Personal Computer

ms£-/00

OWNER’'S MANUAL

SHARP



IMPORTANT

The wires in this mains lead are coloured in accordance with the
following code:

BLUE: Neutral
BROWN: Live

As the colours of the wires in the mains lead of this apparatus may not
correspond with the coloured markings identifying the terminals in
your plug proceed as follows,

The wire which is coloured BLUE must be connected to the terminal
which is marked with the letter N or coloured black.

The wire which is coloured BROWN must be connected to the ter-
minal which is marked with the letter L or coloured red.



NOTICE

This manual has been written for the MZ-700 series personal computers and the
BASIC interpreter which is provided with the MZ-700.

(1) All system software for the MZ-700 series computers is supported in software
packs (cassette tape, etc.) in file form. The contents of all system software and the
material presented in this manual are subject to change without prior notice
for the purpose of product improvement and other reasons, and care should be
taken to confirm that the file version number of the system software used matches
that specified in this manual.

(2) All system software for the Sharp MZ-700 series personal computer has been
developed by the Sharp Corporation, and all rights to such software are reserved.
Reproduction of the system software or the contents of this book is prohibited.

(3) This computer and the contents of this manual have been fully checked for
completeness and correctness prior to shipment; however, if you should encoun-
ter any problems during operation or have any questions which cannot be resolv-
ed by reading this manual, please do not hesitate to contact your Sharp dealer
for assistance.

Not withstanding the foregoing, note that the Sharp Corporation and its repre-
sentatives will not assume responsibility for any losses or damages incurred as

oooooo
Loty 3




Personal Computer

mZ-/700

Owner’s
Manual

© SHARP CORPORATION




Preface

Congratulations on your purchase of a Sharp MZ-700 series personal computer. Before using
your computer, please read and make sure you understand the operating procedures which
are described in this manual. The features and general operating procedures are described in
Chapters 1 and 3, so please read those chapters first.

All software for the MZ-700 series computers is distributed on cassette tape.

The cassette tape included with the computer contains BASIC 1Z-013B, a high level BASIC
interpreter which enables programming in the BASIC language and makes it possible to utilize
the full capabilities of the MZ-700. The BASIC 1Z-013B interpreter and procedures for its use
are fully described in this manual.

THIS FIGURE DRAWN USING THE COLOR PLOTTER-PRINTER




M2-700 OWNER’S MANUAL

CONTENTS

Chapter 1 The world of MZ-700 Series Personal Computer

N
1%
1.

1 Features of the MZ-700 Series .. ... .ottt it
2 UsingthisManual .. ... ... ...ttt
3 An Introduction to the World of Computers .......................

Chapter 2 BASIC

2.

PR R DR

1 Introduction to Programmingin BASIC .. ........ ... .. ... .. ... .....
An Outline of BASIC . ... .. . e e
Frequently Used BASIC Commands and Statements .................
Built-in Function ... ... i e
String Function . ... ... e e e
Color:display state ment .. . « c 50w o s samamasss pamsds i npsmassis
Color Plotter-Printer Commands . ...... ...ttt inennnnen..
Machine Language Program Control Statements .. ...................
I/O Statements . . ..ottt e e e e e
Other StatemEnTs: . & v e s o e 50 s e § 55 Rn@HE (55 RBERSEF TS
MONITOF FUNCHOMN « « cvmmn s s simwnms 55 5 se ¢ 2 8 Domas &8 3 ynmass &3 8

O 00 3 O Lt A W

—
- O

Chapter 3 Operating the MZ-700

3.

W W W w

1 Appearance of the MZ-700 Series Personal Computers................
2 Connection to Display Unit ... ... ... .. ..
3 DataRecorder . ........ ...ttt e
4 Color Plotter-PHNTETE ». o w5 ¢ s wnmmmn 5 s smsnmas sh @ mpmss s s sammes s s s
5 Key DPETation: o « : sosmm s i sammas s 3 autme 5 FRasns b Bres a6 s

Chapter 4 Hardware

4.

O

1 MZ-700 System Diagram . .. ... ......iiiiitetennennnn.
2 Memory configuration .. ... ... ...t e
3  Memory Mapped I/O ($EO00-SEQ08) . . . ... ..ottt
4 Signal System of Color V-RAM ... ... .. . . . .
S MZ-700 Circuit Diagrams . .. ... ... ..ttt e

Chapter 5 Monitor Commands and Subroutines

5.
<
5

1 Monitor Commands . . .. ...ttt e
2 Functions and Use of MonitorCommands . .............c.cviiun.nn.
3 Monitor Subroutines . ... .. ... e e




APPENDICES

A 1 COde TaDIES « s ¢ tovnmne e wmmodly e mms s s SR o s s e o s 154
A 2 MZ-700 Series Computer Specifications . . ...................... . 157
A 3 BASIC Error Message LiSt .. ..........o oo 159
A. 4 ZBOA Instiuction Bet . . . .. . .vn i iy i s s n s s e et s 160
A 5 Monitor Program Assembly List ... .................. ... ... .. . 164
A. 6 Color Plotter-Printer Control Codes . . ................ .o o . 198
A 7 Notes Concerning Operation ....................... . ... .. .. 201




INDEX

[BASIC COMMANDS] ( ) is abbreviated format

ABS oo 71 13 (H)

ASC o oo 78

ATN o oo 71

AUTO oo (A) 31

AXIS © oo (AX) 89 i1 P
IFERN © oo oooee e
IF~GOSUB . .. ........ (IF~GOS.) . ...

IE~GOTO .« .o veeee ... (IF~G) . ...

BYE . . oo (B) .... 35 IF~THEN . .o \ovoee (IF~TH)) . . ..
INP oot
11105 W (1)

INPUT/T ©oovoeeeen .. (L/T) . ...

CHRS . . o oo 78 1

15 1:00 0 (CL) .... 90

CLOSE .. oo, (CLO) .... 68

o) 5 : 59

COLOR . .\ooennnnn. (COL) .... 80

CONSOLE ............. (CONS.) . ... 98

CONT oo, (C) .... 34

COS . o oo 71 KEYLIST . oo v oeovenn .. K.L) ....:

CURSOR ... 'oeennnn, (CU) .... 61

D)

DEFEN © o oot 56 105

DEFKEY ..o oo oo 57 LEN . o oo oo

DELETE . . . o ooeoeeeenn. (D) .... 31 LET o oo oo e

DIM . o o oo 56 191714 (LIM) . ...
LINE © oottt
LIST © oo (L) .

: LIST/P . oo (L./P) ....

END ©voteee e (E) .... 59 IN © oo

EXP oo oo 71 LOAD . .\oooean .. (LO) . ...
LOG o oo

FOR~NEXT . ........... (F.~N.) .... 47
MERGE . .........ovoon... (ME.)
MIDS o oeoe e

MODEGR ............. (M.GR) . ...

GET . . oo oo 43 MODETL .. ............ M.TL) .. ..

GOSUB MODETN . ............. (M.TN) . ...

~RETURN . ....... (GOS~RET)) . ... 49 MODETS . ..o 'oooeeor. (M.TS) .. ..

GOTO o \voeeeeeee . (G) .... 48 MOVE .ot

GPRINT : ::2awv:ssmpnmss (GP) .... 88 MUSIC : : : sonwess nomans s MU) ....




NEW. cici 05 66 55m 855 o sommmmn o s o miom o om 32 SAVE . . ... .. ., (SA.)
BET | o vmcwssissassesis asmsas s mmn
BON & 4 cmn 55555 amime s esmmmnseronn
© BTN 45 55 s o e ovctonm o = o e
ON ERROR ) ¥4
GOTO.......... (ONERR.G) .... 96 SKIP ..\ttt
ON~GOSUB .......... (ON~GOS)) .. .. 55 SIS e
ON~GOTO . ............ (ON~G.) .... 54 SOR . oo
O el o e e b O s e o 1 B s 95 STOP . ... (S) .
STRS . oot e
(®)
PAGE . .. ...t 84
AT N L rig " RN T 71 N
BOOLOR. ..., cumumcrsssms (PC) .... 83 o B
PEER & ocnn:sivonme s ips nennesssnsne 93 TEMPO . .. ... ... . .. . (TEM.)
PHOME ................. (PH) .... 87 TEST .. ... ... .. (TE)
PLOTOFF ............ (PL.OFF) ... 98 B ¢ v 250 b e
PLOTON .............. (PL.ON) .... 98
1 I S S T K S o S 92
PRINT, . .. .oovieeenanann. @ .... 37
PRINTUSING ............ (?USL) .... 38 0 P ) ....
PRINTIP . : < ¢ i comsinns i smma ?/P) .... 84
PRINT/T . ...ovunmenenmnnn ?/T) .... 68
PRINT [a,8] . .......... @ [a,B]) .... 81
WAL ¢ bimsi 555 5 mmmie s va s stmme o ss s
Q VERIFY .................. (V)
®) WOPEN . ................. W) ....
BAD womsssisnmumeis5a8usssessnns 71
READ~DATA . ....... (REA.~DA)) .... 44
RENEEHNE = UEE - otk T 58
RENUM ................ (REN)) .... 33
BEBET & c ¢ 5 sk mmis i 5 85 55558 o 6mmen 63
RESTORE .............. (RES.) .... 46
RESUME .............. (RESU)) .... 97
RIGHTS v« b onnmnsosssssnnssvenns 77
REINE . oo v s s e o e o e (RL) .... 86
RMOVE . ................ (RM)) .... 87
BNID wusasscnonmnssss samansss s 72
ROPEN ........ocnvuunn. (RO .... 68

BT e s st B il (R) .... 34




AEZIELFERA R

lI.
- WYL

ivia
Ik
. i FE
“iE

ok

B2
BT A
cilly

X

an b
“2T
i
=1
ET

LS

. Jhy
T

o P30S

=Ty

o

LE o

FTEIGIF Y P

IFr2g8"

£ Sl o0

s ILEF—9l|
s-] ki,

L Tik

[ H 11
{31 £
290 _ %

jEr,
=

R
0 =) T

f-2hat)
{ 1T

1 B
4 8A)

4 i
ol . ..

T .

il

PR

1AL no
T LA
ST e
¥

[NTE
Ie=
MG

SR TONT
M FLR

. AEr

. e EN
AT Y
K w1z~
r.Ham=
0= I¥1E%



Chapter 1

',
ey
M'O"OO‘L“

N )

AL u
(s
AORX

Welcome to the World

of MZ-700
Personal Computer

)
'\Mi, 1>

..v
XD ]
_M. 3

,@ S T

THE WORLD OF MZ-700
SERIES PERSONAL

COMPUTER




10

1.1 Features of the MZ-700 Series

In the space of just a few decades, the computer has undergone a dramatic transformation, changing
from an intricate, enormously expensive monster weighing several dozen tons into a compact, inexpensive
device which can be used by almost anyone. Whereas access to computers used to be limited to a few
privileged individuals with special training, the inexpensive, user-friendly machines now available make
the world of computing open to people in all different walks of life. The Sharp MZ-700 series computers
are representative of such machines.

People use words and expressions to convey meanings.

Computers of the Sharp MZ-700 series, however, convey meaning through an ordinary television set
or special printer. Any TV set can be used, either color or black-and-white; or, you may invest in one
of the special display screens available if you want greater resolution and sharpness; you will be surprised
at the beauty which is provided by such displays.

A tape recorder can be connected to computers of the Sharp MZ-700 series to record programs, the
instructions which control the operation of the computer. When printed records of such programs or of
the results of computer processing are desired, they can be obtained on the MZ-700’s compact, elegantly
designed 4-color plotter-printer.

MZ—-731

Note: In the remainder of this manual, the term “MZ-700 will be used to indicate any of the computers
of the MZ-700 series (the MZ-710, MZ-711, MZ-721, and MZ-731).




MZ—-721

MZ—-711

11



12

1.2 Using this Manual

Before starting to study programming, why not try playing with the MZ-700 a bit? We’re sure you
want to do that anyway, rather than waiting until after you have read this book. First, read “Operating
the MZ-700” in Chapter 3 (you need read only those parts which apply to the model which you are us-
ing). Connect the MZ-700 to a television, read the explanation of procedures for using the keyboard, and
learn which characters are output when each key is pressed.

If you are using the MZ-700 for the first time, read Chapters 1 and 2, in that order. At first, you may
find it difficult to grasp the meanings of the various commands and statements of the BASIC programming
language; however, even if you don’t understand the explanations, be sure to key in the examples as
they are encountered. As you do so, you will gradually develop a concept of what BASIC is all about.

You may skip over those portions of Chapter 2 which start with 2. 8 “Machine Language Program
Control Statements”; however, these sections will prove useful when you have completely mastered
programming in BASIC, or wish to become more familiar with the computer’s internal operation.

If you have used the MZ-80K, you will find that the commands and statements of BASIC for the
MZ-700 are used in the same manner as those of the SP-5025 family, so that the MZ-700 can be used
in almost exactly the same manner as the MZ-80K. The major difference between the two is in the color
statements (applicable to both the television screen and the color plotter-printer) which have been added;
however, you should find it easy to become familiar with these by reading sections 2. 6 *“‘Color display
statement™ and 2. 7 “Color Plotter-printer Commands.”” Having done this, you will quickly be captivated
by the power of expanded BASIC.

This manual also includes a discussion of “Operating the MZ-700” (Chapter 3), a reference section
entitled “Hardware’” (Chapter 4), a discussion of the “Monitor Commands and Subroutines’ (Chapter 5),
and appendices of other information.

Now go ahead and learn everything you can about the MZ-700. We hope that you will find this manual
helpful.




1.3 AnIntroduction to the World of Computers
1.3.1 What is BASIC?

People use language to communicate with each other, and specially de igned languages are also used for
communication with computers. BASIC is one such language.

Beginner’s All-purpose Symbolic Instruction Code

Just as human beings use languages such as English, French, German, and Japanese for communication,
there are also many different languages which are used for communication with computers. Among these
are BASIC, FORTRAN, COBOL, and PASCAL. Of these, BASIC is the computer language whose struc-

ture is closest to that of the languages used by humans, and therefore is the easiest for humans to under-
stand.

1.3.2 What is a “Clean Computer”?

The MZ-700 is a clean computer. Here, the word “clean’ means that the computer’s memory is com-
pletly blank when its power is turned on i.e., the computer cannot be used immediately, but first must
be taught a language. This might seem like a nuisance at first glance; however, it does provide several
advantages. For example, suppose that you wanted to use a language other than BASIC. The fact that
the computer’s memory is empty to start with means that you can teach it just about any language
you want. This greatly increases the range of software which can be run on the computer and extends
its range of potential applications.

On the other hand, if the computer knows BASIC from the time it is turned on, it is possible to use the
language immediately; however, this presents an obstacle to loading any other language into memory.

1.3.3 Loading BASIC into the MZ-700

The BASIC language must be loaded into the MZ-700 before it can be used to do any work. A cassette
tape containing this language has been included in the case containing the MZ-700. Now let’s teach the
language to the computer; procedures for doing this are described below. (The eplanation assumes that
you are using an MZ-731; however, the procedures are basically the same for all computers of the MZ-
700 series.)

(1) Connect the display as described on page 106.

(2) Turn on the power switch located on the back of the computer.

(3) The following characters are displayed on the screen and a square, blinking pattern appears. This
pattern is referred to as the cursor.

X X MON | TOR 1Z2—@18A %X
X

(4) Set the cassette tape contammg the BASIC language in the computer’s data recorder.

(5) Type in the word [L] .@].@I and press the - key. After doing this, the message £ PLAY appears
on the screen.

Notes:
#1 [L[OJA[D]. . . This is the instruction for loading programs or data from cassette tape.
#2 |CR|....... This is referred to as the carriage return key, and is mainly used to indicate comple-

tion of entry of an instruction.

13



(6) Press the data recorder’s button; the cassette tape starts moving and loading of the BASIC
language begins.

(7) After loading has been completed, the message READY is displayed and the cursor starts to
blink again.

XX MONITOR 1Z2-013AKXK
X LOAD

1 PLAY

LOADING BASIC

BASIC INTERPRETER 1Z-0138 VXXX
COPYRIGHT 1483 BY SHARP CORP

XXXXX BYTES
F;;EADY

This completes loading of the BASIC program. You can talk to the computer using BASIC, and the
computer will respond.

1.3.4 Try Executing a Program

Loading BASIC into the computer doesn’t cause it to do anything; first, it must be given instructions

in BASIC as to what it is to do. Although we will not explain the instructions of BASIC until later, let’s
go ahead and try executing a BASIC program right now.

Remove the cassette tape from the recorder and turn it over so that the “B” side is up. A sample

program is recorded on this side of the cassette tape. Using the following procedures, load this program

into the computer and execute it.

14

(1) After turning the tape over and reloading it into the recorder, press the REWIND button to
rewind it. Next, type in [L[OJA[D|] and press the key; when the message £ PLAY is display-
ed, press the button on the data recorder. This begins loading of the sample program.

(2) When loading is completed, the cassette tape stops, READY is displayed on the screen, and the
cursor starts to blink again.

(3) Now that the program has been loaded into the computer’s memory, try executing it. This is done
by typing in R|U[N] and pressing the key.

(4) Now let’s take a peek at the program. Hold down the key and press the [ BREAK |
key. This stops program execution and displays the words BREAK and READY, then the cursor
starts to blink again.

(5) Type in [I[ and press the key. This lists the lines of the program on the screen one
after another. (Output of the list can be temporarily stopped at any time by pressing the space
bar.)

(6) If you wish to resume program execution, type in [R[UJN] again and hit the [CR] key.

(7) If you want to run a different program, set the cassette tape containing that program in the
recorder, LOAD the program, then RUN it. The previous program is automatically erased from
memory when the new one is loaded, so the computer contains only the BASIC language and
the last program loaded.




AN
.
Q
afund
Q.
@©
R o=
(&)

N N

Programmin A\

BASIC

BASIC



16

2.1 Introduction to Programming in BASIC
2.1.1 Direct Mode

Now that you have made some key entries on the MZ-700, you have reached the point where you
are ready to start learning how to program. Before you start, however, try using the MZ-700 as you
would an ordinary pocket calculator. (This is called operating the MZ-700 in the *“direct mode™.) Key
in the following, just as you would on a pocket calculator.

EEHEEICR

As you can see, the computer doesn’t do anything when it is presented with a problem in this form;
your computer and an ordinary calculator are completely different in this respect, and instructions must
be entered in a form which can be understood by the computer (i.e, in the form prescribed by the BASIC
language). Now try typing in the following.

PROUONT [EHEICH

If you have done this correctly, the number “13” will be displayed and the screen will appear as shown

below.
P PRINT is an instruction which tells the computer to display
PRINT 449 3 I ,
13 something on the screen. Here, the computer is instructed to
READY display the sum of 4 + 9.

Now let’s try doing a somewhat more complex calculation.
With BASIC for the MZ-700, the operators (symbols) for the basic arithmetic operations are as follows.

Addition: +

Subtraction: =

Multiplication: X (the asterisk)
Division: A (the slash)

Exponentiation: 1

When symbols such a “ X 7, “+ 7, and “ 1> are mixed together in a single arithmetic expression,
the order in which calculations indicated by the symbols are performed is referred to as their priority.
Just as with ordinary algebra, operations can be included in parentheses, so operations within the inner-
most set of parentheses are performed first. Within a set of parentheses, exponentiation is performed
first, followed by multiplication and division (which have equal priority, and therefore are performed
as they are encountered in the expression, from left to right), and then by addition and subtraction.

For example, to obtain the answer to the expression 3 X 6 X (6 +3 x 19— 2 x (4 - 2) + 1} J, enter the
following.

PRUONT BEXEXAEHBEBXASIHRIXIABERD IHEIDID]

Now try using the computer to do a variety of other problems in arithmetic.




[EXERCISE] [ANSWER]

1. 232 PRINT (6+4)/(6—4)
5

2. 3X 1B+0% (9-2) —— O 11 45 PRINT SX(B+O%X(0—2)—6,(4—2 +5

a-5

200

3. (3+4) X (B+6) PRINT (3+4)%X(B+6)
-7

10420

a. D o 213 PRINT (10+20) /6X(2+3)
S8

b, Loy PRINT (10+20) /(6X(2+3Y

 TBX(1D) :

After going through the exercises, try typing in and pressing the key; the answer “40” is
displayed. The reason for this is that BASIC interprets the question mark in the same manner as the
instruction PRINT. Remember this as a convenient, abbreviated form of the PRINT instruction.

Now try entering the following. (The quotation marks are entered by holding down [ SHIFT | and
pressing the |2| key.)

PRIONTME@AHSEMCR

As you can see, the characters within quotation marks are displayed on the screen, but the answer is not.
Now try entering the following.

PRONTOMABICDIEFGCT

This causes ABCDEFG to be displayed on the screen.

In other words, using the PRINT instruction together with quotation marks tells the MZ-700 to display
characters on the screen exactly as they are specified between quotation marks. The characters within
any set of quotation marks are referred to as a “character string” or “string”.

Now go on to enter the following.

PRONTMEFELEMCZESICRI

This causes the following to be displayed on the screen.

e G L e = IR S R | (The “_.” symbol indicates a space. Actually, nothing is display-

ed on the TV screen in the position indicated by this symbol.)

In other words, the instruction above tells the computer to display both the character string “4 + 9 =
and the result of the arithmetic expression "4 + 9 =", Now try entering the following.

PRININTIMAHESEMNLOEESICR]
After typing in this entry, the following should be displayed on the screen.
A+O=0 i s enina1 3

The reason the screen appears different this time is because the PRINT instruction displays items of
information (character strings or the results of arithmetic expressions) differently depending on whether
they are separated from each other by semicolons or commas.
Semicolon () ...... Instructs the computer to display items immediately adjacent to each other.
Comma(,) ........ Instructs the computer to display the item at the position which is 10
spaces (columns) from the beginning of the display line.

7



18

If you have the MZ-731 (or a separate plotter-printer), now try appending the characters [/ P, to the
end of the word PRINT.

PRONDZAPMNEHREMNCIEIEEICH]

This time nothing appears on the display screen, but the same result is printed out on the plotter-printer.
In other words, the [/ P, symbols switch output from the display to the plotter-printer.

This completes our explanation of procedures for using the MZ-700 as you would a pocket calculator.

Note: PRINT 'S + 8 ="; 5 + 8 displays 5 + 8 = 13, while PRINT ' 5 - 8 ="; 5 - 8 displays 5 - 8=-3.
The reason for this is that one space is always reserved for a symbol indicating whether the result is
positive or negative, but the symbol is only displayed in that space when the result is negative.

2.1.2 Programming

Let’s try making a simple program. However, first let’s make sure that the area in the computer’s
memory which is used for storing programs is completely empty. Do this by typing in NEW and pressing
the[CR]key. (This instruction will be explained in more detail later; see page 32.)

Type in the following program exactly as shown.

1408 A=SIERL: % smmaxsss nmmuns e v Assigns the value 3 to A.

20 B=B[CR ........cciiviiii... Assigns the value 6 to B.

S C=AtBLRL.....cccunw:iises Assigns the result of A + B to C.

A7 P CICRl. o oo vwimssissnns Displays the value assigned to C.

5 ENDICR . .owwsssssmmesiss nnme Instruction indicating the end of the program.

The numbers 10, 20, 30, and so forth at the left end of each line are referred to as program line numbers,
or simply line numbers; these numbers indicate the order in which instructions are to be executed by the
computer. Instructions on the lowest numbered line are executed first, followed by those on the next
lowest numbered line, and so forth. Line numbers must be integers in the range from 1 to 65535.

The line numbers 1, 2, 3, and so forth could have been used in this program instead of 10, 20, 30.
However, it is common practice to assign line numbers in increments of 10 to provide room for later
insertion of other lines.

Now let’s check whether the lines have been correctly entered. Type in LIST and press the key;
this causes a list of the program lines to be displayed. Notice that the question mark entered at the beginn-
ing of line 40 has been converted to PRINT, the full form of the command for displaying data on the
display screen.




Now-let’s try executing the program.
RIVINICRI

Enter RUN and press the key; the result is displayed on line 9 of the screen.

Now we will explain procedures for making changes in programs. First, let’s change the instruction on
line 20 from B = 6 to B = 8. Type in LIST 20 and press the key; this displays just line 20 of the
program on the screen. Next, use the cursor control keys (the keys at the right side of the keyboard which
are marked with arrows) to move the cursor to the number "6, then press the key and the key in
succession to make the change. Note that the change is not completed until the[CR]key is pressed.

Now type in LIST and press the key again to confirm that the change has been made.

Next, let’s change line 30 of the program to C = 30 X A + B.
Using the cursor control keys, move the cursor so that it is positioned on top of the “A” in line 30,
then press the key three times in succession. This moves “A + B” three spaces to the right.

C=L__A+B
L Cursor position

Now type in [3][0]X]and press the key to complete the insertion. LIST the program to confirm that
the change has been made correctly.

Now change line 30 again so that it reads “C = 30 X A” instead of “C =30 X A + B”. Do this by
moving the cursor to the position immediately to the right of B and pressing the key two times;
this deletes “+B”. Press the key to complete the change.

Now LIST the program and confirm that it appears as shown below.

10 A=3

20 B=8

30 C=3TXA
40 PRINT C
50 END

To delete an entire line from a program, simply enter the line number of that line and press the key;
delete line 20 in this manner, then LIST the program to confirm that the line has been deleted.

We could insert the instruction “?A” between lines 30 and 40, by typing in 35 ?A and pressing the
key. Try this, then LIST the program to confirm that the line has been added. Now delete line 35 by
entering 35 and pressing the key.

The process of changing or inserting lines in a program in this manner is referred to as editing, and the
program which results from this process is referred to as the BASIC text. Each line of the program can
include a maximum of 255 characters, including the line number, but the maximum length is reduced
by four characters if the question mark is used to represent the PRINT instruction.

At this point, the program contained in the computer’s memory should be as follows.

109 A=3

30 C=3TXA
40 PRINT C
50 END

Now we will use this program to explain the procedures for recording programs on cassette tape.
Prepare a blank cassette tape (one on which nothing has been recorded) and set it in the data recorder,

s 19



20

then type in the following from the keyboard.
SAVE "CALCULATION" J

Here, “CALCULATION” is the name which is to be recorded on the cassette tape to identify the
program. Any name may be assigned, but the name connot be longer than 16 characters.

Note: The J symbol in the example above represents the [CR] key.

When the[CR]key is pressed, ¢ £ RECORD. PLAY” is displayed on the screen. Pressing the
button on the data recorder at this time records the program on cassette tape.

The name which is assigned to the program is referred to as its file name. Specification of a file name is
not absolutely necessary, but from the point of view of file management it is a good idea to assign one.
Of course, the file name is recorded on the tape together with the program.

When recording is completed, READY is displayed to indicate that the computer is finished. Now press
the STOP button on the data recorder and rewind the tape.

The program is still present in the computer’s memory after recording is completed, so type in NEW J
to delete it (enter LIST J to confirm that the program has been deleted). Now let’s try using the LOAD
instruction to load the program back into memory from the cassette tape as described on page 14.

When a cassette tape contains many programs, that which is to be loaded can be identified by specifying
the program’s file name together with the LOAD instruction as follows.

LOAD "CALCULATION" J

Specifying the file name in this manner tells the computer to ignore all programs on the tape other than
that with the specified name. If the file name is not specified (if only LOADJ is entered), the computer
loads the first program encountered.

Note: When using cassette recorder other than the data recorder built into the MZ-731, and MZ-721 read
the instructions on page 109 before attempting to record or load programs.

The LIST command shown above can be used in a variety of different ways. For example, during
editing LIST 20 4 can be used to display just line 20 of a program. The entire program can be listed
by entering LIST J . Other uses of the instruction are as follows.

OOEm EEICICH Lists all lines of the program to line 30.

UOEm BIOECRH Lists all lines from line 30 to the end of the program.
USM BIOEGEOCR  Lists all lines from line 30 to line 50.

UOESm EBIACRH Lists line 30.

When editing programs by listing individual lines with the LIST instruction, press the key (the
[ INST |key) together with the [_SHIFT | key when the screen becomes distractingly crowded. This
clears the entire screen and moves the cursor to its upper left corner. (This does not affect the program
in memory). Afterwards, enter LIST < line number > J again to list the line which is to be edited.




2.2 An Outline of BASIC
2.2.1 Constants

A constant is a number or string of characters which is written into a program, and which is used by
that program as it is executed. Types of constants include numeric constants, string (character) constants,
and system constants. These are explained below.

Numeric constants

A numeric constant is a number which has a maximum of 8 significant digits. The exponent of such
constants must be in the range from 1073 to 1038 (the maximum range is 1.548437E—38 to 1.7014118E
+38).

(Examples:)

— =28. &

g. 789

3748. O

3. 7E+/| 2 ..................... 3_ 7></IO12

7. 6B E —=Oeek s avsam 7. 65x%107°; E indicates the exponent.
== - R 14. 8x10° |

Hexadecimal numbers: Numbers can be specified in hexadecimal format only for direct memory
addressing with the LIMIT, POKE, PEEK, and USR instructions (see pages 92 and 93), and are repre-
sented as four digits preceded by a dollar sign (§).

(Examples:)
LIMIT $BFFF
USSR BCO@T: XB) cnennrnnnn X$ represents a string variable.

String constants

String constants are letters and symbols between quotation marks which are included in programs to
allow titles or messages to be output to the display screen or printer. The characters "449" appearing on
page 17 are a character constant, and not a numeric constant. With BASIC, a string constant may consist
of a maximum of 255 characters. (Not including quotation marks which cannot be included in a string
constant.)

(Examples:)

rFABCDEFGY

"1 28466 78818 "

DATA ABCRDERGE SR LN I Quotation marks are not needed when string constants are
specified in a DATA statement; however, they may be used
if desired.

21



22

2.2.2 Variables

The word “‘veriable” has a different meaning with BASIC than it does when used with regard to alge-
braic expressions. To put it in very simple terms, the variables of BASIC are “boxes” in memory for
the storage of numbers and characters (character strings). The types of variables used in BASIC include
numeric variables, string variables, and system variables.

Numeric variables String variables System variables

@'

.;5" [5
A7 “” A
A AS

)
2%

3

0

03'70011

A sy
X /S ALS

=

2 Y
Cl XY$

2.

Numeric variables
Only numeric data can be stored in numeric variables.
Names must be assigned to these variables in accordance with the following rules.
i) A variable name may consist of any number of characters, but only the first two characters are
actually used by the BASIC interpreter to identify the variable. Further, the first character of the
variable name must be a letter (A to Z), either letters or numerals may be used for subsequent

characters.
ii) It is not possible to use the names of BASIC commands and statements as variable names.

Correct variable names: ABC, XY, ABCD, A12345
(ABC and ABCD are regarded as the same variable.)

Incorrect variable names: PRINT ........... (PRINT is a BASIC statement)
C@y. nidi) o b e (Variable names may not include special charac-
ters.)
(Example:)
DD A = Eyeven vvn ows wrs swns o paes Stores 5 in variable A.
20 PR INT A-cceeeeceees Displays the value stored in variable A.




String variables

String variables are variables which are used for storing character strings. Names assigned to string
variables must conform to the same rules as those assigned to numeric variables; however a dollar sign
($) is appended to the end of string variable names to differentiate them from other types of variables.

String variables may be used to store a maximum of 255 characters. Such variables are blank until
string data is assigned to them.

The only operator which can be used in expressions including more than one string variable is the
“+” sign.

(Example:)

10 A$S="ABCD ":oeeeeee Substitutes the character string ABCD into string variable AS$.

20 BPE="XYZ "o Substitutes the character string XYZ’ into string variable BS.

ST CHE=AP+BP--reeeeeeee Substitutes the sum of string variables A$ and B$ (ABCDXYZ)
into string variable C$.

40 PRINT C$Hrevrreeeeeeen Displays the contents of string variable C$.

System Variables

System variables contain values which are automatically changed by the BASIC interpreter. The system
variables are size (the variable which indicates the amount of BASIC free area) and TI$ (a 6-digit variable
which contains the value of the system’s 24-hour clock).

(Examples:)
19 TI1$="01350F " --- This statement assigns the value corresponding to 1:35:00 A.M.

to system variable TI$ and sets the system clock to that time.
20 PRINT T $eeeeeeeeees Executing this statement displays the current time of the system
clock (24-hour time).

Display format:
g e Indicates that the time is 13:28:19.

PRINT S| ZE e This displays the current amount of free space in the computer’s
memory (in other words, the amount of space which is available
for additional program lines). The value indicated by this variable
is reduced each time a program line is entered.

23



24

2.2.3 Arrays

Arrays can be thought of as shelves within the computer’s memory which contain rows of boxes, each
of which represents a variable. The boxes on these shelves are arranged in an orderly sequence, and are
identified by means of numbers; these numbers are referred to as subscripts, because they are subscripted
to the name which identifies the entire group of boxes.

Such shelves of boxes are set up simply by executing an instruction which declares that they exist;
this is referred to as making an array declaration. The array declaration specifies the number of boxes
which are to be included in each set of shelves (i.e., the size of the shelves) and the manner in which
they are to be arranged.

The boxes in each unit of shelves may be arranged in sequences which have any number of dimensions.
Thus, a one-dimensional array can be thought of as a single shelf which holds, one row of boxes; a two-
dimensional array can be thought of as a stack of shelves, each of which holds one row of boxes; and
so forth. These boxes, or variables, are referred to as the array’s elements.

The number of subscripts used to identify each of the array elements of a corresponds to the number
of dimensions in that array. For example, each of the elements in a one-dimensional array is identified by
a single subscript which indicates the box’s position in the row; each of the elements in a two dimensional
array is identified by two subscripts, one which identifies the box’s row, and one which indicates the box’s
position within that row; and so forth. The numbers which are used as the subscripts start with zero, and
have a maximum value which is determined by the size of each of the array’s dimensions (i.e., the number
of boxes in each row, etc.).

The maximum size of an array is limited by the amount of free space which is available in the com-
puter’s memory (i.e., by the size of the program, the number of items of data which are to be stored
in the array, and so forth). The syntax of BASIC places no restrictions on the number of dimensions
which can be used for any array, but in practice the number of dimensions is limited by the amount of
free memory space which is available for storage of array variables.

An array must be declared before values can be stored in any of its elements.

—-_— (. — A one-dimensional array
""" . Ayl consisting of 101 elements.

@A(zo) ‘‘‘‘‘ A (10, 10)
A two-dimensional array
—]

I consisting of 11 x 11 elements.

A three-dimensional array
consisting of 4 x 4 x 4 elements.

—— A | A

A (3,3,3) 0, ) 0 303),

) Q ,0,2)
,0,) 1,0, 0,

= !
Al00)| |Awon]| |ALa2)] [A(C03

Let’s see,
4x4x4...
that makes
64 element.

f—

B | 23]

AG020) |A(L200 |AR20) [ABL0)

The variables making
up an array are referred
to as its elements.




(Example 1)

/]@ D'M A(5) ........................
20 DIM x$(8) .....................

Declares 1-dimensional numeric array A with 6 elements.
Declares 1-dimensional string array X$ with 9 elements.

19 DIM AWM XFEB):wwee Performs the same function as lines 10 and 20 above.
(Example 2)

10 DIM BB, B Declares 2-dimensional numeric array B with 6 x 6

elements.
20 DIM YD, 8)reerenreenenns Declares 2-dimensional string array Y$ with 6 x 9 elements.
1 DIM BB, B), YE(B, Bl AB), X8y v Declares two numeric arrays
and two string arrays.

(Example 3)

10 DIM C(3, 3, 3)reeeeees Declares 3-dimensional array C with 4 x 4 x 4 elements.

Note: Different names must be used for each array which is declared; for example, the instruction DIM
A(5), A(6) is not a legal array declaration.

Try executing the program shown below and check the results which are obtained.

Note:

19
29
39
49
50
S1%]
7
8d
1%

DIM AR, B2

AUN=26
Al(1)=9
AR)=—100

BWH="ABC"
BE()="XY2Z"
BE2)="MZ2-70J"
PRINT AU
PRINT B$@

190 PRINT AM@
119 PRINT B$SUWH+BHU)
120 PRINT AWD

Individual variables within an array, such as A(5) and X$(8), are referred to as an array’s elements.
Numeric. constants, numeric variables, and numeric arrays are collectively referred to as numeric

expressions, and string constants, string variables, and string arrays are collectively referred to as
string expressions.

25



2.2.4 BASIC Operations

In BASIC, arithmetic operations take a slightly different form than is the case with ordinary arithmetic.
The various arithmetic operators used in BASIC are shown in the table below. The priority of these
operators when they are used together within a single expression (the sequence in which the different
arithmetic operations are performed) is as indicated by the numbers in the left column of the table;
however, operators within parentheses always have the highest priority.

Arithmetic operations

Operator Operation Format
i Exponentiation | X 1Y (Indicates XY;i.e., X to the Yth power.)
2 — Negation - X
3| x,, | Multiplication, | v 4 v (¥ timesY), X/Y &; ie., X divided by Y)
i division
4 +, — Plus, minus X+Y XplusY), X —Y (X minus Y)

Line up in
sequence!

(Example 1)

1 A=BKE LG reornommmsnnvamneo When a series of operators with the same priority are used in
an arithmetic expression, calculations are carried out from left
to right; thus, the result of the expression at left is 6.

(Example 2)
10 A=6J—0CX8+2--- Result is 14.
20 B= (60—6) X8+2:---- Result is 434.

(Example 3)
19 A=213 - Assigns 2 to the 3rd power to A; result is 8.

String operations
String operations are used to create new strings of character data by concatenating (linking) two or
more shorter strings. The only operator which can be used in string operations is the ‘“+” sign.

(Example)
PRINT "ABC"+"DEF"J

Displays the character string “ABCDEF”.

26




2.2.5 Initial settings

Initial settings made when BASIC 1Z—013B is started are as described below.

® Keyboard
1) Operation mode: Normal (alphanumeric)
2) Definable function keys

b "RUN"+CHRS$ (13) (SELET |+ [T 2 seimmiame TCHRS$ ("
TR L ST [SHIETI+ R 2 oveeeeese '"DEF KEY ('
[ES] & = eeenece e "AUTO" [SHIET 4+ [E3] : ceveveeerees "CONT™"

O i oo oo TRENUM!" _+_ AT "SA\/E"

[F5] : corvervencens "COLOR" mj+ % e s "COAD?"

Note A carriage return code is included in the definition of function key F1.

B Built-in clock
The initial value set to system variable TI$ is "000000" .

® Music function
1) Musical performance tempo: 4 (moderato, approximately medium speed)
2) Note duration: 5 (quarter note J )

= Control keys and control characters
The control keys are keys which perform special functions when pressed together with the [CTRL] key.
Functions of these keys and their corresponding ASCII codes are as shown in the table below,

[Control codes]
ASCII code -
CTRL + (dotirial) Function
B 5 Selects the lowercase letter input mode for alphanumeric
characters.
F 6 | Selects the uppercase letter input mode for alphanumeric
| characters.
M 13 . Carriage return ([CR)).
P 16 | Same as the key.
Q 17 Moves the cursor down one line (H).
R 18 Moves the cursor up one line (E).
S 19 Moves the cursor one column (character) to the right (E).
T 20 Moves the cursor one column (character) to the left (&).
U 21 Moves the cursor to the home position ((HOME ).
\% 22 Clears the screen to the background color ([ CLR]).
W 23 Places the computer in the graphic character input mode
.~ (CGRAPH)).
X 24 . Inserts one space ([_INST )).
b 25 ; Places the computer in the alphanumeric input mode.
® Other
The lower limit of the BASIC text area is set to address $FEFF; this is the same as LIMIT MAX is
executed).

For initial printer settings, see the discussion of the printer.




28

2.3 Frequently Used BASIC Commands and
Statements
2.3.1 Program file input/output instructions

2.3.1.1 LOAD

(abbreviated format: LO.)

LOAD or LOAD ' filename'
This command loads the specified BASIC text file or a machine language file to be
linked with a BASIC program from cassette tape.

(See pages 14 and 20.)

Only BASIC text files and machine language programs can be loaded with this
command. When the file to be loaded is a BASIC text file, the current program is
cleared from the BASIC text area when the new program is loaded.

When loading a machine language routine to be linked with a BASIC program, the
LIMIT statement must be executed to reserve a machine language progam area
in memory. Further, the applicable machine language program file is executed as
soon as loading is completed if the loading address is inside that area. (In this case,
the BASIC text is not erased.)

The LOAD command can be used within a program to load a machine language
program file.

$O00O0
Monitor
$1200
BASIC interpreter
BASIC text area
LIMIT ($9FFF)
(BA000)
Machine language
area
$FEFF

Note: The lower limit of the BASIC text area shifts according to the size the program text loaded.




2.3.1.2 SAVE.

............................... (abbreviated format: SA.)

' SAVE or SAVE "filename'

This command assigns a file name to the BASIC program in the computer’s memory
and saves it on cassette tape.

Function

| want to save
this program on
cassette tape.

Well, then
use SAVE!

Give names to the programs
and use SAVE “NAME"’!

apt
pROS N,
. ‘% I have sever-
. ® al programs.
% How can |
tell them
apart?

When using SAVE,
make a note of the
tape counter reading
for future reference.

*

Type in
SAVE “NAME" [CR].

Q Assign any name of

up to 16 characters.

Screen display C}_ RECORD . PLAYj Re.ady for recording!!

T ecorder _
osgfa;ion (Eress the |RECORD buttonj Recording start!!

&

Screen display (WRlT[NG “NAME"| Recording in progress.

NAME is not displayed if no pro-
gram file name has been specified.

Screen display ‘ READY ‘ Recording completed!!

This command saves only the BASIC program text (i.e., the program text displayed
by executing the LIST command); it does not save any machine language program in
the machine language area.

The file name specified is recorded on tape together with the BASIC text file;
specify any name desired using up to 16 characters. If no file name is specified,
the program is recorded without a file name; however note that this can make file
management difficult if more than one program is recorded on a single tape.

29



2.3, 1.3 VERIFY .. e i s aemmiie ie miimmminia o s snrim (abbreviated format: V.)

VERIFY or VERIFY ' filename

This command is used to confirm that programs have been properly recorded on
tape by the SAVE command. This is done by playing the tape and comparing the
program read with the program contained in memory. If both programs are the
same, “OK” is displayed;if they are different, "READ error" is displayed.
In the latter case, save the program again.

VER' FY f‘ 2y | want to check whether my program has

been properly recorded. . .

D,
(2) Typein VERIFY “NAME"
(“NAME" is not necessary if no

file name has been assigned).

(4) Press the [PLAY| button on the data rec%

-~ 22
< (6) FOUND “XXXX" , . ........ This is displayed if the program finds another program
before that which is to be verified. If that program has
] & \ g l;_\a name, it is displayed where indicated by ““x x x x"".

=
( (6) FOUND “NAME"”........... Displayed when the program to be verified is found. ’

s SR R
(8) READ error, (7) VERIFYING “NAME"
READY 3 Indicates that the tape file is being
Indicates that the program was™\| compared with the program in
not correctly recorded; re-record\memory.
it with the SAVE command.

screen.

@ PLAY is displayed on the TV

Indicates that th
tape file is OK.




2.3.2 Text editing commands

2.3.2.1 AUTO .

2.3.2.2 DELETE

Example

............................... (abbreviated format: A.)
AUTO or AUTO Ls, n
S e Starting line number
n-------- Line number increment

This command automatically generates program line numbers during entry of
BASIC program statements.
(Example 1)

AUTOJ

A [ s s i smi sbmen e J
T3 s s s ssmomen ssmmmios J
15 [ wacs e iy s s wsies J

(Example 2)
AUTO 309, BJ

3@@ ..................... J
8@5 ..................... J
8’] @’ ..................... J

Automatically generates program line numbers with an increment of 5, starting with
line 300.

(Example 3)
AUTO 100J
N G s cmnsn swwiain m J) ) ) .
el et tssssdnsass ,) } ________ Generates program line numbers with an increment
Y T J of 10, starting with line 100.
(Example 4)
AUTO, 20J
/] @ ........................ J | X . )
Generates program line numbers with an increment
e, T T i) . . 7. Y
| of 20, starting with line 10.
5@ ........................ J )

Note: The AUTO command is terminated by pressing [ SHIFT |and[ BREAK |.

.............................. (abbreviated format: D.)

DELETE Ls—L e Deletes program lines from Ls to Le.

DELETE —L & - Deletes all program lines from the beginning of the
program to line Le.

DELETE Ls— --orererenenes Deletes all program lines from line Ls to the end of
the program.

DELETE s s msemencne Deletes line Ls.

(Example 1)
DELETE 150—-350J-- Deletes all program lines from 150 to 350.
(Example 2)

DELETE —1 @@ ) -s-sommwin Deletes all program lines up to line 100.
(Example 3)
DELETE 40— J oeeeeeneees Deletes all program lines from 400 to the end

of the program.

31



32

2.3.2.3 LIST....

Function

2.3.2.4 LIST/P

Function

.............................. (abbreviated format: L.)

LIST

LIST Ls—Le Ls indicates the starting line number and Le indicates
LIST Ls— ' the ending line number.

LIST —Le

This command lists all or part of the program lines contained in the BASIC text
area on the display screen.

L I ST J ........................... Lists the entire prograrn.

L | 8T =30 o vmons s Lists all lines of the program to line 30.

LIST 3@ Lists all lines of the program from line 30 to the end.
L1 ST BE—BE Jccmmmm- Lists all lines of the program from line 30 to line 50.
L |ET B Jowemmmunms Lists line 30 of the program.

Output of the program list to the display screen can be temporarily interrupted by
pressing the space bar; listing is then resumed when the space bar is released. To
terminate list output, press the | BREAK | key together with the key.

............................ (abbreviated format: L./P)

LIST/P <Ls—Le>

(L5 i Starting line number

g mnmwne Ending line number

This command lists all or part of the program in the BASIC text area on the printer.
The range of program lines to be listed is specified in the same manner as with the
LIST command described above.

Note: The angle brackets <. ..>in the above indicate that the enclosed item is optional.

2.3.2.5 MERGE

2.3.2.6 NEW

............................. (abbreviated format: ME.)

MERGE or MERGE " filename"

The MERGE command is used to read a program from cassette tape. When a pro-
gram is read using this command, it is appended to the program in memory. If
“filename”’ is omitted, the computer reads the first file encountered on the cassette
tape.

If any line numbers in the program read are the same as those of the program in
memory, corresponding lines of the program in memory are replaced with lines
of the program read.

NEW

The NEW command erases the BASIC text area and clears all variables. Execute
this command when you wish to clear the program in memory prior to entering
another program. This command does not erase the machine language area reserved
by the LIMIT statement.

Since the BASIC text area is automatically cleared by the LOAD command, it is
not necessary to execute this command before loading a BASIC program from
cassette tape.




2.3.2.7 RENUM

Format

Function

Example
[ Example |

[ Note ]

............................ (abbreviated format: REN.)

RENUM l Ln .... New line number
RENUM Ln SRTTRTRAPR Lo .... OIld line number
RENUM Ln, Lo, n ) n...... Increment

This command renumbers the lines of a BASIC program. When this command is

executed, line numbers referenced in branch statements such as GOTO, GOSUB,
ON ~ GOTO, and ON ~ GOSUB are also reassigned.

REMUM s5 6 ommnen e v s Renumbers the lines of the current

program in memory so that they start
with 10 and are incremented in units
of 10.

RENUM 10@ ................. Renumbers the lines of the current
program in memory so that they start
with 100 and incremented in units of 10.

RENUM 109, 50, 20 ....... Renumbers lines of the current program
in memory starting with line number
50; line number 50 is renumbered to
100, and subsequent line numbers are
incremented in units of 20.

The example below shows the result of executing RENUM 100, 50, 20 for a sample
program,

(Before renumbering) (After renumbering)
b0 A=1 100 A=1
6d A=A+1 120 A=A+1
79 PRINT A [ 140 PRINT A
1099 GOTO 6@J 160 GOTO 120

When specifying the new and old line numbers, the new line number specified must
be larger than the old line number. Note that an error will result if execution of this
command results in generation of a line number which is greater than 65535.

33



34

2.3.3 Control commands

2.3.3.1 RUN...

2.3.3.2 CONT ..

............................... (abbreviated format: R.)

RUN or RUN Ls

Ls .. .. Starting line number

This command executes the current program in the BASIC text area.

If the program is to be executed starting with the first program line, just enter
RUN and press the key. If execution is to begin with a line other than that
the lowest line number, type in RUN Ls (where Ls is the line number at which
execution is to start) and press the[CR|key.

When this command is executed, the BASIC interpreter clears all variables and
arrays before passing control to the BASIC program.

............................... (abbreviated format: C.)

CONT

The CONT command is used to resume execution of a program which has been
interrupted by pressing [ SHIFT | + [ BREAK | or by a STOP statement in the
program. This command can also be used to continue execution of a program which

has been interrupted by an END statement; however, in this case care must be taken
to ensure that lines following the END statement are not the lines of a subroutine.
Examples of situations in which the CONT command can and cannot be used are
shown in the table below.

Program continuation possible Program continuation not possible
® Program execution stopped by e Before a RUN command has been
pressing [ SHIFT |+[ BREAK |. | executed.
|
® Program execution stopped by a e “READY” displayed due to an
STOP command. | error occurring during program
execution.
| o
® Program execution stopped by e Cassette tape operation interrupted
pressing [ SHIFT |+[ BREAK ] by pressing [ SHIFT |+[ BREAK |.
while the program was a waiting '
input for an INPUT statement. ® Program execution stopped during
' execution of a MUSIC statement.
e Program execution stopped and
- '"READY" displayed after
i execution of an END statement.




2.3.3.3 BYE

2.3.3.4 KEY LIST

BYE

.................................. (abbreviated format: B.)

This command returns control of the computer from BASIC interpreter 1Z-013B
to the monitor program in RAM. (The monitor commands are explained starting
on page 99.)

........................... (abbreviated format: K. L.)

KEY LIST
This command displays a list of the character strings assigned to the definable

functions keys.

KEY
DEF
DEF
=
DEF
DEF
BERE
DEF
BEF
DEF
B EF

=

LIST

KEY
KEY
KEY
KEY
KEY
KEY
KEY
Y
KEY

1
2
(3>
>
(5>
>
oA
8
(2

"RUN'+CHRS$ (13)
"L 8T

"AUTO"

"RENUM'"
"COLOR"
"CHRS$ ('

"DEF KEY ('

" CONT "

"SAVE"

KEY (1@ ="LOAD"
READY

35



2.3.4 Assignment statement

LET

Function

Example

36

LETv=e or v=¢
v ... Numeric variable or array element, or string variable or array element.

e ... Numeric expression (consisting of one or more constants, variables, or array
elements) or string expression (consisting of one or more constants, variables,
or array elements).

This statement assigns the value (numeric or string) specified by e to the variable

or array element specified by v. As shown in the examples below, LET may be

omitted.

<2 A__:a OK, here | go!

19 A=10 19 LET A=10

20 B=2J 20 LET B=20

30 A=A+B 30 LET A=A+B

40 PRINT A 4 PRINT A

50 END 50 END

RUNJ

3@ 0 reesemmomiess The two programs above produce exactly

the same result.

The following are examples of incorrect use of the LET statement.
20 AS=A+B--- Invalid because different types of wvariables (string and
numeric) are specified on either sides of the “="" sign.
20 LOG (LK) =LK+ Invalid because the left side of the statement
is not an numeric variable or array element.




2.3.5 Input/output statements
Input/output statements are the means by which data is submitted to the computer for processing,
and by which the results of processing are output to the TV screen or printer.

2.3.5.1 PRINT

Function

{ PRINT ) ( variable <fs } variable ) >
{; E constant | | constant feeeees
.2 ) expression) lexpression J

This statement outputs the values of variables, constants, character strings, or
expressions to the display screen. Values are displayed starting at the cursor’s
current location on the screen. (To move the cursor down one line on the screen,
execute the PRINT statement without specifying any variables, constants, or ex-
pressions.)

To simplify key input when entering this statement, a question mark (?) may
be typed instead of the word PRINT.

Numeric data is displayed by this statement in one of two formats: real number
format or exponential format.

Read number format

Numeric values in the range from 1 x 1078 to 1 x 10® are displayed in real
number format.

=1. 9989
55888767
&, DD T v -mwwve o mmmmsnimsmens sunssmsismmsamssan s somasios 1x10°8
ejejelejelelele

Exponential format

Numbers which cannot be displayed in real number format are displayed in
exponential format.

—,31 Al BE+Q e _0.31415)(109
51 36@6E—ZZ-----------'---------_ ........................... 0.513606 x 10~20

A plus (+) or minus (—) sign is always displayed ahead of the exponent (the number
following “E’’) of a number displayed in exponential format.

Some special methods of using the PRINT statement are shown below.

PRINT"@®" Clears the entire screen and moves the cursor to the home
position (the upper left corner of the screen).

PRINT "H" Moves the cursor to the home position without clearing the
screen,

PRINT"RE" Moves the cursor one column to the right.

PRINT "BE" Moves the cursor one column to the left.

PRINT"E" Moves the cursor up one line.

PRINT"H" Movesthe cursor down one line.

37



PRINT '@OOOO@A" - Clears the screen, then displays the character “A” at the begin-
ning of the sixth line from the top.

Note: The vertical bars {...; in the format description indicate that any one of the enclosed items may
be selected.

To enter the special characters for cursor control, press the [GRAPH | key; this places BASIC in the
graphic character input mode and changes the form of the cursor to “EZ”. Next, enter the characters
as follows.

U~ 'j
............... Pross T key. %”B" Clean up and
............... Press the key. come home!
............... Press the B key.
............... Press the B key.
............... Press the key.
............... Press the H key. L

Come home
immediately!

-

After entering a special character, press the[ ALPHA |key to return from the graphic character input
mode to the alphanumeric input mode.

2:3.5.2 PRINTUSING ;. :ovvuncssmnumusssonus (abbreviated format: ?USL.)
PRINT USING " format string" ; variable < { ; | variable...)

|
This statement displays data on the screen in a specific format. The format specifi-
cation consists of a character or string of characters in quotation marks, and is
specified immediately after the word USING as follows.
(1) Format specification strings for numeric values
(a) #
The number sign is used to specify the maximum number of digits to be
displayed. If the number of digits in the number displayed is smaller than
the number of # signs specified in ‘“format string”, numbers are right-
justified in the field defined by that string.
(Example:)
10 A=123
20 PRINT USING “‘####” ; A
RUNJ
123




®) .

(c)

(d)

A period may be included in a format string consisting of # signs to specify
the position in which the decimal point is to be displayed. The number of
# signs to the right of the decimal point specifies the number of decimal
places to be displayed.

(Example:)

10 A=12.345 : B=6.789

20 PRINT USING "### ##" ;A

30 PRINT USING "###.##" ;B

RUN J

. 12.34

—6.79

b

Commas may also be included in “format string” to indicate positions in
which commas are to be displayed. Numbers are right-justified in the same
manner as when # signs are used alone.

(Example:)

10 A=6345123 : B=987324

20 PRINT USING "#, #4##, ###"' ; A

30 PRINT USING “#, ###, ###" ;B

RUN J

6,345,123

~...987,324

+and —

A plus (+) or minus (—) sign may be included at the end of ‘‘format string”
to specify that the sign of the number is to be displayed in that position
instead of a space. For instance, PRINT USING " ####+" will cause the sign
to be displayed immediately after the number. (PRINT USING '####—"
causes a minus sign to be displayed following the number if the number is
negative; if the number is positive, only a space is displayed in that position.)
Further, a plus sign may be specified at the beginning of a format string to
indicate that the number’s sign is to be displayed in that position regardless
of whether it is positive or negative.

(Examples)

PRINT USING ' ####+" ;—13

13—

PRINT USING " +#### " ;25

vyt 28 -
(Note:)

Although a minus sign will be displayed if one is specified at the beginning
of the format string, it will have no relationship to the sign of the number.

v

39



(e) XX
Specifying a pair of asterisks at the beginning of the format string indicates
that asterisks are to be displayed in the positions of leading zeros.
(Example:)
10A=1234
20 PRINT USING " X X####” ; A
RUN J
XX1234

(H ££
Specifying a pair of pound signs at the beginning of the format string indi-
cates that a pound sign is to be displayed in the position immediately to the
left of the number.
(Example:)
10A=123
20 PRINT USING "££####" ; A
RUN J

o £123

(g tt11
Four exponential operators may be included at the end of a format string
to control display of numbers in exponential format.
(Example:)
10 A=51123
20 PRINT USING "##### 11 11" ;A
RUNJ
~ 5.112E+04
In this case, the first number sign is reserved for display of the sign of the
number.

(h) Extended list of operands
A list of variables may be specified following a single PRINT USING state-
ment by separating them from each others with commas or semicolons.
When this is done, the format specified in 'format string" is used for display
of all resulting values.
(Example:)
10A=53:B=69:C=7.123
20 PRINT USING ##.### ;A,B,C
RUNJ
. 5.300..6.900 _,7.123




(2) Format specification for string values

(a) !
When the values being displayed are character strings, specifying an excla-
mation mark in “format string” causes just the first character of the string
specified to be displayed.
(Example:)
10 AS = "CDE"
20 PRINT USING "!" ; A$
RUNJ
C

D& &
Specifying "& . ..., &" in the format string causes the first 2 + n charac-
ters of specified string expressions to be displayed (where n is the number
of spaces between the two ampersands). If fewer than 2 + n characters
are specified in a string expression, characters displayed are left-justified
in the field defined by "& . &".
(Examples:)
10 AS = "ABCDEFGH"
20 PRINT USING "& ...s &" 5 AS
RUNJ
ABCDEF
10 A$ = "XY"
20PRINT USING "& ... &" ;A$
RUN Y
XY

(3) String constant output function
When any character other than those described above is included in the format
string of a PRINT USING statement, that character is displayed together with
the value specified following the semicolon.
(Example:)
10A=123
20 PRINT USING "DATA####" ; A
RUN J
DATA_.123

(4) Separation of USING
Usually, PRINT and USING are specified adjacent to each other; however,
it is possible to use them separately within the same statement.
(Example:)
I10A=-12:B=14:C=12
20 PRINT A;B; USING "####" ;C
Normal PRINT function USING function

RUNJ
=12 01400012

41



42

2.3.5.3 INPUT

Function

................................ (abbreviated format: L)

( numeric variable (numeric variable |
INPUT . string variable . ...or INPUT "character string" ; | string variable ! -
{ array element J | array element J
INPUT A INPUT "DATA A=" ;A
INPUT BS$ | NPUT®YES OR NO' ;B3
INPUT XD | NPUT "KEY IN" ;X (B

INPUT is one of the statements which is used for entering values for assignment to
variables during program execution. Program execution pauses when an INPUT
statement is encountered to allow values to be typed in from the keyboard. After
input has been completed, the values are substituted into specified variables by
pressing the key, then program execution resumes.

(Example:)

1< INPUT A, B
20 C=A+B

30 PRINT C
40 END

When the program above is executed, a question mark is displayed and the cursor
blinks to indicate that the computer is waiting for data input; enter any arbitrary
number, then press the[CR| key. This assigns the value entered to variable A.

After doing this, the question mark will be displayed again. The reason for this
is that two variables (A and B) are specified in the INPUT statement on line 10,
but only one value has been entered (that which is substituted into variable A).
Enter another arbitrary number and press the key again; this substitutes the
second value entered into variable B and causes execution to go on to the next
line of the program. In the example above, subsequent lines add the values of A
and B, substitute the result into C, then display the contents of C.

Since the variables used in this example are numeric variables, the computer will
display the message ILLEGAL DATA ERROR if an attempt is made to enter any
characters other than numerics. The question mark is then redisplayed to prompt
the user to reenter a legal value (a value whose type is the same as that of the varia-
ble or array element into which it is to be substituted). Be sure to enter data whose
type matches that of the variable(s) specified in the INPUT statement.

During program execution, it may be difficult to remember what data is to be
entered when the question mark is displayed; therefore, prompt strings are usually
included in INPUT statements for display on the screen as a reminder. This is done
as shown in the program example below.

10 INPUT "A=" ;A

20 INPUT"B=":.B

30 PRINT"A+B=";A+B
40 PRINT"A—-B=",A—B
B PRINT"AXB=";AXB
6g PRINT"A/B=",A/B
70 END




2.3.5.4 GET

Try running the program shown above. Inclusion of character strings in the PRINT
and INPUT statements provides a clear indication of the program’s operation.
Practical computer programs consist of combinations of sequences similar to the
one shown here. By combining commands, statements, and sequences in different
manners, you will soon find that there are many different methods of achieving
a desired result.

Vs s wi Numeric variable or array element, or string variable or array element.
When this statement is encountered during program execution, the BASIC inter-
preter checks whether any key on the keyboard is being pressed and, if so, assigns
the corresponding value to the variable specified in v. Whereas the INPUT statement
prompts for entry of data and waits until that data has been entered before resuming
execution, the GET statement continues execution regardless of whether any key
is being pressed.

Although data is substituted into variable v by the GET statement if any keys are
pressed when the statement is executed, the variable will be left empty (0 for a
numeric variable or null for a string variable) if no keys are pressed.

With numeric variables, this statement allows a single digit (from 0 to 9) to be
entered; with string variables, it allows a single character to be entered.

This statement can be extremely useful when you want to enter data without
pressing the key, as is often the case with game programs.

(Example:)

199 PRINT "NEXT GO? ¢&¢Y OR N)

20 GET ' AS

30 IF AS="Y'" THEN Bg--- In the example above, execution
jumps from line 30 to line 50 if the
value of variable A$ is "Y".

4@’ GOTO 2@ ................................... Llne 40 unconditionally transfers exe-
50 PRINT "PROGRAM END "cution to line 20.
60 END

This program displays the prompt 'NEXT GO? (Y OR N)' and waits for input.
When the Y key is pressed, execution moves to line 50 and the program ends.
Until that time, however, execution loops repeatedly between lines 20 and 40.
Now delete lines 30 and 40 and try executing the program again. As you can see,
execution is completed immediately regardless of whether any keys have been
pressed.

Note: When GET statements are executed in succession, a routine should be includ-
ed between them to ensure that each is completed before going on to the
next. The reason for this is that key chatter (vibration of the contacts of
the key switches) may result in two GET statements being executed simul-
taneously.

43



44

2:3:5.5 READ ~DATA ;. ssomiissssmmmass s vamanes i s an (abbreviated format: REA. ~ DA.)

Function

READ ( numeric variable | (| numeric variable | >
i ,E String Variable , - : String Variable T T Y |
| array element | | array element
DATA ( numeric constant | (| numeric constant | >

| string constant | string constant |

Like the INPUT and GET statements, the READ statement is used to submit data to
the computer for processing. However, unlike the INPUT and GET statements,
data is not entered from the keyboard, but is stored in the program itself in DATA
statements. More specifically, the function of the READ statement is to read succes-
sive items of data into variables from a list of values which follows a DATA state-
ment. When doing this, there must be a one-to-one correspondence between the
variables of the READ statements and the data items specified in the DATA state-
ments.

(Example 1)
19 READ A, B,C, D
20 PRINT A;B;C:D

39 END

40 DATA 190, 1090, B5d., 60

RUN J

1@ 100 BE B@ scomvemvmnrmns In this example, values specified in the

DATA statement are read into variables
A, B, C, and D by the READ statement,
then the values of those variable are
displayed.

(Example 2)

19 READ X%, A1, 723

20 PRINT X$;A1:2Z%

30 END

A7 DATA A, 1, O e As shown by the example below, string
data included in DATA statements does
not need to be enclosed in quotation
marks.

RUN J

A_TC The READ statement in this example

picks successive data items from the list
specified in the DATA statement, then
substitutes each item into the correspond-
ing variable in the list following the
READ statement.




(Example 3)

10 DIM A (2
2 BEAD A @), A1), AL
S BPRINT e L& 2 Ay G
49 END

50 DATA 3. 4, 5
RUN/

3 4 5

(Example 4)

19 READ A
20 READ B
30 DATA X

2)
(2

The READ statement in this program
substitutes the numeric values following
the DATA statement into array elements
A(0), A(1), and A(2), then the PRINT
statement on line 30 displays the values
of those array elements.

The example above is incorrect because
(1) a numeric variable is specified by the
READ statement on line 10, but the value
specified following the DATA statement
is a string value, and (2) there is no data
which can be read by the READ statement
on line 20.

45



46

2.3.5.6 RESTORE

When

.................................

(abbreviated format: ... RES.)

RESTORE or RESTORE Ln

READ statements are executed, a pointer managed by the BASIC interpreter

is incremented to keep track of the next item of data to be read from DATA state-

ments

. The RESTORE statement resets this pointer to (1) the beginning of the

first DATA statement in the program or (2) the beginning of the DATA statement
on a specified line.

10
20
3d

49

1: 2, 8
AA

DATA
DATA
READ
READ
RESTORE

READ A.B.C, D$. ES$
READ I,
RESTORE
READ M, N

RESTORE 269

READ O, P

DATA 1. 2,3, 4
DATA —1, =2, =3, -4

"'BB

An error will result if the number specified in Ln is the number of non-existent line.

10
20
30
40
50
69
V4%
89
SQ
100
110
129
130
140

X=33XRND (1)
FOR A=1 TO 5
READ M$
PRINT TAB (@
PRINT TAB (37) ;
NEXT A
Y=1OXRND (1>
FOR A=1 TO Y
PRINT TAB (@ ; &
PRINT TAB (37 ;
RESTORE:GOTO 10
DATA" 4ON'", "eZFFHe '
DATA ' ZEEZ', OFFFe
DATA'" BV’

This function creates random
numbers (see page 72 ).

=

‘&
..‘

 TAB (XD M$

¢ NEXT

Note: See page 62 for the TAB function and page 47 for the FOR . . . NEXT statement.




2.3.6 Loop and branch instructions
2534691 [EOR SNEXSiEw betlepy, sliinlmtme 50 diom soon) mew (abbreviated format: F. ~ N.)

FOR cv =iv TO fv < STEP sv >

NEXT <cv>

cv .. .. Control variable; a numeric variable or array element.

iv .. .. Initial value; a numeric expression.

fv . ... Final value; a numeric expression.

sv .... Increment, or step value; a numeric expression (if omitted, 1 is assumed).
This statement repeats the instructions between FOR and NEXT a certain number

of times.

19 A=0

2 FOR N=g TO 19 STEP 2

30 A=A+1

49 PRINT "N=";N,

50 PRINT "A=",A

60 NEXT N

(1) In the program above, O is assigned to N as the initial value.

(2) Next, lines 20 through 50 are executed and the values of variables A and N
displayed.

(3) In line 60, the value of N is increased by 2, after which the BASIC interpreter
checks to see whether N is greater than 10, the final value. If not, lines following
line 20 are repeated.

When the value of N exceeds 10, execution leaves the loop and subsequent instruc-

tions (on lines following line 60) are executed. The program above repeats the loop

6 times.

If <STEP sv > is omitted from the statement specification, the value of N is increas-

ed by 1 each time the loop is repeated. In the case of the program above, omitting

< STEP sv > in this manner would result in 11 repetitions of the loop.

Initial value
of N

FOR | N=O | | To 10 STEP 2|
R ) (it S |
| L st
| |
vl
: I
]
l
Loop control Final value | | Increment
variable of N i | for N (step)
|
}
|
|
|
|
]




Example
[ Example |

[ Note |

2.3.6.2 GOTO

48

[ Format ]
[ Function |

Example
[ Example |

FOR . . . NEXT loops may be nested within other FOR . . . NEXT loops. When
doing this, inner loops must be completely included within outer ones. Further,
separate control variables must be used for each loop.

19 FOR X=1 TO 99— FOR A=1 TO 3 —
20 FOR Y=1 TO gqglg FOR B=1 TO 57:
3¢ PRINT XXY: |4 |8 FOR C=1 TO 7|
40 NEXT Y ———J & ¥ - R S S — ill
50 PRINT "8 NEXT ¢ ———||
60 NEXT X O NEXT B ——— | (NEAT
70 END NEXT & —— 1 &84
When loops C, B, and A all end at the
same point as in the example above, one
NEXT statement may be used to indicate
the end of all the loops.
Incorrect example:
FOR J=1 TO 10 ;*FOR =1 TO 19
—FOR J=K TO K+38 mFOR J=K TO K+5
LNEXT U ILNEXT |
NEXT J
X Different control variables X Loops may not cross one
must be used in each loop. another.

The syntax of BASIC does not limit the number of levels to which loops may be
nested; however, space is required to store return addresses for each level, so the
number of levels is limited by the amount of available free space.

The CLR statement (see page 59) cannot be used within a FOR . . . NEXT loop.

................................. (abbreviated format: ... G.)

GOTO Ln

Ln.... Destination line number

This statement unconditionally transfers program execution to the line number
specified in Ln. If Ln is the number of a line which contains executable statements
(statements other than REM or DATA statements), execution resumes with that
line; otherwise, execution resumes with the first executable statement following
line number Ln.

109 N=1

20 PRINT N

39 N=N+1

A GOTO 28 s Transfers program execution to line 20.
5J END




2.3.6.3 GOSUB ~ RETURN

Function

Example

Since execution of the program shown above will continue indefinitely, stop it
by pressing the | SHIFT |and [ BREAK | keys together (this may be done at any
time to stop execution of a BASIC program). To resume execution, execute the
CONT J command.

The line number specified in a GOTO statement may not be that of a line included
within a FOR . . . NEXT loop.

........................... (abbreviated format: GOS. ~ RET.)
GOSUB Ln

RETURN

Ln ... Destination line number

The GOSUB statement unconditionally transfers program execution to a BASIC
subroutine beginning at the line number specified in Ln; after execution of the
subroutine has been completed, execution is returned to the statement following
GOSUB when a RETURN statement is executed.

GOSUB ~ RETURN statements are frequently used when the same processing is
required at several different points in a program. In such cases, a subroutine which
performs this processing is included at some point in the program, and execution
is branched to this subroutine at appropriate points by means of the GOSUB state-
ment. After the required processing has been completed, execution is returned to
the main routine by the RETURN statement.

100 X=10
110 [GOSUB 200 -
120 PRINT X i

130 END |
|| 208 X=X%x2 |
2190 RETURN

49



The syntax of BASIC imposes no limit on the extent to which subroutines can be
nested (that is, on the number of levels of subroutine calls which can be made from
other subroutines); however, in practice a limitation is imposed by the amount of
free space in memory which is available for storing return addresses.

10 B=5 BZS
20 C=5 CGS
30 GOSUB 100
40 PRINT A (GOSUBIOO -
50 B=2 S L 4
60 C=I10 4 (100
70 GOSUB 100 ; A=B+C|
&0 PRINT A i W < T Wty
90 END RETURN)
(00 A=B+C | PRINTA |13 displayed.'
110 RETURN ; [@: |
, '
f C =10 :
| & |
-(GOSUB[00 |
P J
N
(PRINTA 12 displayed.
O
2.3.6.4 IF~THEN .......0 i, (abbreviated format: . .. IF ~ TH.)
IF ¢ THEN Ln

Function

IF ¢ THEN statement

e: A relational expression or logical expression

Ln: Destination line number

IF ... THEN statements are used to control branching of program execution accord-
ing to the result of a logical or relational expression. When the result of such an
expression is true, statements following THEN are executed. If a line number is
specified following THEN, program execution jumps to that line of the program if
the result of the expression is true.

If the result of the logical or relational expression is false, execution continues with
the program line following that containing the IF . .. THEN statement.

l IF [ rCondition ‘ I THEN } [ Statement or line number l

50



P THEN ©BETO wor! 1) Fees@@QT O
=l U NS T S R R =
[Fnasus THEN A=BX7 assignm
F--THEN =10 :J=50

F~THEN READ
F--~THEN GOSUB

F~THEN RETURN
F-THEN STOP
F--THEN END

I
|
|
|
I
flafor e dEEN e lNRUT
|
I
I
|
|

ent

20 IF “‘you = have good
THEN 50 balance’’

Examples of logical and relational expressions

Operator Sample application Explanation
I'F A=X THEN: |If the value of numeric variable A equals the
| value of X, execute the statements following
; THEN.
| IF A$= XYZ If the contents of string variable A$ equal
THEN:-- “XYZ”, execute the statements following
§ | THEN.
2 | > | | F A>X THEN-- |If the value of variable A is greater than X,
“é 3 execute the statements following THEN.
H < I EA<X THEN:- |If the value of variable A is less then X, execute
E ‘ the statements following THEN.
2 (<> 0r><| | F A<>X THEN: | If the value of variable A is not equal to X,
= | : execute the statements following THEN,
Bl>=or=> |F A>=X THEN-- ‘ If the value of variable A is greater than or
1 | equal to X, execute the statements following
THEN.
<=or=<| | F A<=X THEN: | If the value of variable A is less than or equal to
| | X, execute the statements following THEN.
§ X [ | FCA>XOX(B>Y) | If the value of variable A is greater than X and
g THEN:-- :‘ the value of variable B is greater than Y, execute
= | the statements following THEN.
g = [ | ECAZ>X)+(B>Y) If the value of variable A is greater than X or
2 | {' THEN:- the value of variable B is greater than Y, execute
S ‘ i | the statements following THEN.

51



52

Precautions on comparison of numeric values with BASIC 1Z-013B, numeric values
are internally represented in binary floating point representation; since such values
must be converted to other forms for processing or external display (such as in
decimal format with the PRINT statement), a certain amount of conversion error
can occur.

For example, when an arithmetic expression is evaluated whose mathematical result
is an integer, an integer value may not be returned upon completion of the opera-
tion if values other than integers are handled while calculations are being made.
Be especially sure to take this into consideration when evaluating relational expres-
sions using “="".

This need is illustrated by the sample program below, which returns FALSE after
testing for equality between 1 and 1/100 X 100.

10 A=1.100%x130

20 |F A=1 THEN PRINT 'TRUE':GOTO 40
8 PRINT '"FALSE®

40 PRINT "A=" A

50 END

RUN
FALSE
B =

The fact that both “FALSE” and ““ A = 1 are displayed as the result of this pro-
gram showns that external representation of numbers may differ from the number’s
internal representation.

Therefore, a better method of checking for equality in the program example above
is as follows.

20 |F ABB (A—1) < . 1E=8 THEN PRINT *TRUE
GOTO 409




2.3.6..5 IF ~GOTOF S rrns] el - o o s slasen i 12 53 (abbreviated format: IF ~ G.)

Function

Example

IF e GOTO Lr

e: Relational expression or logical expression

Lr: Destination line number

This statement sequence evaluates the condition defined by relational or logical
expression e, then branches to the line number specified in Lr if the condition is
satisfied. As with the IF . . . THEN sequence, IF ~ GOTO is used for conditional
branching; when the specified condition is satisfied, program execution jumps to
the line number specified in Lr. If the condition is not satisfied, execution continues
with the next line of the program. (Any statements following IF ~ GOTO on the
same program line will be ignored.)

109 G=0 .N=0

20 INPUT "GRADE=" ;X

30 |IF X=9099 GOTO 1909

A4 T=T+X:N=N+1

50 GOTO 20

188 PRINT ‘“————————r— :

119 PRINT "TOTAL:" ;T

1200 PRINT *NO. REORLE:"™:N
188 PRINT "AVERAGE: " i TAN
140 END
23,16, 6 TE=GOSUB . cxvns:isnantnisosobtans s mmie (abbreviated format: IF ~ GOS.)

Function

IF e GOSUB Lr

e: Relational expression or logical expression

Lr: Destination line number

This statement evaluates the condition defined by relational or logical expression e,
then, if the condition is satisfied, branches to the subroutine beginning on the
line number specified in Lr. Upon completion of the subroutine, execution returns
to the first executable statement following the calling IF ~ GOSUB statement;
therefore, if multiple statements are included on the line with the IF ~ GOSUB
statement, execution returns to the first statement following IF ~ GOSUB.

1@ [INPUT " X= 1:2X

28 | F X<@ . GO8SUB . 18& : PRINT "X<@"

3g |F X=@ GOSUB 20@:PRINT"X=g"

4 |F X228 GOSWUB, 83@¢: PR I NT "X=g"

50 PRINT " /i i o o .

6Lg GOTO 10

1909 PRINT " X PROGRAM LINE 100 ":RETURN
200 PRINT " X PROGRAM LINE 200 '":RETURN
390 PRINT " X PROGRAM LINE 300 " :RETURN

53



54

2.3.6.7 ON~GOTO .....ciii e, (abbreviated format: ON~G.)

Function

ONe GOTO Lr; <,Lr, ,Lrs,..... , Lri >

e ... Numeric variable, array element, or expression

Lri . List of destination line numbers

This statement branches execution to one of the line numbers following GOTO,
depending on the value of e.

The value of e indicates which of the line numbers following GOTO is to be used
for making the branch; in other words, if e is 1, execution branches to the first
line number in the list; if e is 2, execution branches to the second line number
in the list; and so forth. For example: '

100 ON A GOTO 200, 300, 400, 5@@
Destination when 1 1 1

Ais 1 | ’
Ais2

Ais3
Ais4 —

19 INPUT "NUMBER " ; A

20 ON A GOTO by, 60, 70
50 PRINT"XXX":GOTO 10
6d PRINT'"YYY'":GOTO 10
70 PRINT"ZZZ" :GOTO 19

RUN | If @ decimal number such as 1. 2 is
NUMBER < 1 N ~—— specified, the decimal portion is truncated
XX X | before evaluating the statement. J
NUMBER < 2

YYY

NUMBER < &

When the value of e in an ON~GOTO statement is greater than the number of
line numbers specified following GOTO, execution continues with the next line
of the program.

This also applies if the value of e is less than 1 or negative.

Further, if the value of e is a non-integer, the decimal portion is truncated to obtain
an integer value before the statement is evaluated.




2.3.6.8 ON~GOSUB

............................... (abbreviated format: ON~GOS.)
ON e GOSUB Lr; <,Lr,,Lrs,..... , Lri >

e ... Numeric variable, array element, or ex pression

Lri . Destination line numbers

This statement branches execution to the subroutine beginning on one of the
line numbers following GOSUB, depending on the value of e. Operation of this
statement is basically the same as with the ON~GOTO statement, but all branches
are made to subroutines. Upon return from the subroutine, execution resumes

with the first executable statement following the ON~GOSUB statement which
made the call.

Let’s try using the ON~GOSUB statement in a scheduling program. The most
important point to note in the following program is that, a subroutine call is made
at line 180, even though line 180 itself is part of a subroutine (from line 170 to

190) which is called by line 90. Subroutines can be nested to many levels in this
manner.

19 A$=" ENGL ":B$=" MATH ":C$=" FREN
2 D$=" 8CI "TES=" MUS "IF$=" GYM :
39 G$=" HIST " :H$=" ART T IE=" GEOG !
40 Je=" BUS TIK$E=" H RM T

50 INPUT "WHAT DAY<?" ; X$

6d FOR Z=1 TO 7:¥Y$=MID$ ("SUNMONTUEWEDTHU
FRISAT", 1+3%(Z—-"1), 8) : |IF Y$=X3% THEN X=Z

79 NEXT Z

80 FOR Y=g TO 4:PRINT TABB+6XY);Y+1 ;
S0 NEXT Y:PRINT

190 ON X GOSUB 180,120,130, 140, 150,160,170
171190 PRINT: :GOTO by

120 PRINT"MON " ;A$:BF:D$H;:GPH;:KS$ : RETURN
1840 PRINT"TUE " BS%;E$:HE:HS: D% : RETURN
14 PRINT"WED " C$S;CH; $:A%:F$: RETURN
190 PRINT'"THU " ;B$:D$:F$S;GCH:.ES$: RETURN
188 BRRINT*"FRI « "5 A8:; D8 1608 0P : RETURN
170 PRINT"SAT " :;B$;G3:D$;:K$:RETURN

1858 FORmY= TOWwG

198 ON Y GOSUB 12, 188, 148, 168, 160, 179
200 PRINT:NEXT Y

213 RETURN

5b



56

2.3.7 Definition statements

2.3.7.1 DIM

Function

Example

2.3.7.2 DEFFN

DIM a; (i;)<,a5 (i3), «vvvvvvnine . ai (im) >
DIM by (i1,71)<,by (2,d2), +vvvvvvvnnnnnnn.. bi (in, jn) >
. 1-dimensional array name (list)

bi ... 2-dimensional array name (table)
im,in,jn........... Dimensions

This statement is used to declare (define) arrays with from one to four dimensions
and to reserve space in memory for the number of dimensions declared (DIM:
dimension). Up to two characters can be specified as the array name, and subscripts
of any value may be specified to define the size of dimensions; however, the number
of dimensions which can be used is limited in practice by the amount of free
memory available.

(Examples:)

19 DIM A 19D

20 FOR J=0 TO 109
30 READ A (U

40 NEXT J

5@ DATA b5, 34, 12, =

(Examples:)

19 DIM AS (1) ,BS 1), CH (1)

20 FOR J=g TO 1 : READ AS$ (), B$ (W)
S CH ) =AU +" "+BH (WD

4 PRINT A W, B W), CH W

50 NEXT J

60 END

/7 DATA YOUNG, GIRL, WHITE, ROSE

Execution of the DIM statement sets the values of all elements of declared arrays
to 0 (for numeric arrays) or null (for string arrays). Therefore, this statement should
be executed before values are assigned to arrays.

Different names must be used for each array which is declared; for example, the
instruction DIM A(5), A(6) is not a legal array declaration.

All array declarations are nullified by execution of a CLR statement (see page 59)
and a NEW statement (see page 32).

DEFFNf(x)=e

f ... Name assigned to the function being defined (one uppercase letter from A to Z)
X ... Argument (variable name)
e ... Numeric expression (constant, variable, array element, or function) or pre-

viously defined user function

The DEF FN statement is used to define user function FN f (x). Such functions
consist of combinations of functions which are intrinsic to BASIC.




Example

2.3.7.3 DEFKEY

Function

DEF ENA (X) =2XX12+3XX+1-- Defines 2X? + 3X + 1 as FNA
(X).

DEF FENE (V) =1/2XMXV T 2 ooeeeeeeeeneens Defines 1/2MV? as FNE (V).

109 DEF FNB (XD =TAN (X—PA | (1) /&

20 DEF FEND (X) =FNB (X)/ C+ X Defines function FNB using the
function defined on line 10.

(Incorrect definitions)

19 DEF ENK (XO=SIN (X/3+PAIC )/4), FNL (XD=EXP(—X 12/K)

. .. . Only one user function can be defined by a single DEF FN statement.

Find the kinetic energy of a mass of 5.5 when it is imparted with initial accelerations
of 3.5,3.5 x 2, and 3.5 x 3.

109 DEF FENE (V) =1./2XMXxV 12

20 M=5. 5:Vv=3. 5

30 PRINT FENE (V) , FNE (VX2) , FNE (VX3)
4 END

All user function definitions are cleared when the CLR statement and the NEW
statement is executed.

DEF KEY (k) = S$

Ko omnna Definable function key number (1 to 10)

S$..... Character string (up to 15 characters).

Character strings can be assigned to any of the ten function keys to allow strings
to be entered at any time just by pressing a single key. This statement is used to
define such strings and assign them to the definable function keys. Function key
numbers 1 to 5 are entered just by pressing the corresponding key at the top left
corner of the keyboard; keys 6 to 10 are entered by pressing the key
together with the corresponding key. The function key number (1 to 10) is specified
in k, and the string or command which is to be assigned to the key is specified
exactly as it is to be entered in S$. Execution of the DEF KEY statement cancels
the previous definition of the definable function key.

No other statement can be specified after a DEF KEY statement on the same line.

(Example:)
10 DEF KEY (1) =" | NPUT " coeeeveeenneene Defines key as INPUT
20 DEF KEY (2) ="RUN"4+CHRS$U3)--- Defines as RUNJ

Note: CHRS$ (13) indicates the ASCH code for[CR], and specifying it together with the string assigned to
a definable function key has the same effect as pressing the key. (See the description of the
CHRS function on page 78 and the ASCII code table on page 154.)

57



2.3.8 Remark statement and control commands

2.3.8.1 REM

REM r

r .... Programmer’s remark

REM is a non-executable statement which is specified in a program line to cause
the BASIC interpreter to ignore the remainder of that line. Since REM statements
are non-executable, they may be included at any point in the program without
affecting the results of execution. REM statements are generally used to make a
program easier to read, or to add explanatory notes to a programi.

Multiple statement program lines

When more than one statement is included on a single program line, each statement must be
separated from the one preceding it by a colon (:). Operation of the BASIC interpreter is
generally the same in such cases as when the same statements are specified on different lines.
For example, the two programs below produce exactly the same result.

19 A=b

20 B=8 10 A=5:B=8:C=AXB:PRINT C
30 C=AXB

40 PRINT C

Note: Also note that program operation may differ when multiple statement lines are used as
shown below.

19 INPUT A

20 B=0 This program displays 1 if the value entered at
39 |IF 99<A THEN B="line 10 is greater than or equal to 100, and 0
AWM EREENTNEE if the value entered is less than 100.

57 END

Wk CNPLAR A i B=giF IO0<A T THEN B21PRINT B
2 END

This program displays 1 if the value entered is greater than or equal to 100, but nothing
at all if the value entered is less than 100. The reason for this is that statements follow-
ing THEN on line 10 are not executed if the IF condition is not satisfied.

58




2.3.8.2 STOP ..

Example

2.3.8.3 END...

2.3.8.4 CLR

.................................. (abbreviated format: S.)

STOP

Temporarily stops program execution, displays BREAK and READY, then waits for
entry of executable commands in the direct mode.

The STOP statement is used to temporarily interrupt program execution, and
may be inserted at as many points and locations in the program as required. Since
execution of the program is only interrupted temporarily, the PRINT statement can
be used in the direct mode to check the values stored in variables, after which
execution can be resumed by entering CONT J .

19 READ A, B

20 X=AXB
30 STOP
49 Y=A/B

58 PRl NT X, Y
6d DATA 15,5
79 END

RUN

BREAK IN 3g

Unlike the END statement, no files are closed by the STOP statement. (See page 68
concerning procedures for opening and closing of files.)

.................................. (abbreviated format: E.)

END

The END statement terminates program execution and returns the BASIC inter-
preter to the command mode for input of direct mode commands. When this state-
ment is executed, READY is displayed to indicate that the BASIC interpreter is
ready. After the END statement has been executed, execution cannot be resumed by
executing the CONT command even if there are executable statements on program
lines following the END statement.

All open files are closed when the END statement is executed. (See page 68 concern-
ing procedures for opening and closing files.)

Differences between the STOP and END statements

Screen display Files Resumption of execution
STOP BREAK | N XXXX | Open filesare | Can be resumed by
READY not closed. executing CONT.
END READY Opext Hlcs are Cannot be resumed.
closed

CLR

The CLR command clears all variables and cancels all array definitions. All numeric
variables are cleared to O, and null strings (" ") are placed in all string variables;
arrays are eliminated entirely by nullifying all previously executed DIM statements.
Therefore, DIM statements must be executed to redefine the dimensions of required
arrays before they can be used again.




60

2.3.8.5 TI$

The CLR command also cancels all function definitions made with the DEF FN
statement; therefore, it is also necessary to reexecute DEF FN statements to rede-

fine such functions before they can be used again.
CLR statements cannot be included in a FOR~NEXT loop or BASIC subroutine.

TI$ "hh mm ss"

TI$ is the name of the system string variable which contains the time of the com-
puter’s built-in clock.

This built-in variable is automatically incremented once each second, and the six
character string contained in this variable indicates the hour, minute, and second,
with two characters used for each. For example, if the string contained in TI$ is
"092035", the time is 9:20:35 A. M.

Variable TIS is automatically set to 00:00:00 when BASIC is loaded into the com-
puter. To set the current time of day, use the string assignment statement. For
example, the clock can be set to 7:00:00 P. M. by executing the following.

TI$ = "190000"

The clock is set to 7:00:00 and then restarted automatically when the CR key
is pressed.

The digits specified for the hour must be in the range from 00 to 23, and those
specified for the minute and second must each be in the range from 00 to 59.
The following program displays the current local time in various cities of the world.
19 PRINT '"@®"

20 DIM CE U@ . DU ., EUT1D . TS 1D

3 FOR 1=1 TO 19:READ C$ (1), D) :NEXT |
40 PRINT"ENTER NEW YORK TIME MHOUR, MINUT
E, SECOND) *

50 INPUT B$ . TIS=BF:PRINT'®’

60 PRINT "BH" : T 1D)=TI1%$

7 FOR 1=1 TO 10

80 ELI)=VALAEFTS (T$H 12, 2)) +0 ()

Q0 |IF E (I)=24 THEN E () =0

1090 |1F E (1) <@ THEN E (1) =24+E& (1)

110 TH D) =STREE ) +RIGHTS (TH (1), 4

120 IF LENC(TS (1)) =5 THEN TS ()="@"4+TS$ (I
139 PRINT C8 K1) :TABMB)Y ; LEFTHELTE (1) 2
1468 PRINT": " ;MIDECTHE C1). 3 2) i "2 "3 RIGHTS «
TS IO, 25

150 NEXT | :GOTO 6¢

160 DATA NEW YORK, @, MOSCOW, 8 RIO DE JANE
| RO, 2

170 DATA SYDNEY, 15, HONOLULU, —5, LONDON, 5,
CA I RO, 7

188 DATA TOKYO, 14, BAN FRANC|ISCO. —8. PARI] S
, 6




2.3.8.6 CURSOR

Function

Example

The TI$ variable cannot be specified in an INPUT statement. Further, after the time
changes from 23:59:59 to 00:00:00, the time “00:00:01” is not displayed.

................................. (abbreviated format: CU.)

CURSOR x, y
X ... X coordinate (0 to 39)
y ... Y coordinate (0 to 24)

This command is used to move the cursor to a specified position on the TV (display)
screen, and can be used together with the PRINT and INPUT statements to display
characters in any desired location.

In the system of screen coordinates used, the columns of the screen are numbered
from left to right, starting with O on the left side and ending with 39 on the right
side; lines of the screen are numbered from top to bottom, with O indicating the
top line of the screen and 24 indicating the bottom line. Thus, the cursor can be
moved to any desired position in the range from (0, 0), which indicates the top
left corner of the screen, to (39, 24) indicates the bottom right corner.

The following program moves an asterisk ( X) about on the screen as the cursor
keys are pressed.

10 X=0:Y¥Y=g
15 PRINT'"®"
269 CURSOR X, Y:PRINT "% ;
39 GET A$:IF A$="" THEN 30O
440 CURSOR X, Y :PRINT" ' ;
50 IF A$="R' THEN Y=Y—1 :REM "UP d
69 IF AS="EH" THEN Y=Y+1 :REM '"DOWN !
70 IF A$S="R" THEN X=X—1 :REM '"LEFT !
80 IF A$="R" THEN X=X+1 :REM '"RIGHT
90 IF X<g THEN X=9g

100 1F Y<J THEN
118 1F X>388 THEN
128 |F Y>24 THEN

150 GOTO 20

-<>“<-<

1G]
38
24

If the value specified for either X or Y is other than an integer, it is converted to
an integer by truncating the decimal portion before the cursor is moved.

Other methods of moving the cursor which are used together with the PRINT
statement include the TAB and SPC functions. (See page 62 for a description of
the SPC function.)

0 8 X 39
0 1
g
10
%
CURSOR 8.10
24

61



62

2.3.8.7 TAB

Format TAB (x)
X ... A numeric expression

The TAB function is used together with the PRINT statement to move the cursor
to the character position which is x + 1 positions from the left side of the screen.
(This is referred to as space tabulation.)

Example PRINT TAB (5 ; "XYZ':TAB (1@ ; "ABC"

0123456789012 <:" Not actually displayed.

Note Tabulation can only be used to move the cursor to the right; therefore, nothing
happens if this function is used together with the PRINT statement when the cursor
is already to the right of the character position specified in (x).

(Example:)
PRINT TAB (B ; "XYZ2" , TAB (B ; "ABC"

01234567890
cadea s s Y ZBBG

2.3.8.8 SPC
Format SPC (n)
n... A numeric expression :
Function Use together with the PRINT statement, this function outputs a string of n spaces

and thus moves the cursor n character positions to the right of its current position.

Example (Example 1)
PRINT SPC (B ;"ABC"

012834567
e g ABC

(Example 2)
The following example illustrates the difference between the TAB and SPC func-
tions.

18 ¢ TAB 2> s LABE" : TAB & : "DER"
27 7 8PC 2] ; "ABC i BPO & JDER"
01234567890123
i ABCLDER e v
oA BC s e nDER




2.3.8.9 SET, RESET

These statements are used to turn dots on or off at a specified position on the screen.

Format
SET X. Y= €
X ... Numeric expression speci-
fying the X coordinate.
Y. ... Numeric expression speci-

fying the Y coordinate.
C Color code (0-to 7).

RESET X, Y

X ... Numeric expression speci-
fying the X coordinate.

Y ... Numeric expression speci-
fying the Y coordinate.

<x<
specified by X and Y. ‘, RsX=573
(SET) |
Turns off the dots at ‘;
the screen coordinates | 0<Y <49

Function

Range of X, Y coordinates

Turns on the dots at
the screen coordinates

specified by X and Y.
(RESET)

When a color code is specified, the color of the dots displayed by the SET statement is as follows.

© ...... Black

CL) v Blue

(2) 5 smumas Red

(BN ;a2 Purple

4 ...... Green

(B) .. cenn Light blue
B) :: Yellow
(TR White

Since four dots are turned on simultaneously by the SET statement, changing the color of any one
dot in that four dot group also causes the color of the other dots to change.
The SET and RESET statements can be use to produce a wide variety of interesting effects; some

examples are introduced below.
1. Turning on one dot on the screen.

10 PRINT'@’
20 X=79:Y=49

30 SET X.Y. 2
40 RESET X, Y Turns dots off. o

by GOTO 302
2. Coloring the entire screen white.

10 PRINT '@’

20 FOR X=g TO 79
30 FOR Y=0 TO 49
40 SET X, Y. 7

50 NEXT Y, X

60 GOTO 19

O X —= /0
Ole °
0,0 79,0
SET XK v
RESET X, Y
v | 0.49 79,49
49| @ °

63



3. Drawing a rectangle around the edge of the screen.

19 PRINT '@’
20 FOR X=@ TO 79
30 SET X. O

49 SET X, 49

50 NEXT X

60 FOR Y=0 TO 49
7@ SET O.Y

80 SET 79.Y

OO NEXT Y

199 GOTO 109

4. A program which simulates the ripples produced by throwing a pebble into a pond.

10 X=4g:Y=25

200 DEF FNY (Z) =SOR (RXR—ZX2Z)
30 PRINT'®" :SET X.Y
49 R=R+5

50 FOR Z=@ TO R

60 T=FNY (2

70 SET X+Z, Y+T

8¢ SET X+Z,Y-T

9@ SET X—2Z.,Y+T

100 SET X—Z,Y-T

1190 NEXT Z

120 |F R<>25 THEN 40
130 GOTO 13Q

5. A program which simulates a ball bouncing off four walls.

19 PRINT"®"

20 FOR X=g TO 79

30 SET X, J:SET X, 49

4 NEXT X

50 FOR Y=g TO 49

60 SET O, Y:8ET 79,Y

79 NEXT Y '

8 X=79XRND (1) :Y=49XRND (1)
9g A=1:B=1

100 SET X, Y

1190 IF X<2 G0osSuB 2909

120 |F X>78 GOSUB 2090

130 |F Y<2 GOSUB 259

140 1F Y>48 GOSUB 259

150 RESET X, Y

160 X=X+A:Y=Y+B:GOTO 100
200 A=—A:MUSIC"+AQ0" : RETURN
250 B=—B:MUSIC"AQ": RETURN

As to JOY command, refer to the instruction manual of Joy Stick.
64




2.3.9 Music control statements
This section discusses the MUSIC and TEMPO statements which are used to control performance of
music by the computer. As its name implies, the TEMPO statement specifies the speed with which music is

performed. The notes (including half notes and upper and lower octaves) and duration of notes produced
are controlled by the MUSIC statement.

Tempo:

Melody:

Note specification: { octave] L# (sharm ’iote name [ Lduration ]

Specified with TEMPO as a numeric variable or constant with a value from
1 (slow) to 7 (fast).

Specified with MUSIC as a string variable consisting of a collection of
notes.

2.3.9.1 MUSIC

Discussion

..................................... (abbreviated format: MU.)

MUSIC X$
X$ ... String data

Automatically performs music.

This statement outputs the melody or sound effects specified by the character string
or string variable of its argument to the speaker. The speed with which this melody-
is played is that which is specified with the TEMPO statement (see page 67).

The format for specification of each note is as follows:
< octave specification > < # (sharp) > note name < duration >

- The plus or minus signs are used to specify the octave. If neither is specified, the
middle range is assumed.

The three ranges of sounds which can be output by the computer are as shown in the
figure below. For example, the C notes (“do” on the 8-note C scale) indicated by
the black dots below are differentiated from each other by the octave specification.

LowC ....... —C
MiddleC...... C
HighC ....... +C
’)OGQ
id u()"
=3 ==
P o b
e CC‘OV
6/}: .ﬁ”va
Low Middle High
| range ! L range | L range |
—_ No specification =t

65



66

Note specification
The symbols used to specify notes within each range are as follows:

CDEFGAB # R
The relationship between the 8-note scale (do, re, mi, fa, so, la, ti, do) and these
symbols are as shown below. The sharp symbol (#) is used to specify half notes.
Silent intervals are specified with “R”’.

JLLILY

¥C #D EF#G HA R — Rest

Duration specification

The duration specification determines the length of the specified note. The dura-
tions from 1/32 to whole are specified as numbers from 0 to 9. (When R is specified,
this determines the length of the silent interval.)

i 7 ¥ 7 7- 2 e = = -

Dotted Dotted Dotted Dotted '
1/32rest 1/16 rest 1/16 rest 1/4 rest 1/8 rest 1/4 rest 1/4 rest 1/2 rest 1/2 rest Whole rest

bt R Y S TR T RS

Dotted Dotted Dotted Dotted
1/32 note 1/16 note 1/16 note 1/8 note 1/8 note 1/4 note 1/4 riote 1/2 note 1/5 nots Whole note !

O 1 2 3 4 5 6 7 8 O i

When sucessive notes have the same duration, the duration specification can be
omitted for the second and following notes. If no duration is specified for the first
note, 1/4 notes are assumed.

Sound volume
The volume of sound produced cannot be controlled by the program, but can be
adjusted with the computer’s external volume control.

Let’s try assigning a string to SR$ to play the theme from the beginning of
Beethoven’s Serenade in D major (Opus 25).

SR$="+A3+#F1+A+B3A+D+#F1A+D3A+D
+#F1A+D3+#F1A+D+E+2F+G+A3R

o N N N




2.3.9.2 TEMPO

........................... (abbreviated format: TEM.)

TEMPO x

X e

Numeric expression (1 to 7)

This statement sets the tempo with which music is played by the music statement.
If this statement is not executed, TEMPO 4 is assumed for execution of MUSIC

statements.
30 TEMPO 1 Slowest tempo .... (Lento, adagio)
30 TEMPO 4 Medium tempo .... Moderato);
four times as fast as TEMPO 1.
34J TEMPO 7 Fastesttempo..... (Motto allegro, presto);
seven times as fast as TEMPO 1.
19 REM Chopin’s mazourka
20 MM$="A3" :M1$="AS+#C3+D+E+#F+C+#FO+G+ #
FA+ES+D+#CB ¢
30 M28="A3+D2RO+D1+E2+D+#C3B+#C7+#C3 "
40 M3$="A3+#C2RO+#C1+D2+ #CB3A+D7+D3 "
50 TEMPO 3
60 MUSIC MM$, M1$, M2$, M1, M3$, M1 S, M23%, M1
$, M3$
79 END

67



68

2.3.10 Data file input/output commands

Although the SAVE and LOAD commands can be used to write or read program text, other commands
are used to record or read the various types of data which is handled by programs. These commands
are described below.

Format Function
Opens a data file on cassette tape
WOPEN . prior to writing data to it. This
(abbreviated W.) WOPEN < file name > command also assigns a name to
the data file.
Writes data to cassette tape in the
PRINT/T PRINT/T d, <,d,,d;,...dn> . X
(abbreviated ?/T) dn . ... Numeric data or string data sane fommat g it would be displayed
| by the PRINT statement.
| Searches for the data file on cassette
ROPEN : tape with the specified name and
(abbreviated RO.) ROFEN < file same == | opens that file to prepare for reading
3 | data from it.
Used to input data from a cassette
file and pass it to the program (in a
INPUT/T INPUT/T Vi < 5 V95 Vg 5ews VN1 > " . .
(abbreviated 1./T) vn . ... Numeric data or string data mgnner similar 10 t-hat H Whld.l the
INPUT statement is used to input
data from the keyboard).
CLOSE Statement which closes cassette data
(abbreviated CLO.) CLOSE files after writing or reading has
: | been completed.

Unlike the LOAD and SAVE commands, no messages are displayed by execution of the WOPEN and
ROPEN statements.
If display of a message is desired, use the PRINT statement to define one in the program.

Note: When an ordinary cassette recorder is used, it may not be possible to record data files even if no
problems are encountered in storing or reading programs with the SAVE and LOAD commands.

(Example 1)

The following program writes the numbers from 1 to 99 on cassette tape.
19 WOPEN "DATA'!

20 FOR X=1 TO 998

3 PRINT /T X

49 NEXT X

b CLOSE

69 END

(Example 2)

The following program reads data from the data file prepared in Example 1 above. Before execut-
ing this program, be sure to rewind the cassette tape.

19 ROPEN DATA"

20 FOR X=1 TO 89

3g INPUT/T A

40 PRINT A

50 NEXT X

6g CLOSE

70 END




(Example 3)
The following program creates a data file consisting of string data.

10
20
30
49
S1%]
1%
V4%
80
e]%]
§%]%]
119
120

DIM N$ (5
N$ (1) ="BACH"
N$ (20 ="MOZART*
N$ (3> ="BEETHOVEN"
N$ (4> ="CHOPIN"
NE (5) ="BRAHMS
WOPEN"GREAT MUSICIAN?®
FOR J=1 TQ B
PRINT /T N$ (U
NEXT J
CLOSE
END

(Example 4)

The following program reads string data from the file created in Example 3. Before executing this
program, be sure to rewind the cassette tape.

209
219
224
239
249
259
260
279

It is also

DIM M$ (5
ROPEN "GREAT MUSICIAN"

FOR K=1 TO 5
INPUT /T M$ KD
PRINT M$ (K
RIEXETE ik

CLOSE

END

possible to create data files which include both numeric and string data. However, since an

error will occur if the type of data read does not match the type of variable specified in the INPUT/T

statement, i

t is generally best to limit files to one type of data or the other.

Note: It is possible to omit the file name when opening a sequential file with the WOPEN statement.
However, this is likely to result in errors if many files are included on the same tape; therefore,

itis

recommended that you make a habit of assigning file names to sequential data files.




70

The following program records student grades in English, French, science, and mathemetics to a
sequential data cassette file.

19
2
3
49
50
6
7
8J
Qg
100
119
120
139
149
159
169
170
189
190

INPUT "ENTER NO. OF STUDENTS':N
DIM N$ N>, KM, EMND

DIM R M, S N

A$="GRADE IS

FOR X=1 TO N

PRINT:PRINT "STUDENT NO. ; X
INPUT "ENTER STUDENT NAME: " ;N$ XD
PRINT "ENG JAS;  INPUT K OXD
PRINT "FREN";AS$: : INPUT E OO
PRINT '"SCI ";A$;:INPUT R XD
PRINT "MATH";A$; : INPUT S (XD
NEXT X
WOPEN "GRADES <:I(Opens data file “GRADES” for output on cassette tape.)
PRINT.T N <‘:(Writes the number of students in the class to the file. ]

FOR A= Ter W Writes grades
PRINTZT N$ CX)., KX, E OO, RO, S X
NEXT X '

CLOSE  <ZCloses the cassette file.)

END

The following program reads the grade data written to the cassette file by the program shown above,
then calculates displays the grade average for each student and class averages for each of the various

subjects.
10

2
39
40
1%
$16)
79
89
SO
N%]%]
119
120
139
149
159
160
178
180
190
200
219
22
230
240
250

ROPEN"GRADES" <= Opens cassette file “GRADES” for input.)
INPUT T N <=Reads the number of people in the class.)
DIM N$ N, KN, EMND

DIM RWMN), S N\ND

FOR X=1 TO N Reads student names and the grades for]
INPUT. /T N$ (XD . K OO English.
INPUT T E (XD, RX), S (XD Reads the grades for French, science}
NEXT X and mathematics.
ClLOSE Closes the file.

PRINT TABCIE) ; "ENG "

PRINT TABUI® : "FREN":

PRINT TAB (2@ ; "SC|

PRINT TAB (25 ; "MATH"

FOR X=1 TO N

PRINT N$ XO ; TAB (1@ ; K (XD

FRINT TAB 1S ;E €4 ;

PRINT TAB (2@ ;R (XD ;

PRINT TAB (25 ;S X

PRINT TAB (3@ ; (K X) +E (XD +R (XD +5 (XD ) 4
K (@) =K (@) +K (XD 1 E (@ =& (@) +E XD

R @ =R @ +R (XD 18 (@ =8 @) +8 (XD

NEXT X

PRINT TAB (@ ;K /N; TAB (15 ; E @ /N;
PRINT TAB (20) ;R & /N; TAB (25 ;S @ N
END




2.4 Built-in Function

BASIC

Function svuitiol Example Description
Absolute | ABS (X) | A= ABS (X) Assigns the absolute value of variable | X | to vairable A.
value Example: A=ABS (2.9 -A=2.9
A=ABS (-5.5)>A=5.5
Sign SGN (X) | A=SGN (X) Assigns the numeric sign of variable X to variable A.
If the value of X is negative, —1 is assigned to A;if X is 0,
0 is assigned to A; and if X is positive, 1 is assigned to A.
" 1 (X>0) Example: 1 is assigned to variable
A= 10 X=0) A when A = SGN (0.4)
-1 X<0) is executed.
Integer INT (X) | A=INT (X) Assigns the greatest integer value to A which is less than
conver- or equal to the value of variable X,
sion Examples: A=INT (3.87) —-A=3
A =1INT (0. 6) -A=0
A=INT (-3.87) »A=—-4
Trigono- | SIN (X) | A = SIN (X) Assigns the sine of X (where X is in radians) to variable A.
metric If the value of X is in degrees, it must be converted to
functions radians before this function is used to obtain the sine. Since
1 degree equals PI/180 radians, the value in radians is
A=SIN(30*PA(1/180) | obtained by multiplying the number of degrees by PAI(1)/
180. For example, 30° = 30X PAI(1)/180 radians. The same
applies to the COS, TAN, and ATN functions.
COS (X) | A=COS X) Assigns the cosine of X (where X is in radians) to variable A.
A=COS (200* PA(1)/180
TAN (X) | A=TAN (X) Assigns the tangent of X (where X is in radians) to
A=TAN(Y*PA(1)/180) | variable A.
ATN (X) | A= ATN (X) Assigns the arctangent in radians of X (tan™' X) to variable
A=180/PA(1)*ATN(X) | A. The value returned will be in the range from —PI/2 to
P12
Square SQR (X) | A=SQR (X) Calculates the square root of X and assigns the result to
root variable A. X must be a positive number or 0.
Exponen- | EXP (X) | A=EXP (X) Calculates the value of ex and assigns the result to variable
tiation A.
Common | LOG (X) | A=L0G (X) Calculates the common logarithm of X (log;oX) and assigns
logarithm the result to variable A.
Natural |LN (X) | A=LN (X) Calculates the natural logarithm of X (loge X) and assigns
logarithm the result to variable A.
Ratio of | PAI (X) | A=PAI X) Assigns the value to variable A which is X times the value
circum- of PI.
ference to
diameter
Radians | RAD (X) | A=RAD (X) Converts the value of X (where X is in degrees) to radians

and assigns the result to variable A.

VAl



72

Examples of use of the built-in funcions

(Example 1)
Let’s try solving the various elements of a triangle with a BASIC program.

Angle A of the triangle shown in the figure at right is 30°,
angle B is a right angle, and side CA has a length of 12. The
following program finds all angles of the triangle, the
length of its sides, and its total area.

109 A=3J:B=9d:CA=12

20 AB=CAXCOS (AXPA 111718
30 BC=CAXSIN (AXPAIM) 18>
40 S=ABXBC.2

bg C=18d—A—B

6L PRINT "AB=";AB, "BC=";BC, "CA=",;CA
79 PRINT "AREAS=":S

8 PRINT "A=" A, "B=";8B, "C=":C

9y END

(Example 2)
Now let’s change line 50 of the program to use ATN, the function for finding the arctangent of a number,
to fine angle C from sides AB and BC.

109 A=30:B=9d:CA=12

20 AB=CAXCOS (AXPA I ()18

30 BC=CAXSIN (AXPAI1UI"18

40 S=ABXBC 2

50 C=ATN (ABBC) X18J/PA |1

6 PRINT "AB=",;AB, "BC=";BC, "CA=";CA

79 PRINT "AREAS=":S
8 PRINT "A=",;A, "B=":;B, "C=",C
eg END
RND function
RND (X)
X .. Numeric expression

The RND function returns a pseudo-random number in the range from 0.00000001
to 0.99999999.
When X is greater than O, the random number returned is the one which follows that
previously generated by the BASIC interpreter in a given pseudo-random number
series.
When X S 0, the BASIC Interpreter’s pseudo-random number generator is reinitia-
lized to start a new series, and the pseudo-random number returned is the first one
in that series. Reinitialization of the pseudo-random number series in this manner
can be used to allow simulations based on random numbers to be reproduced.




The RND function is often used in game programs to produce unpredicatable
numbers, as in games of chance. Let’s try using the RND function to investigate the
percentage of times each of the six sides of a die comes up by simulating the action
of throwing it a given number of times,

Since the sides of each die are numbered from 1 to 6, we must multiply the value
returned by the RND function by 6.

X6
O<RND (1) <1 ——— O<6XRND (1) <6

Then we must use the INT function to convert the value obtained to an integer.
| NT CBXRBND €13 ) =0, 1« 2« 8. 44 B

The result will be an integer between 0 and 5; now 1 is added to obtain the numbers
which correspond to the number of dots on each of the 6 sides of a die.

INT (BXRND (1)) +1-1. 2. 3. 4. 5. 6

This sequence is performed a specified number of times for each die thrown. Now
let’s incorporate the sequence into a program and check the results.

149 PRINT "ENTER NO. OF

The RND

[ el st ul “9‘*“"‘)
20 |INPUT N 0.99999999,
34 FOR J=1 TO N Here's hmb_tain ‘
4% R=INT (BXRND (1)) +1 o iy B
59 IF R=1 THEN N1=N1+1 . =
60 |IF R=2 THEN N2=N2+1
79 IF R=3 THEN N3=N3+1
80 IF R=4 THEN N4=N4+1
9 IF R=5 THEN NB5=N5+1

190 |IF R=6 THEN N6=NG6+1 g@ ol or &
110 NEXT J

120 P1=N1.,N:P2=N2,N:P3=N3,N

130 P4=N4/N:P5E=N5/N:P68=N6N

140 PRINT P1, P2, P3, P4, P5. P&

150 END

How about it? If the die is thrown enough times, the percentage of the time each
number appears should be about the same. Mathematically speaking, each number
should occur an average of once in six throws, or about 16.7% of the time. This
mathematical ideal is approached more closely as the number of throws is increased.

78



74

Now let’s try using the RND function in a program which tests your ability to solve
for the area of a triangle of random size. Here, the RND function is used to deter-
mine the length of each of the three sides of the triangle, then you compute the area
of the triangle yourself and submit your answer to the computer for checking.

19 DIM A3, LS D

20 FOR J=1 TO 4

30 READ L$ (Jd NEXT J

40 FOR J=1 TO 3

50 A (J) =INT (2O0XRND (1)) +1

60 NEXT J

79 IF A () >=A2)+A 3 GOTO 49

S8 IF A@ >=A () +A 3 GOTO 49

O IF A @) >=A ) +A (2 GOTO 4y

100 W= (A (1) +A (2) +A (3 ) 2

110 T=W FOR J=1 TO 3

120 T=TX (WW—A (J)D :NEXT J

180 SS=8SQR (T) :S=INT (&S)

140 |F 885—8>@. 5 THEN S5=5+1

150 PRINT '"'@HABOHO’

160 PRINT SOLVYE FOR THE ABEA OF THE
FOLLOWING TRIANGLE"

170 PRINT ROUND YOUR ANSWER TO THE
NEAREST WHOLE NUMBER'

180 PRINT

190 PRINT TAB 8 ; "A

200 PRINT TAB (&) AN :TAB (1B) s LE (1)
A (1D

210 PRINT TAB (/7 "I N - TAB (15 :L$ (2
A (2D

220 PRINT TAB B ; "UU N CTAB (15 ;s LLE (B

LA (3

230 PRINT TAB (&5 ; "UU N

240 PRINT TAB (3 ; "BUY NC

250 PRINT TAB 4D ; IC ]

260 PRINT ann -

270 PRINT TAB (3 ;L$ (4 ;

280 INPUT Y

290 | F Y=8 THEN PRINT oK :GOTO
49

3 | F Y<S THEN PRINT " TOO SMALL !
. GOTO 329

319 PRINT " TOO LARGE!!

320 PRINT '@&";

330 PRINT TAB (24) ; SPC (25) :PRINT [ 1]

340 GOTO 270

350 DATA LENGTH SIDE AB=, LENGTH SIDE BC=

360 DATA LENGTH SIDE CA=, AREAS OF TRIAN-—

GLE ABC IS AREAS OF TRIANGLE ABC IS




Note than specifying a value for X which is less than or equal to 0 will always result
in the same number for a given value of X. The reason for this is that specifying O or

a negative number reinitializes the pseudo-random number generator to the beginn-
ing of the random number series.

75



76

2.5 String Function

2.5.1 LEN
[ Format |

LEN (X$)

X$ ... String expression

This funcion returns the number of characters included in the string expression
represented by X$. This value includes spaces which are not displayed on the screen
and any control characters in the string, as well as letters, numerals, and symbols.
(Example 1)

19 A$S="'ABCDEFG

20 PRINT LEN (A$>

RUN
>

(Example 2) The following program uses the LEN funcition to draw squares on the
screen, ,

19 < P "ENTER 30R MORE ASTERISKS!

20 INPUT AS$

39 FOR 1=1 TO LENA$ —2
40 PRINT TAB 2 ; "X' ; SPC (LEN (A$ —20 "X’
50 NEXT |

60 PRINT TAB (2) ;A$:GOTO 20

(Example 3) The LEN function can also be used to produce a “parade” of charac-
ters as shown below.

10 S$=' SHARP BASIC

20 FOR |1=1 TO LEN (S$)

30 ¢ RIGHTS (8%, 1

490 NEXT |

50 END

RUN

C

| C

SIC

SHARP BASIC

(Example 4)

PRINT LEN GSTR$ (PATUID J
o

PAI (1), the function which returns the value of the ratio of the circumference of a
circle to its diameter, contains the 8-digit constant 3.1415927 (approximately the
value of PI). When the length of the character string produced by converting this
constant with the STR$ function is evaluated with the LEN function, a total string
length of 9 is returned.




2.5.2 LEFTS, MID$, and RIGHT$

The LEFTS$, MID$, and RIGHTS functions are used to extract character strings from the left end, right
end, or middle of a character expression.

_ Format . Example
X$: String expression unction e 5 Remarks
m and n: Numeric expressions (when A$ = “ABCDEFG”)
Returns the character B$= LEFTS$ (AS, 2) 0< n< 255

string consisting of the n

characters making up the BH—- CDEFG
left of string expression
LEFTS (X$, n)
Substitutes 2 characters from
the left end of string variable
AS into string varible BS.
Thus, B$ = "AB".

Returns the character B$=MIDS$ (AS, 3, 3) 1Sm
string consisting of the n <
characters making up the B$‘“l AB|CDE|FG 0= n'> 255
n characters starting with

the mth character in string Substitutes the 3 characters
expression X§. starting at the 3rd character

in string variable A$ into
string variable BS.

Returns the character B$ = RIGHTS$ (AS$, 2) 0S n< 255
string consisting of the n
characters making up the B$T ABCDE !
right end of string ex-

RIGHTS (X$, n) pression X8§. Substitutes 2 characters
from the right end of string
variable A§$ into string

varible BS.
Thus, B$ = "FG".

MIDS$ (X$, m, n)




2.5.3 ASC and CHR$

Format

Function Example

ASC (x9)
x$: String expression

Returns the ASCII code for the first X=ASC (" A")
character in string expression x§. Substitutes 65 (the ASCII code for the
letter A) into variable X.

Y=ASC (' [S]HARP ")

| Substitutes 83 (the ASCII code for S,
| the first letter in the string “SHARP”)
n into variable X.

CHRS (x)
x: Numeric expression

Returms the letter whose ASCII cods | AS=CHRS (65)

corresponds to the value of numeric Assigns A, the letter corresponding to
expression X. (No character is ASCII code 63, to string variable AS$.
returned if the value specified for x is | This function can be used to display
less then 33; therefore, PRINT ' .. " | characters which cannot be entered

or PRINT SPC (1) should be used to | from the keyboard as follows.
obtain spaces, rather than CHR$ (32)). | PRINT CHRS (107) 4
| This displays the graphic character 4.

Let's see, 89 is the ASCII code
forY,so...

Note: ASCII code is a standard code system which is frequently used with computers. This code uses
8 bit numbers to represent the letters of the alphabet, numerals, and symbols such as the dollar

sign and question mark. The full code set is presented in the table on page 154.

78




2.5.4 VAL and STR$

Format Function Example
STRS (x) Returns a string of ASCII characters A$=STRS (-12)
x: Numeric expression | representing the value of numeric Substitutes the character string '—12"
expression X. into string variable AS.

B§=STRS (70 X 33)

Substitutes the character string

© 2310 ' into string variable BS.
C$=STRS$ (1200000 X 5000)
Substitutes the character string "6E +
09" into string variable C$.

Note: Positive numeric values are displayed with a
leading space to indicate that the plus sign
(+) has been omitted. However, this space
is not included in the character sting re-
turned by the STRS$ function.

VAL (x$) Converts an ASCII character repre- A=VAL ("123")

x§$: String expression | sentation of a numeric value into a Converts the character string " 123 "
numeric value. This is the comple- into the number 123 and assigns it to
ment of the STR$ function. numeric variable A.

The following sample program illustrates use of some of the functions discussed above to display
numeric values in tabular format (with the decimal points aligned).

1. 23466
12. 3456
19

1

1234

If the values read from DATA statements were displayed using only the PRINT statement, the result
would appear as shown below.

In goes the
number 10. ..

109 FOR X=1 TO b

20 READ A

30 L=5—LEN (STRS$ (INTAY )
40 PRINT TAB (L) ;A

59 NEXT :END

B0 DATA 1. 234886, 12. 3466
748 DATA 123. 48586, 1234. 66
Se DATA 12345.6

1, 283456
12. 34586 -
123. 456 In goes a string. . .

1234. 56 o ey - VAL

12348, © e




2.6 Colordisplay statement

One of the greatest features of the MZ-700 is that it allows characters and graphics to be displayed using
any of up to 8 colors.

2.6.1 COLOR ...t ssssssenees o0 (Abbreviated format: COL.)

Function

COLORX,y,c < b>

X ....Xcoordinate (0 to 39)

y .... Y coordinate (0 to 24)

¢ . ... Character color specification (0 to 7).

b . ... Background color specification (0 to 7).

This statement is used to set the foreground and background colors for the character
at a specific position on the screen. Any of up to 8 different colors can be specified
for the character foregrounci (c) or background (b) as shown in the table below.

Color No. Color -
0 Black
1 Blue
2 Red
3 Purple
4 Green
5 Light blue
6 Yellow
i White |

(1) Changing the background color of the entire screen
COLOR. & & 52  sasus (Changes the background color used

for display of characters to red.)

(2) Changing the foreground color of the entire screen (the color used for display

of all characters)
COLOR 8 e (Changes the color used for display of
all characters to purple.)

(3) Changing both the background and foreground colors for the entire screen
COLOR ,.17.9 caon. (Changes the color used for display of
| all characters to blue and changes the

background used for display of chara-
cters to black.)

(4) Changing the background color at a specific screen location
COLOR 2,2..4  ..... (Changes the background color at

coordinates 2, 2 to green.)

(5) Changing the foreground color at a specific screen location
COLOR 3, 2, 7  aswss (Changes the foreground color at

coordinates 3, 2 to white.)

(6) Changing both the foreground and background color at a specific screen location
COLOR 4,2, 4,2 .a.,- (Changes the foreground color at

coordinates 4, 2 to green and changes
the background color at that location
tored.)

80



2.6.2 Adding color specifications to the PRINT statement

Function

( PRINT [f, b] variable ) < (s [ variable 1 [ 5] eeemee >
b e J { constant | | ,] | constant .
l expression | 1 expression J

or

( PRINT [f, b] USING  "format string" ; variable< | ; }variable el
L9 f L, '

f . ... Foreground (character color) specification (a number from 0 to 7)

b.... Background color specification (a number from 0 to 7)

Adding the color specifications to the PRINT and PRINT USING statements des-
cribed on pages 37 and 38 makes it possible to display characters in a variety of
colors. In the format above, f indicates the character foreground color, and b indi-
cates the character background color. If only the foreground color is specified, the
current background color is used for display of characters; this is done by specify-
ing the foreground color, followed by a comma.

If only the background color is specified, the current foreground color is used for
display of characters; in this case, a comma must precede the background color
specification.

(Example 1)

PRINT (6, 5) "ABCDE " ....Displays the letters “ABCDE” in
yellow against a background of light
blue.

FR DN T e Cosdds ¥ BEH Lo . . . . Displays the letters “FGHIJ” in yellow
against a background of green,

PRANIE G2 D1 AN 2 ... . Displays the letter “VWXYZ” in green

against a background of white.
(Example 2) Let’s try adding color to the automobile race program shown on page
46.
19- PRINT (1) '"@m"
20 O=INT BXRND (1)) +2: X=33%XRND (1)
39 FOR A=1 TO B
49 READ M$
S5 PRINT TAB U@ :"@" ; TAB (X)
82" PRINT " @&, 1% ME" -
79 PRINT (7,1) TAB(E7); "e"
80 NEXT A
S Y=1TXRND (1)
190 FOR A=1 TO Y
110 PRINT TAB (@) ; "e'" :
120 PRINT TAB (37) ; "": NEXT
130 RESTORE: GOTO 29
140 DATA" H4LON ", "eE=Ee "
150 DATA' HERE ', 'eZEBEe:
160 DATA" NEZ

With ordinary PRINT statements (those without color specifications), the fore-

ground and background colors used for character display are those which have been
specified with the latest COLOR statement.

81



82

2.7 Color Plotter-Printer Commands

The color plotter-printer commands described below can be used with the MZ-731 or, when the MZ1P01
color-plotter printer is connected, with the MZ-710, MZ-711, or MZ-721. The color plotter-printer can be
used in either of two modes: The text mode (for printout of program lists, results of calculations, or
other character data), or the graphic mode (for drawing figures and graphs).

Further, any of four colors (black, blue, green, or red) can be used for printout of characters and
graphics. This capability is particularly useful when using the printer in the graphic mode.

2.7.1 General information about the color plotter-printer

(1) The color plotter-printer operates in either of two modes: The text mode (for printout of the results
of calculations, program lists, and other character data) and the graphic mode (used for drawing
figures and graphs). The printer will only operate in one mode at a time. (Graphic printer commands
are ignored while the printer is in the text mode, and vice versa.)

(2) Printer parameters are reset when the printer is switched from the graphics mode to the text mode.
(In other words, the pens’ X and Y coordinate settings are reinitialized.)

(3) The printer runs on power supplied from the main unit of the MZ-700, and is not equipped with a
separate power switch.

(4) The following switches are used to control operation of the printer.

a. Feedswitch .......... Advances the paper.
b. Resetswitch.......... Resets (reinitializes) the printer.
c. Pen change switch ..... Used when replacing the printer’s pens.

(5) There are four pen colors: Black, blue, green, and red.

(6) When the printer is used in the text mode, any of three different sizes of characters can be printed.
The largest size permits a maximum of 26 characters to be printed on one line, medium size permits a
maximum of 40 characters to be printed on one line, and the smallest size allows up to 80 characters
to be printed on one line.

Characters which can be printed when using the printer in the text mode are as shown below. No other
letters, symbols, or graphic characters can be output while the printer is in this mode.

" In most cases, hexadecimal ASCII

codes will be printed in a different RUHSZL (IX+,—. /0123456789 : ; <=>?@ABCDEFGH
color if an attempt is made to print TJKLMNOPGRSTUUWXY2IN1T¢ e~ tgh bxdrpcq
graphic characters with the PRINT/- gzwsu| Okfuv UBJnh Um ¥ oldod y{ “Ipo -~HUO
P statement or LIST/P command. FARADEL 2" H#$x& 7 ()%+,—-.-01234567893: ;<=>7@A

BCDEFGHIJKLMNOPARSTUUWXYZIN]IT¢ e~ tgh

...... =

To -POPEBOEL- 9 #$2& (J)%+,—-.-/0123456/83:
<=2

2.7.2 Initial Printer Settings
The initial printer settings made when the BASIC interpreter 1Z-013B is started up are as follows.
(1) Pen color: Black :
(2) Pen position: Left side of the carriage. (top line of 1 page.)
(3) Mode: Text mode
(4) Print size: 40 characters/line ............. (standard size)
66 lines/page




2.7.3 Mode Specification Commands

These commands are used to place the printer in the text mode for printout of letters and numerics. This
is the mode which is effective when the power is turned on; the initial character size is 40 characters/line.
(1) MODE TN s s ¢ 550550000 e o oo o o mmo e s 8 5 b s 5 5 5 s (abbreviated format: M. TN)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 40 characters/line.
(QYMODETL ..ottt et e e e, (abbreviated format: M. TL)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 26 characters/line.

BIMODE TE ) oo s 5 s i mxr e s s o e s v emn e o (abbreviated format: M. TS)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 80 characters/line.

XXX CHARACTER MODE XXx

80 character mode
ABCDEF GHI.JKLMNOPGRS TUUWKYZ

40 character mode

ABCDEFGHIJKLMNOPQRSTUUWXYZ

26 character mode

ABCDEFGHIJKLMNOPQRSTUUWXY 2

(A) MODE GR .. ... e e e e (abreviated format: M. GR)

The MODE GR command is used to switch the printer from the text mode to the graphics mode for
printout of charts and graphs. When switching to this mode, it is necessary for the BASIC program being
executed to make a note of the character size being used immediately before the mode change is made.
The reason for this is in order to return to the text mode when the BREAK key is pressed or a STOP
command is encountered.

Note: Executing MODE command, every state returns to initial state excluding pen color and print size.

2.7.4 Pen color selection commands

n :0 black
PCOLOR n e i At o (abbreviated format: PC.)
\ n :2 green
ln :3 red

This command specifies the color to be used for printout of characters or graphics. n is a number from
0 to 3, with O corresponding to black, 1 to blue, 2 to green, and 3 to red.
In text mode, executing PCOLOR in text mode every state is on initial state excluding pen color,
To keep current state execute PRINT/P ICHRS(29) v sy bl pu du o i I8 next color.

This command can be entered in either the text mode or graphics mode.

83



84

2.7.5 Text mode commands

DTS TEST . sy e v mcireiomre o o wsmioorsi oo 8 mfiedhmiad § 5 a5 5 oo 588 BV WO & 6 68 B (abbreviated format: TE.)
Format TEST
Format This command causes the printer to print squares in each of the four different colors
to check the color specification, quantity of pen ink, and so forth. (Only usable in
the text mode.)

| S I S | | S—

0 1 2 Y Value of nin PCOLOR n
(Black) (Blue) (Green) (Red)

2.7.5.2 SKIP
SKIP n
n. .. A number in the range from —20 to 20
This command is used to feed the paper. Paper is fed n lines in the forward direction

when the value for n is positive; if the value specified for n is negative, the paper is
fed n lines in the reverse direction. Note that PRINTER MODE ERROR will occur
if this command is executed while the printer is in the graphics mode.

2.7.5.3 PAGE
PAGE n
n. .. An integer in the range 1§ _n§ 72
This command specifies the number of lines per gage. (Executable only in the text
mode.)
o3 e B 1 1030 e e Rt e e | e P (abbreviated format: L./P)
LIST/P or LIST/P <LS-Le>
| (T Starting line number
Le...... Ending line number
This command lists all or part of the program lines in memory on the printer. See

the explanation of the LIST command on page 32 for an explanation of procedures
for specifying the range of lines to be printed. Note that, when graphic characters
are included in the program list, most of them will be printed in a different color as
hexadecimal ASCII codes. See page 154 for the printer ASCII codes.

This command can only be executed in the text mode.

2.7.5.5 PRINT P . . e e e (abbreviated format: ? /P)
PRINT/P <I;, d;, I,, dy...... In, dn>
In ...... Output list (numeric or string expressions)
i1 ESTEEYS Delimiter
This command outputs the data in the output list to the printer. For details on using

this command, see the description of the PRINT command on page 37. See pages
85 for printout of graphic characters.

2.7.5.6. PRINT/PUSING . ...ttt i (abbreviated format: ? /P USI.)
Except that output is directed to the printer, this is the same as the PRINT USING statement described
on page 38.




2.7.6 Graphic mode statements

The graphic mode statements become effective after the MODE GR statement has been executed. When
this statement is executed, the current pen location is set to the origin (X = 0, Y = 0). However, the origin
can be set to any location. Be careful not to specify a location which is out of the print area, as this may
damage the pen or cause other problems.

Max. Y=999 Max. Y =999
w
o
c S
o i
= [S]
9 g
Current % =
. =]
pen location  [(0,0) (480,00 2 =X | —240 240 14+-X | @
T 5
g 5
© o
[«
; __/\/
Min, Y = —999 7
Min, Y = —999
X=Y coordinates after MODE GR has
been executed. The allowable range of X=Y coordinates after the origin has
X is 0 to 480 and the allowable range been moved to the center of paper.
of Y is —999 to 999. (MOVE 240, —240: HSET)
Note: See page 88 for the HSET statement.
2.7.6.1 LINE
LINEx,, yvi < X3, ¥a,..., Xi, yi> or
LINE %n’ X1, Y1 <, X2, Y2504, Xi, y1>
i1 I Integer from 1 to 16
Xl sonus Number indicating the X coordinate (xi = —480 to 480; the limit varies
depending on the current pen location.)
Vi gino Number indicating the Y coordinate (yi=—999 to 999)

Function

This statement draws a line from the current pen location to location (X1, ¥1), then
draws a line from (x;, y;) to (x5, ¥,), and so on. n specifies the type of line drawn
as shown below.

n = 1: solid line

n=2to 16: dotted line

If % is omitted, the previous value of n is assumed. The initial value of n is 1 (solid
line).

(Example 1) The following program draws a square with a side length of 240 units.

19 MODE GR e Switches to the graphic mode.
28 "LINE Z4LL & @ soopomm Draws a line from the origin to the center
of paper.

30 LINE 249, —240

490 L INE @9, —249

5 LINE @, d o Draws a line to the origin.

6 MODE TN s Returns to the text mode.

(Example 2) The following prograni draws the same square as the example above.
19 MODE GR

20 LINE 240, 0, 240, —240, @, —240, @, J

39 MODE TN




86

2762 RLINE . . ..

Function

(Example 3) The following program draws a rectangle with aside length of 240 units.

19 MODE GR

20 SQ=INT (120XSQR 3>

30 LINE %2, 240, 0, 120, —SQ., G, &
42 MODE TN

The lines indicated with n are as follows.
XXX LINE 1-16 XXX

ZZZ

z
L 1 A | R A

z

s

z

Z

ZzZ

Z

z

Z oz
[T | O £ I B
OUNPLrWON—O

Zz

(abbreviated format: RL.)
X1, V1 < X, Vo,...X,yi...>
%n, Xy, Vi, < Xz, Y2, -
Integer from 1 to 16
Number indicating the X coordinate (—480 to 480)
vi Number indicating the Y coordinate (—999 to 999)
This statement draws a line from the current pen location to the location indicated
by relative coordinates x;, y;, then draws a line from that point to the location
indicated by relative coordinates x,, y,, and so on. n is the same as for the LINE
statement.

Xyl >

This program draws the same rectangle as example 3 above.

109 MODE GR

20 SO=INT (120XS0OR (3) )

30 RLINE %1, 240, @, —12d, —SQ, —120, SQ
40 MODE TN

Initial pen location Initial pen location P )
- (240,00~ 4 : 3
; \ - ;
: ‘ ) - | 120/3 {
) l\ / N //
i \ Il \ ,/
/ ‘, L 120 120 |\ )
HRSEED 3 N (120,—120/3) e
A : | i
T ol | ‘\\\\ /// ’/

Figure drawn nZZIOb

by LINE

0. -8 0.0

i Figure drawn 2400
by RLINE ==~




2.7.6.3 MOVE

2.7.6.4 RMOVE

2.7.6.5 PHOME ..

MOVEx, y
KR, Integer indicating the X coordinate (—480 to 480)
WL e Integer indicating the Y coordinate (—999 to 999)

This statement lifts the pen and moves it to the specified location (x, y).

The following program draws a cross with a side length of 480 units.

19 MODE GR

28 L NE d8d, B

30 MOVE 2409, 24 eeeee Lifts the pen at (480, 0) and moves it to
240, 240).

40 LINE 240, —249

50 MODE TN

Be sure to advance the paper before executing this program.

...................... (abbreviated formed: RM.)

RMOVE x, y
> Integer indicating relative X coordinate (—480 to 480)
AN | Integer indicating relative Y coordinate (—999 to 999)

This statement lifts the pen and moves it to the location indicated by relative

coordinates (A x, Ay)

The following program draws the same cross as the example for the MOVE state-

ment.

19 MODE GR

20 LINE 489, @

39 RMOVE —249, 249 Lifts the pen at (480, 0), then moves it
—240 units in the X direction and 240
units in the Y direction.

4 LINE 240, —249

By MODE TN

Be sure to advance the paper before executing this program.

............................................... (abbreviated format: PH.)

This statement returns the pen to the origin.

The following example draws the same cross in red as the example for the MOVE

statement.

19 MODE GR

20 LINE 489, :MOVE 24Q, 24Q

3¢ LINE 24@, —24¢

409 PHOME e Returns the pen to the origin.

58 PCOLOR 3

60 LINE U, 240, 480, 240, 480, —240, O, —240, O,
%]

73 MODE TN

87



88

2.7.6.6 HSET ...

2.7.6.7 GPRINT

Example

................................................ (abbreviated format: H.)

This statement sets the current pen location as the new origin. With this feature, the
origin can be set to the location which is most appropriate for drawing figures. A
MOVE statement is frequently executed before executing this command.

19 MODE GR

20 MOVE 240, —240

3@ H S E T .................................... Sets the new origin.

40 FOR =1 TO 386¢ STEP 39

50 L INE 240XC0OS (PAICXI/18@),240XSIN (PAICIYXI/180)
60 PHOME

7 NEXT

80 MODE TN

............................................... (abbreviated format: GP.)

GPRINT [n, @] , x$

GPRINT x$

%, AR, Integer indicating the character size (0 ~ 63)

@alsrig. 7 Integer indicating the direction in which lines of characters are printed.
(@=0~3) '

XD e on Character

This statement prints the specified character using the specified size and direction.

80 characters can be printed on each line when n = 0; 40 characters can be printed

on each line when n = 1; and 26 characters can be printed on each line when n= 2.

When n and @ are omitted, the previous settings are assumed. Their initial values are

n=1and@=0.

19 MODE GR

20 GPRINT AT e Prints “A” in the graphic mode.

30 GPRINT (2, 2), "A" -Prints an upside down “A” in the 26
characters/line mode.

The following figures show various examples of printout.

N=0 N=3 @=0
s -




............................................... (abbreviated format: AX.)

AXISx, p, r

> Integer specifying the axis drawn (0 or 1)

Posinain Integer specifying the scale pitch (—999 to 999)

T e i N Integer specifying the number of repetitions (1 to 255)

This statement draws the X-axis when x = 0 and the Y-axis when x = 1. The number
of scale marks specified in r are drawn with a pitch of p.

The following example draws the X and Y axes with scale marks from — 240 to 240
at 10 unit intervals.

19 MODE GR e Switches the printer to the graphic mode.

20 MOVE 249, & W coeeeeeenens Lifts the pen and moves it to position A
(240, 0).

3T AXIS O, =10, 48-reeeee Draws the Y-axis from position A to posi-

tion B with scale marks included at 10-
unit interval.

40 MOVE O, —24Q - wereennens Lifts the pen and moves it to position C
(0, —240).
Bl AX|S i 18, 4Bt Draws the X-axis from position C to posi-

tion D with scale marks included at 10-
unit intervals.

6 MODE TN

The coordinates can be used in the same manner as ordinary Cartesian coordinates
after setting the point of intersection of the X and Y axes as the new origin. (X =
—240 to 240, Y = —240 to 240)

89



90

2.7.6.9 CIRCLE

Function

(abbreviated format: CIL.)
CIRCLE x, vy, r, s, e, d

R ¥ wwsoins Location of the center (—999 to 999)
T oo dfiCh e G0 Radius (0 to 999)

SE . L e Starting angle (in degree)

B st 1. PP Ending angle (in degree)

(3 AU Step angle (in degree)

This statement draws a circle or arc with a radius of r and a step of d at location
(x, y), starting at angle S and ending at angle e. A complete circle is drawn when
s=0,e=360and d=0.2.

Actually this statement draws a polygon; therefore, d must be as small as possible in
order to draw a smooth figure.

s must be smaller than e. When d = 0O, lines connecting the center and the starting
point and the center and the ending point are drawn.

109 MODE GR

20 LINE 4809, 0, 480, —480, g, —48J, 0. J
39 MOVE 2409, —2409

40 HSET

50 CIRCLE 9, 9, 2409, &, 3640, J. 2

60 CIRCLE 249, &, 244, 94, 279. J. 2

748 CIRCLE @, 249, 2418, 189, 36, 4. 2
80 CIRCLE —24¢, d, 240, 279, 459, . 2
90 CIRCLE O, —249, 240, 0, 180, J. 2

100 MODE TN
?\\ ><\<

e
~—_




2.8 Machine Language Program Control
Statements

Several machine language program control statements are suported by the MZ-700 BASIC interpreter.
With these statements, machine language programs can be linked with a BASIC program.
Computer programming languages form a hierarchical structure as shown below. High level languages such
as BASIC automatically performs work required when lower level languages such as assembly language are
used. Although high level languages are convenient and easy to use, they cannot control the CPU directly.

The lowest level language (machine language) directly controls the CPU and provides high processing
speed, but considerable skill is required for coding long programs.
Machine language program control statements enable sophisticated programming techiques which make it
possible to utilize the advantages of both BASIC and machine language.
Machine language programs can be generated and loaded into the machine language program area (reserved
with the BASIC LIMIT statement) using the monitor or assembler and loader. Such machine language
programs can be called by BASIC programs with the USR ( ) function. Machine language programs
can also be loaded into memory using a BASIC program which uses the POKE statement to write each
step in machine code. The resultant machine language program can then be called by BASIC programs
with the USR ( ) function.

The memory map at bottom right outlines the concept of data access with POKE and PEEK, and of
calling machine language programs with USR ().

$0O000
SYSTEM
Assemble language USR BASIC program
($BOOOA” ’
Machine language
POKE PEEK
@ | 1 LIMIT
$BO0O V V SAFFFE
Machine language
program area
Other high level languages $FFOO
All RAM in the
700 mode

91



2.8.1 LIMIT

Function

2.8.2 POKE

92

....................................................................... (Abbreviated format: LIM.)

LIMIT ad

ad ..... Address; either a decimal number from 0 to 65279 or a 4-digit hexa-

decimal number from $0000 to $FEFF.

This statement limits the memory area which can be used by the BASIC interpreter.

ad indicates the upper limit of the BASIC area, and the area from the following

address (ad + 1) to $SFEFF (65279) can be used for machine language programs or

special data.

LIMIT S$AFFF

Limits the BASIC program area to $SAFFF.

Note The area from $FF00 to $FFFF is used by the monitor as a work area, so it
cannot be used as the user area. The LIMIT statement must be used at the
beginning of a BASIC program.

Monitor
BASIC interpreter
BASIC
program area
$B0O0OO User area =—LIMIT BAFFF
SFEFF

Use LIMIT MAX to cancel the limit set by LIMIT ad.

POKE ad, d

POKE@ ad, d

ad. . Address: either a decimal number from 0 to 65535 or a hexadecimal num-

ber from $0000 to $FFFF.

d...... Data to be written: a decimal number (0 to 255) or hexadecimal number
(%00 to $FF)

This statement writes data byte d to address ad.

The POKE statement can write data to any memory location, regardless of the limit

setting by the LIMIT statement. Therefore, careless use of this statement can

destroy the monitor or BASIC interpreter.

The POKE® format is used to write data to an address in the user RAM area follow-

ing 53248 ($D000). (See page 125.)

POKE $DOJQ0, $5F

POKE b3248, 9b

The two statements above perform the same funcition.

Note A POKE statement specifying an address after $D000 writes data into the

video RAM area.




2.8.3 PEEK

Function

Function

PEEK (ad)

PEEK®@ (ad)

ad ..... Address in decimal or hexadecimal notation (0 to 65535 or $0000 to
$FFFF)

This function returns the contents of the specified address as a decimal number from
0 to 255. Use the PEEK@ format to PEEK a user RAM area following 53248
($D000).

The following program displays data stored in the area from 40960 ($A000) to
40975 ($AOOF). ‘

109 FOR AD= 40960 TO 40975
20 ° PEEK (AD)
309 NEXT AD

............................................................................ (Abbreviated format: U.)
USR (ad)
USR (ad, x$)
ad ... .. Address (decimal or 4-digit hexadecimal)
XS String data

This is a special function which transfers control to a machine language program
which starts at the specified address. As with CALL ad, so control is returned to the
statement following the USR function if the machine language program includes a
return instruction (RET or RET _.cc).

When x§ is specified, the starting address of the memory area containing x$ is
loaded into the DE register, then the length of x$ is loaded into the B register before
the machine language program is called. This makes it possible for a BASIC program
to pass string data to a machine language program.

93



2.8.5 Preparing machine language programs
A machine language program which fills the entire display screen with the characters supported by the
MZ-700 is presented in this section as an example.
The following BASIC program loads such a machine program into memory and calls it.

20
38
40
514
60
/0
80
90
1082
110
120
130
140
150
160
170
180
190

200
210
220
230
240
250
260
270
288
290
300

LIMIT SBFEE coiviciemmmmm svimomsmsmnmnsomss vormossanassossns nvnssomans
GOSUB 5@

USRISCOBD Y oo
END

FOR I =49152 TO 49181

READ M i
POKE I,M

NEXT I e

RETLIRN

DATA 197 :REM PUSH BC oo
DATA 213 :REM SUSH DE

DATA 229:REM PLUSH HL

DATA 22,8 :REM LD D,0

DATA 33,8,208:REM LD HL,D0884
DATA 1,232,3:REM LD BC, 000

DATA 243 :REM DI

DATA 211,227 :REM OUT CE3H),A oo
DATA 114 :REM STO:LD (HL),D -
DATA 35:REM INC HL ;.
DATA 20 :REM INC D

DATA 11:REM DEC BC

DATA 128 :REM LD A,8

DATA 177 :REM OR C

DATA 194,14, 192:REM JP NZ,STO

DATA 211,225 :REM OUT CE1H), & =
DATA 251 :REM El

DATA 225:REM POP HL

DATA 209 :REM POP DE

DATA 193:REM POP BC

DATA 201 :REM RET sommwss s

Limits the BASIC area to $BFFF.

Calls the machine language program.

Reads data for the machine language program from DATA
statements and writes it into the machine language area.

Beginning of data for the machine language program.

Switches the memory block to video RAM. (See page
155)

Sets a display code to video RAM.

Switches the memory block to RAM. (See page 127.)

Returmns to the BASIC program.

If the machine language program has been generated with the monitor and saved on cassette tape under
the file name DISPLAYCODE, use the following program to call the machine language program.

119 LIMIT $BFFF
1190 LOAD
120 USR ($CTTDD

"DISPLAYCODE"

94



2.9 1/0 Statements

All external devices (including floppy disk drives) are connected to the MZ-700 through an optional
interface board. The optional universal interface board makes it possible for the user to connect external
devices such as an X-Y plotter, paper tape punch, and music synthesizer to the MZ-700.

A port address selection switch is provided on the universal interface card to allow any port address from
0 to 239 (0O0H to EFH) can be assigned to any devices. Addresses 240 to 255 are reserved for optional
peripheral devices supplied by Sharp.

The INP and OUT statements allow the user to transfer data from/to external devices through the
optional universal I/O card. The format of these statements is as follows.

INP #P. Do ... ! Reads 8-bit data from port P, converts it into a decimal number and assigns

it to variable D.

OUT #P,D ......... Converts a decimal number in variable D to binary format and outputs it to

port D.

These statements greatly extend the range of applications of the MZ-700 series computers.

95



96

2.10 Other Statements
2.10.1 ON ERROR GOTO ......cnrrerrenee. (Abbreviated format: ON ERR. G.)

ON ERROR GOTO Lr

Lr . ... Destination line number (entry point of an error processing routine)
This statements causes execution to branch to line number Lr if an error occurs.
The IF ERN and IF ERL statement can be used in a trap routine starting at that line
to control subsequent processing according to the type of error and the line number
in which it occurred. Including a RESUME statement at the end of the error pro-
cessing routine makes it possible to return execution to the line at which the error
occurred. Executing an ON ERROR GOTO statement cancels the error trap line
number definied by the previous ON ERROR GOTO statement. The error trap line
number definition is also cancelled by executing a CLR statement.

2.10.2 IF ERN

Function

IF relational expression using ERN THEN Lr
IF relational expression using ERN THEN statement
IF relational expression using ERN GOTO Lr

Lr .. .. Destination line number
This statement branches execution to the error processing (trap) routine starting at
line Lr or executes the statement following THEN when the result of <relational
expression using ERN> is true.
ERN is a special function which returns a number corresponding to the type of error
occurring. See page 159 for the error numbers.
The following shows an error processing routine beginning on line 1000 which causes
execution to branch to line 1200 if the error number is 5.
19 ON ERROR GOTO 1990 Declares the line number of the

error processing routine.

1000 |IF ERN=5 THEN 120 Branches to 1200 if a string
................................................ OVerﬂOW error haS Occurred.




2.10.3 IF ERL

Function

Example

IF relational expression using ERL THEN Lr
IF relational expression using ERL THEN statement
IF relational expression using ERL GOTO Lr

Lr . ... Destination line number
This statement branches execution to the routine starting at line Lr or executes the
statement following THEN when the result of <relational expression using ERL>
is true.
ERL is a special function which returns the line number at which an error occurred.
The following statement causes execution to branch to line 1300 if an error has
occurred on line 250.
1010 IF ERL = 250 THEN 1300
The following statement returns control to line 520 in the main routine if the error
number is 43 and the error line number is other then 450.
1020 IF (ERN = 43) X (ERL < > 450) THEN RESUME 520

2.10.4 RESUME ..., (Abbreviated format: RESU.)

Function
Discussion

2.10.5 SIZE

RESUME <NEXT>
RESUME Lr

Lr.... Line number or 0
This statement returns control to the main routine from an error processing routine.
The system holds the number of the line on which the error occurred in memory
and returns program execution to that line or to another specified line after the
error is corrected.

The RESUME statement may be used in any of the following four forms:

R E S LN <womemocmims cmrieesle Returns to the error line.

RESUME NEXT:Returns to the line following the error line.
RESUME L posoms s Returns to line Lr.

BREJUME @ Returns to the beginning of the main routine.

If the RESUME is encountered when no error has occurred, error 21 (RESUME
ERROR) occurs.

If the RESUME cannot be executed, error 20 (CAN’T RESUME ERROR) occurs.

PRINT SIZE

This is a special function which returns the number of bytes in memory which can
be used for storage of BASIC programs.

For example, PRINT SIZE displays the number of free bytes of memory area.

97



2.1

o

6 PLOTON ...erereeeerreeeserse s (Abbreviated format: PL. ON)

Format PLOT ON

Function This statement makes it possible to use the color plotter-printer as a display unit.

Thus, the MZ-700 can be used without an external display screen.

This statement is effective only when the color plotter-printer is installed and the

MODE TN statement has been previously executed.

Example PLOT ON

Note A period “.” is printed to represent any characters which are not stored in the

color plotter-printer’s character generator (see page 156). The | INST |, [ DEL] and
“ » keys are disabled by executing this statement. [ CTRL |+[G] can be used to
change the pen.

2.10.7 PLOTOFF .....eoeeeeeeeeeeeeeeeeeeneens (Abbreviated format: PL. OFF)
PLOT OFF

This statement cancels PLOT ON made of plotter-printer operation.
Example PLOT OFF

2.10.8 CONSOLE .....ccessserens (Abbreviated format: CONS.)
CONSOLE <Is, In< ,Cs, Cn>>

Is : Starting line of the scroll area (@ REEERETRRTT R C S reeeeeereessiecenietiiiiieeas 39

In : Number of lines within the scroll area O
Cs : Starting column of the scroll area
Cn: Number of columns in the scroll area s "
CONSOLE @. 25, @, 40 I
CONSOLE b, 18
CONSOLE @, 2856. B, 80 f
CONSOLE @, 19, g, 19 '
CONSOLE
This statement specifies the size of the scroll area; i. e., the area which is cleared by
PRINT " ".
The first example specifies the entire screen as the scroll area. The second specifies
the area between lines 5 and 15 as the scroll area. The third specifies the area bet-
ween columns 5 and 30 as the scroll area. The fourth specifies the 10 x 10 positions
at the upper left corner of the screen as the scroll area.
This statement is useful for excluding the left and/or right edges of the image from
the display area. When they are hidden behind the edges of the screen.
The last example does not specify the scroll area. When the scroll area is not speci-
fied, it is possible to scroll the screen up or down.

24

However, this makes it harder to perform screen editing because the values of Cn
-and In become smaller.

98




2.11 Monitor. Function

The IOCS section of the BASIC Interpreter includes a monitor program to make it easy to enter
machine language programs. This monitor program uses the area from FFOOH to FEFFH as a stack area.

This monitor program includes the screen editor similar to that of BASIC which makes it possible to
change the contents of any address within the 64K RAM area as described below.

2.11.1 Editing format

:address = data data data
: (colon) ... Indicates that the line following can be edited.
address ... Indicates the starting address of the memory area whose contents can be changed.
(4 hexadecimal digits)
= ... Separates data from the address.
data ... 2-digit hexadecimal number or a semicolon “ ;” plus the cahracter which is written in
the specified address. A blank is used to separate adjacent data items.

2.11.2 Printer switchingcommand..............ooooo . (P command)
X P

This command switches data output with the D or F command between the printer and display. If the
printer is not connected to the computer, the message “ERR? ” is displayed and the monitor stands by
for input of another command. Check the printer connection or execute the P command again to switch
the output device to the display.

2.11.3 DUMP COMMANA ... ses e eeseees (D command)
XD <start address < .. end address >>

This command dumps the contents of memory from the starting address to the end address. If the end
address is omitted, the contents of the 128-byte block starting at the specified address are dumped. If
both addresses are omitted, it dumps the contents of the 128-byte block following memory block previously
dumped. The format in which data is dumped is as follows.

ZI?HHH:HHQHHQHH HH HH HH HH HH ~/ABCDE. G.

Starting adress 8 bytes (Hexadecimal code) 8 bytes (Characters)

The contents of any location can be changed by moving the cursor to the corresponding byte, entering
the new data, and pressing the key.
Note Control codes are displayed as a period ( . ) in the character data field. Pressing the [ BREAK | key

stops dump output, and pressing the | SHIFT | and [ BREAK | keys simultaneously returns the
monitor to the command input mode.

99



100

2.11.4 Memory set command ... (M command)
X M [starting address]

This command is used to change the contents of memory. If the starting address is omitted, the address
currently indicated by the program counter is assumed. Press the[ SHIFT |and [ BREAK | keys together

to terminate this command.

When this command is entered, the starting address of the memory block and its contents are dispalyed
in the editing format described previously and the cursor is moved to the data to be changed. Enter the
new data and press the key; the following address and its contents are then displayed.

2.11.5 Fincommand ... sessssssssssssasases (F command)
X F [starting adress] . [end adress] _ [data] _ [data] . ........

This command searches for the specified data string in the memory area from the starting address to
the end address. When found, the address of the string and its contents are dumped to the screen. This
command is terminated by simultaneously pressing the [ SHIFT | and [ BREAK | keys.

2.11.6 Subroutine Call ... (G command)
X G [call address]

This command calls the subroutine starting at the specified address. The stack pointer is located at
FFEEH.

2.11.7 Transfercommand ... (T command)
X T [starting address] _, [end address] _, [destination adress]

This address transfers the contents of memory between the starting address and the end address to the
memory area starting at the destination address.

211.8 Save COMMANM ........oerrmremrereseeesreseesee s ssssssssseas (S command)
X S[starting address]_ [end adress]. . [execution adress] : [file name]

This command saves the contents of the memory between the, starting address and the end address to
cassette tape under the specified file name.




2.11.9 Load commaNnd ..o (L command)
X L <load address > < : file name >

This command loads the specified file into memory, starting at the load address. If the load address is
omitted, the execution address contained in the file is assumed as the load address. If the file name is
omitted, the first file encountered on the tape is loaded. The message “ERR?” is displayed if a check sum
error is detected or the key is pressed during execution, then the monitor returns to the
command wait state input mode. The command input mode wait state is entered when execution is
wait state is entered when execution is completed.

2.11.10 Verify command ........o.eooooeeeooeeoeoeoooeoo (V command)
XV <file name >

This command reads the specified file from cassette tape and compares it with the contents of memory.
This makes it possible to confirm that a program has been properly recorded with the SAVE command.

If any difference is found between data read from the tape and that contained in memory, the message
“Err ? ’ is displayed.

2.11.11 Returncommand ... (R command)
XR

This command returns control to the system program which called the monitor program and restores
the SP (stack pointer) and HL register to the values which they contained when the monitor program was
called. Execution resumes with the command following BYE is executed.

This command cannot return control if the monitor has been called by a system program whose stack
pointer is between FFOOH to FFFFH, or if the stack pointer does not contain a return address. In such
cases, use the G command to call the warm start entry point.

101



e Ems g

)

TEABTITAE B3 oo oo e e < PR a0 BFTEE

mekk A 0 Camvhieiasl .- .= | _mpmeed

a mivhis bl wiir 11 aantrs Sidl o1 'E WUCLL A i 60 Shh e sl s e TR o dT
f =i kT i ' e E4nd 710l Br=pms H - . F 0 gt sy paShis G ADAEE N L
o vl Al qagibe AN gearn 1! hpwnl g el Ak g iadvengue 2RI a1
ol B MR mi-ooot wll =pdi AP et sarich st g =0 A (EE 0 " Leaieh 4 ol
I FEIFE: e Brrylep 1 2% aees abran het= Lo, oD Foen 1aSTe Ml I nE e Tar
TR TL IO e PYRLTE B PRI, b B TCR I R Pl

T . Bammanss ¢iwaY Of kS

= et 81 . . .__Il.r-l-l ._i_ .
. %
pavm o ol el ] ek 1] e il g el Cdla S eringh 9] 1ol ey g 'y - hemimbirs Hul
Baptrss L7023 wih hie AL ! IFFPrA Fan - —FIEr] k TRra Al .d srlsin . by Pl

yiateas B SO0 S Dewnniar. puwlt Jam syp] o0 e ey bk sassn Ema A woeomfal o il
arrimth y = i

SHURITHIOD T cvvare v e ceye e bagmmes nuL sl FRTES
B el

ERTEEN OTH T ke o M - I A ofipaly e 00 = B3P0 C] frpmans w R
B yErRrg sy =T fenim Ihuketr o4 e el e - nedaren A S sk Byesi] e
Fwar - TPH gl - Srgaubea. aF] AiE = aal wdlT L RE

f e - Bl R Y TR 1 = . R 1 | e s O U B et wit
Bian 3 St riU— 8 B TR v Ml paes, cml k- E 12 HUHT 0" RS ol p K rhay
"fa.z A1 - nEe v el b e el ws dan



Chapter 3
Operating the MZ-700




3.1 Appearance of the MZ-700 Series Personal
Computers

3.1.1 MZ-731

®  Front view
Color plotter-printer

Data recorder

Definable
| "eys—\
Ll ' ™ 4 ‘M. % - -
- L
: " ‘"“’“!-Q;T-————— Insert and
W d delete keys
i
7
R Lt " A Cursor
& f control keys

Typewrite keyboard

m  Rearview

B/W-color switch

Channel volume| Composite signal - oo biotter-printer Power cable connector
output jack

Data recorder

RGB signal
output connector

RF signal Reset switch

output jack

Power switch

! Externa i Volume control
Cassette tape recorder jacks t I device connector

Joy stick connectors External printer
connector

Frame ground terminal

104



3.1.2 MZ-721

®  Front view

Color plotter-printer
compartment cover

Data recorder

Definable
function keys

\—-—-f—— Insert and

4 delete keys

e/
7 Cursor
] control keys

Keyboard

3.1.3 MZ-711

B Front view

Color plotter-printer
compartment cover

Data recorder
compartment cover

Definable
function keys

delete keys

. Cursor
; "J control keys

NM——-;L Insert and

Keyboard

3.1.4 MZ-710

The MZ-710 is the same as the MZ-711 except that it does not include an RF signal output jack and
Composite signal output jack on the rear panel.

105



106

3.2 Connection to Display Unit

Be sure to turn off both the computer and display unit before connecting them.

3.2.1 Connecting a TV set to the MZ-700 (excluding the MZ-710)

Disconnect the antenna feeder from the UHF antenna terminals of the TV set. Plug the connection
cable provided into the RF signal output jack on the rear panel of the computer and connect the pin plugs
on the cable’s other end to the 75-ohm UHF antenna terminals on the TV set.

Back view of MZ-700 Back view of Home TV

Set the channel selection switch to the 36 * 3 ch position, depending on which is not used in your area.

Note the following when using an ordinary TV set as a display unit.

Adjust controls (fine tuning, color control, etc.) of the TV set to optimum conditions before con-
necting it to the computer.

Note that color and quality of displayed images will be poorer with a TV set than when a special
color monitor unit is used. Further, note that images may be painted with the wrong colors or may
not be colored if the TV set is not properly adjusted.

Part of the screen may be omitted if vertical and horizontal scanning frequencies of the TV set do
not match those of the computer. This is not a problem with the computer; contact your TV dealer.
Part of the screen may not be visible if the image is not centered.

Be sure to remove the antenna feeder from the TV set before connecting it to the computer; other-
wise, the signal from the computer will radiate from the TV antenna, possibly interfering with other
TV sets.

Be sure to connect the computer to the 75-ohm antenna terminals of the TV set. If the cable pro-
vided cannot be used, be sure to use a 75-ohm coaxial cable.

Characters may be hard to read with certain combinations of foreground and background colors.
In such cases, switch the B/W-color switch to the B/W position to obtain higher contrast. The best
combination of the foreground and background colors is white for the foreground and black or
blue for the background.

No audio signal is included in the RF signal fed to the TV set, so sound cannot be output from the
speaker of the TV set.




3.2.2 Connecting the MZ-1D04 12-inch green display
to the computer (excluding the MZ-710)

Use the cable included with the MZ-1D04 green display to connect it to the computer. Plug the cable

into the composite signal jack on the computer’s rear panel, then set the B/W-COLOR switch to the B/W
position.

Mt

Rear panel of the MZ-700 series computer Rear panel of the MZ-1D04
3.2.3 Connecting the MZ-1D05 14-inch color display
to the computer

Use the cable included with the MZ-1D05 color display to connect it to the computer. Plug the cable’s
DIN connector into the RGB signal output connector on the MZ-700.

Rear panel of the MZ-700 series computer Rear panel of the MZ-1D05

Pin assignments of the RGB signal output connector of the MZ-700 are as shown below.

GREEN BLUE
RED
CSYNC C VIDEO
VSYNC ] HSYNC
GND

RGB signal output DIN connector
(viewed from the rear side)

107



3.3 Data Recorder

m Data recorder built into the MZ-731 and MZ-721
The built-in data recorder can be operated in the same manner as an ordinary cassette tape recorder.

Press this key to record programs and data.

Press this key to load programs and data.

Press this key to rewind the tape.

Press this key to fast-forward the tape.

Press this key to stop the tape, to release other keys when the tape stops after

loading or recording programs or data, or to eject the tape.

Cassette compartment

Tape counter

Counter reset button

= MZ-1T01

The MZ-1T01 data recorder unit can be installed in the MZ-711 (MZ-710). Installation procedures are
as follows.

1. Turn off the computer’s power switch and unplug the power cable from the AC outlet.

2. Remove the two screws located on the left side of the rear panel to remove the data recorder com-
partment cover.

Polarity switch

Joint connector

3. Remove the joint connector cover.

4. Plug the connector of the MZ-1TO1 onto the 9-pin connector located at the left rear of the recorder
compartment of the MZ-711.

5. Position the data recorder in the recorder compartment and fasten it in place with the two screws.
When doing this, be careful to avoid catching the connector cable between the data recorder and
the computer, (otherwise, the screws cannot be tightened).

108




® Ordinary cassette tape recorder

Using commercially available audio cables with 3.5 mm mini-plugs, connect the WRITE jack of the
computer to the MIC jack of the cassette tape recorder and connect the computer’s READ jack to the
EXT SP or EAR jack of the cassette tape recorder.

Take note of the following when using an ordinary cassette tape recorder.

(1) The message ' RECORD. PLAY " does not appear when a SAVE command is entered.
Be sure to press the RECORD key on the recorder before entering this command. Press the STOP
key to stop the recorder after the message " READY ' is displayed. Without depressing the STOP key,
the recorder is not stopped.

(2) The message ' £ PLAY ' does not appear when a LOAD command is entered. Be sure to start
playing the tape after entering the command. The message 'READY' is displayed when loading is
completed.

(3) The level and tone controls of the cassette tape reocrder must be adjusted to appropriate levels. Some
cassette recorders (e.g. those with the automatic level control) may not be usable. In such cases,
please purchase the MZ-1TO1.

(4) The polarity of the head can make it impossible to load programs provided with the computer. Try
switching the head polarity if programs cannot be loaded.

(5) For any transfer or collation, use the tape recorder that was used for recording. If the tape recorder
for transfer or collation is different from that used for recording, no transfer nor collation may be
possible.

(6) Data written using an ordinary cassette recorder may not be readable with the data recorder. There-
fore, use of the MZ-1TO1 is recommended.

109



3.4 Color Plotter-Printer

Paper holder (left) Paper shaft Paper holder (right)

Printer cover Paper guide

Paper cutter

RESET  PEN CHANGE

N

Reset switch Pen change switch Paper feed key

Plotter-printer (viewed from the top)

Paper inlet

Plotter-printer (viewed from the rear side)

110



® Loading roll paper
1. Remove the printer cover.

2. Cut the end of roll paper straight across and insert the end into the paper inlet. (Be careful to avoid
folding or wrinkling the end of the paper when doing this.)

3. Turn on MZ-731’s power switch and press the (+! (paper feed) key to feed paper until the top of

paper is 3 to 5 cm above the outlet.

4. Insert the paper shaft into the roll and mount it to the paper holders.
5. Set the printer cover so that the end of paper comes out through the paper cutter.

® To remove the roll from the printer for replacement, cut straight across the paper at the paper

inlet and press the paper feed key.

® Roll paper for the MZ-700 series computers is available at any Sharp dealer. Do not use paper other

than that specified.

The length of the paper is 23 to 25 meters, and the maximum roll diameter which can be loaded
is 50 mm. Paper will not feed properly if a roll with a greater diameter is used, resulting in poor

print quality.

Procedures for loading roll paper

l | \\
W‘,,..

1 LR

(B) Press the paper feed key to feed paper.

- 1. 4.% . "W T T T T B S
(C) Replace the printer cover.




® Installing/replacing pens

1. Remove the printer cover and press the PEN CHANGE switch with a ball pen or the like; this causes
the pen holder to move to the right side of the printer for pen replacement.

2. Depress the pen eject lever to eject the pen which is at the top of the holder. When doing this, rest
your finger lightly on top of the pen while pushing the eject lever to prevent it from falling inside
the printer.

3. Insert a new pen.

4. Press the PEN CHANGE switch again to bring another pen to the top of the holder.

5. Replace all four pens (black, blue, green and red) in the same manner. When finished, press the
RESET switch to ready the printer for printing with the black pen.

Execute the BASIC TEST command to confirm that all colors are printed correctly.

Pen position
detection magnet

- -
__— Pen eject lever

112




= MZ-1P01

Installation of the MZ-1P01 color plotter printer (for models other than the MZ-731)

1. Turn off the computer’s power switch and unplug the power cable.

2. Remove the two screws located at the center of the rear panel to remove the printer compartment
cover.

3. Confirm that the printer switch on the printed circuit board is set to the INT position.

4. Plug the printer connector into the matching connector on the printed circuit board, then position
the printer in the printer compartment and fasten it in place with the two screws. When doing this,
be careful to avoid catching the connector cable between the data recorder and the computer (other-
wise, the screws cannot be tightened).

Printer connector
Printer switch
Power connector

0!" + » *

iternal printer<—INT (color plotter-printer)

Connection of color plotter-printer to the MZ-700
® Connecting an external printer (MZ-80P5(K))

The MZ-80P5(K) printer for the MZ-80K series computers can be connected to the MZ-700’s external
printer connector (see page 104) without any special interface card. Use an optional connection cable
for making the connection.

When using an external printer, the printer switch on the printed circuit board must be set to the
external printer position. Therefore, the color plotter-printer and the external printer cannot be used
simultaneously.

Note that if a program including color plotter-printer control statements is run with an extemal printer,
meaningless characters (control codes for the plotter-printer) will be printed.

113



114

3.5 Key Operation

HHMHM <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>