY1 ; 20+18%21+20 14 OA4A 3 LD Ay 3FH i 1BX63+33
0ALS CDS907 CALL DLY1 3 20+1B%21+20 15 0A4C JF 0762H i JF DLYZ+2
0A18 Fi FPOF AF g 1 16 OA4F 3
0A19 C9 RET 5 11 17 OA4F H
0AlA : 18 OA4F DEFS +1
0AlA 3 19 0AS0 H
0AlA LONG: ENT 20 0AS0 i
OAlA FS FUSH AF ! 21 0ASO i
OA1R 3ZEOZ LD Ay OTH 1 9 22 0AS0 :0RG OASOH i1 7?SWEP
OA1D 3R0IEQ LD (CSTFT)»A i 16 23 0ASO §
0AZ20 CDAFNY CALL DLY4 3 20+18%¥89+20 24 0AS0 H
0OAZ23 3EO02 LD A, 02H 1 9 25 0AS0 H KEY BOAD SWEEF
0A2S IZOIEO LD (CSTPT) - A 3 16 26 OASO H
0A28 CDASO9 CALL DLY4 3 20+1BX89+20 0ASO § EXIT E,D7=0 NO DATA
OAZE F1 FOF AF . DASO H =1 DATA
0OA2C C9 RET ;11 DAS0 H D&=0 SHIFT OFF
0AZD 5 0AS0 H =1 SHIFT ON
0OAZD H QASD H DS=0 CTRL OFF
0AZD DEFS +5 2 0AS0 H =1 CTRL ON
I3 0A32 3 OASO 3 D4=0 SHIFT+CTRL OFF
0AZ2 3 OASO 3 =1 SHIFT+CTRL ON
OA32 $0RG 0OAZ2H 0ASO H C = ROW % COLOUMN
0ASE : OASO H 76543210
0AZ2 3 BREAK KEY CHECK 0ASO H X X A4 e €€
OAZ2 H AND SHIFT,CTNL KEY CHECE 0ASO 3
OAZ2 : OASO PSWEF: ENT
OAZ2 i EXIT BREAK ON : ZERO=1 O OAS0 DI FUSH DE
0AT2 ; OFF: ZERD=0 41 0AS1 ES PUSH HL
0AZ2 H NO KEY = CY =0 42 OASZ AF XOR A
3 OA3Z2] EEY IN : CcY =1 43 0ASE 06F8 LD By F8H
0AZ2 H A Daé=1 : SHIFT ON 44 OASS 57 LD D:A
0AT2 3 =0 OFF 45 0ASS6 CDIZ0A CALL 7BRE
: DS=1 : CTRL ON 46 0AS9 2004 IR NZ s SWEF6&
: =0 ¢ OFF 47 OASH 1688 LD D, 88H i EREAK ON
] D4=1 : SFT+CNT ON 48 OATSD 1814 JR SWEF?
; =0 OFF 49 OASF SWEF&: ENT
= : S50 OASF 3005 IR NC s SWEFO
51 0AZ2 7BRK: ENT 1. 0asL b7 LD Dre
52 0A32 LD A FBH i LINE SSWEEP : JR SWEFQ
53 0AZ4 LD (KEYFA) 4 A SWEFO1: ENT
S4 DAZT 00 NOF SET 7.D
S5 OAZB IA0L1ED LD Ay (KEYFR) SWEFQ: ENT
S& OAZE B7 OR A S6 0AbL 05 DEC E
57 OATC 1IF RRA 57 0A&7 78 LD AsE
58 OAZD DASDOT IP C:?BREZ2 i SHIFT 7 58 0ALB IZOOED LD (KEYFA) + A
59 0A40 17 RLA 59 0ALB FEEF CF EFH i MAP SWEEF END 7
L0 0A41 17 RLA 60 0ALD 2008 i IR NZ s SWEF3

81l

¥ Z80 ASSEMELER SBE-7201 <1Z-013A> PFPAGE 39 04.07.83 ¥¥ Z80 ASSEMBLER SR-7201 <1Z-013A> PAGE 40 04.07.83
01 OA&LF FEFB CF FB8H i BREAEK EEY ROW 01 OARY FO DEFE FOH i MW
02 0A71 28FF JR Zy SWEFOQ D2 DAAA FO DEFE FOH i X
03 OA73 SWEF9: ENT 03 OAAB FO DEFE FOH HEE 2
04 OA73 42 LD E.D 04 QAAC FO DEFE FOH i 4Z SEF.
0% 0A74 E1 FOP HL 05 0AAD FO DEFER FOH i 4L
Qb6 0A7S D1 FOF DE D6 OAARE FO DEFE FOH HIE AN
07 0A76 C? RET 07 OAAF FO DEFE FOH i 41
a8 0A77 i 08 OARD FO DEFH FOH I T
0% 0R77 SWEF3: ENT 09 0AB1 FO DEFE FOH i 4-
10 0A77 3FA01EQ LD As (KEYFE) 10 QARZ 3 20 - 2F
11 0A7A 2F CFL 11 0ABZ 00 DEFE O0H i SPACE
12 OA7B RB7 OR A 12 0ABR3 &1 DEFE &1H H
13 0A7C 2BEB JR Z, SWEFOQ 13 0AB4 62 DEFE 62H B
14 QOA7E SF LD EsA 14 OABS &3 DEFE &3H i o#
15 OA7F SWEP2: ENT 15 OABRL6 64 DEFE b64H I
16 0A7F 2608 LD H,8 14 OAR7 &5 DEFR &5H A
17 0AB1 78 LD AB 17 OABB &6 DEFE b6H HE
18 0AB2 E&OF AND OFH 18 Q0ARY? &7 DEFB &7H Hila
19 0AB4 07 RLCA 19 OARA 68 DEFE &B8H I
20 0AGS 07 RLCA 20 OABE &9 DEFH &9H)
21 0ABs 07 RLCA 21 OABC 6&E DEFE &BH HE
22 0A8B7 4F LD C,A 22 O0AED 6A DEFER &AH i+
23 0ABB 7E LD ALE 23 OABE 2F DEFE 2FH HI
24 0AB9 25 DEC H 24 OABF 2A DEFB 2AH § -
25 0ABA OF RRCA 25 OACO ZE DEFE 2EH I
2b6 0ABE IOFC JR NC. -2 26 0ACL 2D DEFE 2DH
27 OABD 7C LD AsH 27 0AC2 i 30 -3F
28 OABE 81 ADD AsC 28 0ACZ 20 DEFH 20H i 0
29 0ABF 4F LD C.A 29 O0AC3 21 DEFER 21H i1
30 0A%90 18D2 JR SWEFO1 30 0AC4 22 DEFEH 22H s 2
DA?2 H 31 OACS 23 DEFE 27H 3 3
2 0A92 § 32 OACS 24 DEFE 24H H
DAFZ H ASCII TO DISPLAY CODE TABL 3 33 0AC7 25 DEFE 25H 5 S
0A?2 H 34 0AC8 26 DEFE 26H HI-}
0A92 ATHL: 35 0AC? 27 DEFE 27H 4
0A?2 § OO~ OF 3§ 36 0ACA 28 DEFE 28H i 8
0A%2 FO DEFE FOH HIE) 37 OACE 29 DEFE 29H 39
0AR3 FO DEFE FOH HER Y- 28 0ACC 4F DEFH 4FH ;@
0A94 FO DEFH FOH i 4E 39 OACD 2C DEFE 2CH Pos
0OARS F3 DEFE FZH i tC 40 0ACE 51 DEFB S1H IR
DARE FO DEFH FOH i 4D 41 OACF 2R DEFE 2BH H
2 DAR7 FS DEFE FSH i 2E 42 0OADO =7 DEFH 57H H
3 0A98 FO DEFE FOH i AF 4% 0OAD1 49 DEFE 49H H
0A99 FO DEFE FOH i 16 44 0OADZ2 i 40 - 4F 3
OA9A FO DEFH FOH i AH 45 0AD2 55 DEFE S5H HE
OAYE FO DEFE FOH HIE B § 44 0ADE 01 DEFE Q1H i A
DATC FO DEFH FOH HIE 47 0OAD4 02 DEFE 02H i B
0AYD FO DEFE FOH EIE ¥ .4 48 0ADS 03X DEFB Q3H s C
DAFE FO DEFE FoOH i ML 49 0OAD6 04 DEFE 04H 5 D
OA9F FO DEFER FOH i MM 50 0AD7 05 DEFE O5H E
DAAD FO DEFHR FOH i AN 51 OADB 06 DEFE 06H 3 F
0AAL1 FO DEFE FOH i 10 S52 0AD? 07 DEFEB QO7H i G
L OAAZ H 10 s IF. 3 OADA 08 DEFE 08H i H
OAAZ FO DEFE FOH i AR 54 OADR 09 DEFE O9H I
0OAAT C1 DEFH C1H i 460 CUR. DOWN S5 0ADC 0A DEFE 0OAH HEn
0AA4 C2 DEFR 2H i R CUR. UF 54 OADD OH DEFH OEH LI 4
DAAS CE DEFE C3H i 18 CUR. RIGHT 57 OADE OC DEFE 0OCH e
OAAL C4 DEFE C4H 5 4T CUR. LEFT =8 OADF 0D DEFE ODH i M
DAAT CS DEFE CSH i MU HOME 9 O0AEQ OE DEFE OEH HE Y]
OAAB Cé DEFE C6H i 4V CLEAR &0 OAE1 OF DEFE OFH s 0

a8l

¥k . 780 ASSEMELER SE-7201 <1Z-013A> PAGE 41 04.07.83 ¥% 780 ASSEMBLER SBE-7201 <1Z-013A» FAGE 42 04.07.83
01 OAER 5 S50 - S5F 3 01 OB1A B2 DEFE BZ2H 3
02 QAEZ2 10 DEFE 10H i F 02 OB1R R& " DEFE B&H H
03 OAEI 11 DEFE 11H Hc] 03 OEIC EA DEFE EAH i
04 0AE4 12 DEFE 12H i R 04 OR1D BE DEFE BEH ¥
05 OAES 13 DEFE 13H i 'S 0% OB1E 9F DEFB 9FH i
04 OAESL 14 DEFE 14H y T 06 OB1F B3 DEFE BZH H
07 OAE7 15 DEFER 15H s U 07 OB20 B7 DEFE B7H H
08 0AES 16 DEFE 16&H ;v 08 0B21 BR DEFB BBH 3
09 ORE? 17 DEFE 17H P w 09 OB22 3 90 - 9F
10 OAEA 18 DEFE 18H 3 X 10 0B22 BF DEFE BFH § -
11 OAEE 19 DEFE 19H iy 11 OB23 A3 DEFH ASH H
12 OAEC 1A DEFE 1AH s Z 12 0B24 85 DEFB 8SH 3
13 OAED 52 DEFE 52H i C 13 OB25 A4 DEFE A4H 3 >
14 OAEE 59 DEFE S9H 2 N\ 14 OB2& AS DEFB ASH P~
1S OAEF S4 DEFE S4H] 15 OB27 A6 DEFE AGH 3
16 OAFO 50 DEFE SOH ;o 14 OB28 94 DEFE 94H 3
17 OAF1 45 DEFE 45H § - 17 OB29 87 DEFBE 87H 3
18 0AFZ2 i &0 - &F 18 OBZA 88 DEFB 88H 3
19 OAF2 C7 DEFE C7H 3 UFD 19 OB2R 9C DEFE 9CH 3
20 0OAF3 C8 DEFE C8H 20 0BZC 82 DEFB 82H 3
21 OAF4 C9 DEFE C%H 21 OB2D 98 DEFB 98H i
22 OAFS CA DEFB CAH 22 OBZE 84 DEFB 84H 3
23 OAF6 CE DEFE CEH 23 OBZF 92 DEFE 92H ;
24 0AF7 CC DEFE CCH 24 OB3I0 90 DEFB 90H H
25 OAFB8 CD DEFE CDH 25 OB31 83 DEFE B3H 3
24 0AF9 CE DEFE CEH 26 OB3Z i A0 - AF
27 OAFA CF DEFE CFH 27 OB32 91 DEFB 91H 5
28 OAFE DF DEFE DFH 28 OB33 81 DEFE 81H 3
29 OAFC E7 DEFE E7H 29 0B34 9A DEFB 9AH 3
30 0AFD E8 DEFB E8H 30 OB3IS 97 DEFE 97H H
31 OAFE ES DEFE ESH 31 OB36 93 DEFE 93H 3
32 OAFF E9 DEFB E9H 32 OB37 95 DEFB 95H 3
33 OBOO EC DEFE ECH 33 OB38 89 DEFB B8%H 3
34 OHO1 ED DEFE EDH 34 OB39 Al DEFE AlH H
35 OBO2 3 70 - 7F 35 OB3A AF DEFE AFH 3
I& OBOZ DO DEFE DOH 34 OB3E S8R DEFE 8EBH H
37 OBO3 D1 DEFE DIH 37 OB3C 86 DEFE B6H ;
38 0RO4 D2 DEFE D2H I8 OB3ID 94 DEFE 9&H i
39 OBOS D3 DEFE D3H 39 OB3ZE A2 DEFBE AZ2H ;
40 0BO&6 D4 DEFE D4H 40 OB3IF AR DEFE AEH ;
41 OBO7 DS DEFE DSH 41 OB40 AA DEFE AAH 3
42 OBOB D& DEFE D&H 42 OB41 8A DEFE 8AH 3
4% OBO9 D7 DEFE D7H 43 OB4Z ;3 BO - BF 3 L
44 OROA DB DEFE D8H 44 OB4Z SE DEFE B8EH H
45 OBOE D9 DEFE D%H 45 OB43 BO DEFE BOH 3
44 OBOC DA DEFE DAH 46 OB44 AD DEFE ADH ;
47 OBOD DB DEFE DEH 47 OH4S 8D DEFE BDH i
48 OBOE DC DEFE DCH 48 OB4& AT DEFE A7H H
49 OBOF DD DEFE DDH 49 0B47 AB DEFE ABH H
50 0B10 DE DEFE DEH S50 0B48 A9 DEFE A%H ;
51 0B11 CO DEFE COH 51 OB49 BF DEFE BFH H
52 0B12 3 80 - 8F i 52 OB4A 8C DEFE 8CH ;
S3 0B12 80 DEFE BOH i3 S3 OB4E AE DEFE AEH 5
54 OB13 BD DEFE EBDH : 54 OBAC AC DEFE ACH ;
55 OB14 9D DEFB 9DH 55 OB4D SR DEFB 9EH 3
5S4 0OB1S E1 DEFE B1H 5S4 OB4E AO DEFB AOH 5
57 OBlé BS DEFB BSH 57 OB4F 99 DEFB 99H ;
58 0B17 B9 DEFE B9H =8 ORSO BC DEFE ECH 5
59 OE18 B4 DEFE B4H H 59 OBS1 B8 DEFE E8H
&0 OB19 9E DEFB 9EH H 60 OBSZ 3 CO - CF 3

981

15

20

*¥

OBRSZ2
OHRS3
ORS4
ORSS
OBSé
QBE7
ORS8
ORS9
OBSA
OBSH
ORSC
OHED
OBSE
QBSF
OR60
OR4&1
OR6Z2
OBRGZ2
OB63
QB&L4
OR6S
OBbS
OB&67
0OB&8
OR69
OB&A
OR6E
ORAGC
OB&D
OR&E
OR6F
QB70
OR71
QOR72
OR72
OR73
OE74
ORTES
OR7&
QR77
OR78
OR79

% OB7A

OBE7R
OR7C
QOB7D
OR7E
QRTF
OR8O
ORg1
OBB2
L) =1=hed
OB8Z
OB84

OBBS !
OB8é&

ORB7
DOHE8
ORB9

) OB8A

280

40
3R
IA
70
3C
71
A
3D
43
=1
3F
1k
4A
ic
5D
3E

sC
1F
SF
SE
37
7B
7F
36
7A
7E

4R
4C
1D
&C
SHE

78
41
35
T4
74
=0
I8
7o
39
4D
&F

2

27
76

b 2e)

o

ASSEMBLER SE-7201

-

<1Z-013A

EQ: =

Fo, =

DEFE
DEFE
DEFB
DEFEB
DEFE
DEFE
DEFB
DEFE
DEFB
DEFE
DEFB
DEFE
DEFE
DEFB
DEFE
DEFE
DF

DEFE
DEFE
DEFH
DEFE
DEFE
DEFE
DEFE
DEFE
DEFB
DEFB
DEFB
DEFE
DEFE
DEFE
DEFH
DEFE
EF

DEFE
DEFB
DEFE
DEFE
DEFE
DEFE
DEFB
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFB
FF

DEFE
DEFB
DEFB
DEFE
DEFE
DEFE
DEFH
DEFE
DEFE

FAGE 473

40H
3BH
3AH
70H
3CH
71H
SAH
ZDH
43H
SaH
ZFH
1EH
4AH
1CH
SDH
JEH

SCH
1FH
SFH
SEH
I7H
7BH
7FH
I&6H
7AH
7EH
33H
4EH
4CH
1DH
&CH
SEH

78H
41H
3TH
34H
74H
FOH
ZBH
7ZH
I9H
4DH
6FH
&EH
I2H
T7H
76H
72H

73IH
47H
7CH
SIH
31H
4EH
4&DH
48H
46H

01

02

04
05
Qb
o7
08

X

" QBAO

OBAZ
OBAZ
OBAT
QBAG
OBA7
OBAS
OBAR
QBAC
OBAD
OBAE
ORE1
OBR2
OBBZ
OEB4
OBBT
OBBD
OBE7
OBRY?
OBE?
OBBR9
OBRY

2 OBR9

OBRB9
OBB9
[8)23 204
OBEB?
OER9
QBRD
OBBA
OBEBE
OBBE
OHEBF

» ORC1

OBC2
ORCTE
QBCE
ORCH
OBCY
OBCA

3 OBCRE

280 ASSEMELER SB-7201 <1Z-013A* PAGE 44

7D
44
1B

. 58

79
42
60

2L00ED
77
2F
77
co

T64T
1BE?

o}

ES
219204
4F
DAO0
09

7E
181K

04,07.83
DEFE 7DH
DEFE 44H
DEFRE 1BH
DEFE S8H
DEFE 79H
DEFE 42H
DEFE 60H

FLASHING DATA SAVE

- wn an e

PSAVE: ENT
LD HL.FLSDT
LD (HL) «EFH 5 NOMAL CURSOR
LD As (EANAF)
RRCA
JR C.8V0-2 i GRAFPH MODE
RRCA
JR NC, SVO 3 NORMAL MODE
LD (HL) «FFH i GRAFH CURSOR
SVo: ENT
LD Ay (HL)
FUSH AF
CAaLL PFONT : FLASING POSITION
LD As (HL)
LD {FLASH) s A
FOF AF
LD (HL) s A
XOR A
LD HL, KEYFA
LD (HL) » A
CPL
LD (HL) + A
RET
SVi1: ENT
LD (HL) + 43H i EANA CURSOR
JR SVO

ORG OBE9H; ?ADCN

ASCII TO DISFLAY CODE CONVERTE

IN ACC:ASCII
EXIT ACC:DISFLAY CODE

ax an can an caw can s an ww

TADCN: ENT
FUSH BC
FUSH HL
LD HL . ATEL
LD CxA
LD B.O
ADD HL . EC
LD As (HL)
IR DACNZ

L]

VRNS: DEFM "Vi.0a" 3 VERSION MANAGEMENT
DEFE ODH

DEFS +3

L8l

¥¥% Z80 ASSEMELER SE-7201 <1Z-013A* PAGE 4% 04.07.83 ¥¥ Z80 ASSEMELER SE-7201 < 1Z-013A> PAGE 46 04.07.83

01 OBCE H] 01 OBFE 13 DEFE 13H § S

02 OBCE H OBFD 14 DEFE 14H i i

0% ORCE s ORG OBCEH3: ?DACN ORFE 1% DEFER 15H iU

04 ORCE H OBFF 1& DEFE 1&H iV

05 OECE H DISFLAY CODE TO ASCII CONV. H OCoo0 17 DEFE 17H H

06 OBCE H 0Co1 18 DEFE 18H K

07 OHCE H IN ACC = DISFLAY CODE OCOz2 §83 18— AF &

08 OBCE H EXIT ACC = ASCII 08 0Ccoz 09 DEFH Q9H i I

09 OBCE H 09 QOCOE OA DEFE OAH i J

10 OBCE ?DACN: ENT 10 QCO4 OR DEFE QFRH K

11 OECE CZ FUSH EC 11 0CoS oC DEFE QOCH N

12 OBCF ES FUSH HL 12 0Coé& 0D DEFE ODH iM

1Z OBDD DS FUSH DE 13 0CO7 OE DEFE OEH i N

14 OBD1 Z21920A LD HLsATBL 14 0CO8 OF DEFE OFH s 0

15 OBD4 54 LD DsH 15 0CO9 10 DEFE 10H i P

16 OBDS 5D LD Esb 146 QCOA 564 20 — 27 §

17 OBDS 010001 LD BC,0100H 17 oCoA 01 DEFE O1H i A

18 OBD? EDE1 CPIR 18 0CORp 02 DEFE 02H i B

19 ORDE 28064 JR ZyDACN1L 19 0COC OF DEFE OZH § C

20 ORDD ZIEFO LD AyFOH 20 0CoD 04 DEFE 04H i D

21 QOBDF DACNZ2: ENT 21 OCOE 05 DEFE 0SH i E

22 OBDF D1 FOP DE 22 0COF & DEFE 06H s F

23 OBEOQ DACNZ: ENT 23 oCc10 07 DEFE O7H i 6

24 OBEO E1 FOF HL 24 0C11 o8 DEFE 08H i H

25 OREl1l C1 FOF RC 25 0C12 i85 28 - 2F 3

26 ORBEZ C9 RET 26 0C12 21 DEFE 21H § i

27 OBE3 H 27 oC13 22 DEFE 22H i 2

28 OBEZ DACN1: ENT 28 0C14 23 DEFH 23H H=

29 OBE3 B7 OR A 29 OC15S 24 DEFE 24H i 4

30 ORE4 2R DEC HL 30 0C1é 25 DEFE 25H s S

31 OBES ED32 SBC HL s DE 31 0C17 26 DEFE 26H i b

32 OBE7 7D LD AsL 32 oci8 27 DEFE 27H 5 7

33 OBES 18F%S JR DACNZ 33 0C19 28 DEFE 28H i 8

34 OBEA H 4 OC1A 154 BJO =37 3

35 OBEA H 35 OC1A 59 DEFE S9H i A

36 OBEA H 34 OCLR S0 DEFH S0OH)

37 OBEA H KEY MATRIX TO DISFLAY CODE TABL 37 OC1C 2A DEFE 2AH io-

38 OBEA H 38 0C1D 00 DEFE 00H i SPACE

39 OHEA ETHL: ENT 39 OCLE 20 DEFEB 20H 50

40 OBEA 580 0O - 07 & 40 QCLIF 29 DEFE 29H § 9
OHEA EBF DEFE EBFH i SFARE 41 0OC20 2F DEFE 2FH i
OBEE CA DEFE CAH i GRAPH 42 0OC21 2E DEFEH 2EH § =
OBEC 58 DEFE =8H HER 3 §87 3B = 3F 3
ORED C%9 DEFE CoH i ALFHA 44 c8 DEFE C8H i INST.
OBEE FO DEFE FioH i NO 4% S E7 DEFE C7H i DEL.
OBEF 2C DEFE 2CH i3 46 c2 DEFB CZ2H i CURSOR UP
ORFO 4F DEFE 4FH I 47 el DEFE CiH i CURSOR DOWN
OBF1 CD DEFRE CDH i CR 48 C3 DEFE CZH i CURSOR RIGHT
OBF2 351 a8 - OF 3 49 c4 DEFE C4H i CURSOR LEFT
OBF2 19 DEFE 19H ;i Y S0 49 DEFE 49H ;s ?
OBFZ 1A DEFE 1AH Ll . 51 2D DEFR 2DH i/
OBF4 55 DEFE S5H I 22 H
OBFS 52 DEFE S52H 5 IE 53 H KTEL SHIFT ON
COBF&6 T4 DEFE S4H i1 54 H
OBF7 FO DEFE FOH i NULL bt ETERLS: ENT
OBFB FO DEFE FOH i NULL Sé 550 D0=07
QBF9 FO DEFH FoH i NULL 57 BF DEFE BFH i SFARE
OBFA 182 7 S] pit=] CA DEFEH CAH i GRAFH
OHFA 11 DEFH 11H Fe 59 1B DEFE 1EBH i FOND
OBFE 12 DEFE 12H i R [=1a] €9 DEFH C9H i ALFHA

881

¥¥ Z80 ASSEMBLER SR-7201 <1Z-013AF FAGE 47 04.07.83 ¥¥ Z80 ASSEMELER SB-7201 <1Z-013Ax PAGE 48 04.07.83
OC2E FO DEFE FOH i NO 01 0CeT CS DEFE CSH i HOME
OC2F &A DEFH bAH § 02 0Cé4 CZ2 DEFB C2H i CURSOR UF
0OC30 6R DEFE 6EH ioX 0OF 0Ce6T C1 DEFE CiH i CURSOR DOWN
QC31 CD DEFE CDH i CR 04 OC6s CX DEFE CEH : CURSOR RIGHT
0C32 51 08-0F 05 0C&67 C4 DEFE C4H i CURSOR LEFT
QC32 99 DEFE PH iy Q0Cae8 A DEFE s5aH" HELS
OC33 9A DEFE FAH L4 0OCe9 4% DEFE 45H HE
OC34 A4 DEFE Ad4H B S QCLA 5
0OC3T BC DEFE BCH I OC&A H GRAFHIC
QCZ& 40 DEFE 40H . OCaA i
OC37 FO DEFE FOH 5 NULL 0CeA KTBLGS: ENT
2 0C38 FoO DEFE FOH 5 ONULL 2 QCaA $ 50 Q0-07
OC3Z9 FO DEFE FOH 3 NULL QC6A EBF DEFE EBFH i SPARE
OC3A i62 10-17 QCeE FO DEFE FOH i GRAFH BUT NULL
OCIA 91 DEFE P1H iq 0OC6C ES DEFRE ETH HI 44
QC3R 9Z DEFB FZ2H ir QC6D C9 DEFE C9H i ALPHA
OC3C 93 DEFE 9IH i s QC6E FO DEFE FOH i NOD
QOC3D 24 DEFE P4H it QC&F 42 DEFR 4Z2H E 3
QC3E 9% DEFE FTH Pu OC70 Bé6 DEFE B&H i #H:
OC3F 94 DEFE P&H HIERY aC71 CD DEFE CDH i CR
OC40 97 DEFE ?7H H oc72 551 08-0F
2 0C41 98 DEFH 98H HE QC72 795 DEFE 75H i HY
23 oc4z 83 18-1F T 0C73 76 DEFE 76H LI 74
oc4az2 89 DEFE 89+ LI § 0Cc74 B2 DEFE BZ2H HER]
OC43 8A DEFE 8AH iod OC7% D8 DEFE D8H 3 #L
oc44 8B DEFE 8BH ik QC7&6 4E DEFE 4EH s %1
0C45 8C DEFE 8CH i1 0C77 FO DEFE FOH i #NULL-
ac44 8D DEFE 8DH iom ac78 Fo DEFEB FOH s OHNULL
0Cc47 8E DEFE BEH in 0C79 FO DEFE FOH 5 #NULL
0c4g 8aF DEFE 8FH L =] QC7A 182 10-17
0C49 90 DEFE QOH ip 1 0C7A 3C DEFE 3CH 3 HE
oc4A ;54 20-27 F2 0C7E 30 DEFE J0H i HR
ac4a 81 DEFE 81H ia IF 0C7C 44 DEFE 44H i #5
QC4E 82 DEFE a2H i b F4 OC7D 71 DEFE 71H i OHT
0C4aC 8% DEFE 83H ic 35 OC7E 79 DEFE 79H s HU
QC4D 84 DEFE 84H id Z& OC7F DA DEFE DAH i HY
QC4E 83 DEFE 85H i e 0oCcgo I8 DEFE 38H i OHW
OC4F 84 DEFE 84H i f Qoc81l &D DEFE 4&DH iOHX
OCS0 87 DEFE 87H ig ocez 383 18-1F
40 0CS51 a8 DEFE 88H i h acez 7D DEFE 7DH 3 OHI
0ocs2 HR=t= 28-2F 0CelT =C DEFE SCH oHa
NCS2 &1 DEFE &aiH P! oCcg4 TE DEFH SHEH i HE
OCE3 62 DEFE &2H E QoCBS R4 DEFE EB4H 5oL
QCS4 &3 DEFE &TH P QC84 10 DEFB 1CH i OHM
o 0CSS 64 DEFE &4H HEE: 1 oce7 32 DEFE 32 i N
QCSs &5 DEFE &TH LI ocea go DEFE BOH i #0
obs57 66 DEFE bo&H HEE 0CB9 Dé DEFE D&H i #F
acEg &7 DEFEH &7H N aC8Aa i 54 20-27
OCE9 68 DEFE 68H s (OCBA TE DEFE S 3 oHA
QCSA 3 5éa FO=3F7 QC8ar &F DEFE &FH i OHE
OCSA 80 DEFE 80H HEEAN oCc8C DE DEFE DEH i #C
QCSE AT DEFE ASH i FOND MARE ocan 47 DEFE 47H i #D
0CSC 2R DEFE 2BH i YEN OCBE 34 DEFE I4H i HE
QCSD 00 DEFE QOH i SFACE 0C8F 4A DEFE 4AH i HF
OCSE 60 DEFE &OH o OC?0 4E DEFE 4EH i HG
QCEF 69 DEFE &9H i) 0Cel 72 DEFH 72H i #HH
57 0OC60 51 DEFE S1H LIS ocez $165 2B=2F
T8 0Ce1 =7 DEFE S7H P 2 i DEFR I7H ioH1
59 0OC62 HR=v4 I8-IF DEFE IEH iOHD
&0 D062 Cé DEFE Cé&H i CLR DEFE 7FH 3 HD

681

01
a2
03
04
05
04
07
08
09
10
11
12
1=
14
15
146
17
18
19
20
21
22
23
24
25
24
27
28
29
30
31
32
33
34
35
34
37
z8
32
40
41
42
473
44
45
48
47
48
49
o0
=5 §
o2
o3
o4

==

Sa
57
=8
9
&0

Xk

0Ccos
0C94s
0Cce7
aces
0cee
aceA
0ceA
QC9H
ocec
QC9D
0OC9E
QOC9F
0OCAO
QOCAlL
0OCAZ
OCAZ
OCAZ
OCA4
OCAS
OCAbL
QCA7
QCA8
QCA?
ACAA
OCAA
QCAA
OCAA
QCAA
OCAA
QOCAB
0OCAC
QCAD
OCAE
QCAF
OCBO
OCB1
OCE2
QCBEZ2
OCBZ
QOCE4
OCBS
OCER&
oOCRB7
OCES
0CB9?
OCBA
OCBA
OCBE
OCBC
JCED
OCEE
OCHF
OCcCo
OCC1
ocez2
0Cccz2
OCCE
2CC4
OCCES
QCCsH

Z80

7B
3A
SE
iF
BD

D4
9E
D2
00
eC
Al
cA
B8

cs
c7
cz2
C1
c3
c4
BA
DE

FO
FO
FO
FO
FO

FO
FO

FO
5A
FO
FO
FO
FO
FoO
FO

ol
cz
c3
ca
cs
cé
FO
FO

FO
FO
Fo
FO
FO

ASSEMBLER SB-7201

DEFE
DEFBE
DEFB
DEFB
DEFE
86 30-3F
DEFE
DEFE
DEFB
DEFEB
DEFE
DEFB
DEFE
DEFB
87 I8-3F
DEFE
DEFE
DEFB
DEFEB
DEFE
DEFE
DEFE
DEFE

e an an

KETBLC: ENT

S0 Q0-07N

DEFE
DEFE
DEFE
DEFE
DEFE
DEFB
DEFE
DEFB
§S1 08-0F
DEFE
DEFB
DEFB
DEFB
DEFE
DEFE
DEFB
DEFE
10-17
DEFE
DEFE
DEFEB
DEFE
DEFB
DEFE
DEFE
DEFB
18-1F
DEFE
DEFE
DEFE
DEFE
DEFB

-
[51]
[B]

0
(2]

<1Z-013Ax

FAGE 49

7EH
3AH
SEH
1FH
EBDH

DAH
FEH
DZ2H
QOH
9CH
AlH
CAH
B8H

C8H
C7H
C2H
CiH
C3H
C4H
BAH
DEH

CONTROL CODE

FOH
FOH
FOH
FOH
FOH
FOH
FOH
FOH

FOH
SAH
FOH

FOH-

FOH
FOH
FOH
FOH

CiH
CZ2H
C3H
C4aH
CSH
Cé&H
FOH
FOH

FOH
FOH
FOH
FOH
FOH

n can we can

[PRPPE

04.07.83

#4
#5
#6
#7
#B8

#YEN
#+

#_
SFACE
#0

#9

.

#.

INST

DEL.

CURSOR UP
CURSOR DOWN
CURSOR RIGHT
CURSOR LEFT

#?

#/

+

&Y E3
4Z E4 (CHECEER)
+3

AL ES
£l E7
+a

+R

48

+T

+U

v

W E1
+X EZ2
X F9
+1 FA
++ FH
L FC
+M FD

01
a2
03
04
05
b
07
08
09
10
11
12
13
14
15
14
17
18
19
20
21

am

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
44
45
46
47
49
49
50
s1
52
53
=4

e

bt}
57
=8
o9
&0

L2 3

0CC7
aces
OCCc?
OCCA
OCCA
QCCE
occe
QCCD
OCCE
OCCF
0OCDO
0OCD1
0oCD2
QCcD2
OCD3
QCD4
OCDS
0OCD&
0OCD7
ocD8
OCD?
QCDA
OCDA
OCDE
0ocDpe
QOCDD
OCDE
OCDF
QCEOQ
QCE1
OCE1
QCEZ
OCEZ=
OCE4
OCE=
QCE&
OCE7
GCES8
0OCE®
OCE®
QCE®?
QOCE®?
OCE®?
OCE®?
OCEA
OCEB
OCEC
0OCED
0OCEE
OCEF
OCFO
OCF1
OCF1
OCF2
OCFZ
OCF4
OCFS
OCFé&
0OCF7
aCF8

280 ASSEMELER SB-7201

FO
Fi
FO

F o
FoQ
FO
FO
FO
FO
FO
FO

FO
FOQ
FOQ
FO
FO
FO
FO
FO

FO
FQ
FO
FO
FO
FO
FO

FO
FO
FO
FoO
FO
FO
FO
FO

BF
FO
CF
ce
FO
EBS
4D
CD

35
77
D7
B
EB7
FO
FO
FO

<1Z-013AF PAGE

DEFEB FOH
DEFE FOH
DEFE FOH

154 20-27
DEFE FOH
DEFE FOH
DEFRB FOH
DEFE FOH
DEFB FOH
DEFB FOH
DEFB FOH
DEFB FOH

;5% 28-2F
DEFE FOH
DEFE FOH
DEFE FOH
DEFB FOH
DEFB FOH
DEFB FOH
DEFB FOH
DEFE FOH

iS6 I0-37
DEFE FOH
DEFE FOH
DEFE FOH
DEFB FOH
DEFB FOH
DEFB FOH
DEFB FOH

57 38-3F
DEFE FOH
DEFE FOH
DEFB FOH
DEFE FOH
DEFB FOH
DEFE FOH
DEFE FOH
DEFE FOH

.

H EANA

s

KETBLG: ENT

80 Q0-07
DEFE BFH
DEFEB FOH
DEFBE CFH
DEFE C9H
DEFE FOH
DEFB BSH
DEFE 4DH
DEFE CDH

51 08-0F
DEFE ITH
DEFE 77H
DEFE D7H
DEFE BZH
DEFR B7H
DEFE FOH
DEFE FOH
DEFE FOH

=0

-

.

n can e can e wn ces

04.07.83

*N FE
0. FF
£P [ED
*A F1

*B F2
+C F3
+D F4
*E FS
$F Fb
*e FT
£H E8
+YEN Eb&
+s EF

4/ EE

SFARE

GRAPH BUT NULL
NIKQ WH.

ALFHA

NO

MO

DAKU TEN

CR

HA
TA
WA
Yo
HANDAKU

06l

o1
02
03
04
05
24
07
at=)
09
10

L2

0OCFe
OCF9
OCFA
OCFE
OCFC
QCFD
OCFE
OCFF
ODOO
aDol
oDoO1

2 0DOZ

3 0DO3

ODOG
oDOS
0DOG
oDo7
0Dog
0ODone
anos
ODOA
ODOR

» oDOC

ODOD
ODOE
DODOF
opLo
oDl
OD11
oD12
OD13
0D14
OD1%
0D1é

ODLR
oDic
oDiD
ODLE
ODLF
ODRO
QD21

D28
0D29
on29
0p29
D29
0D29
aE9

I Cc2

7C
70
41

=9
Ab
78
DD

3D
=D
&C
=1-)
iD

DS
El

446
6E
D?
48
74
43
4C
7

IF
36
7E
76
1E
SF
Az

D=
2F
D1
(s1s]
?D
AL
D
B9

CDZED01

Z80 ASSEMBLER SR-7201

152

i85

w
~d

D

UMF 2

“1Z-013Ax

10-17
DEFE
DEFE
DEFE
DEFE
DEFB
DEFER
DEFE
DEFE

18-1F
DEFE
DEFEB
DEFE
DEFE
DEFE
DEFH
DEFE
DEFEH

20-27
DEFEH
DEFE
DEFE
DEFRB
DEFER
DEFR
DEFE
DEFE

28-2F
DEFE
DEFEH
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE

F0-37
DEFR
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE

Z8-3F
DEFE
DEFE
DEFRE
DEFH
DEFE
DEFE
DEFE
DEFE

FAGE

7CH
70H
41H
I1H
I9H
AGH
78H
DDH

IDH
SDH
&4CH
SaH
1DH
3IH
DTH
BiH

446H
6EH
D9H
48H
74H
473H
4CH
73H

IFH
ZéH
7EH
IBEH
7AH
1EH
SFH
AZH

D3EH
9FH
DiH
00OH
9DH
ATH
DOH
B9H

CéH
CSH
C2H
CiH
CIH
CaH
BEH
BEH

MEMORY DUMF
COMMAND D~

ENT
CAL.L

HEXIY

=1

ax an A cam can can can W

‘a8 wE cas ue can wn an aw

s wn cam

an can can an e

‘an am an can can un can e

a wn an an can can can an

04.,07.87% ¥¥ 780 ASSEMBLER SB-7201 <«<1Z-013A> PAGE =2
CDALOZ CALL . 4DE
kA ES FUSH
KE CD1004 CALL
SHI D1 FOF
KO 3852 JR
HI EE EX
TE 0608 DUMZ: LD
kI DEL7 LD
CHI OD3E CDFAOS CALL NLFHL
ODZE CDE103 DUM2: CALL SFPHEX
FU oD41 23 INC HL
MI 2 oD4z FUSH AF
MU I 0OD43 LD AL (DSFXY)
ME aD4é ADD AsC
RHI 0D47 =2 LD (DSFXY)a A
RA aD4A FaF AF
HE OD4R CF 20H
HO oD4an JR NCs +4
OD4F ZEZE LD A 2EH
SA ODS1 CDRESOR CALL FADCN
TO 0ODS4 CDh&co9 CALL PRNTZ
THU ODS7 ZA7111 LD Ay (DSFXY)
suU 0oDSA OC INC c
kU ODSR 91 SUR G
SE ODSC 327111 LD (DSFXY) A
S0 ODSF 0D DEC (&
MA 0D&60O OD DEC Cc
0D&1 0D DEC c
A oD&62 ES FUSH HL
1 aD&3 EDSZ2 SEC HLs DE
u 0D6S El FOF HL
E 0D&46 281D JR Z,DUM1-3
] 0D&8 ZEFS LD AFBH
NA 0D&A FRO0EQ LD (KEYFA) . A
NI 0D&D NOF
NU ODAGE FAOLED L.D AL (KEYFR)
OD71 FEFE CP FEH
YO OD73E 2003 JR NZs+5
YU OD75 CDAGLOD caLL PELNE
YA QD79 10C4 D.JINZ DUMZ2
SFACE OD7A CDCAOS CALL THEY
NO D7D OR A
NE OD7E IR Z,-4
RU oDaa CALL PBRE
RE 0D83E IR MZ s DUME
apas JFP STL
TCLR & 0opgg 2 DUM1: LD HL. 160
FHOME @ OD8H ADD HL » DE
?CURSOR UF 0D8C JR DUMZ~-1
PCURSOR DOWN OD8E H
PCURSOR RIGHT %1 ODBE H
PCURSOR LEFT 2 ODBE H
DASH ODBE H
RO OD8E DEFS +24
: GODAG H
Si4 ODAG H
57 ODAb f
%8 ODA& s ORG ODA&HS PELNE
59 ODAG H
START ADR. 40 ODAA 5

an

an an a

an cam

an caw

04.07.87

END ADR.

DATA ER. THEN
DISF BRYTES

CHA. FRINT RIAS
NEWL.INE FRINT

SP. PRT.+ACC FRT.
DISFLAY FOINT

X AXIS.=X+Creg

ASCII TO DSFLAY CODE

ASCII DSF POSITION

SHIFT KEY ?
64MSEC DELAY
STOF DISF

SFACE KEY THEN STOF
BREAK IN 7

COMMAND IN !
20%8 BYTE

l6L

01
02
0%
04
05
(s 1]
07
08
09
10
11
12
13
14
1S
16
17
18
19
20
21
22
23
24
25
28
2

28

29.

30
31

32

=57
b=}
o9
1]

*x

ODA6
ODAS
ODAb
ODAS
ODA7
ODAA
ODAR
ODAD
ODRO
ODE1
ODE3
ODE4
ODRBS
ODRS
ODRS
ODBS
ODRS
ODES
ODBS
ODBS
ODBS
ODES
ODERS
ODBS
0ODB6&
ODE7
ODE8
ODE?
QDE?
ODEC
ODED
oDpco

R} 05 §

(£ o] 33
0ODCS
opes
0DCA
ODCE
QDCD
ODCE
ODDO
ODDO

I 0DDZ

©DD4
ODD4
0DD4
QoDD4
0DD4
2DD4
oDD4
oDD7
0DDY?
ODDE
oDDheC
0DDC
oDDC
QDD
oDDC
aDDC
0ODpDeC

FS
FAOZED
a7
IOFA
FA0ZEQ
Qo7
I8FA
F1

co

FS
Cs
D=
ES

CDR1OF
AT
2A7111
7D
FEZ27
Z00B
CDF302
806
EB
601

JA7011
FEOQ1
ZECA
ce

780 ASSEMBLER SR-7201

) An s mm e an wm caw e aw a

D

D

) e an cax we can e

x an can can an can cas

<1Z-013Ax PAGE 33

V-ELANE. CHECE 3

BLNK: ENT
PUSH AF
LD As (EEYFC)
RLCA
JR NC: -4
LD As (KEYPC)
RLCA
JR Cy—4
FOP AF
RET

ORG ©ODBISH; ?DSF

DISFLAY ON POINTER 3

ACC = DISFLAY CODE

EXCEFT FOH
DSF: ENT
PUSH AF
FUSH BC
FUSH DE
PUSH HL.
SFO1: ENT
CALL TPONT
LD (HL) s A
LD HL . { DSFXY)
LD AL
CF +39
JR NZ,DSF04
CALL - MANG
JR C,DSFO4
EX DE s HL
LD (HL) 5 +1
INC HL
LD (HL) 0
SFO4: ENT
LD AsC3H
JR ?DPCT+4
GRAFHIC STATUS CHECEK
RSTAS: LD As (KANAF)
CF O1H
LD A.CAH

RET

ORG ODDCH; ?DFCT

a

04.07.83

V-BLNE

DSFLAY FOSITION

LOGICAL 1ST COLUMN

LOGICAL 2ND COLUMN

CURSL

01
Q2
03
04
05
Db
07
8
09
10
11

2
Py

13
14
15
16
17
18
19
20
21

22

2

25
26
27
28
31
32
33
4

35

36

38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
=3
=4
=5
56
57
=8
=59
60

Kk

oDDC
oDDC
oDDC
apbe
0DpDC
appe
oDDC
oDDC
oDDD
ODDE
ODDF
ODEOQ
0ODE1
ODEZ
ODES
0ODE7
ODES
ODE®
ODEA
ODEC
ODEF
ODFO
ODF1
ODF2
ODF3
ODF &
ODF7
ODF8
ODF8
0ODF8
ODF8
ODF8
0ODF®?
ODFA
ODFC
ODFE
ODFF
ODFF
ODFF
ODFF
ODFF
ODFF
DEDZ
OEOS
QEOS
OEOQS
DEDé
QEOQ7
0OEOS8
OEOA
OEOQR
OEOE
DEOD
OEOD
OEQOE
OEOF
OELL
OEL1ZE
OE14
CGE16

780 ASSEMELER SE-7201

FS

(Bea

DE

ES

47
E&FO
FECQ
201B
A8

07

4F
0600
21AA0E
09

SE

23

Sé
2A7111
EE

E?

EER
7C
FE18
2825
24

227111
CIESOE

EE
7C
B7
28F8
e

20

18F2

EER
7D
FE27
FO0D
2C
18E9

o) wn we an e s can

PDFCT:

() wen e an

URSD:

CURS1:
CURSZE:

CURSSiz

H
CURSU:

CURSU1

CURSR:

CURSZ:

“1Z-013A%

ACC =

ENT
FUSH
FUSH
FUSH
FUSH
LD
AND
CP
JR
XOR
RLCA
LD
LD
LD
ADD
LD
INC
LD
LD
EX
Jap

ENT
EX
LD
CF
JR
INC
ENT

ENT
JF

ENT
EX
LD
OR
JR
DEC
ENT
JR
ENT
EX
LD
CF
IR
INC
IR
ENT

FAGE %54

DISFLAY CONTROL 4

CONTROL CODE

AF

EBC

DE

HL

By A

FOH

COH

NZ, CURSS
E

CyA

B, +0
HL:CTEL
HL.BC

Es (HL)

HL

Dy (HL)

HLs (DSFXY)
DE s HL

(HL)

DE, HL
AsH

+24
Z,CURS4
H

(DSFXY) s HL
?RSTR

DE.HL
AyH

A
ZsCURSS
H

CURSZ

DE s HL
AsL

+39

NC, CURSZ
I

CURS3

FAGE MODE1

L.LD HL. {DSFXY)

LD HLs (DSFXY)

LD HLs (DSFXY)

6l

01
02
03
04
0s
04
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
28
27

28

*k

QE16
QE18
0E19
QE1A
QELC
QOELE
OE20
QEZ23
OE23
OEZ2S
QE2%
QE2S
0E26
QEZ7
0EZ28
QE2A
OEZ2B
QEZ2D
QEZ2F
OE3D
QEZZ
QE3S
OE38
OEZA
0E3A
QEZA
0EZ

QE3F
0E42
OE45
0E48

290 ASSEMBLER SB-7201 < 1Z-013Ak
2EQO LD
24 INC
7C LD
FE19 cP
3IBEL JR
2618 LD
227111 LD

CURS4: ENT
1848 JR
L]
CURSL: ENT
EB EX
7D LD
B7 OR
280= IR
2D DEC
18D2 JR
2E27 LD
25 DEC
FZ0BOE JP
2600 LD
227111 LD
18C8 IR
CLRS: ENT
217311 LD
061E LD
CDD8OF CALL
2100D0 LD
CDD40? CALL
JE71 LD
CDDZ09 CALL
HOME ENT
210000 LD
18AD JR
H
DEFS
H
H CR
H
CR: ENT
CDF302 CALL
OF RRCA
JR
LD
INC
EP
JR
INC
JR
CR1: ENT
227111 LD
s
H SCROL
.
SCROL: ENT
01CO03 LD
1100D0 LD
2128D0 LD
5 FUSH

FAGE S5

La+0

H

AsH

+25
CyCURS1

Hs +24
(DSFXY) s HL

SCROL

DE, HL H
AsL

A

Zy+35

L.

CURSE

Ly +39

H

Fs CURSU1
H. O
(DSFXY) s HL
CURSS

HL.; MANG
B.27

?CLER

HL. DOOOH H
#CLROS
As71H
#CLRE

HL, O H
CURSZ

+8

« MANG

NC.CURS2
L0

H

+24
Z,CR1

H

CURS1

{DSFXY) « HL

BC. OZCOH

DEy SCRN H
HL « SCRN+40 [
BC H

04,07.83

LD HLs (DSFXY)

SCRN TOF

COLDOR DATA
D8OOH-DFFFH CLR.

DSFXY:O X=0,Y=0

TOF OF $CRT ADR.
1 COLUMN
1000 STORE

*xk

QE77
QE79
OE7A
QOE7B
QE7E
OE81
QEBZ
QE8Z
0OEB6
OES8
QEBE
DESC
OEBE
QOEF1
OE94
DES7
QE?A
QESC
QOERE
DEAL
OEAZ2
OEA4
QEA7
QOEA8
OEAA
DEAA
OEAA
DEAA
OEAA
OEAC
OEAE
QEBQ

Z OEBR2

OER4
QEE&
OEBS
OEBA
QEBC
OEBE
OECO
QEC2

2 QEC4

OECé&
QEC8
QECA
QECA
OECA
QECA
QOECA
QECA
QOECC

Z80 ASSEMELER SE-7201

EDEO

c1

DS
1100D8
2128D8
EDEO
0628
EE
3E71
CDDDOF
El
0628
CDDBOF
Q11AN0
117311
217411
EDEQ
FH00
3A7311
B7
2841
217211
35
18C3

6DOE
F80D
0S0E
QODOE
250E
4DOE
JA0E
F80E
I80F
E10E
EEOE
ESOE
ESOE
SAOE
ESOE
ESOE

CEDC

QOECD 23

3 QECE

OECF 2

QEDO
OED2
OED4
OEDS
OED6
QEDS

CE?C
EDAS
79
BO
20F2

EB

(] e e

[T

«1Z-013Ax FAGE Té
LDIR
FOF EC
PUSH DE
LD DE s SCRN+800H
LD HL » SCRN+B828H
LDIR
LD Ey 40
EX DE,HL
LD Ay 71H
CALL PDINT
FOF HL
LD B, 40
CALL ?CLER
LD HC. 246
LD DE s MANG
LD HL « MANG+1
LDIR
LD (HL) -, O
LD As (MANG)
OR A
JR Z,?RSTR
LD HL s DSFXY+1
DEC (HL)
JR SCROL
CONTROL. CODE TABLE
ENT

DEFW SCROL
DEFW CURSD
DEFW CURSU
DEFW CURSR
DEFW CURSL
DEFW HOME
DEFW CLRS
DEFW DEL.
DEFW INST
DEFW ALPHA
DEFW E.ANA
DEFW ?RSTR
DEFW ?RSTR
DEFW CR
DEFW ?RSTR
DEFW ?RSTR

INST BYFASS

NST2: SET Iy H
LD Ay (HL)
INC HL
LD (HL) 5 A
DEC HL
RES 3,H
LDD
LD ALC
OR B
JR NZ s INST2
EX DE 4 HL

an can e

ar e

ar e

-

04.07.83

COLOR RAM SCROLL.
SCROLL TOF + 40

ONE LINE

COLOR RAM INITIAL DATA

LAST LINE CLEAR
FROW NUMBER +1
LOGICAL MANAGEMENT

SCROLLING
CURSOR

COLOR RAM
FROM

TO
ADR ADJ.

CHA. TRNS.

BC=0 7

€6l

01
02
0%
04
fo}]
Q&
07
o8
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

¥k Z80 ASSEMELER SE-7201 <1Z-013Ax FAGE 57 Q04,07.83
OEDS * 3600 LD (HL) . O
OEDE CEDC SET TsH i COLOR RAM
OEDD 3671 LD (HL) « 71H
OEDF 1804 JR 7RSTR
OEE:1 H
QEE1 H
OEE1 H
QEE1 H
OEE1 :0ORG OQOEE1H; ALPHA
OEE1 H
OEE1 ALFHA: ENT
QEE1 AF XOR A
OEEZ2 ALPHL1: ENT
OEE2 327011 ' LD (KANAF) . A
OEES H
OEES H
OEES § RESTORE i
QEES H
QOEES ?RSTR: ENT
OEES E1 FOF HL
QOEE6 ?RSTR1: ENT
QEES D1 FOF DE
QEE7 C1 FOF EC
QEE8 F1 FOF AF
OEE9 C%9 RET
QEEA H
OEEA : MONITOR WORKE AREA 3
QEEA H
DOOO F SCRN: EQU DOOOH
EQO3 F EANST: EGQU EOQO3H i EANA STATUS FORT
OEEA H
OEEA H
OEEA H
QEEA DEFS +4
OEEE :ORG OEEEH; EANA
QEEE H
OEEE EANAS ENT
OEEE CDD40OD CALL GRSTAS
DOEF1 CAB?0D JP Z,DSFO1 3 NOT GRAFH KEY THEN JUM
OEF4 ZEO1 LD A+l
OEF&6 1BEA JR ALFH1
OEF8 H
» OEF8 H
OEF8 DEL : ENT
DEFB ER EX DE.HL i LD HL, (DSFXY)
0EF9 7C LD AsH i HOME 7
OEFA BS OR L
OEFE 28E8 JR Z, 7RSTR
OEFD 7D L.D AsL
JEFE R7 OR A
OEFF 200D JR NZ.DEL1 § LEFT SIDE ?
OF01 CDF302 CALL - MANG
OF04 =808 JR CsDEL1
OF04 CDELOF CALL PRONT
OF0O%? 2B DEC HL
OFOA F600 LD CHL) » +0
OFOC 1825 JR INST-5 i JF CURSL
OFOE DEL 1= ENT
OFOE CDF302 CALL . MANG
OF11 OF RRCA

¥¥ 780 ASSEMELER SE-7201 <1Z-013A> FPAGE 58

01 OF12 TEZ28 LD As 40
02 OF14 Z001 JR NC,y+3
0% OF16 07 RLCA
04 OF17 95 SUR L
05 OF18 47 LD E. A
6 OF19 CDHIOF CALL. PRONT
07 OF1C 7E DEL2: LD As (HL)
08 OF1D 2B DEC HL
0% OFLE 77 LD (HL) s A
10 OF1F 23 INC HL

11 OF20 CEDC SET 3sH

2 OF22 LD Ay (HL)
13 OF23 DEC HL.

14 QF24 LD (HL) s A
15 OF2% RES 3aH

16 OF27 INC HL.

17 OF28 2 INC HL

18 OF29 DJINZ DELZ2
19 OF2B DEC HL
20 OF2C 3 LD {HL) O
21 OF2E CBDC SET IaH
22 0OF30 217100 LD HL.71H
23 OF33 ZEC4 LD +AsC4H
24 OF3% C3IEOOD JF PDPCT+4
25 OFZ8 H
26 0OF38 INST: ENT
27 OF38 CDF302 CALL . MANG
28 OF3B OF RRCA
29 OF3C Z2E27 ED Ly #39
30 OF3E LD v Al
31 OF3F JR NC, +3
32 0OF41 INC H
I3 0F4R2 CALL TPNT1
34 OF4% FUSH HL
35 OF46 LD HL.» (DSFXY)
34 OF49 I JR NCy +4
37 OF4R LD A +79
38 OF4D SUE L
39 OF4E LD B O
40 OFS0 LD CyA
41 GOFS1 FOF DE
42 OFS2 JR Z.7RSTR
4% OFS4 LD As (DE)
44 OFSS (a1 A
45 OFS& 208D JR NZ, ?RSTR
46 OFT8 &2 LD Hs D
47 OFS9 &R LD L.E
48 OFSA 2B DEC HL.
49 OFSR CZECACE JF INSTZ2
=0 OFSE § &
51 OFSE H
52 OFSE H FROGRAM SAVE
55 OFSE H
54 OFSE H CHD. “§*
85 OFS5E H
54 OFSE SAVE: ENT
57 OFZE CDZIDO1 . CALL HEXIY
58 0OF&al 220411 LD (DTADR) s HL
59 OF&4 44 LD © BasH
&0 OF&S 4D LD CsL

- e an an an an

.

04,07.83

ACC=80
TRNS. BYTE
CHA. FROM ADR
TO

COLOR RAM

CHA.
NEXT

ADR. ADJUST

ELUE + WHITE
JFP CURSL

HL¢DE

JUMF NEXT (BYFASS)

START ADR.

DATA ADR. BUFFER

6l

01
a2
03
04
o5
&
07
08
09

1%

20

-

X% Z80 ASSEMBLER SE-7201

OF 66 “CDAGOZ
0F&9 CD3DO1
OF6C EDAZ
OF6E 23
OF6F 220211
OF72 CDAGOZ
OF75 CD3DO1
OF78 220811
OF7E CDOS0D
OF7E 118B09
OFB1 DF

2 OF82 CDZFO1
~ OFBT CDA&LZ

OF88 CDA&OZ
OFBE 21F110
OF8E

OFBE 13
OF8F 1A
OFQ0 77
OF91. 23
OF92 FEOD
QF94 20F8
OF96 ZEO1
OF98 Z2F010
OF9B CDZé604
OF9E DAO701
OFA1 CD7Z04
OFA4 DAOT01
OFA7 CDOY0O
OFAA 114209
OFAD DF
DFAE CZADOO
OFB1

OFB1

OFE1

OFR1

OFE1

OFHE1

OFER1

OFR1

OFB1

OFER1

OFE1

OFE1

OFB1 2A7111
OF B4

OFEB4

OFE4

OFB4

S0 OFBR4 F5

OFES C
OFB& DS
OFB7 ES
OFB8 C1
OFE9 112800
OFEC 21DECF
OFEF

OFEF 19
OFCO O
OFC1 F2EFOF

<1Z-013Ax

CALL
CALL
SEC
INC
LD
CALL
CaLL
LD
CALL
LD
RST
CALL
CALL
CALL
LD
SAVL: ENT
INC
LD
LD
INC
cpP
JR
LD
(D]
CALL
JF
CALL
JP
CALL
LD
RST
JE

EXIT

P

PPONT: ENT
LD

J

HL = POINT ADR.

FAGE =9

- 4DE
HEXIY
HL,EC

HL
(SIZE) s HL
. 4DE
HEXIY
(EXADR) s HL
NL
DE.MSGSV
3

BGETL

- 4DE

- 4DE

HL s NAME

DE

A, (DE)
(HL) s A
HL

ODH
NZsSAV1
A O1H
(ATRE) s A
PWRI
C.7ER
WRD
C.7ER

NL

DE. MSGOF,

ST1

ORG OFE1H; ?FONT

COMFUTE FOINT ADR . H

HL = SCREEN CORDINATE

HL, (DSPXY)

s0RG OFB4H: PFPNT1

L]

TENT1: ENT
FUSH
FUSH
FUSH
FUSH
FOF
LD
55

TENT2: ENT
ADD
DEC
JpP

AF

BC

DE

HL

BC

DE, O0O28H
HL. s SCRN~40

HL « DE
B

Fry =2

ON SCREEN

-

an can can an

04.07.83

END ADR.

BYTE SIZE

BYTE SIZE BRUFFER

EXECUTE ADR.
BUFFER

SAVED FILENAME

CALL MSGX
FILENAME INFUT

NAME EUFFER

FILENAME TRANS.

END CODE

ATTRIERUE: OBJ.

WRITE ERROR
DATA

OF. MESSAGE
CALL MSGX

40

o1

a2

04
0%
0é4
07
8
o9
10
14
12

14
1m
1a
¥
18
19
20
21

e
22

e

L34

OFC4
QFC&
OFC7
JFC8
OFC9
QFCA
OFCE
OFCE
OFCE
OFCH
OFCE
OFCE
OFCE
JFCE
OFD1
OFD4
OFDS
aFD8
0OFD8
OFD8
OFD8
OFD8
0FD8
OFD8
OFD8
OFD8
OFD8
OFD8
OFD8
OFD?
OFDB
OFDH
OFDD
OFDD
OFDE
OFDF
OFE1
QFE2
OFE2
OFE2
OFEZ2

2 OFEZ2

57
58
29
-12]

5 OFEZ2

OFEX
OFE4
OFES
OFES8
OFEH
OFER
OFED
OFED
DFFO
OFF2
OFFS
OFF6&
OFF8
OFFA
OFFB
OFFD
OFFD

280 ASSEMBELER SB-7201

QL00
09
D1
Ci1
Fl
ce

CDB8OS
DAOTFOL
114209
DF

CZADOO

AF
1802

ZEFF

77
23

10FC
ce

CS
DI
ES
D101EQ
1102EC

2664

CD0O106
380H
CD4A0A
1A
E&20
20F1
25

2OF0

CI9R06

<1Z-013Ax

LD
ADD
FOP
FOP
FOF
RET

VERIFYING

COMMAND

VRFY: ENT
cAaLL
JF
LD
RST
JP

CLER 3
B=SIZE

an caw an cas cam cam oam am w aw

PCLER: ENT
XOR
JR

PCLRFF: ENT
LD

PDINT: ENT
LD
INC
DINZ
RET

o)

GAF CHECE

GAFCE: ENT
FUSH
PUSH
FUSH
LD
LD
GAFCEL: ENT
LD
GAPCEZ2: ENT
CALL
JR
CALL
LD
AND
JR
DEC
JR
GAFCES: ENT
JP

FAGE &0 04.07.83
By +0

HLsBC

DE

EBC

AF

RV

PVRFY

C, 7ER

DE » MSGOE:
=

ST1

ORG OFD8H: 7CLER

HL=LOW ADR.

+4
Ay FFH

(HL) <A
HL

-2

EC

DE

HL
BC.KEYFE
DE,CSTR

Ha 100

EDGE

C:BAFCES

DLYZ 5 CALL DLY2x%3
Ay (DE)

20H

NZ, GAFCE 1

H

NZ, GAFCEZ

RET3

g6l

¥

01 1000

280 ASSEMEBLER SE-7201

»

“1Z-013Ax

SKF

H

FAGE &1

O4.07.83

o1
02
03
04
05
0é&
07
08
09
14
11
12
13
14
15
14
17
18
19
20
21
22
23
24
25
24
27
28
0
a1
32
4
35
34
7
I8
39
490
41
42
47
44
45
44
47
48
49
S0
=1

=
o3

54
=i=)
2=}
57
=8
59
&0

L2

1000
1000
1000
1000
1000
1000
1000
1OFO
10F0Q
10FD
10F0
1OFO
10F1
10F1
1102
1102
1104
1104
1106
1104
1108
1108
1170
1170
1171
1171
1173
1173
118E
118E
118F
118F
1191
1191
1192
1192
1193
1193
1194
1194
1195
1195
1197
1197
1199
1199
1198
1198
119C
119C
119D
119D
LIRE
119E
11'9F
119F
11A0
11A0
11A1
11A1

780 ASSEMBLER SB-7201

ax can cam caw cam cax A

SP:

IBUFE:
ATRB:
NAME =
SIZE:
DTADR:
EXADR:
COMNT:
E.ANAF =
DSFXY:
MANG:
FLASH:
FLFST:
FLSST:
FLSDT:
STRGF:
DFRNT:
TMCNT =
SUMDT:
CsSMDT:
AMPM:
TIMFG:

SWRE :

TEMFW:

ONTYO*

ocTv:

RATIO:

“1Z-013Ax

{MZ=700)

ORG
ENT
ENT
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS

FAGE &2

MONITOR WORE AREA

10FOH

+1

+27

+1

+1

+1

+1

*+2

+1

+1

+1

+1

+1

+1

04.07.8%

TAFE BUFFER(128E)
ATTRIBUTE

FILE NAME

BYTE SIZE

DATA ADR

EXECUTION ADR
CDMMENT

EANA FLAG

DISFLAY CO-ORDINATES
COLOUMN MANAGEMENT
FLASHING DATA
FLASSING FOSITION
FLASING STATUS
CURSOR DATA

STRING FLAG

TAB COUNTER

TAFE MARE. COUNTER
CHECE. SUM DATA

FOR COMFARE SUM DATA
AMFM DATA

TIME FLAG

EEY SOUND FLAG
TEMFO WORE

ONTYO WORE

OCTAVE WORE

ONFU RATIO

961

¥¥ Z80 ASSEMBLER SB-7201 <1Z-013A: PAGE &3 04.07.83 ¥%¥ 780 ASSEMBELER SE-7201 <1Z-013A> FAGE &4 04.07.8%
01 11A3 BUFER: ENT i GET LINE BUFFER #ERE (888 #CLRO8 09D4 #CLRB 09DS $MCP 00&6B ..LFT 0O17B
02 11A3 DEFS +81 - 4DE Q2A&s .LPT 01746 .MANG ©OZFI 2HE1 0474 Z2HEX 041F
03 11F4 H P 7K 7?ADCN OBB? 7REL 0577 2EBELD 0352 7BLNE ©ODA6
24 11F4 H PERE1 0A48 TBREZ 0980 TERKI 0986 TCLER OFDS8
0% 11F4 H EQU TABLE I/0 FORT ?DACN OBRCE 7?DINT OFDD 7?DRPCT ODDC 7TDSF QODES
06 11F4 H TFLAS OQ9FF °FLS Q9E3 7GET O8BD 7PGETL 0O7ES
07 11F4 H 1 08D6 THYZ2 08DA 7TEYES 08FA 7HEYSS OBFR
08 E0OO0 P KEYPA: EQU EQOOH O8FE 7PKYGRS 0909 7PKYSM ©08BI 72LOAD OSFO 7TLTNL 090E
09 EOO1 P KEYFB: EQU EOO1H 01C7 PMODE O73E 7MSG 0893 7TMSGX 0BA1 7?NL 0918
10 EQOZ P KEYPC: EQU EOOZ2H OFEB4 7PNTZ OFEBF 7PONT OFB1 7?FRNT 0935 7?FRT 0944
11 EQO3 P KEYFF: EQU EQOZH 0920 7?FRTT 0924 7?RDD 04F8 7RDI 04DB8 7TRSTR OEES
12 E0O2 P CSTR: EQU EDO2ZH OEE4 TSAVE ORPZ TSWEF OAS0 PTEMF O2ES ?TMR1 0375
13 EQO3Z P CSTFT: EQU EQOZH QI7F ?TMRD 0358 7TMS1 0331 7TMS82Z 0344 72TMST 0308
14 EQO4 P CONTO: EQU EQOQ4H TWRFY 0588 TWRD 0475 PWRI 04%6 ALFHL OEEZ ALFPHA OQEE1
13 EQOT F CONT1: EQU EOOSH AMFM 1198 ASC OZIDA ATEL 0A?2 ATRE 10FO AUTDZ O7ED
16 EQO6 F CONTZ2: EQU EQO&H BELL OOZE BGETL ©O12F BREEY ©OOLE BUFER 11AZ CES1 Q720
17 EOO7 P CONTF: EQU EQO7H CESsZ2 CESZE 073F CESUM ©071A CLEAR 09D8 CLEAR1 09DA
18 EQO8 F SUNDG: EQU EQO8H CLRS CHMYQ QOO0SHE COMNT 1108 CONTO EOO4 CONT1 EQOS
19 EOOB8 F TEMF: EQU EQO8H CONTZ2 CONTF EQO7 CR OESA CR1 OE6A CSMDT 1199
20 11F4 H CSTFPT CSTR EQ0OZ2 CTBL OEAA CURS1 ODFF CURSZ 0QE16
21 11F4 END CURSZ CURS4 OE2F CURSS OEOZ CURSD ODFB8 CURSL OERS

CURSR OEOD CURSU OEO0OS CURSUL OEOE DACN1 OBET DACNZ2 ORDF
DACNZ OBEO DEL OEF8 DEL1 OFOE DELZ2 OF1C DLY1 0739
DLY12 0994 DLYZ2 Q760 DLYZE OA4A DLY4 09A9 DPFRNT 1194
DSFO1 ODB? DSFO4 ODDO DSFXY 1171 DSWEF 0830 DTADR 1104
DUM1 oDp88 DuMz OD3E DUM3 ODZ7 DUMP 0D29 EDG1 0607

EDG2 0613 EDGE 0601 EXADR 1106 FD 00OFF FD1 0106
FD2 0102 FLASL 0O97B FLASZ O9EF FLASE 0O9F3 FLASH 118E
FLEEY OS7E FLFST 118F FLSDT 1192 FLSST 1191 GAP 0774
GAF1 O78E GAPZ 07946 GARZ 079C GAFCE OFEZ GAFCHE1 OFEH

GAFCEZ OFED GAFPCEZ OFFD GETEY OO01R GETL 000E GETL1 O7EA

GETLZ GETL.Z 0O85B GETLS 081D GETL& 0865 GETLA 082H
GETLE GETLC 0822 GETLR O87E GETLU 0876 GETLZ 086C
GOTO GRSTAS 0ODD4 HEX O3IF9 HEXIY 013D HEXJ O3ES
HL1 HLHEX 0410 HOME OEA4D 10F0O INST OFZ=8

INSTZ OECA EANA QEEE KEANAF 1170
EEYFE EOO1 KEYFC EOQO02 FKEYPF EO003
ETHEL OBEA KTRLLC 0OCAA KTBLG OCE9
LETNL 0006 LLFT 0470 LDAD 0116
LFRNT 018F M#TRL 0284 MANG 1173 07A8 MCR1 O7AR
MCR2 07D4 MCRZ 07D7 MELDY 0030 01D1 MLDZ2 0205
MLDZ Q20D MLD4 0211 MLDS 0214 MLDS1 ©0ZC4 MLDSF OZBE
MLDST OZ2AR MONIT 0000 MOT1 06A4 MOTZ 06AR MOT4 06B9
MOTS 05D8 MOT7 0&4B7 MOT8 0&6D0O MOTS 06D7 MOTOR 049F

EQOZ KEYFA EOQOQO
09B7 KSL2 O9BC
OC&A KTELS OCZ2A
0111 LONG 0AlA

MSG 0015 MSGH#1 O3IFR MSGHZ O3IFD MSGH#HI 0402 MSGH7 0467
MSG1 08946 MSGETZ 09A0 MSGTIE 06ET7 MSGEL 0147 MSGOE 0942
MSEEY O98B MSGX 0018 MSGX1 0BA4 MSGEX2 OBA7 MSTIL Q705
MSTZ Q70C MSTE 0717 MSTA MSTOF O700 MSTP 0047
MTEL 026C NAME 10F1 NL NLFHL OZFA NOADD O3IEZ2
acTv 11A0 ONF1 OZ21F ONPZ2 ONFE 0265 ONFU 021C
ONTYD 119F OFTEL 029C PEN 0188 FLOT 0184 FMSG O1AS
FM3SG1 0O1A8 FRNT Q012 PRNT2 0947 FRNTZ 094C FRNT4 096F
FRNTS 0959 PRNTS 000C FRNTT OO00OF PRTHL O3IBA FRTHX O03C3
FTEST FTRRM 0180 PTSTO 015A PTST1 0170 RATIO 11A1
REY 1 REYZ 0649 REYZ 0654 RRYTE 0624 RD1 Q4E6
RD#A RDDAT 002A RDINF 0027 RETI1 04D2 RETZ2 2
RETZ RTAFE OS0E RTP1 0513 RTP2 0519 RTRZ

RTF4 RTPS 0565 RTR& 0572 RTP7 QS4E RTF8 QTSI
RTPY : RYTHM 02C8 SAV1 OFB8E SAVE OFSE SCRN DOOO
SCROL OE4D SG Q0F7 SHORT ©OA01 SIZE 1102 SLPT Q3DS

L6l

*¥

SF
ST2
SVO
SWEF3
TEMPW
M1
TMCNT
VERFY
WRYTE
WRINF
XTEMF

780 ASSEMBELER SB-7201

10FO
QOBE
OBAZ
OA77
119E
D675
1195
Q02D
0767
Q021
0041

SFHEX
START
svi1
SWEFS
TIMFG
THMZ2
TVF1
VGOFF
WRDAT
WTAF1

0ZB1
Q04A
OBRBS
QASF
119C
0678
OSR2
Q747
0024
0494

88
STRGF
SWEFO
SWEF?
TIMIN
TM3
TVF2
VRFY
WRI1
WTAFZ

“1Z-013Ax

00A2
1193
OAbLL
QAT73
038D
04688
OSE8
OFCE
0444
Q4AS

FAGE

8TO
SUMDT
SWEFO1
SWRE
TIMRD
TM4
TVF3
VRNS
WRIZ2
WTAFP3

1=

Q070
1197
QAL4
119D
Q0O3E
Q&9E
05SCC
ORCS
045E
04D2

ST1
SUNDG
SWEFZ2
TEMF
TIMST
TMARE
TVRFY
WEY1
WRIZ
WTAFE

04.07.83

0O0AD
E0O8
0A7F
EQO8
Q033
Q6TH
OSAD
Q786D
0464
Q48A

128~

A.6 Color Plotter-Printer Control Codes
A.6.1 Control codes used in the text mode

Text code ($01)
Sets the printer in the text mode.

Graphiccode ($02), Same as the BASIC MODE GR statement.
Sets the printer in the graphic mode.

Line 0D:{(308) wuws s vomouue i &85 mnees &0 90w Same as the BASIC SKIP-1 statement.
Moves the paper one line in the reverse direction. The line counter is decremented by 1.
Pentest ($04)o, Same as the BASIC TEST statement.

Writes the following patterns to start ink flowing from the pens, then sets scale = 1 (40 chr/line),
color = 0.

Black Blue Green Red

Reduction scale ($09) + ($09) + ($09)

Reduces the scale from 1 to 0 (80 chr/line).

Reduction cancel ($09) + ($09) + ($0B)

Enlarges the scale from O to 1. (40 chr/line).

Line counter set ($09) + ($09) + (ASCII), + (ASCII), + (ASCII), + ($0D)
....................................... Same as the BASIC PAGE statement.
Specifies the number of lines per page as indicated by 3 bytes of ASCII code. The maximum number of
lines per page is 255. Set to 66 when the power is turned on or the system is reset.

Line feed ($OA)ot Same as the BASIC SKIP 1 statement.
Moves the paper one line in the forward direction. The line counter is incremented by 1.
Magnify scale ($0B)

Enlarges the scale from 1 to 2 (26 chr/line).

Magnify cancel ($0C)

Reduces the scale from 2 to 1.

Carriage return ($0D)

Moves the carriage to the left side of the print area.

Back space ($0E)

Moves the carriage one column to the left. This code is ignored when the carriage is at the left side
of the print area.

Form feed ($0F)

Moves the paper to the beginning of the next page and resets the line counter to 0.

Next color ($1D)

Changes the pen to the next color.

A.6.2 Character scale

The character scale is automatically set to 1 (40 chr/line) when the power is turned on. Afterwards,
it can be changed by the control codes and commands.

® In the graphic mode, the scale can be changed in the range from 0 to 63.

The scale is set to 1 when the mode is switched from graphic to text.

A.6.3 Graphic mode commands

A. 6.3.1 Command type

In the graphic mode, the printer can be controlled by outputting the following commands to the printer.
Words in parentheses are BASIC statements which have the same functions as the graphic mode com-
mands.

Command name Format Function
Specifies the type of line (solid or dotted) and
LINE TYPE Lp (p=0to 15) the dot pitch. e
R0 T Frle T o p=0:solid line,p=1~15:dotted line p »
ALL INITIALIZE : A Wi, Sets the printer in the text mode.
HOME (PHOME) H L1ft_s _the pen and returns it to the origin (home
ofsn Lomme position).
INITIALIZE (HSET) I Set_s the c_urrent pen location as the origin
; (x=0,y=0).
B T - | Draws lines from the current pen location to
DRAW (LINE) 2 Yoo oo Xy coordinates (x,, y;), then to coordinates
(—999 <x,y £999)
(x5, ¥2), and so forth.
RELATIVE DRAW JAX, &Y . . . AXN, AYD Draws lines from the current pen location to

relative coordinates (Ax;, Ay,), then to relative
(RLINE) (—999 s ax, 4y £ 999) coordinates (ax,, Ay,) and so forth.

Mx,y . i .
MOVE (MOVE) (—999 < x, y < 999) Lifts the pen and moves it to coordinates (x, y).
RELATIVE MOVE RAXx, Ay Lifts the pen and moves it to relative coordinates

(RMOVE) (—999 £ax, ay £999) (ax, AY).
COLOR CHANGE =
(PCOLOR) Cn(n=0to 3) Changes the pen color to n.
SCALE SET Sn (n =0 to 63) | Specifies the character scale.
ALPHA ROTATE Qn (n =0 to 3) Specifies the direction in which characters are
printed.

PRINT Pe 605 - - B =") Prints characters.

Xp,q,r(p=0o0r1) Draws an X axis when p = 1 and a Y axis when
AXIS (AXIS) | (g=-999 to 999) p = 0. q specifies the scale pitch and r specifies

1 (r=1to 255) the number of scale marks to be drawn.

A. 6. 3. 2 Command format

There are 5 types of command formats as shown below.
1. Command character only (without parameters)

A, H, I
2. Command character plus one parameter
L', C,'8,Q

3. Command character plus pairs of parameters

D,J, M, R

, 1s used to separate parameters, and a CR code is used to end the parameter list.
4. Command plus character string

P

The character string is terminated with a CR code.

5. Command plus three parameters

X

, is used to separate parameters.

——— — 199

A. 6.

B o =

4.6.

3. 3 Parameter specification

Leading blanks are ignored.

Any number preceded by " -— " is treated as a negative number.

If the number of digits of a number exceeds 3, only the lower 3 digits are effective.

Each parameter is ended with "," or a CR code. If other than numbers are included in a parameter,
subsequent characters are ignored until a comma or CR code is detected.

Example) D_,.. —135. 21, -

[S i

A 1
i Jgiored, —

. 3.4 Abbreviated formats

Any command can be followed by a one-character command without entering a CR code.

Ex) "HD100, 200" CR is effective and is the same as "H" CR "D100, 200" CR.

Any command can be followed by a command with one parameter by separating them with a
comma ",".

Ex) 'LO, S1, QO0, C1, D100, 200" CR is effective.

A command with pairs of parameters must be terminated with a CR code.

3. 5 Data change due to mode switching

The following data changes when the printer is switched from the graphic mode to the text mode.

X and Y coordinates

Y is set to O and the origin is placed at the left side of the printable area.
Direction of characters

Qissetto 0.

Character scale

Character scale is set to 1.

The line type setting is not affected.

200

A.7 Notes Concerning Operation

m Data recorder

® Although the data recorder of the MZ-700 is highly reliable, the read/write head will wear out after
prolonged use. Further, magnetic particles and dust will accumulate on the head, degrading read/write
performance. Therefore, the head must be cleaned periodically or replaced when it becomes worn.
1. To clean the head, open the cassette compartment, press the key, and wipe the head
and pinch roller using a cotton swab. If they are very dirty, soak the cotton swab in alcohol.

2. When the head becomes worn, contact your dealer. Do not attempt to replace it by yourself.

m Cassette tape

® Any commercially available cassette tape can
be used with the MZ-700. However, it is re-
commended that you wuse quality -cassette
tape produced by a reliable manufacturer.

e Use normal type tapes.

e Avoid using C-120 type cassette tapes.

e Use of C-60 or shorter cassette tapes is
recommended.

e Be sure to take up any the slack in the tape
with a pencil or the like as shown at right
before loading the cassette tape: otherwise,
the tape may break or become wound round
the pinch roller.

® Protecting programs/data from accidental erasure

The data recorder of the MZ-700 is equipped
with a write protect function which operates in
the same manner as with ordinary audio cassette
tape decks.

To prevent data from being accidentally erased,
remove the record lock-out tab from the cassette
with a screwdriver or the like. This makes it

impossible to press the-| RECORD | key, prevent-

ing erasure of, valuable data.

m Other

e See page 109 for commercially available cassette tape decks.

® Display unit

Remove record lock-out
tab with a screwdriver.

Tab for side A
Tab for side B

| \
\ \e)

When using a display unit other than one specified for the MZ-700, the screen size must be adjusted.

See page 106.

201

® Color plotter-printer

e Do not rotate the pen drum in the reverse direction when replacing pens.

® Be sure to remove the pens from the pen drum, replace their caps to them, and store them in the case
to prevent them from drying out when the printer is not to be used for an extended period of time.

e [t takes a certain amount of time for ink on the paper to dry. (The ink is water-soluble.)

e Do not rip off the paper when the printer cover is removed. Hold down the paper holder when ripping
off the paper.

e Do not touch the internal mechanism when replacing the pens. Failure to observe this warning may
result in damage to the printer.

e The color plotter printer generates sound for a moment when the power is turned on. This is not
a problem.

e Letters printed in the 80 character line mode may be difficult to read. In this case, use the 40 character/
line mode.

e In the graphic mode, lines printed repeatedly may become blurred. This is particularly liable to occur
when a dotted line is printed repeatedly. Due to the characteristics of the ball pen, this is unavoidable.

® Notes concerning software

e [t takes about 3 minutes to load the BASIC interpreter.

e The reset switch on the rear panel is to used in the following cases. (See 3. 1. 1.)
To stop execution of a BASIC program during normal execution or when the program enters an infinite
loop. To return to the program, use the # command. However, the program or hardware should be
checked if the program loops.

m BASIC calculation error

e BASIC converts decimal values to floating point binary values before performing calculations, then
converts the binary calculation results into decimal numbers for display. This can result in a certain
amount of error.

(Example:)

PRINT 817. 3—81d. 4
6. 808999 0 s Correct result is 6.9.

e Approximations are made during calculation of functions and exponentiation.
e The above must be considered when using IF statements.

(Example:)

10 A=1.100X100

20 |F A=1 THEN PRINT"TRUE" :GOTO 49
38 PRINT "FALSE"

40 PRINT A=" A

50 END

RUN

FALSE

A="1

Although the practical result of the equation in line 10 is 1, this program prints FALSE because of
error due to conversion.

202——— ~ —_ .

Notes concerning handling

Power switch
The power switch should be left untouched for at least 10 seconds after being turned on or off.

This is necessary to ensure correct operation of the computer. Do not unplug the power cable when
the power switch is on: otherwise, trouble may result.

Power cable

Avoid placing heavy objects such as desks on top of the power cable. This may damage the power

cable, possibly resulting in a serious accident. Be sure to grasp the cable by the plug when unplugging
it.

Power supply voltage

The power supply voltage is 240/220 VAC. The computer may not operate properly if the voltage
is too high or too low. Contact your dealer for assistance if you experience this problem.

Ventilation

Many vents are provided in the cabinet to prevent overheating. Place the computer in a well ventilat-
ed place, and do not cover it with a cloth. Do not place any objects on the left side of the computer,
since this is where the vents for the power supply unit are located.

Humidity and dust
Do not use the computer in a damp or dusty places.

Temperature
Do not place the computer near heaters or in places where it may be exposed to direct sunlight;
failure to observe this precaution may result in damage to the computer’s components.

Water and foreign substances
Water and other foreign substances (such as pins) entering the computer will damage it. Unplug
the power cable immediately and contact your dealer for assistance if such an accident occurs.

Shock
Avoid subjecting the computer to shock; strong shocks will damage the computer permanently.

Trouble
Stop immediately operation and contact your dealer if you note any abnormality.

Prolonged disuse
Be sure to unplug the power cable if the computer is not to be used for a prolonged period of time.

Connection of peripheral devices

Use only parts and components designated by Sharp when connecting any peripheral devices, other-
wise, the computer may be damaged.

Dirt

Wipe the cabinet with a soft cloth soaked in water or detergent when it becomes dirty. To avoid
discoloration of the cabinet, do not use volatile fluids such as benzene.

203

e Noise
It is recommended that a line filter be used when the computer is used in a place where high level
noise signals may be present in the AC power. (A line filter can be obtained from your Sharp dealer).
Move the signal cables as far as possible from the power cable and other electrical appliances.

e RF interference
Interference with TV or radio reception may occur due to the RF signal generated by the computer
if it is used near a TV or radio set. TV sets generate a strong magnetic field which may result in
incorrect operation of the computer. If this occurs, move the TV set at least 2 to 3 meters away
from the computer.

This apparatus complies with requirements of EEC directive 76/889/EEC.

204

i
_ _ n
El M . LA IEER |
- - It
F . "R
: . b
8 LU i,
B M. et
Bl o, =
. W, N
) T i
ot £

-

N

F K

-
-

L i

FELIGAP SR

EF2ga s

R
el
B
i AN A
TR o (] [
s REF=If gl P
PRI s P
e
=3
Tl
118
« JI¥ . . LU et
o A5
L4FD B b | Lipncar]
{34 . e TR
Foile i Al e
. A=
fa - SO
| i, . WS PYGE
| E g
FL o T . Ll e
iRl . [VA=
” -
s
4 i ART) 0 P et
=0
. [AREY .. [LI -
. . . T I
Jhal| . . TEOREE
1= L. .. « AMLEERD
. g vt
1 By TR
4 A5 . o RS B
Tt . S =
i, . . ., .. EDa .
_ o
i
ra
. e - s Mes = =m0 R W e ey

i

SHARP CORPORATION
OSAKA, JAPAN

Printed in Japan
Gedruckt in Japan 3G
Imprimé au Japon TINS

	2021-11-06-titulka
	2021-11-06-2ob
	2021-11-06-0001
	2021-11-06-0002
	2021-11-06-0003color
	2021-11-06-0004
	2021-11-06-0005
	2021-11-06-0006
	2021-11-06-0007
	2021-11-06-0008
	2021-11-06-0010a
	2021-11-06-0010b
	2021-11-06-0010c
	2021-11-06-0010d
	2021-11-06-0010e
	2021-11-06-0010f
	2021-11-06-0010g
	2021-11-06-0010h
	2021-11-06-0013
	2021-11-06-0014
	2021-11-06-0015
	2021-11-06-0016
	2021-11-06-0017
	2021-11-06-0018
	2021-11-06-0019
	2021-11-06-0020
	2021-11-06-0021
	2021-11-06-0022
	2021-11-06-0023
	2021-11-06-0024
	2021-11-06-0025
	2021-11-06-0026
	2021-11-06-0027
	2021-11-06-0028
	2021-11-06-0029
	2021-11-06-0030a
	2021-11-06-0030b
	2021-11-06-0030c
	2021-11-06-0031
	2021-11-06-0032
	2021-11-06-0033
	2021-11-06-0034
	2021-11-06-0035
	2021-11-06-0036
	2021-11-06-0037
	2021-11-06-0038
	2021-11-06-0039
	2021-11-06-0040
	2021-11-06-0041
	2021-11-06-0042
	2021-11-06-0043
	2021-11-06-0044a
	2021-11-06-0044b
	2021-11-06-0044c
	2021-11-06-0045
	2021-11-06-0046
	2021-11-06-0047
	2021-11-06-0048
	2021-11-06-0049
	2021-11-06-0050
	2021-11-06-0051
	2021-11-06-0052
	2021-11-06-0053
	2021-11-06-0054
	2021-11-06-0055
	2021-11-06-0056
	2021-11-06-0057
	2021-11-06-0058
	2021-11-06-0059
	2021-11-06-0060
	2021-11-06-0061
	2021-11-06-0062a
	2021-11-06-0062b
	2021-11-06-0062c
	2021-11-06-0063
	2021-11-06-0064
	2021-11-06-0065
	2021-11-06-0066
	2021-11-06-0067
	2021-11-06-0068
	2021-11-06-0069
	2021-11-06-0070
	2021-11-06-0071
	2021-11-06-0072
	2021-11-06-0073
	2021-11-06-0074
	2021-11-06-0075
	2021-11-06-0076
	2021-11-06-0077
	2021-11-06-0078
	2021-11-06-0079
	2021-11-06-0080
	2021-11-06-0081
	2021-11-06-0082
	2021-11-06-0083
	2021-11-06-0084
	2021-11-06-0085
	2021-11-06-0086
	2021-11-06-0087
	2021-11-06-0088
	2021-11-06-0089
	2021-11-06-0090
	2021-11-06-0091
	2021-11-06-0092
	2021-11-06-0093
	2021-11-06-0094
	2021-11-06-0094a
	2021-11-06-0094b
	2021-11-06-0094c
	2021-11-06-0094d
	2021-11-06-0095
	2021-11-06-0096
	2021-11-06-0097
	2021-11-06-0098
	2021-11-06-0099
	2021-11-06-0100
	2021-11-06-0101
	2021-11-06-0102
	2021-11-06-0103
	2021-11-06-0104
	2021-11-06-0105
	2021-11-06-0106
	2021-11-06-0107
	2021-11-06-0108
	2021-11-06-0109
	2021-11-06-0110
	2021-11-06-0111
	2021-11-06-0112
	2021-11-06-0113
	2021-11-06-0114
	2021-11-06-0115
	2021-11-06-0115a
	2021-11-06-0115b
	2021-11-06-0116
	2021-11-06-0117
	2021-11-06-0118
	2021-11-06-0119
	2021-11-06-0120
	2021-11-06-0121
	2021-11-06-0122
	2021-11-06-0123
	2021-11-06-0124
	2021-11-06-0125
	2021-11-06-0126
	2021-11-06-0127
	2021-11-06-0128
	2021-11-06-0129
	2021-11-06-0130
	2021-11-06-0131
	2021-11-06-0132
	2021-11-06-0133
	2021-11-06-0134a
	2021-11-06-0134b
	2021-11-06-0134c
	2021-11-06-0135
	2021-11-06-0136
	2021-11-06-0137
	2021-11-06-0138
	2021-11-06-0139
	2021-11-06-0140
	2021-11-06-0141
	2021-11-06-0142
	2021-11-06-0142a
	2021-11-06-0142b
	2021-11-06-0143
	2021-11-06-0144
	2021-11-06-0145
	2021-11-06-0146
	2021-11-06-0147
	2021-11-06-0148
	2021-11-06-0149
	2021-11-06-0150
	2021-11-06-0151
	2021-11-06-0152
	2021-11-06-0153
	2021-11-06-0154
	2021-11-06-0155
	2021-11-06-0156
	2021-11-06-0157
	2021-11-06-0158
	2021-11-06-0159
	2021-11-06-0160
	2021-11-06-0161
	2021-11-06-0162
	2021-11-06-0163
	2021-11-06-0164
	2021-11-06-0165
	2021-11-06-0166
	2021-11-06-0167
	2021-11-06-0168
	2021-11-06-0169
	2021-11-06-0170
	2021-11-06-0171
	2021-11-06-0172
	2021-11-06-0173
	2021-11-06-0174
	2021-11-06-0175
	2021-11-06-0176
	2021-11-06-0177
	2021-11-06-0178
	2021-11-06-0179
	2021-11-06-0180
	2021-11-06-0181
	2021-11-06-0182
	2021-11-06-0183
	2021-11-06-0184
	2021-11-06-zada

