
Personal Computer 

lllZ·OOlIDlID 
Personal CP/M™ MANUAL 

l l l ) l l _ _.)' ) 

• -------

SHARR 



Personal Computer 

lllZ·rnJ(ID(Q] 

Personal CP/M™ 
MANUAL 

© SHARP CORPORATION 





Introduction 

Congratulation on your purchase of Sharp Personal CP/M™ 
( MZ- 2 Z 0 4 7 ) . 
In this manual, Personal CP /M shall be represented by P-CP/M™. 
Read this ~onual before use. 

The P-CP/M is compatible with the CP/M V2.2 and has been developed 
as an operating system (OS) for use at home, in schools, and in 
small businesses. For this purpose the P-CP/M incorporates a VCCP 
(Visual Console Command Processor) system that stresses easy 
operation virtually without the use of a manual, so just about 
anyone can operate the system using menu selection. 
The basic features of the P-CP/M are as follows: 

"Auto-logged in" allows free exchange of media during OS 
execution. (The CP/M V2.2 requires CTRL + C.) 

Support of AUXIN/AUXOUT devices for increased communication 
functions. 

Elimination of I/O bytes reduces dependence on peripheral 
devices. 

Display functions increased and BDOS call added. 

Use of a VCCP system. 

In addition to the above features, when used with the MZ-800, the 
P-CP/M also has the following additional functions. 

Use of IBM format. 

High-speed file access. 

Support of ANSI escape sequence. 

Also single-drive compatibility. 

Wide array of utilities. 

i 



How To Use MZ-800 P-CP/M Documentation 

The .MZ-800 P-CP/M documentation set includes four manuals: 

Extension of MZ-800 P-CP/M 

Personal CP/M 8-Bit Operating System User's Guide 

Personal CP/M 8-Bit Operating System Programmer's Guide 

Personal CP/M 8-Bit Operating System System Guide 

Extension of MZ-800 P-CP/M 

This manual contains explanations of the parts of the User's 
Guide, Programmer's Guide, and System Guide which change when the 
P-CP/M is used with the MZ-800, and information on the additional 
utilities available with the MZ-800. We recommend that you read 
and use it together with the basic manuals (the three manuals 
mentioned) . 

Personal CP/M 8-Bit Operating System User's Guide 

The Personal CP /M 8-Bi t Operating System User's Guide (cited as 
the Personal CP/M User's Guide) introduce you to the Personal CP/M 
operating system and tells you how to use it. 
The User's Guide assumes that the version of Personal CP/M 
delivered to you is ready to run on your computer. 
To use this manual, you must be familiar with the parts of your 
computer, know how to set it up and turn it on, and how to handle, 
insert, and store disk. 
However, you do not need a great deal of experience with 
computers. 
Explanations of a LOAD command, an assembler, and a debugging tool 
are included for the use of a user with previous experience who 
might wish to use an assembler. 

Personal CP/M 8-Bit Operating System Programmers Guide 

The Personal CP/M 8-Bit Operating System Programraers's Guide 
(cited as the Personal CP /M Programmer's Guide) presents 
information for application programmers who are creating or 
adapting programs to urn under Personal CP/M. 

Personal CP/M 8 Bit Operating System System Guide 

The Personal CP /M 8-Bi t Operating System System Guide describes 
the steps necessary to creat or modify a Personal CP/M Basic 
Input/Output System tailored for a specific hardware environment. 
Since Personal CP /M has been tailored by your computer 
manufacturer for your system, it is highly unlikely that you will 
need to modify Personal CP/M. 

ii 



NOTE 

Before using your P-CP/M 
The MZ-800 P-CP/M is supplied in disk form. The disk 
contains the P-CP/M system software, utilities, etc., so 
be sure to make a back-up disk before using the OS. Keep 
the original disk in a safe place and use only the back-up 
disk. For instructions on making the back-up disk, refer 
to the section of the "Extension of MZ-800 P-CP/M" 
describing the COPYDISK utility. 
If for some reason you cannot make a back-up disk, use the 
FOP-MAT command to initialize the disk before using it. 

In the Personal Computer MZ-800, all system software is 
supported by the software component and the contents of 
this manual are subject to change without notice. 

iii 



MZ-800 System Configuration under P-CP/M 

B 
MZ-1Rl8 

- RAM file 

MZ-1006 MZ-1E20 
board 

Expansion - Expans i on -
Unit board 

MZ-80P5 
-

MZ-1D04 Printer 

12" Green -
Display 

MZ -1Pl6 
>-- Plott er 

MZ-1Xl7 MZ-8BI03 Printer 
Slot ,___ RS-232C -
Cover Ser al 

Interface 

MZ-1Dl9 
14 II 

>-- Colour 
Display 

MZ-lEOS MZ-1Xl7 MZ- 1Fl9 MZ-1C30 MZ-1Fl9 
>--

Floppy - Slot Floppy - Expansion- Floppy 
Disk Cover disk Cable disk 

Interface drive drive 
(Single drive) (Single drive) 

MZ- 1F02 MZ-1C30 MZ-1F02 
Floppy 

- Expansion - Floppy 
disk Cable disk 
drive drive 

(Dual drive) (Dual drive) 

Note: One of the models described in this manual may not be 
available in some countries. 

Assignment of Storage Devices When Using P-CP/M For the MZ-800 

When activating P-CP/M for the MZ-800, the storage devices and 
their respective numbers are assigned as follows. 

Logical 
A B c D E Drive number 

v Memory Device name 
Mini-floppy disk drive disk 

Physical drive 
1 3 4 2 -number 

iv 



Personal CP /M TM 

8-Bit Operating System 

Extension of MZ-800 P-CP/M 





EXTENSION OF THE MZ-800 P-CP/M 

i. Loading and execution of the MZ-800 P-CP/M 1 

2. Memory map of the MZ-800 under P-CP/M . 4 

3. Disk format • 5 

4. Files on the P-CP/M disk 6 

5. Operation of MZ-800 P-CP/M on A single Floppy Disk 
Drive System . . . . . . . . . . . . . . . . 7 

6. Using RS-232C Functions .• 8 

7. Function of extended BIOS 9 

8. Function of BDOS 11 

9. Function of control code and ESC sequence .. 12 

10. Utility program •. 18 

ll. Memory disk •• 56 

12. Special keys 57 



1. LOADING AND EXECUTION OF THE P-CP/M 

(1) Insert the disk containing the P-CP/M disk into drive A. 
(2) Switch ON the power source o f the MZ-800 . 
(3) The following display will appear. 

Sel e ct a Command VCCP V l. OA ~ 
Dir 
Drive 
User 

Drive=A: Us e r=O Search string=*.* Run 
Search 

PCPM.SYS ASM.COM COPY.ASM COPYDISK . COM Rename 

COPYSYS . COM DDT . COM DEL . COM DISKDEF.COM Erase 

DISKEDIT.COM DUMP.ASM ED.C OM EJECT.COM Type 

F IL ES.COM FORMAT . COM LOAD.C OM PIP . COM Print 

RANDOM.ASM SETUP.COM STAT.COM SUBMIT. COM Make 

TERMINAL. ASM TIME . COM VCCP.CFG VCCP.COM Quit 

XSU B. COM 

!Command : Help, display command help t ex t l 

IDIRi I !DIR B:.l. I !TYPE I !REN I I< NEXT > I 12: 34: 56 I CAPS 

VCCP* Main Menu 

*VCCP is an abbreviation for Visual Console Command 
Processor. 

In this Main Menu, you select the operations (commands) you 
want performed, and you select the files upon which the 
operation will be performed. 
The Main Menu is composed of three parts: command window, file 
directory window and prompt/status line. 

NOTE: VCCP is actually an application that runs, like all other 
applications and programs on your computer, under 
Personal CP/M. If you prefer, you may use Personal CP/M 
without running VCCP. 

Command Window 
Commands are key 
window (the right 
commands. 

words 
hand 

identifying 
portion of 

operations. The 
the menu) lists 

command 
the 12 

File Directory Window 
The file directory window (the central portion of the menu) 
displays a directory of files on the disk in the active drive, 
that is, the drive currently being accessed. 

Prompt/Status Line 
The prompt/status line (at the 24th line) serves two purposes. 
First, it displays a capsule summary of the highlighted 
command. Second, when you select a command, it displays short 
messages and prompts regarding the command. 

System Line 
The bottom of the screen displays the contents of function 
keys. (Refer to 1. 1) 

1 



Extension of 
MZ-800 P-CP/M 

(4) Selecting Commands 

Selecting Conunands 

To select a conunand, move the highlight box to the command you 
want, then press the lcRI key. 

When you start P-CP/M, the highlight box is on the HELP 
command. You can move the highlight box in either of two ways. 
To move the highlight box up and down the . command list one 
conunand at a time, press the up or down arrow keys or the space 
bar. Also, you can type the first one letter of the command you 
want; the highlight box then jumps to that conunand. 

The 12 VCCP commands are listed below. 

conunand 
Help 
Dir 

Drive 
User 
Run 
Search 
Rename 
Erase 
Type 
Print 
Make 
Quit 

description 
displays the help message for the Main Menu 
changes the active drive; changes the active user 
number 
changes drive number 
changes user number 
runs program files 
sets the search string for the file directory 
changes file name 
erases files 
displays the contents of files 
prints files on a printer attached to your compeuter 
creates files 
exits VCCP to the Personal CP /M A> prompt 

How to add conunands to the VCCP 
VCCP.CFG files are made by ED as described below. 
(1) Set the number of commands (max. 9) to be added on 

the first line. 
(2) On the second and subsequent lines, define the file names 

(8 characters or less). 
Example: PIP lcRI for PIP COM. 

( 3) For each line, from 11
; 

11 to lcRI is considered to be the 
comment, and is ignored. 

(4) Make the file size 2k byte or less. 
(5) For each line, ignore 20H (spaces). 

Example: 
3 max file lcRI 
Files lcRI 
PIP lcRI 
Format lcRI 

2 



Extension of 
MZ-800 P-CP/M 

1.1 Function keys 

Function keys 

The content of the function keys { [ti] [ti] ) consists of 4 
pages; each page can be selected by the [§] key .. The function 
keys are originally set as follows; they can be changed by the 
SETUP utility. 

Fl F2 F3 F4 

Page 0 DIR []] DIR B: []J TYPE - REN -

Page 1 ERA - STAT - PIP - PIP A:=B:*.* [VJ 

I 
Page 2 FORMAT COPYSYS SETUP FILES [] 

Page 3 ED - ASM - DDT - DISKDEF 

" rn " is code for the CR key and " - " is the code for the space 
bar. 
When Lt§] key is pressed, the next page is displayed. 
Therefore, assigning the dir[]] to a key means that the following 
command will be executed when the key is pressed. 

dir lcR I 

1.2 CLOCK 

The clock is always set to 00:00:00 when the power is switched 
on. 
It contains a 6-digit valve which is the time of the 24-hour 
built-in clock. 
Time setting can be done using the ANSI ESC sequence or the 
TIME utility. 

1.3 CAPS {Capital lock) 

Indicates the present key condition. Because the MZ-800 does 
not have a CAPS key, this indication appears on the screen. 

CAPS: Lower-case 

lcAPSl: Upper-case 
'----r:='Reverse 

It functions as a toggle key: when pressed once, it displays 
CAPS in reverse video and enters upper-case letters; when 
pressed again, it cancels the reverse mode of CAPS and enters 
lower-case letters. 

3 



2. MEMORY MAP OF MZ-800 UNDER P-CP/M 

OOOOH OOOOH 
Page 0 Page 0 

OlOOH OlOOH 

T P A v c c p 

-----------

I 
! 

I 

c c p I c c p 

B D 0 S B D 0 s 

B I 0 s B I 0 s 
FFFFH FFFFH 

Using CCP Using VCCP 

4 



3. DISK FORMAT 

As many as four 5.25-inch mini-floppy disk drives can be connected 
to an MZ-800 using P-CP/M. 

3.1 Mini Floppy Disk Format 

Physical specifications 

Media 5.25-inch mini floppy disk 

Total number of tracks 40 tracks/side 

Sectors/track 8 

Bytes/sector 512 

Logical specifications 

Word value 

SPT 

BSF 

BLM 

EXM 

DSM 

DRM 

CKS 

OFF 

Description 

total number of sectors per track 

data allocation block shift factor, 
determined by the data block 
allocation size 
data allocation block mask 

extension mask, determined by the 
data block allocation size and 
the number of disk blocks 

total storage capacity of the disk 
drive 

total number of directory entries 
that can be stored on this drive 

size of the directory check sector 

number of reserved tracks at the 
beginning of the (logical) disk 

5 

Value 

32 

4 

15 

1 

155 

63 

16 

1 



4. FILES ON THE P-CP/M DISK 

The following files are already written on a P-CP/M master disk. 

* ASM .COM 

* COPY .ASM 

* COPYDISK .COM 

* COPYSYS .COM 

* DDT .COM 

* DEL .COM 

* DISKDEF .COM 

* DISKEDIT .COM 

* DUMP .ASM 

* ED .COM 

* EJECT .COM 

* FILES .COM 

* FORMAT .COM 

* LOAD .COM 

* PCPM .SYS 

* PIP .COM 

* RANDOM .ASM 

* SETUP .COM 

* STAT .COM 

* SUBMIT .COM 

* TERMINAL .ASM 

* TIME .COM 

* VCCP .CFG 

* VCCP .COM 

* XSUB .COM 

Assembler 

Sample File-to File Copy Program 

Copy disk program 

System file copy program 

Dynamic debugging tool 

File delete with check program 

Disk convert program 

Patch program 

File dump program (source file) 

Editor 

System printer form feed command 

Extended sorted directory display 

Disk initialization program 

HEX to COM conversion program 

P-CP/M system program 

Data transfer program between 
peripheral units 

Sample Random Access Program 

Set-up program 

Status information program 

Program for batch processing 

Sample Full duplex Terminal 
Emulator 

Time set/display program 

VCCP Configuration file 

Visual Console Command Processor 

Extension program for batch 
processing 

6 



5. OPERATION OF MZ-800 P-CP/M ON A SINGLE FLOPPY DISK DRIVE 
SYSTEM 
MZ-800 P-CP/M will function with a single drive system, 
regarding the single physical drive as two logical drives. When 
diskettes must be exchanged during on operation, a message is 
displayed in the system display area. 
NOTE: 
The number of connected disk drives must be set at the SETUP 
(DEVICE ASSIGN) utility beforehand. Note that the initial value 
is 2. 

Example: 

A> PIP A: =B: *. * [ V l 

The 25th line is as follows in the system message area. 

Set disk B: /Push any key 

7 



6. USING RS-232C FUNCTIONS 

The AUXIN I AUXOUT functions of the BIOS may be used when the 
optional RS-232C Interface Card (MZ-8Bl03) is installed. This 
interface card has two channels, both are supported by P-CP/M. 
The AUXIN/AUXOUT function is assigned to channel A by default, 
this may be changed by using the SETUP utility. 

8 



7. FUNCTION OF EXTENDED BIOS 

7.1 Standard BIOS Functions 

BIOS functions differ from the CP/M V2.2 as decribed below. 

BOOT 

WBOOT 

Set 0003H to OOH to default to the standard 'A>' 
prompt CCP, or to OlH to default to visual CCP. 
Jump to CCP+0003H for the standard CCP, or to 
CCP+OOOOH for the Visual CCP. 

If 0003H equals OOH, then jump to CCP+00003H, 
otherwise jump to CCP+OOOOH. 

AUXOUT: This function 
register C to 
output device. 

sends an 8-bit character from 
the currently assigned auxiliary 

AUXIN This function reads the next 8-bit character from 
the AUXIN device into register A. 

7.2 PUBLIC BIOS Functions 

* MZ-800 P-CP/M does not support the ?BYTBC and ?BYTBA PUBLIC 
BIOS subroutines. 

* The following function is added to the PUBLIC BIOS 
subroutines of MZ-800 P-CP/M. 

Function 
PRTSW 

Input 
C=O (normal printer) 
C=l (MZ printer) 

Output 
·None 

.PRTSW functions as a switch for selection of the MZ type of 
printer and another ASCII-standard printer. When 0 is set to 0 
register, the ASCII-standard printer is selected; when 1 is 
set, the MZ-printer is selected. 
This is to provide printer selection by the user application 
program. Setting is also possible via the SETUP utility. 

9 



Extension of 
MZ-800 P-CP/M 

Public BIOS 
Functions 

* Direct Screen Subfunction 
* The following addition had been made to the direct screen 

subfunction. 

Sub function 

3 

17 
18 
19 
20 

) 

Description 

IDENTIFY TERMINAL 
Return Value: HL=Pointer to null-terminated 

identifier string 
ANSI: ESC, '!', 'n', NULL 
VT52: ESC, '/', 'Z', NULL 

For example, a VT-52 type terminal would 
return the bytes; ESCape, '/', 'K', NULL 

Not supported by MZ-800 P-CP/M 

23 ENTER REVERSE VIDEO MODE 
24 EXIT REVERSE VIDEO MODE 

For the MZ-800 P-CP/M, when subfunction 23 is 
executed, all subsequently displayed 
characters are reversed and CONOUT occurs. 

Subfunction 24 is for return to reversed 
characters to the normal display. 

10 



8. FUNCTION OF BOOS 

Comparing the MZ-800 P-CP/M with the CP/M with the CP/:fvl \72.2, 
more system calls have been added and changed. For details, 
please refer to the F-CP /I•'. Program:ner' s Guide. 

* Functions not supported by MZ-800 P-CP/M are as follows. 

Subfunctions for Function 113 

Sub function 

17: 
18: 
19: 
20: 

Description 

ENTER GRAPHICS MODE 
EXIT GRAPHICS MODE 
ENTER ALTERNATE KEYPAD MODE 
EXIT ALTERNATE KEYPAD MODE 

11 

) 
Not supported by the 
MZ-800 P-CP/M 



9. FUNCTION OF CONTROL CODES AND ESC SEQUENCES 

9.1 Control Code 

Key Function 

lcTRLI + @] Bell 

ICTRLI + [El Cursor left (backspace) 
Moves the cursor one column to the left. When 
cursor is in the first column in a line, it is 
moved to the last column in the preceding line. 
When the cursor is at the home position, this code 
is ignored. 

ICTRLI + m Skip to next TAB stop. 
Moves the cursor to the next TAB stop. 

\CTRLI + QJ Cursor down 
Moves the cursor down one line. When the cursor is 
on the last line, the screen is scrolled up one 
line. 

lcTRL I + [R] Cursor up 

lcTRL I + ill Cursor right 
Moves the cursor one column to the right. When 
the cursor is at the last column in a line, it is 
moved to the first column in the following line. 
When the cursor is at the last column in the last 
line, the screen is scrolled up one line and the 
cursor is moved to the first column in the last 
line. 

lcTRL I + !Ml Carriage return 

ICTRLI + []] Clear screen 
Clears the entire screen. The cursor is not moved. 

lcTRLI + [I] ESCAPE 
Inputs an escape code ( lBH) . 

12 



Extension of 
MZ-800 P-CP/M 

Key 

ICTRL I + [SJ 

ICTRL I + DJ 

1cTR11 + rn 

Control Code 

Function 

Inputs code ( 1 CH) • 

Inputs code ( 1 DH) • 

Inputs code ( lEH) • Cursor home. 

13 



Extension of 
MZ-800 P-CP/M 

9.2 ESC sequence 

ESC sequence 

In this table, ESC stands for code lBH, and designations Pn, Pl, 
Pc, and Ps indicate decimal numbers. 

Escape sequence 

ANSI VT52 

ESC [ ? 2 1 

ESC < 

ESC [ Pn A ESC A 

ESC [ Pn B ESC B 

ESC [ Pn C ESC C 

Function 

Sets the VT52 mode. 

Sets the ANSI mode. 

Cursor up 
This escape sequence moves the 
cursor upward by the number of 
lines specified for n (where n=pn). 
Here, pn=l is assumed if pn is 
omitted or set to equal O. 

Cursor down 
This escape sequence moves the 
cursor downward by the number of 
lines specified for n (where n=pn) . 
Here, pn=l is assumed if pn=l is 
omitted or set to equal 0. 

Cursor forward 
This escape sequence moves the 
cursor to the right by the number 
of columns specified for n (where 
n=pn). If the number of columns 
specified is greater than the 
number of columns to the right side 
of the screen, the cursor is 
positioned in the column on the 
far right. 

14 



Extension of 
MZ-800 P-CP/M 

Escape 

ANSI 

ESC [ Pn D 

ESC [ 0 J 

ESC [ 2 J 

ESC [ 0 K 

ESC [ 1 K 

ESC [ 2 K 

sequence 

VT52 

ESC D 

--------

ESC E 

ESC K 

--------

--------

ESC sequence 

Function 

Cursor backward 
This escape sequence moves the 
cursor to the left by the number 
of columns specified for n (·where 
n=pn) . If the number of coluIT'ns 
specified is greater than the 
number of columns to the left side 
of the screen, the cursor is 
positioned in the column on the far 
left. 

Erase f rorn cursor to end of 
screen This escape sequence erases 
the screen from the position of the 
cursor to the end of the screen. 
(The 0 parameter may be omitted.) 

Erase entire screen I This escape sequence erases the I 

entire screen. 

Erase from cursor to end of line 
This escape sequence erases the 
screen from the cursor to the end 
of that line. 

Erase from beginning of line 
cursor 
This escape sequence erases the 
screen f rorn the beginning of the 
line in which the cursor is 
located to the cursor's current 
position. 

Erase entire line with cursor 
This escape sequence erases the 
ent i re line in which the cursor is 
located. 

15 



Extension of 
MZ-800 P-CP/M 

Escape sequence 

ANSI 

ESC [ Pl;Pc H 

ESC [ Pl;Pc f 

ESC = line 
column 

ESC [ s 

ESC [ u 

ESC [ 6 n 

VT52 

ESC Y line 
column 

ESC H 

ESC j 

ESC l 

ESC sequence 

Function 

Cursor position 
This escape sequence determines 
the position of the cursor on the 
screen. When pl=rn, the cursor is 
positioned to the rnth line. If m is 
greater than the greatest line, 
the cursor is positioned to the 
last line. When pl=O or pl is not 
specified, the cursor is positioned 
to line O. When pc=n, the cursor is 
positioned to the nth column. 
If n is greater than the greatest 
column, the cursor is positioned 
to the last column. When pc=O or pc 
is not specified, the cursor is 
positioned to column 1. 

Same as above 

Sarne as above 

This escape sequence moves the 
cursor to the home position. 

Save cursor position 
The current cursor position is 
saved. 

Restore cursor position 
This sequence restores the cursor 
position. 

Please report active position 
Posts the cursor position for an 
immediately following console input 
call. The format is ESC [ pl;pc R. 

16 



Extension of 
MZ-800 P-CP/M 

Escape sequence 

ANSI VT52 

ESC [ ps; .• ; --------
psm 

ESC [ HH;MM; --------
SS t 

ESC [ Pn T --------

ESC [ Pn s --------

ESC D --------

ESC M --------

ESC [ ? 7h --------

ESC [ ? 71 --------

-------- ESC I 

ESC sequence 

Function 

Character attribute 
Sets the character display 
attribute as follows. 
0 or nothing : Previously determined 

attribute 
7 : Reverse 

Set time 
Sets the time, the format for 
specification of the time is as 
follows. 
HH:MM:SS (Hour:Minute:Second) 

Scroll up 

Scroll down 

Cursor one line down 

Cursor one line up 

Sets wrap-around mode. 

Resets warp-around mode. 

Reverse line feed 
Moves the active position upward 
one position without altering the 
column position. If the active 
position is at the top margin, a 
scroll down is performed. 

17 



10. UTILITY COMMANDS 

These specifications describe the utility program which have been 
added to P-CP/M for the MZ-800 (the following programs). 

FORMAT. COM 

COPYDISK. COM 

COPYSYS. COM 

SETUP. COM 

DISKEDIT. COM 

DISKDEF. COM 

TIME. COM 

FILES. COM 

DEL. COM 

EJECT. COM 

18 



Extension of 
MZ-800 P-CP/M 

FORMAT Ccmmand 

FORMAT Command 

Syntax: FORMAT 

FORMAT { d: } {IS } {/N } 
d: d:::-ive number 

Explanation: The FORMAT command clears all the data stored in the 
floppy disk in drive B or the specified drive and 
initializes the disk. When you use a new floppy disk 
or a disk used for a machine other than the MZ-800, 
always use the disk after initializing it with the 
FORMAT command. When no drive is specified, drive B 
is selected. 
With the option switch's /S or /N, you can specify 
whether or not you will copy the P-CP /M system of 
the MZ-800 after formatting. 
If you specify /S, the P-CP/M system is copied. 
If you specify /N, the P-CP/N system is not copied. 
If you do not specify an option switch, the P-CP/M 
system is copied in the same way as specifying /S. 
You cannot specify both /S and /N at the same time. 
Specify /N when you use a floppy disk already 
formatted as a data disk or when you execute the 
COPYDISK command after formatting. 

Examples: A >FORMAT 
Format version 1.0A 
Drive B: will be formatted, then type <CR> ("C or 
ESC to reboot)? • 
Now formatting < ++++++++++++++++++++++++++++++++++++++++ > 
Copy system 
Function complete 
Format next disk (Y/N)? N 
A > 

( 1) Enter "FORMAT". 
(2) Put a new floppy disk into drive B. 
(3) Enter CR as shown on the screen; formatting then 

starts. 
(4) When formatting is complete, a message is 

displayed. 
Then the P-CP/M system is copied from drive A. 

(5) When copying is complete, a message is 
displayed. 
To format the next floppy disk, enter "Y"; to 
end formatting, enter "N". 

The following example specifies the drive name and 
an option switch with the FORMAT command. 

19 



Extension of 
MZ-800 P-CP/M 

FORMAT Command 

A > FORMAT C: /N 

This means that the floppy disk in drive C will be 
formatted and the system will not be copied. 
In this case, and error occurs if no disk drive unit 
is connected as drive C. 

NOTE: 
The FORMAT command clears all the floppy disk 
completely. Be careful not to erase any important 
contents by mistake. Formatting is stopped by 
pressing the C key while holding down the CTRL key. 

20 



Extension of 
MZ-800 P-CP/M 

COPYDISK Command 

COPYDISK Command 

Syntax: copydisk 

copydisk ds: dd: 

ds: Source disk drive 
dd: Destination disk drive 

Explanatio~: The COPYDISK command copies all the contents of the 
floppy disk to another floppy disk. It copies not 
only the files on the floppy disk but also the 
P-CP/M system and provides a floppy disk which is 
exactly the same as the original one. 

Examples: 

Before copying to a new disk, be sure to initialize 
the new disk with the FORMAT command. Also ensure 
that the destination disk has no write-protect seal 
on it. Copying to a disk with a wri t e-protect seal 
will cause an error. 
The copy disk utility is the fastest procedure 
available for copying the entire contents of one 
disk to another . 
However, when the source disk has been extensively 
used (when files have been created and deleted many 
times), the records making up those files will be 
scattered around the disk in many different 
locations. In such cases, the efficiency of 
subsequent processing can be increased (at the 
expense of lower speed during copying) by using the 
PIP utility to copy each individual file. The result 
is that records making up each individual file are 
located adjacent to each other on the disk. 

The COPYDISK command also enables a single drive to 
copy a disk. 

A >COPYDISK 

Copy disk version 1.0A 

Copy Disk from A: to B: 
Push any key when ready 

Funcition complete 
Copy next (Y/N)? • 

1. Copying with two disk drives 

(1) Enter "COPYDISK". 
(2) The copy program begins to run and displays the 

names of the source floppy disk and the 
destination floppy disk. Put the specified disks 
to each drive and enter CR. 

(3) When copying is completed, a message is 
displayed. 

(4) To copy another disk, enter "Y"; to end copying, 
enter "N". 

21 



Extension of 
MZ-800 P-CP/M 

COPYDISK Command 

2. Copying with one disk drive 

A >COPYDISK 

(1) Enter "COPYDISK". 

Copy disk version 1.0A 

Copy Disk from A: to B: 
Push any key when neady 

(2) The copy program begins to run, displays that it 
is in the single drive mode, and displays the 
names of the source drive and the destination 
drive. 
Put a source disk with the write-protect seal 
into the drive, and Press any key. 

( 3) The contents of the source disk put into the 
disk drive are read as far as the memory 
capacity allows. 

(4) When reading is finished, a message telling you 
to put the disk for drive B is displayed in the 
system message area. Take out the source disk, 
set the disk you want to copy to, and press any 
key. 

Set disk B: /Push any key 

(5) The contents of the source disk previously read 
are written into the new disk. 

(6) When writing is completed, the contents written 
are verified. 

( 7) If verifying succeeds a message telling you to 
put the disk for drive A (the source disk) is 
displayed in the system message area. Take out 
the destination disk, put the source disk, and 
press any key. 

Set disk A: /Push any key 

Then return to step (3). 
In a single drive system, this procedure is 
repeated until all the contents of the source 
disk are transfered to the destination disk. 
Normally, it is necessary to repeat this 
procedure seven or eight times in order to copy 
a 320k-byte, 5.25-inch floppy disk. 

( 8) When copying is completed, a message is 
displayed asking if you wish to continue 
copying. 

(9) To copy another disk, enter "Y"; to end copying, 
enter "N". 

22 



Extension of 
MZ-800 P-CP/M 

COPYDISK ComT'.land 

3. Specifying the drive names 

With the COPYDISK command, if the drive names are 
not specified copying is executed drive A as source 
disk drive and drive B as destination disk drive. 
You can specify the drive name when entering the 
command if required. 

A >COPYDISK B: A: 

Source disk drive drive B 
Destination disk drive .••• drive A 

A >COPYDISK C: D: 

Source disk drive drive C 
Destination disk drive ..•. drive D 

23 



Extension of 
MZ-800 P-CP/M 

COPYSYS Command 

COPYSYS Command 

Syntax: COPYSYS d: 

(A: Source disk drive) 
d: Destination disk drive 

Explanation: Copies the system program of the P-CP/M system disk 
for the MZ-800 (tracks including the bootstrap 
sector and the system file named "PCPM. SYS") to 
floppy disks formatted for P-CP/M for the MZ-800. 

Examples: 

It is used only to write a system program to a 
floppy disk formatted with the /N option by the 
FORMAT command or a floppy disk from which all files 
are erased. 

The COPYSYS command copies the following files: 

BOOT CODE (physical copy) 
P-CP/M LOADER (physical copy) 
PCPM. SYS (file copy) 

PCPM. SYS is a P-CP /M system file which does not 
appear in the directory. It can be anywhere on the 
disk, but it has to be in the entry position of the 
directory. 
Therefore the disk to be copied must be either of 
the following: 

1. A disk completely initialized by the FORMAT 
command 

2. A disk for the MZ-800 already including the 
P-CP/M system 

1. Copying with two disk drives 

A >COPYSYS 

(1) Enter "COPYSYS". 

Copy system version 1.0A 

Copy system from A: to B: 
Push any key when ready 

24 



Extension of COPYSYS Conmra~d 
MZ-800 P-CP/M 

(2) The copy program begins to run and displays the 
names of the source: disk drive and the 
destination drive. 
Insert each disk, then press any key. 

( 3) The COPYSYS prograra reads the system file from 
the source disk in drive A and writes it to the 
destination disk in drive B. 

Set disk B: /push any key 

(4) When copying is completed, a message is 
displayed. 

(5) To copy to another disk, enter "T"; to end 
ccpying and return to P-CP/M, enter "N". 

25 



Extension of 
MZ-800 P-CP/M 

COPYSYS Command 

2. Copying with one disk drive 

A >COPYSYS 

(1) Enter "COPYSYS". 

Copy system version 1.0A 

Copy Disk from A: to B: 
Push any key when neady 

(2) The copy program begins to run, displays that it 
is in the single drive mode, and displays the 
names of the source drive and the destination 
drive. 
Put a source disk with the write-protect seal 
into the drive, and Press any key. 

( 3) The contents of the source disk put into the 
disk drive are read as far as the memory 
capacity allows. 

(4) When reading is finished, a message telling you 
to put the disk for drive B is displayed in the 
system message area. Take out the source disk, 
set the disk you want to copy to, and press any 
key. 

Set disk B: /Push any key 

(5) The contents of the source disk previously read 
are written into the new disk. 

(6) When writing is completed, the contents written 
are verified. 

( 7) If verifying succeeds a message telling you to 
put the disk for drive A (the source disk) is 
displayed in the system message area. Take out 
the destination disk, put the source disk, and 
press any key. 

Set system A: /Push any key 

Then return to step (3). 
In a single drive system, this procedure is 
repeated until all the contents of the P-CP /M 
system is transfered to the destination disk. 
Normally, it is necessary to repeat this 
procedure a couple of times in order to copy the 
P-CP/M system. 

( 8) When copying is completed, a message is 
displayed asking if you wish to continue 
copying. 

(9) To copy another disk, enter "Y"; to end copying, 
enter "N". 

26 



Extension of 
MZ-800 P-CP/M 

COPYSYS Command 

* Error messages 
When the FORJvlAT, CGPYDISK or COPYSYS co~mand is 
executed, the following messages a.re displayed in 
the system message area when necessary. 

Set disk B: /push any key 

For a single drive system, set the disk for drive A 
(normally the source disk). 

Set disk A: /push any key 

For a single drive system, set the disk for drive B 
(normally the destination disk). 

Read error: on A: R)etry, A)bort, I)gnore 

An error is detected while the content of the disk 
in drive A is being read. 

Write error: on B: R)etry, A)bort, I)gnore 

An error is detected while the content of the disk 
in drive B is being written. 

verify error: R)etry, A)bort, I)gnore 

An error is detected while the written data is being 
verified. 

When an error is detected, enter one of the 
following keys. 

R (Retry) 
~ This will re-attempt the operation 

A (Abort) 
Process 
condition 
start. 

I (Ignore) 

is aborted, 
immediately 

with 
prior 

return to 
to COPYDISK 

~ Ignore the error and continue the operation 

27 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

Syntax: 

Explanation: 

Examples: 

SETUP Command 

SETUP 

The SETUP Command functions to set up or change the 
configuration of the P-CP/M system for the MZ-800. 
Its functions are as follows. 

1. Specification of the file to be execute 
automatically 

2. Specification of the colour of characters and 
background of the screen 

3. Assignment of physical device to the logical 
device 

4. Specification of Floppy Read After Write 
5. Specification of ON/OFF of key click sound 
6 . Specification of the MSB* of the console output 

characters 
7. Specification of the code system for the printer 
8. Definition of parameters of the RS-232C Ports. 
9. Definition of the definable keys 

* MSB is the abbreviation for Most Significant Bit. 

Using to the VCCP of P-CP/M, specification or change 
is done via the menu with the cursor. 

(1) Enter "SETUP". 
(SETUP main menu) 

S E T U P for MZ - 800 P - CP / M [ Vl . O A ] (C) SHARP Corp . 

l AUTO EXECUTE FILE 

2 CHARAC TER COLO UR 

3 DE VICE ASSIGN 

4 FLOPPY DISK 

5 KEY CLICK SOUND 

6 MSB MASK 

7 PRINT ER MODE 

8 RS - 23 2C PARAMETERS 

9 USER DEFINABLE KEY 

0 END OF SETUP 

Use Ar r ow ke y to select and CR or ESC key to ex it 

IDI RJ. I IDIR B:.i II ~T_YP_E_~I (RE N 11< NEXT > I 12 : 34 : 56 I CAPS 

(2) The menu is displayed as shown above. 
Move the cursor to the i tern which you want to 
verify or change. Then press the CR key. 
The display changes to the item you select. 

28 



Extension of 
MZ-800 P-CP/M 

SETUP Conunand 

Main menu 

Displayed ini tialia.ly after the SE'l1UP command. 
Select the i tern you want to set up or cha.nge from 
the menu the cursor or from numeric keys and press 
the CR key. Then the option menu appears where you 
can set up the item you select. The available keys 
in the main menu are rn I rn ' 0 to 9 I and CR. 

(1) SETUP [AUTO EXECUTE l 

S E TL'P [ AUTO EXEC UTE FILE NAME ] 

AUTO EXECU TE : ON IOFFI 

COMMAND LINE :.___ ___ __ ~ 

Us e Arr o w Key , Ci Key and ESC Ke y 

IDIR1 I !DIR B : .l I !T YP E I ~IR=EN __ ~I I< NEXT ) 12 : 34 : 56 I CAPS 

You can set up this function to execute the specific 
command file when the power is switched ON (when the 
P-CP/M begins to run). When AUTO EXECUTE is ON, this 
function is effective; when AUTO EXECUTE is OFF, 
nothing is executed after the P-CP/M begins to run; 
only the prompt (A>) is displayed. 
When AUTO EXECUTE is ON, a · command of maximum 20 
characters specified at COMMAND LINE is executed as 
entered into the command line of the P-CP/M. 
When you wish to execute a specific program 
automatically at the POWER ON, set AUTO EXECUTE ON 
and enter the file name of the program for automatic 
execution. 
To enter characters to COM.r.'.J\ND LINE: use the [I] 
and [JJ keys to move the cursor to COMMAND LINE: and 
then use the lcRI key to enter the command name. 
EXAMPLE: When you set up VCCP (Visual Console 
Command Processor) to be executed the POWER ON, 
enter "VCCP" into the COMMAND LINE. If OFF is 
entered at AUTO EXECUTE line, automatic execution 
does not function regardless of the content of the 
COMMAND LINE area. After setting, press the CR key 
or the ESC key; the main menu is displayed again. 

29 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

(2 ) SETUP [CHARACTER COLOUR I 

S E T U P [ CHARACTOR COLOR ] 

FOREGROUND: BLACK BLUE RED MAGENTA GREEN SYAN YELLOW IWHITE I 

INTENSITY: LO W (HIGH! 

BACKGROUND: BLACK JBL UEI RED MAGENTA GREEN SYAN YELLOW WHITE 

INTENSITY: JLOWI HIGH 

Use arrow key,CR key an d ESC key. 

IDI R_t I IDIR B: J. I ITYPE I IREN 11 < NEXT > I I 12 :34 : 56 I CAPS 

When a colour CRT is connected to the MZ-800, you 
can select the background colour from 16 colours 
when the P-CP/M begins to run. 
With this display, you can specify the FOREGROUND 
COLOUR and BACKGROUND COLOUR by selecting the 
colours from the 16 colours displayed by the cursor. 
The set-up result is applied to the display 
instantly, so you can view the combination of 
colours. 
Use the cursor key or the space bar to set up, and 
the CR key or the ESC key to return to the main 
menu. 

30 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

(3) SETUP [ DEVICE ASSIGN l 

S E T U P - [ DEVICE ASSIGN ] 

CONSOLE -IN: IKfYJ RS I 

CONSOLE OUT : ~ RS I 

AUX IN: KEY ~ 

AUX OUT : CRT IBTil 

LIS T OUT: CRT RSI 

DISK DRIVES : III 

Use Arrow Key, CR Key and ESC Key 

[!UE~ !DIR B: l. I ~IT~YP~E-~I !REN 

The MZ-800 
CONSOLE-IN, 
LIST-OUT. 

can deal with 
CONSOLE-OUT, 

RS 2 

RS2 PRN 

RS2 

RS2 PRN 

RS2 ~ 

4 

1 1< NEXT > I I 12 : 34 : 56 I CAPS 

five logical devices: 
AUX-IN, AUX-OUT and 

You can assign to those logi cal devices one of the 
physical device such as RS-2 32C, the~ printer, as 
well as the keyboard and CRT. 
You set up by moving the cursor to the physical 
devices you want to assign by using the cursor key 
or the space bar. 
The numbe r of connected disk drives is specified at 
the first line. 
When copying, etc. is executed by the COPYDISK 
command by only one disk drive, 1 must here be 
specified as the number of drives. 
Pressing the CR key or the ESC key will fix the 
setting and return the display to the main menu. 

31 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

(4 ) SETUP IF~OPPY DISK I 

S E T U P [ FLOPPY DISK) 

READ AFTER WRITE : ON \Qff] 
STEPPING RATE : [fiii"S] 12ms 20 ms 30ms 

Use Arrow Key, CR Key and ESC Key 

IDIRi I !DIR B :.:1. I !TYPE I IREN 11< NEXT > I I 12:34 : 56 I CAPS 

* Enabling read after write operation results in 
somewhat slower processing speed, but greater 
reliability. If an error is detected during a read 
operation following a write, that write operation 
is repeated. 
At this menu, you can set up ON/OFF of the READ 
AFTER WRITE function. 

* Stepping rate 
With MZ-800 P-CP/M, the stepping rate (seek time) 
of the drive can be changed. 
The usual setting is to 6ms, but, if an 
application program, etc. on a disk of a format 
other than the MZ-800 P-CP/M format cannot be 
accessed, it may be possible to access it by 
changing this (stepping rate). 
To change the setting, move the cursor position by 
pressing either the cursor key or the space bar. 
Pressing the CR key or the ESC key will renew the 
setting and return the display to the main menu. 

32 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

(5) SETUP [KEY CLICK SOUND] 

S E T U P f KEY CLICK SO UND ) 

KEY CL I CK SOUND : [l)][J OF F 

Use Arr o w Key , CR Key and ESC Key 

fDIH I lorn B : .< I fTYPE I fREN 11 < NEXT > I I 12 : 34:56 I CAPS 

This function enables you to select wether or not a 
clicking sound accompanies each key depression. 
Use the cursor key or the space bar to set up, and 
the CR key or the ESC key to return to the main 
menu. 

33 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

\ 6) SETUP I MSB JV'...ASK l 

S E T U P [ MSB MASK ] 

CONSOLE IN : MASK l!!fillTIKJ 

CONSOLE OUT : MAS K IUNMA SKI 

AUX I N: MASK !UNMASK] 

AUX OUT : MASK !UN MASK! 

LIST OUT : MASK IUNMASK I 

I 

Use Ar r ow Key, CR Key and ESC Key 

IDIR.i. I !DI R B: .I. I ._IT_YP--"E _ __,I co.IR=E~N __ _,l I < NEXT > I I 12: 34 : 56 I CAPS 

MZ-800 P-CP/M has the ability to mask the most 
significant bit (MSB) of the BIOS I/O data so that 
it can function normally even when you use 
application programs adding parity bits to 7-bit 
ASCII code in the console I/O. 
You can specify whether or not you mask the MSB. 
When the "MSB Iv"..ASK: " is ON, the .MSB is ignored and 
only the other 7 bits are entered as the effective 
data. 
When the "MSB MASK:" is OFF, all 8 bits are regarded 
as effective data. 
Use the cursor key or the space bar to set up, and 
the CR key or the ESC key to return to the main 
menu. 

34 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

( 7) SETUP [ PRINTER MODE l 

S E T U P [ PR INTER MODE ) 

PRIN TER CODE : IMZ-CODEI ASCII~CODE 

CR / LF CANCEL : ALL OUT CR OF F IL F OFF I 

Use Arrow Key, CR Key and ESC Key 

~I D_IR~±-~l !DIR B:i I ~IT_YP_E __ l IREN \ ({: NEXT > / 12 : 34 : 56 / CAPS 

With the MZ-800 it is possible to connect either of 
the following two types of printers. 
One is the group of printers developed only for the 
MZ-800, such as the MZ-1P16 and MZ-80PS, and the 
other is the group of printers of the Centronics 
standard which uses regular ASCII characters. 
Regarding these two groups, there are some 
differences in the character codes such as ASCII 
small letters. Therefore, the MZ-800 P-CP/M changes 
the output code system according to the printer type 
used. 
At this menu, you can specify either of the two code 
systems. They are defined as the MZ-CODE and ASCII 
CODE. 

Regarding the new line, either of 3 designations can 
be made: CR + LF, LF only or CR only. 
(CR: Carriage Return; LF: Line Feed) 
Use the cursor key or the space bar to set up, and 
the CR key or the ESC key to return to the main 
menu. 

NOTE: 
If the TAB code 
MZ-1Pl6 printer, 
a function code, 

(09H) is output to the MZ-80KPS, 
etc., note that this may operate as 
so care should be taken. 

35 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

(8) SETUP [ RS-232C PARAMETERS l 

S E T U P ( RS 232C PARAMETERS ] 

( R S - l ] 

WORD LENGTH : []] 

PARITY: EVEN ODD lliQffi 

STOP BIT : l . 5 w 
( R S - 2 ] 

WORD LENGTH : [[] 

PARITY: EVEN OD D INON I 

STOP BIT: l . 5 m 

Use Arrow Key, CR Key and ESC Key 

ID IIU I IDIR B: J. i ITYPE I !REN 11< NEXT > I I 12 : 34 : 56 I CAPS 

At this menu, you can assign the two RS-232C 
interfaces RS-1 (CH.A) and RS-2 (CH.B) and set up 
the parameters for the system to which the optional 
RS-232C interface board (MZ-8BI03) is connected. 
The items you can specify in this display are WORD 
LENGTH, PARITY (EVEN, ODD or NON) and the length of 
the STOP BIT. 
Some parameters such as BAUD RATE are set up by 
hardware switchs on the MZ-8BI03 board. For setting 
those parameters, refer to the manual for the 
optional RS-232C interface board (MZ-8BI03). 
At this menu, like at the others, select the i tern 
YOU Want tO Set Up With the CUrSOr keys ( rn Or rn ) I 
and then select the parameter value with the cursor 
keys ( 8 or B ) or the space bar. The parameter is 
set to the value displayed in reverse video. 
After all settings are completed, return the display 
to the main menu by pressing the CR key or the ESC 
key. 

36 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

(9) SETUP ! USER DEFINABLE KEY] 

S E T U P [ USER DE FINAB LE KEYS ] 

SYSTE M LINE DIS PLAY : ON Of f 

F I : DIR[!] 
F 2 : DI R B : ~ 
F 3 : TYPE 
F 4 : REN 
F 5 : ERA 
F 6 : STAT 
F 7 : PIP 
F 8 : PIP A: =B: ''. '' [VJ 
F 9 : FORMAT 
F IO : CO PY SYS 
FI I: SETUP 
FI 2 : Fl LES ilJ 
Fl 3 : ED 
F 14 : ASM 
FI 5 : DD T 
Fl6 : DISKD EF 

Use Ar r ow Ke y , CR Key and ESC Ke y 

~I D_IR.1 __ ~1 IDIR B : .i I !TYPE I IREN 

BL AN K: j!" 
SHIFT +BLANK: H 

T A B: 1° 
SH I FT+T A B: 'I 

INS T: R 
SH I FT + INST : ~ 

D E L : I!!) 
SHIFT +D E L: ~ 

~ : Ki 
SHIFT + ' : ;R 

v : .I 
SHIFT+ v : d_ 

-~ : L 

SHIFT+ ... : L 
·~ : }! 

SH I FT + <- : J! 

11< NEXT > I I 12 : 34 : 56 I CA PS 

At this menu, you can specify the. functions of the 
16 user def i nable keys of the .MZ-800 and can aJso 
specify ON/OFF for display of the system line on the 
25th line of the CRT. 
If you specify ON at SYSTEM LINE DI SPLAY, the system 
line on the lowest line (the 25th line) of the CRT 
screen is displayed and the contents of the five 
function keys, the clock, and the condition CAPS 
LOCK are displayed . 
When you specify OFF, this line is not displayed. 
(However, this line is preserved as the system 
message area for P-CP/M, so the user cannot use it, 
it is used by P-CP/M so that if an error occurs, or 
if it is necessary to exchange a floppy disk in a 
single drive system, the messages from the P-CP/M 
appear here.) Under the SYSTEM LINE DISPLAY: the 
line is displayed in the setting of the 32 user 
definable keys. 
To change the contents of these key settings, Move 
the cursor to the position of the relerant key with 
the cursor keys ([]]I rn ' B and B ) I and enter the 
content to be set on the 24th line of the CRT from 
the keyboard. The avai l able key s are alphabet keys, 
symbol keys, the CR key, the control key + alphabet 
keys, etc. You cannot enter the cursor keys, user 
definable key s or graphic characters. 

37 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

EXAMPLE: 

ENTER STRING xx 

At this prompt you can keyin the character string 
you wish to be assigned to key xx 

'l'he valid keys are described on the previous page 
and may be edited or terminated using the keys below 

~or "H 

icRI 

rn 
irNsTI 

!Escl 

deletes one character (if 
are input, this acts as the 

no characters 
IF41 key.) 

this signifies the end of input for key xx 

this input is the lcRI code 

Hexadecimal input mode* 

Abort current input 

Control codes are displayed in reverse video, and 
the CR code is displayed as QJ 

* In hexadecimal mode only 0 - 9, A - F, and a - f 
are valid, characters other than this will cause a 
warning buzzer to sound, and the MZ-800 will exit 
hexadecimal mode. 
II m II is displayed by pressing the IINSTI key. 

When all settings are complete, press the !Esc/ key 
to return to the SETUP main menu. 

38 



Extension of 
MZ-800 P-CP/M 

SETUP Command 

( 10) SETUP I END OF PROCESS l 

S E T U P [ END OF PROC E SS ] 

E n d of ~ ET U P process 

l UP DATE SY STEM DI SK AN D RUN 

2 RUN UNDE R NEW SYST EM (NO UP DATE SYST EM DI SK) 

3 NO UP DAT E ( E XI T TO P- CP /M) 

4 RET URN TO MAIN MENU 

Us e Arr o w Key an d CR Key o r l ,2,3,4 Key 

l~DI_R=-'--~l ID IR B : _l I ITYP E I I RE N 11< NEXT> I 12 : 34 : 56 I CA PS 

When you are using the SETUP command, you can setup 
or change the various parameters P-CP/M on the nine 
menus. 
However, it is not until you select either 
1 UPDATE SYSTEM DISK AND RUN 
or 
2 RUN UNDER NEW SYSTEM (NO UPDATE SYS'I'EM DISK) 
on this END OF PROCESS screen that the new contents 
you setup on each screen become effective. 
If you select 1, the new system will be written the 
MZ-800 system disk inserted into drive A and will be 
effective. If you select 2, the new system will also 
be available. However, as it will not be written to 
disk, it will be cleared with POWER OFF. 
If you select 
3 NO UPDATE (EXIT TO P-CP/M) 
all contents you set up will be ignored and the 
system will return to P-CP/M. 
If you select 
4 RETURN TO MAIN MENU 
the display will return to the main menu. 

39 



Extension of 
MZ-800 P-CP/M 

DISKEDIT Command 

DISKEDIT Command 

Syntax: DISKEDI'I' { d: } 
Note: 
{d:} is the entered drive name (target drive) of 
the disk to edit. If omitted, the target drive is 
the currently logged disk drive. 

Explanation: When a command is input, the target drive disk 
parameters are read in, displayed on the screen, and 
we go to the DISKEDIT command stand-by condition. 

D I s K - E D I T u til i ty for MZ- 800 P - CP / M [VI . GA J (C)S HARP Corpor a ti o n 

Ta rg e t disk 
A : 2DMZ800 I 

Sector/track : 32 Disk s iz e : 
Dir e ctory max : 64 ent ri e s B loc k size: 

312 kbyt es 
201,g bytes 

COMMAND : D/ir B / l oc k F/ il e S /ec t or T /arget i[[gQ / uit: B 

E D I T I I RA NDOM Q U I T I 00 :1 1 : 22 I CAPS 

There are 6 types of DISKEDIT commands, as shown on 
the screen at the time of start; they are as 
described below. 

Command 

} 

Contents 

Display and edit directory. 

Display and edit disk 
designated by block no. 

content as 

Display and edit disk content as described 
by file name. 

Display and edit disk 
designated by track sector. 

content as 

Target, 
drive. 

this command specified target 

Finish DISKEDIT and return to system. 

40 



Extension of DISKEDIT Command 
MZ-800 P-CP/M 

(1) DIR command 

This command is 
format directory 
In the DISKEDI'.r 

for the display and change of CP/M 
data. 
command stand-by condition, press 

@]. 
The directory's initial sector's data is 
displayed in hexadecimal and ASCII characters. 

then 

D I s K - E D l T u ti l it y f or MZ - 800 P-CP / M Iv J .. CA I (C .lSHARP Co rp o r a ti o n 

Targe t disk 

I 
Sec t or / tra c k : 32 Disk size : 3 J 2 kbytes 

A: 2DMZ800 Di r ectory max : 64 en tries Bloc k size : 201·8 b y t es 

SEC TOR : /Ne xt / Las t E/ dit K/andom lllii/Qu it 

Dri ve : A Track : I Secto r: 0 
00 O J 02 03 04 05 06 07 08 09 QA OB oc OD OE OF 

0000 00 50 4 3 50 4D 20 20 20 20 53 D9 53 00 00 00 70 .PCPM ... . SYS . . . p 

OO JO 01 02 03 04 05 06 07 00 00 00 00 00 00 00 00 00 . . . . .. ... . ...... 
0020 00 50 49 50 20 20 20 20 20 43 4F 4 D 00 00 00 3A . P I P .. .. . COM . . . : 
0030 00 09 OA OB 08 00 00 00 00 00 00 00 00 00 00 00 . . ...... .. . .. ... 
0040 00 4 1 53 4 D 20 20 20 20 20 43 4F 4 D 00 00 00 40 . ASM .... . COM . . . @ 

0050 cc OD OE OF 00 00 00 00 00 00 00 00 00 00 00 00 .. . .. . ... . . ..... 
0060 00 45 44 20 20 20 20 20 20 43 4F 4 D 00 00 00 34 . ED . . . .. . COM ... 4 
0070 JO 1 1 I 2 J3 00 00 00 00 00 00 00 0 0 00 00 00 00 . . . ....... .... . . 

I E D l 'f 11 RA NDOM I Q u I T I I 00 : ·1 I : 2 2 I CAPS 

This is now the sector data display change mode, it 
is possible to change the sector displayed at will. 
At this stage, commands are input as follows. Note, 
however, that care should be taken regarding changes 
of directory data. 

SECTOR: [I] /Next [1J /Last E/dit R/andom lEscl Q/uit: 

When fm, icRI or UJ is 
displayed. 

pressed, the next sector is 

When [g or [I] is pressed, 
displayed. 

the previous sector is 

When [ID or !Ft I is pressed, 
screen edit mode. 

the mode changes to 

When [Q] , jEscl or IF4l is 
return to the DISKEDIT 

pressed, the condition 
command stand-by menu. 

the 

will 

For information concerning the sector display change 
mode, refer to (8). 

41 



Extension of DISKEDIT Command 
MZ-800 P-CP/M 

(2) BLOCK Command 

This command is used to 
ASCII character display, 
by the CP/M block number. 
In the DISKEDIT command 
@]. 

edit, by hexadecimal and 
the disk are a designated 

stand-by condition, press 

COMMAND: D/ir B/lock F/ile S/ector T/arget IEsclQ/uit: B 

A: BLOCK NUMBER: 

When that is done, the block number is requested as 
shown in the above, key in the block number as a 
decimal value and then press lcRI • The data of the 
first record of the designated block number is then 
displayed. 

D I s K - E D I T u t i lit y for MZ - 800 P - CP/M [ V 1. OA ] (C)SHARP Co rp o r a ti o n 

Ta r ge t d i sk 

I 
Sec t or/ tr ack : 32 Disk s i ze : 3 12 k bytes 

A: 2DMZ800 Di r ectory max : 64 en t ries Bl ock s i ze : 2048 b y t es 

COMMAND : D/ i r B/ l ock F / ile S/ec t or T/arge t l[[QQ/ uit : B 

FILE : (I]/Next !]/Last E / dit R/andom ~/Quit 

A: BLOCK DUMP 

00 0 1 02 03 04 05 06 07 08 09 OA OB oc OD OE OF [ RECORD : 0 J 

0000 OD OA OD OA 20 20 20 20 20 20 2 0 20 20 20 20 20 
0010 20 20 20 20 3B 09 44 75 6D 70 20 70 72 6F 67 72 ; . Du mp p r ogr 
0020 6 1 6D 2 C 20 72 65 6 1 64 73 2 0 69 6E 70 75 74 20 am, r ea ds input 
0030 66 69 6C 65 20 6 1 6E 64 20 64 69 73 70 6C 6 1 79 file and display 
0040 73 20 68 65 78 20 64 6 1 7 4 61 OD OA 2 0 20 20 20 s hex d ata .. 
0050 20 20 20 20 20 20 20 20 20 20 20 20 3B OD OA 20 ' . . 
0060 30 3 1 30 30 20 20 20 20 20 2 0 20 2 0 20 20 20 09 0100 
0070 6F 72 67 09 3 1 30 30 68 OD OA 20 30 30 30 35 20 org . l OOh .. 0005 

I E D I T 11 RANDOM I Q u I T I 00 : 1 1: 2 2 CAPS 

42 



Extension of 
MZ-800 P-CP/M 

DISKEDIT Command 

You are now in the block record data display change 
mode, it is now possible to change the data display 
as required. 
In this condition, commar1ds are inpl~t as follows. 

FILE: [IJ/Next []/Last E/dit R/andom IEscl/Quit: 

vvhen lRl I lcRJ or rn is pressed, the next record will be 
displayed. 
When [Ilor []is pressed, the previous record will be 
displayed. 
When [llior jF1/ is pressed, the mode will change to the 
screen edit wode. 
When [fil or IF2/ is pressed, the record number can be 
designated. 
When [Q] , /Esc/ or /F4/ is pressed, the condition · will 
return to DISKEDIT command stand-by. 

For information concerning the block record display 
change mode, refer to "7. Block record display 
change mode." 

43 



Extension of DISKEDIT Command 
MZ-800 P-CP/M 

(3) FILE Command 

This command is for the display and alteration of a 
CP/M file content. 
In the DISKED IT command stand-by condition, press 

~-
Next, the filename will be requested, 
filename to be displayed. The file's 
will then be displayed. 

so input the 
header record 

COMMAND: D/ir B/lock F/ile S/ector T/arget iEsclQ/uit:B 
File name: 

The file's header record will then be displayed. 

D I s K - E D I T u til i t y for MZ - 800 P- CP/M (V l. OA] (C) SH ARP Co r p o r at io n 

Ta r ge t disk 

I 
Sec t o r / tr ac k : 32 Di sk s i ze : 3 1 2 kb yte s 

A: 2DMZ800 Dir e c t o r y max: 64 en tri es Bl o c k si ze : 2048 b y t es 

F I LE : [J)iNe x t } / Last E/ d it R/a nd om ~IJ' Qu i t 
A: DU MP ASM 

00 0 1 02 03 04 05 06 07 08 09 OA OB oc OD OE OF ( RE CO RD : 0 I 

0000 3B 0 9 44 75 6D 70 20 70 7 2 6F 67 7 2 6 1 6 0 2C 20 ;.D ump . pr og r am, 
00 10 72 65 6 1 64 7 3 20 69 6 E 70 75 74 20 6 6 6 9 6C 65 records i npu t 
0020 20 6 1 6 E 64 20 64 69 73 70 6 C 6 l 79 7 3 2 0 68 6 5 a n d di sp lay s he 
0030 78 20 64 6 I 74 6 I OD OA 3B OD OA 09 6 F 72 67 09 x da t a . . ; .. . o r g . 
0040 3 I 30 30 68 OD OA 62 64 6F 73 09 65 7 I 75 09 30 I OO h .. b d os . e q u . O 
0 050 30 30 35 68 09 3 B 64 6 F 73 20 65 6 E 74 7 2 7 9 20 005 h . ;dos e n tr y 
0060 70 6 F 69 6E 74 OD OA 63 6F 6E 73 09 65 7 I 75 09 p o i n t .. co n s . e qu . 
0070 3 I 09 3B 72 6 5 6 1 64 20 63 6 F 6E 7 3 6 F 6C 65 OD 1. ; rea d co ns o l e . 

E D I T 11 RAN DOM g u I T I I 00 : 11 : 22 I GAPS 

You are now in the block record data display change 
mode, so it is now possible to change the data 
displayed as required. At this point, commands are 
input as follows. 

* When [RI I lcRI or rn is pressed I the next record will 
be displayed. 

* When [!J or ITJ is pressed, the previous record will 
be displayed. 

* When [ID or IF1 I is pressed, the mode will change to 
the screen edit mode. 

*When [ffior IF2I is pressed, the record number can be 
designated. 

* When [Q] , /Escl or /F41 is pressed, the condition will 
return to DISKEDIT command stand-by. 

For information concerning 
display change mode, refer 
display change mode." 

44 

the 
to 

block 
" ( 7) 

record data 
Block record 



Extension of DISKEDIT Command 
MZ-800 P-CP/M 

( 4) SECTOR Cormnand 

'rhis cornma.nd is a command which can be 
directly designate the logical sector of 
and display that sector. In the DISKEDIT 
stand-by condition, press [ill. 

used to 
the disk 

con1mand 

COMMAND: D/ir B/lock F/ile S/ector T/arget IEsclQ/uit: 

Track :1 
Sector:2 

Next, the track number and sector will be requested, 
input them as decimal values. 
When the track and sector values are input, the 
sector content will be displayed. 

D I S K - E D I T u ti l it y for MZ-800 P- CP/M [VJ . OA] (C)SHARP Corporation 

Ta r ge t disk 

I 
Sector/track : 32 Disk size : 3 l 2 kb y t es 

A: 2DMZ8 00 Directory max: 64 en tries Block size: 2048 bytes 

SECTOR: /Ne xt / Last E/d it R/andom rn1Qui t 

Driv e: A Track : l Sector: 0 
00 0 l 02 03 04 05 06 07 08 09 QA OB oc OD OE OF 

0000 00 50 43 50 4D 20 20 20 20 53 09 53 00 00 00 70 .PCPM . ... SYS . .. p 
00 10 0 l 02 03 04 05 06 0 7 00 00 00 00 00 00 00 00 00 .......... ...... 
0020 00 50 49 50 20 20 20 20 20 43 4F 4D 00 00 00 1A . PIP .. . . . COM .. . : 
0030 00 09 OA OB 08 00 00 00 00 00 00 00 00 00 00 00 . . . ...... . . ... . . 
0040 00 41 53 4D 20 20 20 20 20 4 3 4F 4D 00 00 00 40 . ASM . . . .. COM ... @ 

0050 oc OD OE OF 00 00 00 00 00 00 00 00 00 00 00 00 . . . .... ......... 
0060 00 45 44 20 20 20 20 20 20 43 4F 4D 00 00 00 34 . ED ...... COM . . . 4 
0070 10 11 l 2 l 3 00 00 00 00 00 00 00 00 00 00 00 00 ................ 

I E D I T 11 RANDOM I Q u I T I I 00 : l l : 2 2 I CAPS 

You are now in the sector data display change mode, 
so it is now possible to change the data displayed 
as required. 
In this condition, commands are input as follows. 

SECTOR: [II/Next [I]/Last E/dit R/andom IEsclQ/uit: 

* When [El or []] is pressed, the next sector will be 
displayed. 

* When CTJ or[]] is pressed, the previous sector will 
be displayed. 

* When [ID or IF1i is pressed, the mode will changed to 
the screen edit mode. 

* When [§] , IEscl or IF41 is pressed, the mode will 
return to the DISKEDIT command stand-by mode. 

For information concerning the sector data display 
change mode, refer to " ( 8) Sector display change 
mode." 

45 



Extension of 
MZ-800 P-CP/M 

DISKEDIT Command 

(5) TARGET Command 

This command is to specify the destination drive. 
The target drive will be requested after selection 
of the T command. 

COMMAND: 

D/ir B/lock F/ile S/ector T/arget IEsclQuit: T 

TARGET DRIVE (A/B/E) : 

(6) QUIT Command 

This command is to Quit DISKEDIT and to return to 
the system (P-CP/M). 
At the DISKED IT command stand-by condition, press 
@] , IEscl or IF5I. 

COMMAND: D/ir B/lock F/ile S/ector T/arget IEsclQuit: 
Q 

The display will be clear and the MZ-800 will return 
to the system (P-CP/M). 

46 



Extension of DISKEDIT Corr@and 
MZ-800 P-CP/M 

(7) Bl ock rec ord disp l a y c hange mode 

the BLOCK 
the mode 
mode . 

When data designation b y 
FILE command is completed, 
block recor d display c hailge 

D I s K - E D I T uti l it y fo r MZ - 800 P- CP/ M [ Vl.OA ] 

Targe t di sk 

I 
Secto r / tr ack : 32 Di sk 

A: 2DMZ800 Directory ma x : 64 en t r i es Bl ock 

FILE : (IltNex t [!!I Las t E/dit R/ andom !J:JIT:i/ Q u i t 
A: DUMP ASM 

00 0 1 02 03 04 05 06 07 08 09 OA OB oc OD OE OF 

0000 3B 09 44 75 60 70 20 70 72 6F 6 7 72 6 I 6D 2C 20 
00 10 72 65 6 1 64 73 20 69 6E 70 75 74 20 66 69 6C 65 
0020 20 6 1 6E 64 20 64 69 73 70 6C 61 79 73 20 68 65 
0030 78 20 64 6 1 74 6 1 OD OA 3B OD OA 09 6F 72 67 09 
0040 3 I 30 30 68 OD OA 62 64 6F 7 3 09 65 7 I 75 0 9 30 
0 050 30 3 0 3 5 68 09 3B 64 6 F 73 20 65 6E 74 72 7 9 20 
0060 70 6F 69 6E 74 OD OA 63 6F 6E 73 09 65 7 I 75 0 9 
0070 3 I 0 9 3B 72 65 6 1 64 20 63 6F 6 E 73 6F 6C 6 5 OD 

E D I T I I RANDOM J Q U I T 

c ommand 
changes 

or 
to 

(C)S HA RP Co rp o r at i o n 

s i ze : 3 12 k b y t es 
size : 2048 by t es 

[ RE CO RD : 0 I 

; .D ump .p r og r am, 
r eco r ds i n put 

a n d disp l ays h e 
x dat a . . ; . . . o r g . 
I OO h .. bdos . equ . O 
005 h. ;d os e n t ry 
p o int . . co n s . e qu . 
l . ; r e ad co n so l e . 

I 00 : 11 : 22 I CAPS 

In this condition, there are 5 commands: 

the 
the 

* When Im or ill is p r essed, the next record will be 
displayed. 

* When lb] or [fJ is pressed , the previous record will 
be displayed. 

* When 00 or IF1 I is pressed, the mode will chang-e to 
the screen edit mode. 

* When IBJ or IF2I is pressed, t he record number can be 
designated. 

*When [Q]or IF4 / is pressed, the condition will return 
to DISKEDIT command stand-by. 

For the Im and lb] commands, the command is executed 
when the key is pressed; for the [fil and [ID commands 
however, the operation continues after the commend; 
the following is an explanation of the [fil and [ID 
commands. 

47 



Extension of 
MZ-800 P-CP/M 

DISKEDIT Command 

(7-1) E command (screen edit mode) 

Then: 

When [ID is pressed during the file record display 
change mode, the mode changes to the screen edit 
mode. 
Record data is displayed in hexadecimal and 
characters, and editing can then be performed. 

EDIT: B/forward B/backward []/up [IJ/down IINSTl/hex 
!DELI/char IEscl/exit: 

Edi ting is by the screen-edit format, and cursor 
movement is controled by using the following control 
keys. 
The editor is a screen editor, controlled using the 
keys below. 

B Moves the cursor to the right 

B Moves the cursor to the left 

[] Moves the cursor upward 

[IJ Moves the cursor downward 

lsHIFTI +B Hexadecimal input mode 

!sHIFTI +B Character input mode 

When data is changed, both displays change, no 
matter whether the editing is done in the character 
or hexadecimal fields. 
Note that data is two digits if hexadecimal, and one 
character if the input is character input. 
When editing is finished, press the IEsc l key. 
Then you will be asked what you want to do with the 
finalized data. 

End of edit: IINSTl/Write !DELI/Return to edit IEscl/Quit: 

If~ is pressed, the amended data will be written to 
disk and the mode will return to the screen edit 
mode. 
If [fil is pressed, the mode will return to the screen 
edit mode. 
If [Q] is pressed, the mode will return to the block 
record data display change mode, but the record data 
will not be written to disk. 

48 



Extension of 
MZ-800 P-CP/M 

DISKEDIT Command 

(7-2) R command (to designate random record) 

When IBJ or IF2/ is pressed during thE~ file record 
display change mode, it is possible to designate a 
random record for editing. 

Record number: 

49 



Extension of DISKEDIT Command 
MZ-800 P-CP/M 

(8) Sector display change mode 

When data designation by the DIR command or the 
SECTOR command is completed, the mode changes to the 
sector display cha~ge mode. 

D I s K - E D I T u t i l it y fo r MZ - 800 P-CP/M [ V l . QA] (C)S HARP Corpo r ation 

Ta r get disk Sector/ t rack : 32 Disk s i ze: 3 12 kbytes 
A: 2DMZ800 I Di rect o ry max : 64 entries Block s i ze: 2048 byt es 

SECTOR: /Nex t /Las t E/ dit R/ andom ~/ Quit 

Drive : A Track : l Sector : 0 
00 0 l 02 03 04 05 06 07 .as 09 OA OB oc OD OE OF 

0000 00 50 43 50 4D 20 20 20 20 53 D9 53 00 00 00 70 • PCPM .. . • SYS ... p 
0010 0 1 02 03 04 05 06 07 00 00 00 00 00 00 00 00 00 . ... .. . . . .. .... . 
0020 00 50 49 50 20 20 20 20 20 43 4F 4D 00 00 00 3A .PIP .. . .. COM . .. : 
0030 00 09 QA OB 08 00 00 00 00 00 00 00 00 00 00 00 .... . ..... . ... .. 
0040 00 4 1 53 4D 20 20 20 20 20 43 4F 4D 00 00 00 40 . ASM ..... CO~!. . . @ 
0050 oc OD OE OF 00 00 00 00 00 00 00 00 00 00 00 00 .. . ... ... .... . .. 
0060 00 45 44 20 20 20 20 20 20 43 4F 4D 00 00 00 34 . ED .. . . .. COM ... 4 
0070 10 l l 12 l 3 00 00 00 00 00 00 00 00 00 00 00 00 .... .......... .. 

I E D I T I I RANDOM 1 ~--~ Q U I T I 00: 1 1 : 22 I CAPS 

In this mode, there are 4 commands: 

SECTOR: [I]/Next []]/Last E/dit R/andom IEsclQ/uit: 

* When !RI or rn is pressed I the next sector will be 
displayed. 

* When cg or rn is pressed I the previous sector will 
be displayed. 

* When [ID or IF1I is pressed, the mode will change to 
the screen edit mode. 

*When [Q]or /F41 is pressed, the MZ-800 will return to 
DISKEDIT command stand-by. 

The operation of these commands is 
as for the block record display 
please refer to that section. 

50 

exactly the same 
change mode, so 



Extension of 
MZ-800 P-CP/M 

DISKDEF Command 

DISKDEF Conunand 

Syntax: DISKDEF 

Explanation: The DISKDEF command enables the MZ-800 to read disks 
with formats other t han that of t he MZ-800 P-CP/M. 

Example: A CP/M disk for the MZ-3500 in drive B may be read 
as follows. 
The DISKDEF util i ty is started by typing 

A> DISKDEF 

The following screen is then displayed. 

D I S K D E F MZ - 800 P- CP/M DI SK DEF I NE UTILITY Ver l . OA (C) SHARP Cor p. 

Dri ve CP / M fo r mat 

A: 2DMZ800 

B: 2DMZ800 l DI BMPC 2DIBMPC 2DMZ80B 2DMZ 3 500 2DMZ5500 

Use Arr ow key to selec t a nd CR o r ESC key to e x i t 

IDI !U I loIR B:.t I lrYPE I !RE N 11 < NEXT> I I 12 : 34 : 56 I CAPS 

Here, lD indicates single-sided, double-density 
disks and 2D indicates double-sided, double-density 
disks. 
Disks which may be read are as shown above. 
Drive A must be the P-CP/M format of the MZ-800; it 
can not be used in any other format video . 
The CP/M format now set is displayed in reverse 
video. 
When the CP/M disk format used is changed, the 
cursor is moved to the name of the format required. 

51 



Extension of 
MZ-800 P-CP/M 

TIME Command 

TIME Command 

Syntax: TIME 

Explanation: The TIME command is used to check or set the time. 

Example: A > TIME 
Current time is 01:49:57 
Enter new time: 

To set the time, the format for specification of 
the time is as follows; 

HH:MM:SS (Hour:.Minutes:Second) 

Minutes and seconds can be omitted; when omitted, 
the time in set to 00 minutes 00 seconds. 
If you enter CR only, the time will not be changed. 

If the time is not correctly specified, the 
following message will be displayed. 

Enter new time:666666 
Invalid time 

Enter new time: 

52 



Extension of 
MZ-800 P-CP/M 

FILES Command 

Syntax: 

Explanation: 

Examples: 

FILES Command 

FILES {filespec} 

This displays the names and size of files satisfying 
the specified filespec, then displays the number of 
such files, the amount of disk space used, and the 
amount of free disk space. The FILES command differs 
from the DIR command in that files are displayed in 
alphabetical order, ar.d that the number of bytes 
used is displayed. 

A> FILES B: 
Directory of di s k B: 

ASM COM 8k :DISKED IT COM I Ok :EJECT COM 2k :SETUP COM I Ok 
COPYDISK COM 4k :DUMP ASM 4k :F I LES CO M 2k :STAT COM 6k 
COPY SYS COM 2k :DUMP COM 2k :FORMAT COM 2k :TIME COM 4k 
DDT COM 6k :DUMP HEX 2k :LOAD COM 2k 
DEL COM 2 k :DUMP PRN 8k :PCPM SYS 16k 
DISKDEF COM 6k :ED COM Bk :P IP COM Bk 

Us e d: 21File(s) 
' l 16Kbyt e s Free: 43Directo.-y spa ce ' 

196 K byt es 

(Example ) 

* The number of the total bytes used is always 
displayed even if the type of files is limited. 

53 



Extension of 
MZ-800 P-CP/M 

DEL Command 

DEL Command 

Syntax: DEL {filespec} 

Explanation: This command deletes files in the same manner as the 
ER.A command (see the P-CP/M user's guide); however, 
it differs in that it always requests confirmation 
before actually deleting the specified file. 
When this is executed, the file specification for 
each applicable file is displayed on the CRT screen 
to request confirmation that it is to be deleted. 
If a file is to be deleted, press the Y key; if it 
is not to be deleted, press the space bar. After 
this has been done for all applicable files, the DEL 
program displays the final request for confirmation. 
At this time, pressing Y causes all specified files 
to be deleted from the disk. 

Examples: A> DEL B: SAMPLE.* 

B:SAMPLE.COM? Y 
B:SAMPLE.TXT? 
B:SAMPLE.LIB? Y 
B:SAMPLE.BSD? 
B:SAMPLE.BTX? Y 
******** Are you sure? (Y/N) :Y 

The example above results in deletion of SAMPLE.LIB 
and SAMPLE.BTX from the disk in drive B:. 

54 



Extension of 
MZ-800 P-CP/M 

EJECT Conunand 

Syntax: 

EJECT Command 

EJECT 

Explanation: This cowmand outputs a form feed code (OCH) to the 
printer or other LIST device. 

Examples: A> EJECT 

55 



11. MEMORY DISK 

The memory disk function enables the use of the RAM FILE 
(MZ-1Rl8, optional) in the same manner as a floppy disk. 
The memory disk is accessed as logical drive "E:." 
Since access to memory does not involve any of the waiting 
which is involved in access to a disk drive, using the memory 
disk enables much faster file access. 

Before the memory disk can be used, the file to be processed 
must be transferred to drive E: from a real disk. 

A> PIP E:=A:TEST. * 

Data must also be transferred from the memory disk to a real 
disk after processing has been completed. 

A> PIP A:=E:TEST. * 

If the RAM FILE is not connected, the following message will be 
displayed. 

CP/M Error On E: Invalid drive 

NOTE: 
When using the memory disk, remember that all data in the RAM 
is lost when the power is switched OFF. 

56 



12. SPECIAL KEYS 

Key Function 

ITABI Tab key 
This key moves the cursor in units of 8 
characters. 

I SHIFT I Shift key 
If the jSHIFTj key is pressed when CAPS is displayed 
in reverse video, lower-case letters are entered. 
If the jSHIFTj key is pressed when CAPS is displayed 
normally, upper-case letters are entered. 

I ALPHA I Functions as the jcAPS LOCKI key. 
It functions as a toggle key: when pressed once, 
it displays CAPS is reverse video and enters 
upper-case letters; when pressed again, it cancels 
the reverse mode of CAPS and enters lower-case 
letters. 

JCTRLj Control key 
When pressed together with other keys, this key 
inputs ASCII control codes or CRT control codes 
from the keyboard. 

I GRAPH I jGRAPHj key 
Inputs an escape code (lBH) • 

~ Same as GRAPH key. 
c Inputs an escape code ( lBH) • 

Inputs CTRL-C (code 03H) when the jSHIFTj key is 
depressed. 

IINSTI Insert key 
Inputs CTRL-R (code l 2H) • 

jDELj Delete key 
Same as the cursor left-key. 

57 



Extension of 
MZ-800 P-CP/M 

Key 

lsHIFTI + IINSTI 

lsHIFT I + !DELI 

ill 

rn 

B 

g 

D 

Special Keys 

Function 

Cleu.r screen 
Inputs CTRL-Z (code lAH). 

Cursor home 
Inputs CTRL- ill (code lEH). 

Cursor-up key 
Inputs CTRL-K. 
The cursor does not move during the input of 
commands.) 

Cursor-down key 
Inputs CTRL-J. 

Cursor-right key 
Inputs CTRL-L. 
(The cursor does not move during the input of 
commands.) 

Cursor-Left key 
Inputs CTRL-H (backspace key). 

Blank key 
Same as backspace key. 

58 





Personal CP /M TM 

8-Bit Operating System 

User's Guide 



COPYRIGHT 

Copyright © 1984 by Digital Research Inc. All rights reserved. No 
part of this publication may be reproduced, transmitted, 
transcribed, stored in a retrieval system, or translated into any 
language or computer langua~e, in any form or by any means, 
electronic, mechanical, magnetic, optical, chemical, manual or 
otherwise, without the prior written permission of Digital Research 
Inc., Post Office Box 579, Pacific Grove, California, 93950. 

DISCLAIMER 

Digital Research Inc. makes no representations or warranties with 
respect to the contents hereof and specifically disclaims any 
implied warranties of merchantability or fitness for any particular 
purpose. Further, Digital Research Inc. reserves the right to 
revise this publication and to make changes from time to time in the 
content hereof without obligation of Digital Research Inc. to notify 
any person of such revision or changes. 

NOTICE TO USER 

From time to time changes are made in the file names and in the 
files actually included with the distribution disk. This manual 
should not be construed as a representation or warranty that such 
files or facilities exist on the distribution disk or as part of the 
materials and programs distributed. Most distribution disks include 
a "READ.ME" file, which explains variations from the manual and 
which do constitute modification of the manual and the items 
included therewith. Be sure to read that file before using the 
software. 

TRADEMARKS 

CBASIC, CP/M, and Digital Research and its logo are registered 
trademarks of Digital Research Inc. ASM, DDT, DESPOOL, LINK-80, 
MAC, Pas·cal/MT+, Personal CP/M, PL/I-80, RMAC, TEX, and ZSID are 
trademarks of Digital Research Inc. Z80 is a registered trademark 
of Zilog, Inc. Intel is a registered trademark of Intel 
Corporation. 



Foreword 

Welcome to the world of microcomputers opened to you by your eight­
bi t microprocessor. Welcome also to the world of application 
software accessible with your Digital Research Personal 
CP/M™ operating system. Digital Research designed Personal CP/M 
especially for the Z80® or equivalent microprocessor that is the 
heart of your computer. 

What Personal CP/M Does For You 

Personal CP/M manages and supervises your computer's resources, 
including memory and disk storage, the console (screen and 
keyboard), printer, and communications devices. It also manages 
information stored magnetically on disks by grouping this 
information into files of programs or data. Personal CP/M can copy 
files from a disk to your computer's memory, or to a peripheral 
device such as a printer. To do this, Personal CP/M places various 
programs in memory and executes them in response to commands you 
enter at your console. 

Once in memory, a program executes through a set of steps that 
instruct your computer to perform a certain task. You can µse 
Personal CP/M to create your own programs, or you can choose from 
the wide variety of Personal CP/M application programs that 
entertain you, educate you, and help you solve commercial and 
scientific problems. 

Distribution of Personal CP/M 

Your Personal CP/M operating system can be contained in ROM (fixed 
in your system or on a plug-in capsule), or it can be contained on 
floppy disk. This depends entirely on how the manufacturer of your 
computer has decided to deliver it. To find out how your Personal 
CP/M has been delivered to you, read the instructions supplied by 
the manufacturer of your computer. 

iii 



How This Guide Is Organized 

This guide begins with simple examples, proceeds with basic 
concepts, then presents a detailed reference section on commands. 
The first four sections describe Personal CP/M operation for the 
first-time user. Section 1 introduces Personal CP/M and tells you 
how to start the opera ting system, enter commands and edit the 
conunand line. Section 2 explains files, disks, and drives. Section 
3 describes how Personal CP/M manages your printer and console. 
Sect ion 4 develops the concepts you need to use Personal CP/M 
commands. If you are new to CP/M, read the first four sections 
carefully for a general understanding of how to use Personal CP/M 
before you go on to the specific command descriptions. 

Section 5 provides detailed information on each Personal CP/M 
utility program, arranged alphabetically. You will not use many of 
these programming utilities until you start writing your own 
Personal CP/M programs. Section 6 tells you how to use ED, the 
Personal CP/M file editor. With ED, you can create and edit program 
source codes, text, and some data files. 

Section 7 discusses ASM operation and the various assembler 
options which may be enabled when invoking ASM. 

Section 8 discusses the DDT program, which allows the user to test 
and debug programs interactively in the CP/M environment. Section 
8 includes a DDT sample debugging session. 

Appendix A lists Personal CP/M error messages and describes 
corrective action where necessary. Appendix B provides an. ASCII to 
hexadecimal conversion table. Appendix C lists the filetypes 
associated with Personal CP/M. Appendix D lists and defines the 
Personal CP/M control characters. This guide concludes with a 
glossary of commonly used computer terms. 

If you are new to computers, you might find some of the topics, such 
as the programming utilities, difficult to understand at first. 
Learning to use your computer is a challenge, and we hope you will 
find it fun. This book proceedc step by step so you can quickly 
proceed from setting up your system to mastering Personal CP/M's 
powerful facilities. 

iv 



Table of Contents 

1 Introduction to Personal CP/M 

How to Start Personal CP/M . . . . . . . . . . . . . 
The Command Line • • • 

Why You Should Back Up Your Fi le.s 

2 Fi1es, Disks, and Drives 

What is a File ..••• 

How Are Files Created 

How Are Files Named? •• . . . . . . . . . . . . . . . . 
Do You Have the Correct Drive? . 

Do You have the Correct User Number? 

Accessing More Than One File . 

How to Protect Your Files 

How Are Files Stored on a Disk? 

Changing Floppy Disks 

Protecting a Drive •. 

3 Console and Printer 

Controlling Console Output . 

Controlling Printer Output . 

Console Line Editing 

4 Personal CP/M CoJllllalld Concepts 

T~o Kinds of Commands 

Built-in Commands • • • • • 
Transient Program Commands 

v 

1-1 

1-2 

1-4 

2-1 

2-1 

2-2 

2-3 

2-4 

2-4 

2-6 

2-6 

2-7 

2-7 

3-1 

3-1 

3-1 

4-1 

4-1 
4-3 



Table of Contents 
(continued) 

How Personal CP/M Searches for Files . 

Finding Data Files 
Finding Program Files . 

Executing Multiple Commands 

Terminating Programs 

5 Command Summary 

Let's Get Past the Formalities . 

How Commands Are Described . 

DIR Command 

ED Command . 

ERA Command 

PIP Command 

REN Command 

SAVE Command . . 

STAT Command . 

SUBMIT Command 

TYPE Command . 

USER Command • . . 

LOAD Command . . 

6 ED, The Personal CP/M Context Editor 

Introduction to ED 

Starting ED 

ED Operation 

Appending Text into the Buff er . . . 
ED Exit . . . . • . • . • • • · 

vi 

4-3 

4-4 
4-4 

4-5 

4-5 

5-1 

5-3 

5-7 

5-8 

5-10 

5-11 

5-20 

5-21 

5-22 

5-28 

5-31 

5-32 

5-33 

6-1 

6-1 

6-2 

6-4 
6-5 



Table of Contents 
(continued) 

Basic Editing Commands ••.••• 

Moving the Character Pointer • • . • • • • 
Displaying Memory Buffer Contents • • • . . . • . • 
Deleting Characters • • • • • • • ••• 
Inserting Characters into the Memory Buffer . • • • 
Replacing Characters • • • • • . . • • 

Combining ED Commands 

Moving the Character Pointer . . • • . . • 
Displaying Text • • • • . • • • . . . . 
Editing . • • • • • •. 

Advanced ED Commands • 

Moving the CP and Displaying Text • • • . • . . . • 
Finding and Replacing Character Strings ..•••• 
Moving Text Blocks • • • • • • • • 
Saving or Abandoning Changes: ED Exit 

ED Error Messages 

7 CP/M Assembler 

Introduction • 

Program Format • 

Forming the Operand 

Labels 
Numeric Constants . . . . . . . 
Reserved Words . • . . . . . . . . . . . . . . . . 
String Constants . . . . . . 
Arithmetic and Logical Operators ..• 
Precedence of Operators . . . . . . . . . . • . 

Assembler Directives . • 

The ORG Directive . . . . . . . . . . . 
The END Directive . . . . . . . . . . . 
The EQU Directive . . . . . . . . . . . . . 
The SET Directive . . . . . . . 
The IF and END IF Directives . . . . . . . . 
The DB Directive . . . . . . . . . . . . . 
The DW Directive . . . . . . . . . . . . . . . 
The DS Directive . . . . . . . . . 

vii 

. . 

. . 

6-6 

6-8 
6-10 
6-10 
6-12 
6-14 

6-14 

6-15 
6-15 
6-16 

6-16 

6-17 
6-18 
6-22 
6-23 

6-25 

7-1 

7-2 

7-3 

7-4 
7-4 
7-4 
7-5 
7-6 
7-6 

7-7 

7-8 
7-8 
7-9 
7-9 

7-10 
7-11 
7-11 
7-11 



Operation Codes 

Jumps, Calls, and Returns . . ........ . 
Immediate Operand Instructions . . . . . • . . . . 
Increment and Decrement Instructions . . . 
Data Movement Instructions . . . . . . . . . • . . 
Arithmetic Logic Unit Operations .••.•.. 
Control Instructions . . . . • . • . . 

Error Massages . • 
A Sample Session 

8 CP/M Dynamic Debugging Tool 

Introduction . 

DDT Commands . 

The A 
The D 
The F 
The G 
The I 
The L 
The M 
The R 
The s 
The T 
The u 
The x 

(Assembly) Command 
(Display) Command . . . . . . . 
(Fill) Command . . . . . . . . . . . 
(Go) Command . . . . • • . . . . . . . . 
(Input) Command . . . . . . . 
(List) Command . . . . . . . . . . . . • . . 
(Move) Command . . . . • . . . . . . . . . . 
(Read) Command . . . . . . . • . . . 
(Set) Command . . . . . . . • . . . . . . 
(Trace) Command . . . . . . . . . . • • . 
(Untrace) Command . . . . . . . . . . . . . . 
(Examine) Command . . . . . . . 

Implementation Notes . 

An Example • • 

Appendixes 

7-12 

7-12 
7-13 
7-14 
7-14 
7-15 
7-16 

7-16 
7-17 

8-1 

8-1 

8-3 

8-3 
8-4 
8-4 
8-4 
8-5 
8-6 
8-6 
8-6 
8-7 
8-7 
8-8 
8-8 

8-9 

8-10 

A Persona1 CP/M Messages . . . . . . . . . . . . . . . . . A-1 

B ASCII and Hexadecima1 Conversions B-1 

C Fi 1etypes . . . . . . . . . . . . . . . . . . . . . . . C-1 

D Persona1 CP/M Contro1 Character Summary D-1 

viii 



Tables 

3-1. 

4-1. 
4-2. 

5-1. 
5-2. 
5-3. 
5-4. 

6-1. 
6-2. 
6-3. 
6-4. 
6-5. 

Table and Figures 

Personal CP/M Control Characters 

Built-in Commands . • . • • 
Transient Program Commands 

3-3 

4-2 
4-3 

Personal CP/M Filetypes ••.•. 5-2 
5-4 Syntax Notation • . • • • •. 

Personal CP/M Character Devices 
Valid Pip Parameters • • • 

• • • . • 5-13 
• • 5-16 

Text Trans fer Commands . • . • • . . • • • • 6-4 
Basic Editing Commands . . • • • • • • • • • • • 6-7 
Personal CP/M Line-editing Controls ••••••• 6-13 
ED Error Symbols • • • • • • • • • • • • • • 6-25 
ED Disk File Error Messages •• 6-26 

A-1. Personal CP/M Error Messages A-1 

B-1. 
B-2. 

ASCII Symbols • • . . . . 
ASCII Conversion Table . . • . 

C-1. Common Filetypes 

D-1. Personal CP/M Control Characters 

Figure 

6-1. Overall ED Operation 

ix 

B-1 
B-2 

C-1 

D-1 

6-3 





Section 1 
Introduction to Personal CP /M 

This section tells you how to start Personal CP/M. 
conunand line and tells you how to edit it: also, 
you should back up your files. 

HOW TO START Personal CP/M 

It describes the 
it tells you why 

If your computer's manufacturer has built Personal CP/M into your 
system, when you turn on your computer, Personal CP/M starts 
immediately. If your computer's manufacturer did not build Personal 
CP/M into the system, you must start Personal CP/M from your system 
disk, ROM, or cartridge--or from the device or media on which your 
computer manufacturer delivered Personal CP/M. 

Starting or loading Personal CP/M means reading Personal CP/M from 
the device or media supplied with your computer into your .computer's 
ma in memory. 

In the following discussion it is assumed that Personal CP/M is 
supplied to you on disk. Consult the manual for your specific 
computer to determine the exact form in which Personal CP/M has been 
supplied to you. 

First, check that your computer's power is on. Next, insert the 
Personal CP/M system disk into your initial drive. In this section, 
assume that the initial drive is A and the disk is removable. Close 
the drive door. Then restart your system. (In many cases this means 
pressing the RESET or RESTART button. But consult the manual for 
your computer to be sure. Your manual might also refer to 
restarting as resetting, cold booting, cold starting, or simply 
loading the system.) This automatically loads Personal CP/M into 
memory. 

After Personal CP/M is loaded into memory, a message similar to 
the following is displayed on your screen: 

P-CP/M80 for SHARP MZ-800 

Copyright (C) 1984 Digital Research Inc. I SHARP Corporation 

Note: Visual CP/M is a visually oriented version of Personal CP/M 
that prompts for commands and parameters--much as menu-driven­
programs prompt for names of programs and data to be entered. If 
Visual CCP automatically loads with your system, the screen 
fo~mats and the manner of entering command lines are different. 

1-1 



Personal CP/M User's Guide How to Star t Personal CP/M 

The version number, represented by V.V, identifies the version of 
Personal CP/M that you own. After this display, the following two­
character message appears on your screen: 

A> 

This is the Personal CP/M system prompt. The system prompt tells 
you that Personal CP/M is ready to read a command from your 
keyboard. In this example, the prompt also tells you that drive A 
is your default drive. This means that until you te l l Personal CP/M 
to do otherwise, it looks for program and data files on the disk in 
drive A. Also, the absence of a user number tells you that you are 
logged in as user O. 

THE COMMAND LINE 

Personal CP/M performs tasks according to commands you type at your 
keyboard. A Personal CP/M command line is composed of a command 
keyword, an optional command tail, and a carriage return keystroke. 
The command keyword identifies a command (program} to execute. The 
command tail can contain extra information for the command, such as 
a filename or parameters. To end the command line, press the 
carriage return or ENTER key. The following example shows a command 
line entered by a user. 

A>DIR MYFILE 

In this manual, the characters you type are shown in boldface to 
distinguish them from characters the system displays. In this 
example, DIR is the command keyword, and MYFILE is the command tail. 
The carriage return keystroke does not appear on t h e screen or in 
the example. You must remember to press the carriage return key to 
send a command line to Personal CP/M for processing. Note that the 
carriage return key might be marked ENTER, RETURN, CR, or something 
similar on your keyboard. In this guide, RETURN signifies the 
carriage return key~ 

As you type characters at the keyboard, they appear on your screen. 
The single-character position indicator, called the cursor, moves to 
the right as you type characters. If you make a typing error, press 
the BACKSPACE key (if your keyboard has one) or CTRL-H to move the 
cursor to the le ft and correct the error. CTRL is the abbreviation 
for the Control key. To type a control character , hold down the 
Control key and press the required letter key. For example, to move 
the cursor to the left, hold down CTRL and press the H key. 

You can type the keyword and command tail in any combination of 
uppercase and lowercase letters. Personal CP/M treats all letters 
in the command line as uppercase. 

You type a command line directly after the system prompt. However, 
Personal CP/M does allow spaces between the prompt and the command 
keyword. 

1-2 



Personal CP/M User's Guide The Command Line 

Personal CP/M recognizes two types of commands: built-in commands 
and transient utility commands. Built-in commands execute programs 
that reside in memory as part of the Personal CP/M operating system. 
CP/M executes built-in commands immediately. Transient utility 
commands are stored on disk as program files. They must be loaded 
from disk to perform their task. You can recognize transient 
utility program files when a directory is displayed on the screen 
because their filenames are followed by COM. Section 4 includes 
lists of the Personal CP/M built-in and transient program commands. 

For transient programs, Personal CP/M checks only the command 
keyword. If you include a command tail, Personal CP/M passes it to 
the utility without checking it because many utilities require 
unique command tails. A command tail cannot contain more than 128 
characters. Personal CP/M cannot read either the command keyword or 
the command tail until you press the RETURN key. 

The following command demonstrates how Personal CP/M reads command 
lines. The DIR (Directory) command tells Personal CP/M to display a 
directory of disk files on your screen. Type DIR after the system 
prompt, omit the command tail, and press RETURN. 

A>DIR 

Personal CP/M responds to this command by writing the names of all 
the files stored on the disk in drive A (with the exception SYS 
(System} files, which are explained later on). For example, if you 
have your Personal CP/M system disk in drive A, these filenames, 
among others, appear on your screen: 

PIP COM 
Sl'AT COM 

Personal CP/M recognizes only correctly spelled command keywords. 
If you make a typing error and press RETURN before correcting your 
mistake, Personal CP/M echoes the command line followed by a 
question mark. If you type the DIR command incorr·ectly, as in the 
following example, Personal CP/M responds 

A>DJR 
DJR? 

to tell you that it cannot find the command keyword. To correct 
simple typing errors, use the BACKSPACE key, or hold down the CTRL 
key and press H to move the cursor to the left. Personal CP/M 
supports other control characters that help you efficiently edit 
command lines. Section 3 tells how to use control characters to 
edit command lines and other information you enter at your console. 

DIR accepts a filename as a command tail. You can use DIR with a 
filename to see if a specific file is on the disk. For example, to 
check that the transient utility program STAT.COM is on your system 
disk, type 

A>DIR STAT. COM 

1-3 



Personal CP/M User's Guide The Command Line 

Personal CP/M performs this task by displaying the name of the file 
you specified, or the message, No File. 

Be sure you type at least one space after DIR to separate the 
command keyword from the command tail. If you do not , Personal CP/M 
responds as follows: 

A>DIRSTAT.COM 
DIRSTAT.COM? 

WHY YOU SHOULD BACK UP YOUR FILES 

Humans make mistakes, and so do computers. Human or computer errors 
sometimes destroy valuable programs or data files . By typing a 
command incorrectly, for example, you can accidentally erase a 
program that you just created or a data file that has been months in 
the making. A similar disaster can result from an electronic 
component failure. 

Data processing professionals avoid losing programs and data by 
copying (backing up) valuable files. Always make a working copy of 
any new program you purchase and save the·or i ginal. If the program 
is accidentally erased from the working copy, you can easily restore 
it from the original. 

It is also wise to make frequent copies of new programs or data 
files as you develop them. The frequency of making copies varies 
with each programmer. However, as a general rule, make a copy 
whenever it takes 10 to 20 times longer to reenter the information 
than it takes to make the copy. 

So far we have not discussed commands that change recorded 
information on disks or other media. Before we do, if you received 
Personal CP/M on a disk, make a copy of it. To make a copy of a 
disk, follow the instructions provided by the manufacturer of your 
computer. If your system includes one or more disk drives, disk 
formatting and copy programs are included along with instructions on 
how to run them. 

End of Section 1 

1-4 



Section 2 
Files, Disks, and Drives 

Your system might con ta in mass storage devices other than disks. It 
can contain bubble, RAM, or ROM memory supplied on fixed boards in 
the system or in plug-in capsules. If you can access the data on 
such a device in the same way you can access that data on a disk 
(that is, in groups of data, often called "blocks"), then the device 
is said to be a disk-like device. In the following discussion, you 
can substitute "disk-like device" wherever the word "disk" occurs. 

Personal CP/M's most important task is to access and maintain files 
on your disks (or disk-like devices). With Personal CP/M you can 
create, read, write, copy, and erase files. This section tells you 
what a file is, how to create, name, and access a file, and how 
files are stored on your disks. It also explains how to change 
disks and change the default drive. 

Although this section describes how files are stored on disks, you 
can apply the principles to files stored on any disk-like device. 

WHAT IS A FILE? 

A Personal CP/M file is a collection of related information stored 
on a disk. Every file must have a unique name because Personal CP/M 
accesses files by name. A directory is also stored on each disk. 
The directory contains a list of the filenames stored on the disk 
and the locations of each file on the disk. 

Basically, there are two kinds of files: program (command) files and 
data files. A program file contains an executable program--a series 
of instructions that the computer follows step by step. A data file 
is usually a collection of information: a list of names and 
addresses, the inventory of a store, the accounting records of a 
business, the text of a document, or similar related information. 
For example, your computer cannot execute names and addresses, but 
it can execute a program that prints names and addresses on mailing 
labels. 

A data file can also contain the source code for a program. A 
program source file must be processed by an assembler or compiler 
before it becomes a program file. In most cases, an executing 
program processes a data file. However, some executing programs can 
process a program file. For example, the copy program PIP can copy 
one or more program files. 

HOW ARE FILES CREATED? 

There are many ways to create a file. One way is to use a text 
editor. The Personal CP/M text editor ED (described in Section 6) 

2-1 



Personal CP/M User·s Guide How Are .l''1les createa·1 

can create a file and assign it the name you specify. You can also 
create a file by copying an existing file to a new location, perhaps 
renaming it in the process. Under Personal CP/M, you can use the 
PIP command to copy and rename files. Finally, some programs such 
as ASM create output files as they process input files. 

HOW ARE FILES NAMED? 

Personal CP/M identifies every file by its unique file 
specification. A file specification can be a one- to eight­
character filename, such as the following: 

MYFILE 

A file specification can have three parts: a drive specifier, a 
filename, and a filetype. 

The drive specifier is a single letter (A-P) followed by a colon. 
Each drive in your system is assigned a letter. When you include a 
drive specifier as part of the file specification, you are telling 
Personal CP/M that the file is stored on the disk currently in that 
drive. For example, if you enter 

B:MYFILE 

Personal CP/M looks in drive B for the file MYFILE. 

When you make up a filename, try to use a name that tells you 
something about the file's contents. For example, you might name a 
file containing a list of customer names for your business 

CUSTOMER 

As you begin to use your computer with Personal CP/M, your files 
will fall naturally into categories. To help you identify files 
belonging to the same category, Personal CP/M allows you to add an 
optional one- to three-character extension, called a filetype, to 
the filename. When you add a filetype to the filename, separate the 
filetype from the filename with a period. Use three letters that 
indicate the file's categor y. For example, you might add the 
following filetype to the file that contains a list of customer 
names: 

CUSTOMER. NAM 

When Personal CP/M displays file specifications in response to a DIR 
command, it adds blanks to short filenames so you can compare 
filetypes quickly. The program files Personal CP/M loads into 
memory from a disk have d i fferent filenames, but all have the 
f iletype COM. 

2-2 



Personal CP/M User's Guide How Are Files Named? 

Create filenames and f iletypes from letters and numbers. You must 
not use the following characters in f ilenarnes or filetypes because 
they have special meanings for Personal CP/M: 

< > • I : : = ? * [ J - % I ( ) I \ 

A complete file specification containing all possible elements 
consists of a drive specification, a primary filename, and a 
filetype, each separated by its appropriate delimiter, as in tr;e 
following example: 

A: DOCUMENT.LAW 

DO YOU HAVE THE CORRECT DRIVE? 

When you type a file specification in a command tail without a drive 
specifier, the program looks for the file in the drive named by the 
system prompt, called the default drive. For example, if you type 
the command 

A>DIR STAT.COM 

DIR looks in the directory of the disk in drive A for STAT.COM. If 
you have another drive, B, for example, you must tell Personal CP/M 
to access the disk in B instead. For this reason, Personal CP/M 
lets you precede a filename with a drive specifier. For example, in 
response to the command 

A>DIR B:MYFILE.LIB 

Personal CP/M looks for the file MYFILE.LIB in the directory of the 
disk in drive B. When you give a command to Personal CP/M, note 
which disk is in the default drive. Many application programs 
require that the data files they access be stored in the default 
drive. 

You can also precede a program filename with a drive specifier, even 
if you use the program filename as a command keyword. For example, 
if you type 

A>B:PIP 

Personal CP/M looks in the directory of the disk in drive B for the 
file PIP.Ca-1.. If Personal CP/M finds PIP on drive B, it loads PIP 
into memory and executes it. 

To access many files on the same drive, you might find it convenient 
to change the default drive so that you need not repeatedly enter a 
drive specifier. To change the default drive, enter the drive 
specifier next to the sy.stem prompt and press RETURN. In response, 
Personal CP/M changes the system prompt to display the new default 
drive: 

2-3 



Personal CP/M User's Guide Do You Have the Correct Drive? 

A>B: 
B> 

Unlike the filename and filetype, which are stored in the disk 
directory, the drive specifier for a file changes as you move the 
disk from one drive to another. So a file has a different file 
specification when you move a disk from one drive to another. 
Section 4 details how Personal CP/M locates program and data files. 

DO YOU HAVE THE CORRECT USER NUMBER? 

Personal CP/M further identifies all files by assigning each one a 
user number ranging from 0 to 15. Personal CP/M assigns the user 
number to a file when the file is created. User numbers allow you 
to separate your files into 16 file groups. 

When you use a Personal CP/M utility to create a file, the file is 
assigned the current user number unless you use PIP to copy the file 
to another user number. You can determine the current user number 
by looking at the system prompt. 

4A> 
A> 
2B> 

User number 4, drive A 
User number 0, drive A 
User number 2, drive B 

The user number always precedes the drive identifier. User 0, 
however, is the default user number and is not displayed in the 
prompt. 

You can use the built-in command USER to change the current user 
number. 

A>USER 3 
3A> 

Most commands can access only files that have the current user 
number. For example, if the current user number is 7, a DIR command 
displays only the files created under user number 7. 

ACCESSING MORE THAN ONE FILE 

Certain Personal CP/M built-in and transient utilities can select 
and process several files when special wildcard characters are 
included in the filename or filetype. A file specification 
containing wildcards is called an ambiguous f ilespec and can refer 
to more than one file because it gives Personal CP/M a pattern to 
match. Personal CP/M searches the disk directory and selects any 
file with a filename or filetype that matches the pattern. 

2-4 



Personal CP/M User's Guide Accessing Multiple Files 

The two wildcard characters are ?, which matches any single letter 
in the same position, and *, which matches any character at that 
position, and any other characters remaining in the filename or 
filetype. The following list presents the rules for using 
wildcards. 

• A ? matches any character in a name, including a space 
character. 

• An * must be the last, or only, character in the filename or 
file type. Personal CP/M internally replaces an * with ? 
characters to the end of the filename or filetype. 

• When the filename to match is shorter than eight characters, 
Personal CP/M treats the name as though it ends with spaces. 

• When the filetype to match is shorter than three characters, 
Personal CP/M treats the filetype as though it ends with 
spaces. 

s~ppose, for example; you have a disk that contains the following 
s ~x files: 

A.COM, AA.COM, AAA.COM, B.COM, A.ASM, and B.ASM 

The following wildcard specifications match all, or a portion of, 
these files: 

* * is treated as ????????.??? 

????????.??? matches all six names 

*.COM is treated as ????????.COM 

????????.COM matches the first four names 

?.COM matches A.COM and B.COM 

?.* is treated as ?.??? 

?.??? matches A.COM, B.COM, A.ASM, and B.ASM 

A?.COM matches A.COM and AA.COM 

A*.COM is treated as A???????.COM 

A???????.COM matches A.COM, AA.COM, and AAA.COM 

Remember, Personal CP/M uses wildcard patterns only when searching a 
disk directory, so wildcards are valid only in filenames and 
filetypes. You cannot use a wildcard character in a drive 

2-5 



Personal CP/M User's Guide Accessing Multiple Files 

specifier. Nor can you use a wildcard character as part of a 
filename or filetype when you create a file. 

BOW TO PROTECT YOUR FILES 

Under Personal CP/M you can organize your files into groups to 
protect them from accidental change. You can also specify how your 
files are displayed in response to a DIR command. Personal CP/M 
supports these features by assigning a user number and attributes to 
each file. 

All of this information is recorded in the disk directory. File 
attributes control how programs access files. When you create a 
file, Personal CP/M gives it two attributes. You can change the 
attributes with a STAT command. 

You can set the first attribute to DIR (Directory) or SYS (System). 
This attribute controls whether Personal CP/M displays the file's 
name in response to a DIR command. When you create a file, Personal 
CP/M automatically sets this attribute to DIR. You can display the 
name of a file marked with the DIR attribute with a DIR command. If 
you give a file the SYS attribute, the DIR command will not display 
the file name. 

Note: To display a SYS file, use the STAT command with the command 
tail *. *. The DIR command displays only the filenames created under 
the current user number. 

A file with the SYS attribute has a special advantage when it is 
created under user 0. When you give a file with user number 0 the 
SYS attribute, you can read and execute that file from any user 
number. This feature makes your commonly used programs available 
under any user number. 

The second file attribute can be set to either R/W (Read/Write) or 
R/O (Read/Only). If a file is marked R/O, attempting to write data 
to that file produces a Read/Only error message. Therefore, you can 
use the R/O attribute to protect important files. A file with the 
R/W attribute can be read, written to, or erased at any time, unless 
the disk is physically write-protected. 

BOW ARE FIL:ES STORED ON A DISK? 

Personal CP/M records the filename, file type, user number, and 
attributes of each file in a special area of the disk called the 
directory. The Personal CP/M directory also records the location of 
each file on the disk. 

2-6 



Personal CP/M User's Guide How Are Files Stored on a Disk? 

Personal CP/M allocates directory and storage space for a file as 
you add records to the file. When you erase a file, Personal CP/M 
reclaims storage in two ways: it makes the file's directory space 
available to catalog a different file, and it frees the file's 
storage space for later use. This dynamic allocation feature makes 
Personal CP/M powerful. You need not tell Personal CP/M how big 
your file will become, because Per~onal CP/M automatically allocates 
more storage for a file as needed, and releases the storage for 
reallocation when the file is erased. Use the STAT command to find 
out how much space remains on the disk. 

CHANGING FLOPPY DISKS 

Personal CP/M cannot do anything to a file unless the disk that 
holds the file is inserted into a drive and the drive is ready. 
When a disk is in a drive, it is online and Personal CP/M can access 
its directory and files. 

At some time, you must take a disk out of a drive and insert another 
that contains different files. You can replace an online disk 
whenever the system prompt appears on your console. The system 
prompt indicates that no program is reading or writing to the drive. 

You can also remove a disk and insert a new one when an application 
program prompts you to do so. This can occur, for example, when the 
data that the program uses does not fit on one floppy disk. 

Note: Never remove a disk while a program is reading or writing to 
it. 

You can change disks on the drive without sending any special 
signals to Personal CP/M. You can insert a different disk at a 
program's request and read files from or create files on the new 
disk. 

PROTECTDilG A DRIVE 

Under Personal CP/M, drives can be marked R/O (Read/Only) just as 
files can be given the R/O attribute. The default state of a drive 
is R/W (Read/Write). You can give a drive the R/O attribute by 
using the STAT command described in Section 5. To return the drive 
to R/W, use the STAT command or press CTRL-C to return to the system 
prompt. 

End of Section 2 

2-7 





Section 3 
Console and Printer 

This section describes how Personal CP/M communicates with your 
console and printer. It tells how to start and stop console and 
printer output, and how to edit commands you enter at your console. 

CONTROLLING CONSOLE OUTPUT 

Sometimes Personal CP/M displays information on your screen too 
quickly for you to read it. Sometimes an especially long display 
scrolls off the top of your screen before you have a chance to study 
it. To ask the system to wait while you read the display, hold down 
the Control (CTRL) key and press S. A CTRL-S keystroke causes the 
display to pause. When you are ready, press any other key to resume 
the display. 

CONTROLLING PRINTER OUTPUT 

You can also use a control command to echo console output to the 
printer. To start printer echo, press CTRL-P. To stop, press 
CTRL-P again. While printer echo is in effect, characters that 
appear on your screen are listed at your printer. 

You can use printer echo with a DIR command to make a list of files 
stored on a floppy disk. You can also use CTRL-P with CTRL-S to 
make a hard copy of part of a file. Use a TYPE command to start a 
display of the file at the console. When the display reaches the 
part you want to print, press CTRL-S to stop the display and CTRL-P 
to enable printer echo. Then press any key to resume the display 
and start printing. Use another CTRL-S/CTRL-P sequence to terminate 
printer echo. 

CONSOLE LINE EDITING 

You can correct simple typing errors with the BACKSPACE key. 
Personal CP/M also supports additional line-editing functions that 
you per form with control characters. You can use the control 
characters to edit command lines or input lines to most programs. 

Personal CP/M allows you to edit your command line using the 
characters listed in Table 3-1. To edit a command line in Personal 
CP/M, use control characters to delete characters left of the 
cursor, then replace them with new characters. 

In the following example command line, the command keyword PIP is 
incorrectly typed. (The underbar represents the cursor.) 

A>POP A:=B:*.* 

3-1 



Personal CP/M User's Guide Console Line Editing 

To rove the cursor to the letter O, hold down the CTRL key and press 
the letter H 11 times. CTRL-H deletes characters as it moves the 
cursor left, leaving the following command line: 

A>P 

Now type the correct letters and press RETURN, send i ng the command 
to Personal CP/M. 

A>PIP A:=B:*.• 

Table 3-1 describes Personal CP/M control characters. 

3-2 



Personal CP/M User's Guide Console Line Editing 

Table 3-1. Personal CP/M Control Claracters 

Character I 
CTRL-C 

CTRL-E 

CTRL-H 

CTRL-J 

CTRL-M 

CTRL-R 

CTRL-U 

CTRL-X 

RUBOUT 

Meaning 

Warm boot (restarts} the Personal CP/M 
opera ting system when typed at the beginning 
of a line. 

Forces a physical carriage return but does 
not send the command line to Per .sonal CP/M. 
Moves the cursor to the beginning of the 
next line without erasing your previous 
input. 

Deletes a character and moves the cursor 
left one character position. 

Sends the command 1 ine to Personal CP /M and 
returns the cursor to the left of the 
current line. Has the same ef feet as a 
RETURN or a CTRL-M. 

Sends the command 1 ine to Personal CP /M and 
returns the cursor to the left of the 
current line. Has the same effect as a 
RETURN or a CTRL-J. 

Places a # sign at the current cursor 
location, moves the cursor to the next line, 
and displays any partial command you typed 
so far. 

Discards all the characters in the command 
line (but leaves them displayed), places a 
# at the current cursor position, and moves 
the cursor to the next command line. 

Discards all the characters in the command 
line (actually removes them from display), 
and moves the cursor to the beginning of the 
current line. 

Deletes the last character typed and echoes 
it at the console. 

You probably noticed that some control characters have the same 
meaning. For example, the CTRL-J and CTRL-M keystrokes have the 
same effect as pressing the RETURN key; all three send the command 
line to Personal CP/M for processing. Also, CTRL-H has the same 
effect as pressing the BACKSPACE key. 

End of Section 3 

3-3 





Section 4 
Personal CP/M Command Concepts 

As explained in Section 1, a Personal CP/M command line consists of 
a command keyword, an optional command tail, and a carriage return 
keystroke. This section describes the two kinds of programs the 
command keyword can identify and tells how Personal CP/M searches 
for a program file on a disk. This section also explains how to 
execute multiple Personal CP/M commands and how to terminate 
programs and reset the disk system. 

TWO KINDS OF COMMANDS 

A command keyword identifies a program that resides in memory as 
part of Personal CP/M, or on a disk as a program file. Commands 
that identify programs in memory are called built-in commands. 
Conunands that identify program files on a disk are called transient 
commands. 

Personal CP/M has six built-in commands and eight transient program 
commands. You can add programs to your system by purchasing 
Personal CP/M-compatible application programs. If you are an 
experienced programmer, you can also write your own programs that 
operate with Personal CP/M. 

Built-in CoDlllililds 

Built-in commands are part of Personal CP/M. You can always use them 
regardless of which disk you have in which drive. Built-in commands 
reside in memory as a part of Personal CP/M and therefore execute 
more quickly than the transient programs. 

Section 5 explains in detail the built-in commands listed in Table 
4-1. 

4-1 



Personal CP/M User's Guide Two Kinds of Commands 

Command I 
DIR 

ERA 

REN 

SAVE 

TYPE 

USER 

Table 4-1. Built-in Commands 

Function 

Displays filenames of all files 
directory except those marked with 
attribute. 

in the 
the SYS 

Erases a filename from the disk directory and 
releases storage space occupied by the file. 

Renames a disk file. 

Stores a portion of main memory in a disk file. 

Displays contents of an ASCII (TEXT) file at 
your screen. 

Allows you to change to a different user 
number. 

4-2 



Personal CP/M User's Guide Two Kinds of Commands 

Transient Program Commands 

When you enter a command keyword that identifies a transient 
program, Personal CP/M loads the program file from the disk and 
passes it any filenames, data, or parameters you entered in the 
command tail. Section 5 provides the operating details for the 
Personal CP /M transient programs listed in Table 4-2. These 
utilities are used only by experienced programmers. 

Seven other transient programs are available: COPY, DUMP, RANDON, 
TERMINAL, ASM, LOAD, and DDT, COPY, DUMP, RANDOM, and TERMINAL are 
described in the Personal CP/M Programmer's Guide are included in 
this manual as sample programs supplied in source code only. If 
you assemble the source code, you can run these programs. ASM (the 
assembler program), LOAD (the loader), and DDT (the debugger) are 
described in this Manual. 

Command I 
ED 

PIP 

STAT 

SUBMIT 

XSUB 

Table 4-2. Transient Program Commands 

Action 

I.Qads and executes the CP/M text editor program; 
creates and alters character files. 

Loads and executes the Peripheral Interchange 
Program, which copies, combines, or transfers 
files. 

Displays statistical information including space 
in kilobytes occupied by a file; file 
attributes; disk status (Read/Only or 
Read/Write). Also allows you to set file 
attributes, and disk status. 

Executes a list of commands contained in a file. 

This additional utility program is used in 
conjunction with SUBMIT. XSUB extends the power 
of the SUBMIT facility to include line input to 
programs as well as to the console command 
processor. 

HOW Personal CP/M SEARCHES FOR FILES 

If Personal CP/M cannot find a program file you specified in a 
command line, Personal CP/M might not be looking on the drive on 

4-3 



Personal CP/M User's Guide How Personal CP/M Searches for Files 

which the file is stored. This section explains how Personal CP/M 
searches for program and data files. 

Finding Data Files 

When you enter a command line, Personal CP/M passes the command tail 
to the program identified by the command keyword. If the command 
tail contains a file specification, the program calls Personal CP/M 
to search for the data file. If Personal CP/M cannot find the data 
file, the program displays an error message at the console. 
Typically, this message is "File not found" or "No File," but the 
exact message depends on the program the command keyword identifies. 

If you do not include a drive specifier with the filename in a 
command tail, Personal CP/M searches the directory of the current 
user number on the default drive. If the file is not there, 
Personal CP/M looks for the file with the SYS attribute in the 
directory of user 0 on the default drive. If Personal CP/M finds 
the file under user 0, it allows the program Read/Only access to the 
file. For example, if you enter the following command line: 

3A>TYPE MYFILE.TXT 

Personal CP/M first searches the directory for user 3 on drive A. 
If it does not find MYFILE.TXT there, it searches the directory of 
user 0 on drive A for MYFILE.TXT marked with the SYS attribute. If 
the file is not in either directory, Personal CP/M returns control 
to TYPE, which then displays "No File." 

Some Personal CP/M utilities, such as PIP and DIR, restrict their 
file search to the current user number. Because Personal CP/M does 
not allow Read/Write access to SYS files, ERA and REN also restrict 
their search to the current user number. 

The search procedure is basically the same if you include a drive 
specifier with the filename. Personal CP/M first looks in the 
directory of the current user number on the specified drive. Then, 
if it does not find the file, it looks in the directory for user 0 
on the specified drive for the file with the SYS attribute. If 
Personal CP/M does not find t he data file after these two searches, 
it displays an error message. 

Finding Program Files 

If a command keyword identifies a transient program, Personal CP/M 
looks for that program file on the default or specified drive. It 
looks under the current user number, and then under user 0 for the 
same file marked with the SYS attribute. At any point in the search 
process, Personal CP/M stops the search if it finds the program 
file. Personal CP/M then loads the program into memory and executes 
it. When a program terminates, Personal CP/M displays the system 

4-4 



Personal CP/M User's Guide How Personal CP/M Searches for Files 

prompt and waits for your next command. However, if Personal CP/M 
does not find the command file, it repeats the command line followed 
by a question mark, and waits for your next command. 

When you include a drive specifier before the command keyword, you 
tell Personal CP/M to look on that drive for the program file. 
Personal CP/M then searches two locations: the directory for the 
current user on the specified drive, and then for user O on the 
specified drive, before it repeats the command line with a question 
mark. For example, if you enter 

4C>A:STAT SPACE 

Personal CP/M looks on drive A, user 4 and then user 0 for the file 
STAT.COM. 

EXECUTING MULTIPLE COMMANDS 

Personal CP/M can execute a sequence of commands. You can put a 
frequently needed sequence of commands into a disk file. Once you 
have stored the sequence in a disk file, you can execute the entire 
sequence with a single SUBMIT command. 

Store command sequences you execute frequently in a disk file. To 
create this file, use ED or another character file editor. The file 
must have a filetype of SUB, and each command in the file must start 
on a new line. For example, an UPDATE .SUB file might look like 
this: 

DIR A:*.COM 
ERA B:*.COM 
PIP B:=A:*.COM 

To execute this list, enter the following command: 

A>SUBMIT UPDATE 

The SUBMIT utility passes each command to Personal CP/M for 
sequential execution. While SUBMIT executes, the commands usually 
echo at the console. When one command completes, the system prompt 
reappears with the next command in the SUB file or else reappears by 
itself, when the SUB file is exhausted. SUBMIT then waits for your 
next command from the keyboard. 

The SUBMIT command is detailed in Section 5. 

TERMINATING PROGRAMS 

The two-keystroke command CTRL-C terminates program execution or 
resets the disk system. To enter a CTRL-C command, hold down the 
CTRL key and press C. 

4-5 



Personal CP/M User's Guide Terminating Programs 

Not all application programs that run under CP/M terminate with a 
CTRL-C. However, you can terminate most of the transient programs 
supplied with Personal CP/M immediately with a CTRL-C keystroke. If 
you want to terminate a program that is sending a display to the 
screen, you might have to press CTRL-S to halt the display before 
entering CTRL-C. 

CTRL-C also resets the disk system. This is called a warm boot or 
warm start. When you press CTRL-C and the cursor is at the system 
prompt, Personal CP/M logs out all the active drives, then logs in 
the default drive. The ac t ive drives are any drives you have 
accessed since the last cold or warm start. A STAT command displays 
the remaining space on all active drives. In the following example, 
STAT indicates that three drives are active. However, if you press 
CTRL-C immediately after this display and then enter another STAT 
command, only the space for t he default drive, A, is displayed. 

A> STAT 
A: R/W I 
B: R/O, 
c: R/O I 

A> ... C 
A>STAT 
A: R/W I 

Space: 
Space: 
Space: 

Space: 

9,488k 
2,454k 
l,665k 

9,488k 

End of Section 4 

4-6 



Section 5 
Command Summary 

This section describes the commands and programs supplied with your 
Personal CP/M operating system. The commands are listed 
alphabetically along with short explanations and examples. 

ED is described in greater detail in Section 6. ASM (the 
assembler), LOAD (the loader), and DDT (the debugger) are described 
in the CP/M Manual. Five other programs--BLTMEMO, COPY, DUMP, 
RANDOM, and TERMINAL--are supplied only in source code. See the 
Personal CP/M Programmer's Guide for their descriptions. 

LET'S GET PAST THE FORMALITIES 

This section describes the parts of a file specification in a 
command line. A file spe~ification names a file or group of files 
in the directory of the on-line disk given by the drive specifier. 
For example, 

B:MYFILE.DAT 

is a file specification that indicates drive B:, filename MYFILE, 
and filetype DAT. File specification is abbreviated 

file spec 

in the command syntax statements. 
specification are 

The three parts of a file 

• drive specifier--the optional disk drive A, B, C, through P 
that contains the file or group of files to which you refer. 
If you include a drive specifier in your command line, a colon 
must follow it. 

• filename--the one- to eight-character first name of a file or 
group of files. 

• fi letype--the optional one- to three-character category name of 
a file or group of files. A period must separate the filetype 
from the filename. 

If you do not include a drive specifier, Personal CP/M au to ma tically 
uses the default drive. If you omit the period and the filetype, 
Personal CP/M automatically includes a filetype of three blanks. 

5-1 



Personal CP/M User's Guide Let's Get Past the Formalities 

Some Personal CP/M commands accept wildcards in the filename and 
filetype parts of the command tail. For example, 

B:MY*.A?? 

is a file specification with drive specifier B:, filename MY*, and 
filetype A??. This ambiguous file specification might match several 
files in the directory. 

Put together, the parts of a file specification are represented in 
the following general form: 

d:filename.typ 

In the preceding form, d: represents the optional drive specifier, 
filename represents the one- to eight-character filename, and typ 
represents the optional one- to three-character filetype. The 
syntax descriptions in this section use the term filespec to 
indicate any valid combination of the elements included in the file 
specification. The following list shows valid combinations of the 
elements of a Personal CP/M file specification. 

• filename 
• filename.typ 
• d:filename 
• d:filename.typ 

The following characters have special meaning in Personal CP/M, so 
do not use them except as specified in a description: 

< > • , ; : = ? * [ J - % I O I 

Personal CP/M has established several file groups. Table 5-1 lists 
some of their filetypes with a short description of each family. 
Appendix C provides the complete list. 

Table 5-l. Personal CP/M Filetypes 

Filetype I Meaning 

ASM Assembler source file 

BAS CBASIC® source program 

COM Machine language program 

HLP HELP message file 

SUB List of commands to be executed by SUBMIT 

$$$ Temporary file 

5-2 



Personal CP/M User's Guide Let's Get Past the Formalities 

In some commands, descriptive qualifiers are used with filespecs to 
further define the type of filespec accepted by the commands. For 
example, wildcard-f ilespec denotes wildcard specifications, dest­
filespec denotes a destination filespec, and src-filespec denotes a 
source filespec. 

You now understand command keywords, command tails, control 
characters, default drives, and wildcards. You also see how to use 
the formal names filespec, drive specifier, filename, and filetype . 
These concepts give you the background necessary to compose complete 
command lines. 

HOW COMMANDS ARE DESCRIBED 

Personal CP/M commands are presented in alphabetical order by 
command keyword. The command description format is as follows: 

• The command keyword appears in uppercase. 

• The syntax section gives you one or more general forms to 
follow when you compose the command line. 

• The explanation section defines the command keyword and points 
out exceptions and special cases. Some explanations include 
tables or lists of options you can use in the command line. 

• The examples section lists a number of valid command lines. To 
clarify examples of interactions between you and the opera ting 
system, the characters you enter are shown in boldface. 

The notation in the syntax lines. describes the general command form 
using these rules: 

• Vbrds in capital letters must be spelled as shown, but you can 
use any combination of upper- or lowercase letters. 

• Words italicized in the syntax line are defined in the text. 

• 'lhe symbolic notation d:, filename, typ, and file spec have the 
general meanings described earlier in this section. 

• You must include one or more space characters where a space is 
shown, unless otherwise specified. For example, the PIP 
options need not be separated by spaces. 

Table 5-2 defines the special symbols and abbreviations used in 
syntax lines. 

5-3 



Personal CP/M User's Guide How Commands Are Described 

Symbol I 
DIR 

n 

0 

R/O 

R/W 

s 

SYS 

( } 

[] 

() 

or CTRL 

<er> 

Table 5-2. Syntax Notation 

Meaning 

Directory attribute. 

You can substitute a number for n. 

Indicates an option or an option list. 

Read/Only. Indicates a file or disk that can 
only be read. 

Read/Write. Indicates a file that can be 
read and written. 

You can substitute a string, which consists 
of a group of characters, for s. 

System attribute. 

Items within braces are optional. You can 
enter a command without optional items. The 
optional items add effects to your command 
line. 

Items in square brackets are options or an 
option list. When you use an option 
specified within the brackets, you must 
enclose the option in brackets. If the right 
bracket is the last character on the command 
line, you can omit it. 

Items in parentheses indicate a range of 
options. If you use a range from an option 
list, you must enclose the range in 
parentheses. 

The item preceding the ellipses can be 
repeated any number of times. 

The OR bar separates alternative items in a 
command line. You can select any or all of 
the a 1 t e r n a t iv e s spec i f i e d . Mu tu a 11 y 
exclusive options are indicated in additional 
syntax lines or are specifically noted in the 
text. 

Represents the CTRL key on your keyboard. 
(CI'RL characters appear as"' on your screen.) 

Indicates a carriage return keystroke. 

5-4 



Personal CP/M User's Guide How Commands Are Described 

Symbol I 
* 

? 

Table 5-2. (continued) 

Meaning 

Wi ldcard character--any valid group of 
characters can take the place of the *. 

Wildcard character--any valid character can 
take the place of ?. 

Let's look at some examples of syntax notation. The Personal CP/M 
DIR (Directory) command displays the names of files cataloged in the 
disk directory. 

The syntax of the DIR command is 

Syntax: DIR {d:} 
I 

optional 

[filespec} 
I 

optional 

The braces indicate that the command tail following the command 
keyword DIR is optional. DIR alone is a valid command, but you can 
include a file specification, a drive specification, or both. Thus 
the following forms of the DIR command are valid: 

DIR 
DIR d: 
DIR filename.typ 
DIR d:filename.typ 

Recall that in Section 2 you learned about wildcards in filenames 
and filetypes. The DIR command accepts wildcards in the file 
specification. So command lines like the following are valid: 

DIR B:*.C?M 

The Personal CP/M command PIP (Peripheral Interchange Program) calls 
the file copy program. PIP copies information from the disk to the 
screen or printer. PIP combines two or more files into one longer 
file. PIP also renames files after copying them and copies files 
from disk to disk. Look at one of the formats of the PIP command 
line for another example of command line notation. 

Syntax: PIP dest-filespec=src-filespec{,filespec ••. } 

In the preceding example, dest-f ilespec is further defined as a 
destination file specification or peripheral device (printer, for 
example) that receives data. Similarly, src-f ilespec is a source 
file specification or peripheral device (keyboard, for example) that 
transmits data. PIP accepts wildcards in the filename and filetype. 

5-5 



Personal CP/M User's Guide How Commands Are Described 

(See the PIP command description for other capabilities of. PIP.) 
Many valid command lines come from this syntax. Some examples 
follow: 

PIP NE.WFILE.DAT=OLDFILE . DAT 
PIP B:=A:THISFILE.DAT 
PIP B:X.BAS=Y.BAS,Z.BAS 
PIP X.BAS=A.BAS,B.BAS,C . BAS 
PIP B: =A:* .BAK 
PIP B:=A:*.* 

A complete description of each Personal CP/M utility follows. The 
descriptions are arranged alphabetically. 

5-6 



Personal CP/M User's Guide DIR Command 

DIR CoJllllalld 

Syntax: DIR {d:} {filename.typ} 

Explanation: The DIR (Directory) command displays the names of all 
directory (DIR) files in the current user number 
denoted by the drive and file specifications. 

Examples: 

The drive and the filename.typ specifications are 
optional; either or both can appear. Both filename 
anj filetype can contain wildcard characters. If no 
drive specification is set, DIR assumes the currently 
logged drive. If you omit the filename.typ 
specification, DIR displays the names of all files 
with the DIR attribute on the currently logged or 
specified drive. DIR by itself is equivalent to 

DIR*.* 

where the drive is the currently logged drive. 

The DIR command displays only files with the DIR 
attribute. Use the srAT command to display files 
with the SYS attribute. Only files under the current 
user number are displayed. 

If no file meets the drive/file/user specifications, 
DIR displays the message 

NO FILE 

A>DIR 

Displays all DIR files in user 0 on the default drive 
A. 

A>DIR B: 

Displays all DIR files in user 0 on drive B. 

4B>DIR *.NAM 

For User 4 on drive B, displays all DIR files with 
filetype NAM. 

4B>DIR C:*.* 

For user 4 on drive C, displays all DIR files. 

5-7 



Personal CP/M User's Guide ED Command 

ED Co:mllalld 

Syntax: ED {dl:} filename.typ {d2:} 

Explanation: ED allows you to create and edit disk files. 

Drive specifications dl and d2 are optional. When dl 
appears, Personal CP/M looks for the source file on 
drive dl. When d2 appears, Personal CP/M places the 
temporary edit file (used during actual file editing) 
on d2. When editing is complete, the edited file 
appears on d2. The temporary edit file is called 
filename.$$$. When editing is complete, the source 
file, called filename.typ, is renamed filename.BAK, 
and the temporary edit file (filename.$$$) is named 
filename.typ. 

The filename and filetype cannot contain wildcard 
characters; the filetype is optional. 

ED uses a portion of main memory as a buffer for 
sections of text being edited. You move text into 
this buffer with the A (Append) command. You write 
text from the buffer to the temporary edit file 
(filename.$$$) with the W (Write) command. The E 
(Exit) command functions like the W command. You also 
rename filename.typ to filename.BAK and filename.$$$ 
to filename. typ and return to the Personal CP/M 
prompt. (A full command list for ED appears in 
Section 6.) 

If no file called filename.typ exists when you type 

A>ED fi1ena•e.typ 

ED displays the message 

NEW FILE 

and opens a file for you to edit. 

You interact with the ED utility in command or insert 
mode. ED displays the prompt * on the screen when ED 
is in command mode, and you can enter a variety of 
command characters (described in Section 6) that 
allow you to manipulate text. In insert mode you can 
insert new text into the file. In insert mode line 
numbers nnnnn appear at the beginning of each line. 
These numbers are displayed for reference only and 

5-8 



Personal CP/M User's Guide ED Command 

Examples: 

are not contained in the buff er or in any of the disk 
files. You can disable line numbers with the -V 
command. 

A>ED X.TXT 

·Creates a temporary work file called X.$$$. Allows 
you to edit source file in a buffer in main memory 
and store edited text in the temporary file. At 
completion of editing, source is renamed X.BAK and 
X.$$$ is renamed X.TXT. All operations occur on the 
currently logged disk. 

A>ED C:Z.TXT B: 

Creates a temporary work file called Z.$$$ on drive 
B, allowing you to edit source in a buffer in main 
memory. At completion of editing, ED renames Z.TXT 
on drive CZ.BAK and renames Z.$$$ on drive B Z.TXT. 

See Section 6 for a complete description of ED. 

5-9 



Personal CP/M User's Guide ERA Command 

ERA Comllaild 

Syntax: ERA {d:}filename.typ 

Explanation: This command erases files from a disk. 

Examples: 

The disk specification d: is optional. If no disk 
specification is given, Personal CP/M delet.es the 
file or files from the currently logged disk. The 
filenarne.typ can contain wildcard characters. The 
typ is optional. 

If no file or set of files matches filename.typ, the 
following message appears: 

NO FILE 

Use ERA with care, because ERA erases every file 
that matches filename.typ. When using wilcards in 
the specification, be sure you mean to delete all 
files denoted by the specification. 

This command takes place in the currently logged user 
number. Directory and data space are immediately 
reclaimed for use by other files. 

2B>ERA X.TXT 

Erases the file X.TXT in user area 2 of drive B. 

3C>ERA *.TXT 

Erases all files with typ TXT in user area 3 of drive 
c. 

5-10 



Personal CP/M User's Guide PIP Command 

PIP COMMAND 

Syntax: PIP 
PIP 'command line' 

Explanation: PIP is a transient program that copies one or more 
files from one disk and or user number to another. 
PIP can rename a file after copying it. PIP can 
combine two or more files into one file. PIP can 
also copy a character file from disk to the printer 
or other auxiliary logical output device. PIP can 
create a file on disk from input from the console or 
other logical input device. PIP can transfer data 
from a logical input device to a logical output 
device, thus the name Peripheral Interchange Program. 

To initiate PIP, type one of the preceding forms. 
Both forms load PIP into the TPA and execute. When 
you use the first form, PIP reads command lines 
directly from the console, prompting you with the "*" 
character, until you enter an empty command (that is, 
until you press a single carriage return). Each 
successive command line causes a media conversion to 
take place. The form PIP 'command line' is 
equivalent to the form PIP, except that the single 
command line you type with PIP automatic ally 
executes, and PIP terminates immediately. The form of 
each command line is 

destination= source!, source2, ••. , sourcen 

where destination is the file or peripheral device to 
receive the data and sourcel, .•• is a series of files 
or devices that are copied from left to right to the 
destination. 

When the command line specifies multiple files (that 
is, when n is greater than 1 in the preceding form), 
PIP assumes the files contain ASCII characters with a 
CP/M end-of-file character ( CTRL-Z) at the end of 
each file. (See the 0 parameter to override this 
assumption. ) PIP internally translates lowercase 
ASCII alphabetics to uppercase for consistency with 
CP/M file and device name conventions. Finally, the 
total command line length must not exceed 128 
characters. Use CTRL-E to force a physical carriage 
return for lines that exceed 128 characters. 

The destination and source elements are unambiguous 
references to CP/M source files with or without a 
preceding disk drive name. You can reference any 

5-11 



Personal CP/M User's Guide PIP Command 

Examples: 

file with a preceding drive name (A: through P:) that 
defines the drive on which the file is stored. When 
you do not include a drive, PIP assumes the currently 
logged disk. The destination file can also appear as 
one or more source files; in this case, PIP does not 
alter the source file until the entire concatenation 
is complete. If the destination file already exists, 
it is removed if the command line is properly formed. 

The destination file is not removed if an error 
condition arises. 

A>PIP X=Y 

Copies to file X from file Y, where X and Y are 
unambiguous filenames; Y remains unchanged. 

A>PIP X.ASM=Y.ASM,Z.ASM,FIN.ASM 

Creates the file X.ASM from the concatenation of the 
Y, Z, and FIN files with type ASM. 

A>PIP B:A.U=B:B.V,A:C.W,D.X 

Concatenates file B .V from drive B with C. W from 
drive A and D.X from the logged disk; creates the 
file A.U on drive B. 

With Abbreviations 

Syntax: Destination=Source 

PIP d:=filename.typ 
PIP dl:=d2:filename.typ 
PIP filename.typ=d2: 
PIP dl:filename.typ=d2: 

(wildcards allowed) 
(wildcards allowed) 
(wildcards not allowed) 
(wildcards not allowed) 

PIP allows the foregoing abbreviated commands for 
transferring files between disk drives. 

The first form copies all files that satisfy 
filename.typ from the currently logged disk to the 
same files on drive d (d =drive A through drive P). 
The second form copies all files that satisfy 
filename.typ from drive d2 (the second drive) to the 
same files on drive dl (the first drive). The third 
form copies all files that satisfy filename.typ on 
drive d2 to the same files on the currently logged 

5-12 



Personal CP/M User's Guide PIP Command 

Examples: 

disk. The fourth form copies all files that satisfy 
filename.typ on drive d2 to the same files on drive 
dl. 

The source and destination disks must be different in 
all these cases. An ambiguous filename is a filename 
that contains wildcard characters. An unambiguous 
filename is a filename that contains no wildcard 
characters. If an ambiguous filename is specified, 
PIP lists each unambiguous filename that satisfies 
that ambiguous filename as it is being copied. If a 
file of the same name as the destination file exists, 
it is removed on successful completion of the copy 
and replaced by the copied file. 

A>PIP B:=*.COM 

Copy all files that have the filetype COM to drive B 
from the current drive. 

A>PIP A:=B:ZAP.* 

Copy all files that have the filename ZAP to drive A 
from drive B. 

A>PIP ZAP.ASM=B: 

Equivalent to ZAP.ASM=B:ZAP.ASM 

A>PIP B:ZOT.COM=A: 

Equivalent to B:ZOT.COM=A:ZOT.COM 

Comaand Line with Disk or Character Devices 

Syntax: deviceO:filenameO.typO= 
devicel:filenamel.typl, device2:filename2.typ2, ••. 
devicen:filenamen.typn 

Explanation: PIP allows reference to the various character devices 
attached to the CP/M system. The character devices 
you can reference are listed in Table 5-3. 

Table 5-3. Personal CP/M Character Devices 

Device I Explanation 

CON: Console. Input/output device. 

LST: List. Output device. 

5-13 



Personal CP/M User's Guide 

Device l 
PRN: 

EOF: 

NUL: 

INP: 

OUT: 

AUX: 

PIP Command 

Tab1e 5-3. (Continued) 

Explanation 

Same as LST: with options [t8np60]. 
Expands tabs to eight spaces, 
numbers the lines, and puts 60 lines 
on a page before a form-feed. 

End of file. Sends a CP/M end-of­
f i le (ASCII CTRL-Z) to the 
destination device. Input device. 

Null. Sends 40 "nulls" (ASCII O's) 
to the destination device. Input 
device. 

Input. Special input source that can 
be patched into the PIP program by 
your computer manufacturer. See the 
user's manual for your computer for 
more information about. this device. 
Input device. 

Output. Special output destination 
that can be patched in to the PIP 
program by your computer 
manufacturer . See the user's manual 
for your computer for more 
information about this device. 
Output device. 

Auxiliary device. Typically used for 
a serial I/O device such as a 
printer or modem. Input/Output 
device. 

Note that the destination device must be capable of 
receiving data, and the source devices must be 
capable of generating data. For example, the LST: 
device cannot be read. 

You can intersperse file and device names in the PIP 
commands. In each case, PIP reads the specific 
device until end-of-file (CTRL-Z for ASCII files, and 
end-of-data for non-ASCII disk files). PIP 
concatenates data from each device or file from left 
to right until the last data source has been read. 
The destination device or file is written using the 
data from the source files, and an end-of-file 

5-14 



Personal CP/M User's Guide PIP Command 

Examples: 

character (CTRL-Z) is appended to the result for 
ASCII files. If the destination is a disk file, PIP 
creates a temporary file (file type = $$$) that 
changes to the actual filename only on successful 
completion of the copy. PIP assumes files with the 
extension COM to be non-ASCII. 

You can abort a copy operation in two ways: If you 
press CTRL-Z, PIP treats this like an end-of-file 
from the device: that is, it treats it like a normal 
("clean") termination. If you press any other key, 
the operation aborts and the message "ABORTED" 
appears on the console. If an operation aborts, or 
if an error occurs during processing, PIP removes 
pending commands that were set up while using the 
SUBMIT command . 

PIP performs a special function if the destination is 
a disk file with type HEX (an Intel® hex formatted 
machine code file), and the source is an external 
peripheral device, such as a paper tape reader. In 
this case, PIP checks to ensure that the source file 
contains a properly formed hex file, with legal 
hexadecimal values and checksum records. 

When PIP finds an invalid input record, PIP reports 
an error message at the console and waits for 
corrective action. It is usually sufficient to open 
the reader and rerun a section of the tape (pull the 
tape back about 20 inches). When the tape is ready 
for the reread, press RETURN once, and PIP attempts 
another read. If PIP cannot read the tape position 
properly, continue the read by pressing RETURN 
following the error message. Enter the record 
manually with the ED program after the disk file is 
constructed. PIP allows you to enter the end-of-file 
from the console. As noted above, when you type 
CTR.L-Z at the keyboard, the read operation terminates 
normally. 

A>PIP LST:=X.PRN 

Copies X.PRN to the list device and terminates the 
PIP program. 

A>PIP CON:=X.ASM,Y.ASM,A.ASM 

Concatenates three ASM files on the currently logged 
disk and copies them to the console device. 

5-15 



Personal CP/M User's Guide PIP Command 

Command Line with Paraaeters 

Syntax: source n{[parameters]} 

You can also specify one or more PIP parameters. 
Enclose the parameters in square brackets and 
separate them with zero or more blanks. Each 
parameter affects the copy operation, and the 
enclosed list of parameters must immediately follow 
the affected file or device. An optional decimal 
integer value typically follows each parameter. (The 
S and Q parameters are exceptions.) Valid PIP 
parameters are listed in Table 5-4. 

Table 5-4. Valid PIP Paraaeters 

Parameter I Explanation 

B 

Dn 

E 

F 

Gn 

Block mode transfer: PIP buffers data 
until an ASCII x-off character (CTL­
S) is received by the source device. 
This allows transfer of data to a 
disk file from a continuous reading 
device, such as a cassette reader. 
Upon receipt of the x-off, PIP clears 
the disk buffers and returns for more 
input data. The amount of data that 
can be buffered depends on the memory 
size of the host system. PIP issues 
an error message when the buffer 
overflows. 

Delete characters that extend past 
column n in the transfer of data to 
the destination from the character 
source. Th is parameter truncates 
long lines that are sent to a 
(narrow) printer or console device. 

Echoes all transfer operations to the 
console as they are being performed. 

Filters form feeds from the file. All 
imbedded form feeds are removed. The 
P parameter can simultaneously insert 
new form feeds. 

Get File from user number n (n in the 
range 0-15). 

5-16 



Personal CP/M User's Guide 

Parameter I 
H 

I 

L 

N 

0 

Pn 

os""z 

R 

PIP Command 

Table 5-4. (continued) 

Explanation 

Hex data transfer. Checks all data 
for proper Intel hex file format. 
Removes nonessential characters 
between hex records during the copy 
operation. The console prompts for 
corrective action in case errors 
occur. 

Ignores :00 records in the transfer of 
Intel hex format file. (The I 
parameter automatically sets the H 
parameter.) 

Translates uppercase alphabetics to 
lowercase. 

Adds line numbers to each line 
transferred to the destination, 
starting at 1 and incrementing by 1. 
Leading zeroes are suppressed, and a 
colon follows the number. If N2 is 
specified, leading zeroes are 
included, and a tab is inserted 
following the number. The tab is 
expanded if T is set. 

Object file (non-ASCII) transfer: the 
CP/M end-of-file is ignored. 

Includes page ejects at every n lines 
(with an initial page eject). If n = 
1 or is excluded, page ejects occur 
every 60 lines. If you use the F 
parameter, Pn supp re sse s form feed 
before the new page ejects are 
inserted. 

Quits copying from the source device 
or file when the string s (terminated 
by a CTRL-Z) is encountered. 

Reads system files. 

5-17 



Personal CP/M User's Guide PIP Command 

Examples: 

Parameter I 
Ss"'z 

Tn 

u 

v 

w 

z 

Table 5-4. (continued) 

Explanation 

Starts copying from the source device 
when the str i ng s (terminated by 
CTRL-Z) is encountered. You can use 
the S and Q parameters to abstract a 
section of a file such as a 
subroutine. The copy operation 
always includes the start and quit 
strings . 

If you select the PIP 'command form' 
syntax, the CCP translates strings 
following th~ S and Q parameters to 
uppercase. The command form PIP does 
not perform the automatic uppercase 
translation. 

Expands tabs ( CTRL-I characters) to 
every nth column during the transfer 
of characters to the destination from 
the source. 

Translates lowercase alphabetics to 
uppercase during the copy operation. 

Verifies that data has been copied 
correctly by rereading after the 
write operation. 

Writes over R/O (Read/Only) files 
without console interrogation. 

Zeroes the parity bit for each ASCII 
character. 

A>PIP X.ASM=B:[v] 

Copies X.ASM from drive B to the current drive and 
verifies that the data were properly copied. 

A>PIP LST:=X.ASM(nt8u] 

Copies X.ASM to the list device, numbers each line, 
expands tabs to every eighth column, and translates 
lowercase alphabetics to uppercase. 

A>PIP X.LIB=Y.ASM[sSUBRI:AzqJMP L3.z] 

5-18 



Personal CP/M User's Guide PIP Command 

Copies from the file Y.ASM into the file X.LIB. 
Starts the copy when PIP finds the string SUBRI: and 
quits copying when the string JMP L3 is encountered. 

A>PIP PRN:=X.ASM[pSO] 

Sends X.ASM to the list device with line numbers, 
tabs expanded to every eighth column, and page ejects 
at every SOth line. The assumed parameter list for a 
PRN file is nt8p60: pSO overrides the default value. 

A>PIP A:=B*.COM[W] 
A>PIP A.DAT=B.DAT,F:HEW.DAT,G:OLD.DAT[W] 

PIP does not overwrite a file set to a permanent R/O 
status. If you attempt to overwrite an R/O file, PIP 
responds 

DESTINATION FILE IS R/O, DELETE (Y/N) ? 

If you press the character Y, the file is over 
written. Otherwise, PIP responds 

** NOT DELETED ** 

PIP skips the file transfer and continues with the 
next operation in sequence. To avoid the prompt and 
responpe for R/O file overwrite, include the W 
parameter in the command line, shown in the two 
preceding examples. In the first example, PIP copies 
all nonsystem COM files from drive B to drive A, 
overwriting any R/O files in the process. If the 
operation involves several concatenated files, you 
must include the W parameter only with the last file 
in the list, as shown in the second example. 

5-19 



Personal CP/M User's Guide RENAME Command 

REH Command 

Syntax: REN {d:}newfile.typ={d:}oldfile.typ 

Explanation: The REN (Rename) command allows you to change the 
names of files on disk. 

Examples: 

Oldfile.typ changes to newfile.typ. The d: is 
optional in the command. It can precede newfile.typ 
or oldfile.typ or both. If the drive specification 
precedes both, then d: must reference the same drive 
in both cases. If d: precedes only one of the 
filenames, REN assumes the renaming operation takes 
place on that drive. If no drive is specified, then 
the REN assumes the currently logged drive. 

The filename and filetype must not contain wildcards. 
The filetype is optional. 

If newfile.typ is already present, REN responds with 
the error message FILE EXISTS and makes no 
change. If oldfile.typ does not exist on the 
specified disk, the message NO FILE prints at the 
con so le. 

A>REN X=Y 

Changes the name of file X to Y. 

A>REN B:'!WO.ASM=ONE.ASM 

Changes the name of file ONE.ASM to 'IWO.ASM on 
drive B. 

5-20 



Personal CP/M User's Guide SA VE Command 

SAVE Command 

Syntax: SAVE n {d:}filename.typ 

Explanation: The SAVE command allows you to save a portion of 
memory in a disk file. The SAVE command writes n 
pages (256-byte blocks) of the TPA (Transient Program 
Area, located in main memory) to a file on disk d, 
and names the file filename.typ. 

Examples: 

The disk specification d: is optional. If no disk is 
specified, the currently logged disk is assumed. The 
filetype is also optional. 

The TPA starts at location !OOH ( 100 
hexadecimal=256). If your program occupies memory 
locations !OOH through 2FFH (256 through 767), you 
must specify 2 pages in order to save it (256 + 2 X 
256 - 1=767). 

A>SAVE 3 X 

Copies memory locations !OOH ( 256) through 3FFH 
(1023) to a file called X on the currently logged 
drive. 

A>SAVE 20 C:X.SAV 

Copies memory locations !OOH through 15FFH (5119) to 
a file called X.SAV on drive C. 

5-21 



Personal CP/M User's Guide STAT Command 

STAT CoJ11JDand 

Syntax: STAT 
STAT 'command line' 

Explanation: The STAT command provides general statistical 
information about file storage and status. Initiate 
STAT by typing one of the preceding command forms. 

Examples: 

Special forms of the command line allow you to 
examine and alter the current device assignment. The 
various command lines you can specify are shown and 
explained below. 

A> STAT 

When you type an empty command line, the srAT 
transient calculates the storage re ma in ing on all 
active drives, and prints a message. 

d: R/W,SPACE: nnnK 

or 

d: R/O,SPACE: nnnK 

for each active drive d:, where R/W indicates the 
drive can be read or written, and R/O indicates the 
drive is Read-Only (a drive becomes R/O by setting it 
to Read-Only as shown below}. The space remaining on 
the disk in drive d:, in kilobytes, is denoted by 
nnn. 

Display Remaining Bytes on Drive 

Syntax: STAT d: 

Explanation: When you specify a drive srAT selects the drive before 
computing the storage. Thus, you can issue the 
command STAT B: while logged into drive A; the 
following message results: 

BYTES REMAINING ON B: nnnK 

5-22 



Personal CP/M User's Guide STAT Command 

Specify Files 

Syntax: STAT filename.typ 

Explanation: The filename and f iletype can contain wildcard 
characters. 

The command line can also specify a set of files for 
S'rAT to scan. The files that satisfy the filename and 
filetype specified are listed in alphabetical order, 
with storage requirements for each file under the 
heading 

RECS BYTS 
rrrr bbbK 

EX D:FILENAME.TYP 
ee d:filenarne.typ 

where rrrr is the number of 128-byte records 
allocated to the file; bbb is the number of kilobytes 
allocated to the file (bbb=rrrr*l28/1024); ee is the 
number of 16K extents (ee=bbb/16); d is the drive 
name containing the file (A •.. P), filename is the 
primary filename (up to eight characters long); and 
typ is the f iletype, which can be up to three 
characters long. After listing the individual files, 
STAT summarizes the storage usage. 

Specify Drive and Files 

Syntax: STAT d: filename.typ 

Explanation: This syntax gives the drive name before the filename 
and filetype. STAT selects the specified drive, then 
executes. 

Set Drive Status 

Syntax: STAT d:=R/O 

Explanation: This form sets drive d: to R~ad/Only. Read/Only 
status remains in effect until the next warm or cold 
start. When a disk is set for Read/Only, the message 

CP/M Error on d: Read/Only Disk 

5-23 



Personal CP/M User's Guide STAT Command 

appears when you try to write to the Read-Only disk 
d:. CP/M waits until you depress a key before 
performing an automatic warm start, at which time the 
disk becomes R/W. 

For Available Status Commands 

Syntax: STAT VAL: 

Explanation: This command produces an instant summary of the 
possible STAT commands, output as fo l lows: 

Temp R/O Disk: d:=R/O 
Set Indicator: filenarne.typ $R/O $R/W $SYS $DIR 
Disk Status: DSK: d:DSK 
User Status: USR: 

Display File Information 

Syntax: STAT d:filename.typ $S 

Explanation: d: is an optional drive name; the filename and 
filetype can contain wildcard characters. This form 
of the STAT command produces the output display 
format 

Size Recs 

48 55 

55 55 

65536 128 

Bytes 

6k 

12k 

16k 

Ext Ace 

1 R/O A:ED.COM 

1 R/O (A:PIP.COM) 

2 R/W A:X.DAT 

where the $S parameter causes the Size field to be 
displayed. Without the $8, STAT skips the Size field 
and displays the remaining fields. The Size field 
lists the virtual file size in records; the Recs 
field sums the number of virtual records in each 
extent. For files constructed sequentially, the Size 
and Recs fields are identical. 

The Bytes field lists the number of bytes allocated 
to a file. The system configuration determines the 
minimum allocation unit at configuration time. The 
number of bytes corresponds to the record count plus 

5-24 



Personal CP/M User's Guide STAT Command 

the remaining unused space in the last allocated 
block for sequential files. Random acc~ss files are 
given data areas only when written, so the Bytes 
field contains.the only accurate allocation figure. 
For random access files, the Size field gives the 
logical end-of-file record position, and the Recs 
field counts the logical records of each extent. Each 
of these extents, however, can contain unallocated 
holes even though they are added into the record 
count. 

The Ext field counts the number of physical extents 
allocated to the file. The Ext count corresponds to 
the file's number of directory entries. Depending on 
allocation size, a single directory entry can 
directly address up to .128K bytes (8 logical 
extents). (A physical extent can address up to 256K 
bytes.) 

The Ace field gives the R/O or R/W file indicator; 
the following commands can change the indicator. 
Si mi lar ly, the parentheses enclosing the PIP. COM 
filename indicate that the file's system indicator is 
set, so it is not listed in response to DIR commands. 

Set File Indicators 

Syntax: STAT d:filename.typ $R/O 
STAT d:filename.typ $R/W 
STAT d:filename.typ $SYS 
STAT d:filename.typ $DIR 

Explanation: The four preceding command forms set or reset 
permanent file indicators. The R/O indicator places 
the file (or set of files) in a Read-Only status. A 
subsequent STAT command can change this status. The 
R/O status is recorded in the directory with the 
file, so the file remains R/O through intervening 
cold start operations. The R/W indicator places the 
file in permanent Read/Write status. The SYS 
indicator attaches the system indicator to the file. 
The DIR command removes the system indicator. The 
filename and filetype can contain wildcard 
characters, but files whose attributes are changed 
are listed at the console when the change occurs. 
The drive name denoted by d: is optional. 

Attempts to erase or write into a file marked R/O 
result in the BOOS message 

CP/M Error on d: Read/Only File 

5-25 



Personal CP/M User's Guide STAT Command 

The BDOS waits for console input before performing a 
subsequent warm start. (A RETURN is sufficient.) 

Display Drive Characteristics: 

Syntax: STAT d:DSK 

Explanation: This command form displays the drive characteristics 
of the disk named d:. STAT lists the drive 
characteristics in the following form: 

d: Drive Characteristics 

65536: 128 Byte Record Capacity 

8192: Kilobyte Drive Capacity 

128: 32 Byte Directory Entries 

0: Checked Directory Entries 

1024: Records/Extent 

128: Records/Block 

58: Sectors/Track 

2: Reserved Tracks 

where d: is the selected drive, followed by total 
record capacity (65536 for an eight-megabyte drive), 
followed by the total capacity listed in kilobytes. 
The directory size is listed next, followed by the 
checked entries. The number of checked entries is 
usually identical to the directory size for removable 
media, because this mechanism detects changed media 
during CP/M operation without an intervening warm 
start. For fixed media, the number is usually zero, 
because the media are not changed without at least a 
cold or warm start. 

The number of records per extent determines the 
addressing capacity of each directory entry (1024 
times 128 bytes, or 128K in the previous example). 
The number of records per block shows the basic 
allocation size (in the example, 128 records/block 
times 128 bytes per record, or 16K bytes per block). 

The number of physical sectors per track and the 
number of reserved tracks follows the listing. For 

5-26 



Personal CP/M User's Guide STAT Command 

Display Users 

logical drives that share the same physical disk, the 
number of reserved tracks can be quite large because 
this mechanism skips lower-numbered disk areas 
allocated to other logical disks. 

If you omit d: in the preceding form, STAT produces a 
drive characteristic table for all currently active 
drives. 

Syntax: STAT USR: · 

Explanation: This command produces a list of user numbers that have 
files on the currently addressed disk. The display 
format is 

Active User: O 
Active Files: 0 1 3 

where the first line lists the currently addressed 
user number, as set by the last CCP USER command, 
followed by a list of user numbers scanned from the 
current directory. In this example, the active user 
number is O (default at cold start), with three user 
numbers that have active files on the current disk. 
The opera tor can subsequently examine the directories 
of the other user numbers by logging in with USER 1 
or USER 3 commands, followed by a DIR command at the 
CCP level. 

5-27 



Personal CP/M User's Guide SUBMIT Command 

SUBMIT Command 

Syntax: SUBMIT filename.SUB parm#l ••• parm#n 

Explanation: The SUBMIT command allows you to batch CP/M commands 
for automatic processing. The SUBMIT command must 
use the filename of an existing file on the currently 
logged disk and the filetype SUB. The SUB file 
contains CP/M prototype commands with possible 
parameter substitution. SUB substitutes the actual 
parameters parm#l parm#n into the prototype 
commands, and, if no errors occur, CP/M processes the 
file of substituted comands sequentially. 

You can create a prototype command file with the ED 
program, interspersing "$" parameters of the form 

$1 $2 $3 ••• $n 

corresponding to the number of actual parameters to 
be included when you submit the file for execution. 
When the SUBMIT transient executes, the actual 
parameters parm#l parm#n are paired with the 
formal parameters $1 $n in the prototype 
commands. If the numbers of formal and actual 
parameters do not correspond, the submit function 
aborts with an error message at the console. The 
SUBMIT function creates a file of substituted 
commands on the logged disk with the name 

$$$.SUB 

The system reboots when SUBMIT terminates. Then the 
CCP reads th is command file as a source of input 
rather than the console. If you perform the SUBMIT 
function on any disk other than drive A, the commands 
are not processed until you insert the disk into 
drive A and reboot the system. The SUBMIT function 
can access a SUB file on an alternate drive when you 
precede the filename with a drive name. Because 
SUBMIT files are acted upon only when they appear on 
drive A, you can create a SUBMIT file on drive B to 
execute at a later time, when inserted in drive A. 

You can abort command processing at any time by 
pressing a RUBOUT when the command is read and 
echoed. In this case the $$$.SUB file is removed and 
subsequent commands come from the console. Command 
processing also aborts when the CCP detects an error 

5-28 



Personal CP/M User's Guide SUBMIT Command 

Examples: 

in any command. Programs that execute under CP/M 
abort processing command files when error conditions 
occur by erasing any existing $$$.SUB file. 

To introduce dollar signs into a SUBMIT file, type a 
$$, which reduces to a single$ within the command 
file. An up-arrow symbol preceding an alphabetic 
character x produces a single CTRL-X character within 
the file. 

The last command in a SUB file can initiate another 
SUB file, allowing chained batch commands. 

The utility program called XSUB extends the power of 
the SUBMIT facility to include line input to programs 
as well as to the CCP. The XSUB command is the first 
line of the submit file. When it executes, XSUB self­
relocates directly below the CCP. XSUB processes all 
subsequent submit command lines so that programs that 
read buffered console input (BOOS function 10) 
receive their input directly from the submit file. 

The XSUB program remains in memory and prints the 
message 

( x sub active ) 

on each warm start operation to indicate its 
presence. Subsequent submit command streams do not 
require the XSUB, unless a cold start has intervened. 
Note that you must load XSUB after the optional CP/M 
DESPOOL™ utility, if both are to run simultaneously. 

Suppose the file ASMBL.SUB exists on disk and contains 
the prototype commands 

ASM $1 
DIR $1. * 
ERA *.BAK 
PIP $2:=$1.PRN 
ERA $1.PRN 

You issue the command 

A>SUBMIT ASH.BL X PRN 

5-29 



Personal CP/M User's Guide SUBMIT Command 

The SUBMIT program reads the ASMBL.SUB file, 
substituting X for all occurrences of $1 and PRN for 
all of occurrences of $2. This results in a $$$.SUB 
file containing the commands 

ASM X 
DIR X.* 
ERA *.BAK 
PIP PRN: =X.PRN 
ERA X.PRN 

The CCP executes these commands in sequence. 

The file SAVER.SUB contains the submit lines 

XSUB 
DDT 
I $1.COM 
R 
GO 
SA VE 1 $ 2 . COM 

with a subsequent SUBMIT command 

A>SUBMIT SAVER PIP Y 

that substitutes X for $1 and Y for $2 in the command 
stream. The XSUB program loads, followed by DDT, 
which is sent to the command lines PIP.COM, R, and 
GO, thus returning to the CCP. The CCP processes the 
final command SA.VE 1 Y.COM. 

5-30 



Personal CP/M User's Guide TYPE Command 

TYPE Comaand 

Syntax: TYPE d: filename.typ 

Explanation: The drive name is optional and filename and filetype 
must contain no wildcard characters. 

Examples: 

This command displays the contents of the ASCII 
source file filename.typ at the console device. 
filename.typ must be on d: if the disk is specified, 
or on the currently logged disk if no disk is 
specified. 

The TYPE command expands tabs ( CTRL-I characters), 
assuming tab positions are set at every eighth 
column. 

A>TYPE B: X.PRN 

Displays the file X.PRN on drive B. 

5-31 



Personal CP/M User's Guide USER Command 

USER Command 

Syntax: USER n 

Explanation: n is an integer value in the range 0 to 15. 

Examples: 

This command allows you to maintain separate groups 
of files (that is, separate user areas) in the same 
directory. User numbers range from 0 to 15. 

On the cold boot, you are automatically logged on as 
user O. Issue the USER command to move to another 
user area within the same directory. 

Files that are active when you are logged onto one 
user area remain active when you log onto another 
user area. 

The active user number is maintained until changed 
by a subsequent USER command, or until a cold boot 
when user 0 is again assumed. 

A>USER 2 

Allows you access to all files in user area 2. 

End of Section 5 

5-32 



Personal CP/M User's Guide LOAD Command 

LOAD Command 

Syntax: LOAD d:filename.HEX 

Explanation: The LOAD command reads the file d:filename.HEX, 
which is assumed to contain "HEX" format machine 
code, and produces a memory image file that can 
subsequently be executed. The file name 
d:filename.HEX is assumed to be of the form 

Example: 

X.HEX 
and only the filename X need be specified in the 
command. The LOAD command creates a file named 

X.COM 
that marks it as containing machine executable code. 
The file is actually loaded into memory and executed 
when the user types the filename X immediately after 
the prompting character ")" printed by the CCP. 
Generally the CCP reads the filename X following the 
prompting character and looks for a built-in 
function name. If no function name is found, the CCP 
searches the system disk directory for a file by the 
name 

X.COM 
If found, the machine code is loaded into the TPA, 
and the program executes. Thus, the user need only 
LOAD a hex file once; it can be subsequently 
executed any number of times by typing the primary 
name. In this way the user can "invent" new commands 
in the CCP. (Initialized disks contain the transient 
commands as COM files, which are deleted at the 
user's option.) The operation takes place on an 
alternate drive if the file name is prefixed by a 
drive name. Thus 

LOAD B:BETA 
brings the LOAD program into the TPA from the 
currently logged disk and operates upon drive B 
after execution begins. 
The user should note that the BETA.HEX file must 
contain valid Intel format hexadecimal machine code 
records (as produced by the ASM program, for 
example) that begin at lOOH of the TPA. The 
addresses in the hex records must be in ascending 
order; gaps in unfilled memory regions are filled 
with zeroes by the LOAD command as the hex records 
are read. Thus, LOAD must be used only for creating 
CP/M standard "COM" files that operate in the TPA. 
Programs that occupy regions of memory other than 
the TPA are loaded under DDT. 

LOAD TEST 

5-33 





Section 6 
ED, The Personal CP/M Context Editor 

INTRODUCTION TO ED 

To do almost anything with a computer you need some way to enter 
data, a way to give the computer the information you want it to 
process. The programs most commonly used for this task are called 
editors. They transfer your keystrokes at the keyboard to a disk 
file. Personal CP/M's editor is named ED. Using ED, you can easily 
create and alter Personal CP/M text files. 

The correct command format for invoking the Personal CP/M editor is 
given in "Starting ED. 11 After starting ED, you issue commands that 
transfer text from a disk file to memory for editing. "ED 
Operation" details this operation and describes the basic text 
transfer commands that allow you to easily enter and exit the 
editor. 

"Basic Editing Commands" details the commands that edit a file. 
"Combining ED Commands" describes how to combine the basic commands 
to edit more efficiently. Although you can edit any file with the 
basic ED commands, ED provides several more commands that perform 
more complicated editing functions, as described in "Advanced ED 
Commands." 

During an editing session, ED can return two types of error 
messages. 11 ED Error Messages" lists these messages and provides 
examples that indicate how to recover from common editing error 
conditions. 

STARTING ED 

Syntax: 

ED input-filespec {d: I. output-filespec} 

To start ED, enter its name after the Personal CP/M prompt. 
command ED must be followed by a file specification, one 
contains no wildcard characters, such as: 

A> ED MYFILE. TEX 

The 
that 

The file specification, MYFILE.TEX in the preceding example, 
specifies a file to be edited or created. The file specification 
can be preceded by a drive specification, but a drive specification 
is unnecessary if the file to be edited is on your default drive. 
Optionally, the file specification can be followed by a drive 
specification, as shown in the following example: 

6-1 



Personal CP/M User's Guide Starting ED 

A>ED MYFILE.TEX B: 

In response to this command, ED opens the file to be edited, 
MYFILE.TEX, on drive A, but sends all the edited material to a file 
on drive B. 

Optionally, you can send the edited material to a file with a 
different filename, as in the following example: 

A>ED MYFILE.TEX YOURP'ILE.TEX 

If the file with the different filename already exists, ED prints 
the following message and terminates. 

Output File Exists, Erase It 

The ED prompt, *, appears at the screen when ED is ready to accept a 
command, as follows: 

A>ED MYFILE.TEX 
: * 

If no previous version of the file exists on the current disk, ED 
automatically creates a new file and displays the following message: 

NEW FILE 
: * 

Note: Before starting an editing session, use the SET command to 
check the amount of free space on your disk. Make sure that the 
unused portion of your disk is at least as large as the file you are 
editing, or larger if you plan to add characters to the file. When 
ED finds a disk or directory full, ED has only limited recovery 
mechanisms. These are explained in "ED Error Messages." 

ED OPERATION 

With ED, you change portions of a file that pass through a memory 
buffer. When you start ED with one of the preceding commands, this 
memory buffer is empty. At your command, ED reads segments of the 
source file, for example MYFILE.TEX, into the memory buffer for you 
to edit. If the file is new, you must insert text into the file 
before you can edit. During the edit, ED writes the edited text 
onto a temporary work file, MYFILE.$$$. 

When you end the edit, ED writes the memory buffer contents to the 
temporary file, followed by any remaining text in the source file. 
ED then changes the name of the source file from MYFILE.TEX to 
MYFILE.BAK, so you can reclaim this original material from the back­
up file if necessary. ED then renames the temporary file, 
MYFILE.$$$, to MYFILE.TEX, the new edited file. The following 
figure illustrates the relationship between the source file, the 
temporary work file, and the new file. 

6-2 



Personal CP/M User's Guide ED Operation 

Note: When you invoke ED with two filespecs, an input file and an 
output file, ED does not rename the input file to type BAK; 
therefore, the input file can be Read/Only or on a write-protected 
disk if the output file is written to another disk. 

SOURCE 
FILE 

MYFILE. TEX 

AFTER 
EDIT (E) 

BACKUP 
FILE 

MYFILE. BAK 

APPEND 

( A ) ~ 

INSERT t 
(I) I 

SOURCE 
LIBRARIES 

(R ) 

MEMORY 
BUFFER 

WRITE 
(VV) 

TYPE 
IT) 

11 
I 

TEMPORARY 
Fi LE 

MYFILE. $$$ 

AFTER 
EDIT 

(E) 

NEW 
SOURCE 

FILE 
MYFILE . TEX 

Figure 6-1. overall ED Operation 

In the preceding figure, the memory buffer is logically between the 
source file and the temporary work file. ED supports several 
commands that transfer lines of text between the source file, the 
memory buffer, and the temporary, and eventually final, file. The 
following table lists the three basic text transfer commands that 
allow you to easily enter the editor, write text to the temporary 
file, and exit the editor. 

6-3 



Personal CP/M User's Guide ED Operation 

Command I 
nA 

nw 

E 

Tab1e 6-1. Text Transfer Commands 

Result 

Append the next n unprocessed source lines from 
the source file to the end of the memory 
buffer. 

Write the first n lines of the memory buffer to 
the temporary file free space. 

End the edit. Copy all buffered text to the 
temporary file, and copy all unprocessed source 
lines to the temporary file. Rename files. 

Appending Text into the Buffer 

When you start ED and the memory buffer is empty, you can use the A 
(append) command to add text to the memory buffer. 

Rote: ED can number lines of text to help you keep track of data in 
the memory buffer. The colon that appears when you start ED 
indicates that line numbering is turned on. Type -V after the ED 
prompt to turn the line number display off~ Line numbers appear on 
the screen but never become a part of the output file. 

The V (Verify Line Numbers) Command 

The V command turns the line number display in front of each line of 
text on or off. The V command also displays the free bytes and 
total size of the memory buffer. The V command takes the following 
forms: 

v, -v, ov 

Initially, the line number display is on. Use -V to turn it off. 
If the menory buffer is empty, or if the current line is at the end 
of the memory buffer, ED represents the line number as five blanks. 
The OV command prints the memory buffer statistics in the form: 

free/total 

where free is the number of free bytes in the memory buffer, and 
total is the size of the memory buffer. For example, if you have a 
total of 48,253 bytes in the memory buffer and 46,652 of them are 
free, the OV command displays this information as follows: 

46652/48253 

If the buffer is full, the first field, which indicates free space, 
is blank. 

6-4 



Personal CP/M User ' s Guide ED Operation 

The A (Append) Command 

The A command appends, that is, copies, lines from an existing 
source file into the memory buffer. The A command takes the 
following form: 

nA 

where n is the number of unprocessed source lines to append into the 
menory buffer. If a pound sign, #, is given in place of n, then the 
integer 65,535 is assumed. Because the memory buffer can contain 
most reasonably sized source files, it is often possible to issue 
the command #A at the beginning of the edit to read the entire 
source file into memory. 

When n is O, ED appends the unprocessed source lines in to the memory 
buffer until the buffer is approximately half full. If you do not 
specify n, ED appends one line from the source file into the memory 
buffer. 

ED Exit 

You can use the W (Write) command and the E (Exit) command to save 
your editing changes. The W command writes lines from the memory 
buffer to the new file without ending the ED session. An E command 
saves the contents of the buffer and any unprocessed material from 
the source file and exits ED. 

The W (Write} Command 

The W command writes lines from the buffer to the new file. The W 
command takes the form: 

nW 

where n is the number of lines to be written from the beginning of 
the buffer to the end of the new file. If n is greater than 0, ED· 
writes n lines from the beginning of the buffer to the end of the 
new file. If n is 0, ED writes lines until the buffer is half 
empty. The OW command is a convenient way of making room in the 
menory buffer for more lines from the source file. If the buffer is 
full, you can use the ow command to write half the contents of the 
menory buffer to the new file. You can use the #W command to write 
the entire contents of the buffer to the new file. Then you can use 
the OA command to read in more lines from the source file. 

Note: After a W command is executed, you must enter the H command 
to reedit the saved lines during the current editing session. 

6-5 



Personal CP/M User's Guide ED Operation 

The E (Exit) Command 

An E command performs a normal exit from ED. The E command takes 
the form: 

E 

followed by a carriage return. 

When you enter an E command, ED first writes all data lines from the 
buffer and the original source file to the $$$ file. If a BAK file 
exists, ED deletes it, then renames the original file with the BAK 
filetype. Finally, ED renames the$$$ file from filename.$$$ to the 
original filetype and returns control to the operating system. 

The operation of the E command makes it unwise to edit a back-up 
file. When you edit a BAK file and exit with an E command, ED 
erases your original file because it has a BAK filetype. To avoid 
th is, always rename a backup file to some other file type before 
editing it with ED. 

Note: Any command that terminates an ED session must be the only 
command on the line. 

BASIC EDITIRG COMMANDS 

The text transfer commands discussed previously allow you to easily 
enter and exit the editor. This section discusses the basic 
commands that edit a file. 

ED treats a file as a long chain of characters grouped together in 
lines. ED displays and edits characters and lines in relation to an 
imaginary device called the character pointer ( CP). During an edit 
session, you must mentally picture the CP's location in the memory 
buffer and issue commands to move the CP and edit the file. 

The following commands move the character pointer or display text in 
the vicinity of the CP. These ED commands consist of a numeric 
argument and a single command letter and must be followed by a 
carriage return. The numeric argument, n, determines the number of 
times ED executes a command; however, there are four special cases 
to consider in regard to the numeric argument: 

• If the numeric argument is omitted, ED assumes an argument of 
1. 

• Use a negative number if the command is to be executed 
backwards through the memory buffer. The B command is an 
exception. 

6-6 



Personal CP/M User's Guide Basic Editing Commands 

• If you enter a pound sign, #, in place of a number, ED uses the 
value 65,535 as the argument. A pound sign argument can be 
preceded by a minus sign to cause the command to execute 
backwards through the memory buffer, -#. 

• ED accepts 0 as a numeric argument only in certain commands. 
In some cases, 0 causes the command to be executed 
approximately half the possible number of times, while in other 
cases it prevents the movement of the CP. 

The following table alphabetically summarizes the basic editing 
commands and their valid arguments. 

Tab1e 6-2. Basic Editing Comiaands 

Command I 
B, -B 

nC, -nc 

nD, -nD 

I 

!string CTRL-Z 

nK, -nK 

nL, -nL 

nT, -nT 

n, -n 

Action 

Move CP to the beginning (B) or end (-B) of 
the memory buffer. 

l-bve CP n characters forward ( nC) or backward 
(-nC) through the memory buffer. 

Delete n characters before (-nD) or after ( nD) 
the CP. 

Enter insert mode. 

Insert a string of characters. 

Delete (kill) n lines before the CP (-nK) or 
after the CP (nK). 

l-bve the CP n lines forward (nL) or backward 
(- nL) through the memory buffer. 

Type n lines before the CP (-nT) or after the 
CP (nT). 

Move the CP n lines before the CP (-n) or 
after the CP (n) and display the destination 
line. 

6-7 



Personal CP/M User's Guide Basic Editing Commands 

The following sections discuss ED's basic editing commands in more 
detail. The examples in these sections illustrate how the commands 
affect the position of the character pointer in the memory buffer. 
Later examples in "Combining ED Commands" illustrate how the 
commands appear at the screen. For these sections, however, the 
symbol"' in command examples represents the character pointer, which 
you must imagine in the memory buffer. 

Moving the Character Pointer 

This section describes commands that move the character pointer in 
useful increments but do not display the destination line. Although 
ED is used primarily to create and edit program source files, the 
following sections present a simple text as an example to make ED 
easier to learn and understand. 

The B (Beginning/Bottom) Command 

The B command moves the CP to the beginning or bottom of the memory 
buffer. The B command takes the following forms: 

B, -B 

-B moves the CP to the end or bottom of the memory buffer; B moves 
the CP to the beginning of the buffer. 

The C (Character) Command 

The C command moves the CP forward or backward the specified number 
of characters. The C command takes the following forms: 

nc, -nc 

when n is the number of characters the CP is to be moved. A 
positive number moves the CP towards the end of the line and the 
bottom of the buffer. A negative number moves the CP towards the 
beginning of the line and the top of the buffer. You can enter an n 
large enough to move the CP to a different line. However, each line 
is separated from the next by two invisible characters: a carriage 
return and a line feed, represented by <cr><lf>. You must 
compensate for their presence. For example, if the CP is pointing 
to the beginning of the line, the command 30C moves the CP to the 
next line: 

Emily Dickinson said,<cr><lf> 
"I fin"'d ecstasy in living -<cr><lf> 

6-8 



Personal CP/M User's Guide Basic Editing Commands 

The L (Line) Command 

The L conunand moves the CP the specified number of lines. After an 
L commarrl, the CP always points to the beginning of a line. The L 
command takes the following forms: 

nL, -nL 

where n is the number of lines the CP is to be moved. A positive 
number move·s the CP towards the end of the buffer. A negative 
number moves the CP back toward the beginning of the buffer. The 
command 2L moves the CP two lines forward through the memory buffer 
and positions the character pointer at the beginning of the line. 

"I find ecstasy in living -<cr><lf> 
the mere sense of living<cr><lf> 

""is joy enough. "<cr><lf> 

The command -L moves the CP to the beginning of the previous line, 
even if the CP originally points to a character in the middle of the 
line. Use the special character 0 to move the CP to the beginning 
of the current line. 

The n (Number) Command 

Then command moves the CP and displays the destination line. Then 
command takes the following forms: 

n, -n 

where n is the number of lines the CP is to be moved. In response 
to this command, ED moves the CP forward or backward the number of 
lines specified, then prints only the destination line. For 
example, the command -2 moves the CP back two lines. 

Emily Dickinson said,<cr><lf> 
""

11 1 find ecstasy in living -<cr><lf> 
the mere sense of living<cr><lf> 
is joy enough."<cr><lf> 

A further abbreviation of this command is to enter no number at all. 
In response to a carriage return without a preceding command, ED 
assumes an n command of 1 and moves the CP down to the next line and 
prints it, as follows 

Emily Dickinson said,<cr><lf> 
"I find ecstasy in living -<er>< lf > 

""the mere sense of living<cr><lf> 

Also, a minus sign without a number moves the CP back one line. 

6-9 



Personal CP/M User's Guide Basic Editing Commands 

Disp1aying Memory Buffer Contents 

ED does not display the contents of the memory buffer until you 
specify the part of the text you want to see. The T command 
displays text without moving the CP. 

The T (Type) Command 

The T commarrl types a specified number of lines from the CP at the 
screen. The T command takes the forms: 

nT, -nT 

where n specifies the number of lines to be displayed. If you enter 
a negative number, ED displays n lines before the CP. A positive 
nurriber displays n lines after the CP. If no number is specified, ED 
types from the character pointer to the end of the line. The CP 
remains in its original position no matter how many lines are typed. 
For example, if the character pointer is at the beginning of the 
memory buffer, and you instruct ED to type four lines (4T), four 
lines are displayed at the screen, but the CP stays at the beginning 
of line 1. 

AEmily Dickinson said,<cr><lf> 
"I find ecstasy in living -<cr><lf> 
the mere sense of living<cr><lf> 
is joy enough."<cr><lf> 

If the CP is between two characters in the middle of the line, a T 
command with no number specified types only the characters between 
the CP and the end of the line, but the character pointer stays in 
the same position, as in the following memory buffer example: 

"I find ecAstasy in living -

When ED is displaying text with the T command, you can enter a CTRL­
s to stop the display, then press any key when you are ready to 
continue scrolling. Enter a CTRL-C to abort long type-outs. 

De1eting Characters 

The D (Delete) Command 

The D command deletes a specified number of characters and takes the 
forms: 

nD, -no 

where n is the number of characters to be deleted. If no number is 
specified, ED deletes the character to the right of the CP. A 

6-10 



Personal CP/M User's Guide Basic Editing Commands 

positive number deletes multiple characters to the right of the CP, 
towards the bottom of the file. A negative number deletes 
characters to the left of the CP, towards the top of the file. If 
the character pointer is positioned in the memory buffer as follows 

Emily Dickinson said,<cr><lf> 
"I find ecstasy in living -<cr><lf> 
the mere sense of living<cr><lf> 
is joy Aenough."<cr><lf> 

the command 6D deletes the six characters after the CP, and the 
resulting memory buffer looks like this: 

Emily Dickinson said,<cr><lf> 
"I find ecstasy in living -<cr><lf> 
the mere sense of living<cr><lf> 
is joy A."<cr><lf> 

You can also use a D command to delete the <cr><lf> between two 
lines to join them together. Remember that the <er> and <lf > are 
two characters. 

The K (Kill) Command 

The K command kills or deletes whole lines from the memory buffer 
and takes the forms: 

nK, -nK 

where n is the number of lines to be deleted. A positive number 
kills lines after the CP. A negative number kills lines before the 
CP. \men no number is specified, ED kills the current line. If the 
character pointer is at the beginning of the second line, 

Emily Dickinson said,<cr><lf> 
A"I find ecstasy in living -<cr><lf> 

the mere sense of living<cr><lf> 
is joy enough. "<cr><lf> 

then the command -K deletes the previous line and the memory buffer 
changes: 

A"I find ecstasy in living -<cr><lf> 
the mere sense of living<cr><lf> 
is joy enough. "<cr><lf> 

If the CP is in the middle of a line, a K command kills only the 
characters from the CP to the end of the line and concatenates the 

6-11 



Personal CP/M User's Guide Basic F.diting Commands 

characters before the CP with the next line. A -K command deletes 
all the characters between the beginning of the previous line and 
the CP. A OK command deletes the characters on the line up to the 
CP. 

You can use the special # character to delete all the text from the 
CP to the beginning or end of the buffer. Be careful when using #K 
because you cannot reclaim lines after they are removed from the 
memory buffer. 

Inserting Characters into the Memory Buffer 

The I (Insert) Command 

To insert characters into the memory buj:fer from the screen, use the 
I command. If you enter the command in uppercase, ED automatically 
converts the string to uppercase. The I command takes the forms: 

I 
Istring"'Z 

When you type the first command, ED enters insert mode. In this 
mode, all keystrokes are added d i rectly to the memory buffer. ED 
enters characters in lines and does not start a new line until you 
press the enter key. 

A>ED B:QUOTE.TEX 

NEW FILE 
*i 

1: Emily Dickinson said, 
2: "I find ecstasy in 1iving -
3: the mere sense of living 
4: is joy enough." 
s: "'z 

* 

Hote: To exit from insert mode, press CTRL-Z or ESC. When the ED 
prompt, *, appears on the screen, ED is not in insert mode. 

In command mode, you can use Personal CP/M command line-editing 
control characters. In insert mode, you can use the control 
characters listed in Table 6-3. 

6-12 



Personal CP/M User's Guide Basic F..diting Commands 

Table 6-3. Personal CP/M Line-editing Controls 

Command I 
CTRL-H 

CTRL-U 

CTRL-X 

Backspace 

Result 

Deletes the last character typed on the 
current line. 

Deletes the entire line currently being 
typed. 

Deletes the en tire line currently being 
typed. Same as CTRL-U. 

Removes the last character. 

When entering a combination of numbers and letters, you might find 
it inconvenient to press a caps-lock key if your terminal translates 
the uppercase of numbers to special characters. ED provides two 
ways to translate your alphabetic input to uppercase without 
affecting numbers. The first is to enter the insert command letter 
in uppercase: I. All alphabetics entered during the course of the 
capitalized command, either in insert mode or as a string, are 
translated to uppercase. If you enter the insert command letter in 
lowercase, all alphabetics are inserted as typed. The second method 
is to enter a U command before inserting t~xt. Uppercase 
translation remains in effect until you enter a -U command. 

The IstringAZ (Insert String) Command 

The second form of the I command does not enter insert mode. It 
inserts the character string into the memory buffer and returns 
immediately to the ED prompt. You can use Personal CP/M's line­
editing control characters to edit the command string. 

To insert a string, first use one of the commands that position the 
CP. You must move the CP to the place where you want to insert a 
string. For example, if you want to insert a string at the 
beginning of the first line, use a B command to move the CP to the 
beginning of the buffer. With the CP positioned correctly, enter an 
insert string, as follows: 

iin 1870, ""z 

This inserts the phrase "In 1870," at the beginning of the first 
line, and returns immediately to the ED prompt. In the memory 
buffer, the CP appears after the inserted string, as follows: 

In 1870, AEmily Dickinson said,<cr><lf> 

6-13 



Personal CP/M User's Guide Basic Editing Commands 

Replacing Characters 

The S (Substitute) Command 

The S command searches the memory buffer for the specified string, 
but when it finds it, au to ma tic ally substitutes a new string for the 
search string. When you enter a command in uppercase, ED 
automatic ally converts the string to uppercase. The S command takes 
the form: 

nSsearch stringAZnew string 

where n is the number of substitutions to make. If no number is 
specified, ED searches for the nex t occurrence of the search string 
in the memory buffer. For example, the command: 

sEmily DickinsonAZThe poet 

searches for the first occurrence of "Emily Dickinson" and 
substitutes "The poet." In the memory buffer, the CP appears after 
the substituted phrase, as follows: 

The poetA said,<cr><lf> 

If uppercase translation is enabled by a capital S command letter, 
ED looks for a capitalized search string and inserts a capitalized 
insert string. Note that if you combine this command with other 
commands, you must terminate the new string with a CTRL-Z. 

COMBINING ED COMMANDS 

You save keystrokes and editing time by combining the editing and 
display commands. You can type any number of ED commands on the 
same line. ED executes the command string only after you press the 
carriage return key. Use Personal CP/M's line-editing controls to 
manipulate ED command strings. 

When you combine several commands on a line, ED executes them in the 
same order they are entered, from left to right on the command line. 
There are four restrictions to combining ED commands: 

• The combined-command line must not exceed Personal CP/M' s 128-
character maximum. 

• If the combined-command line contains a character string, the 
line must not exceed 100 characters. 

• Commands to terminate an editing session must not appear in a 
combined-command line. 

6-14 



Personal CP/M User's Guide Combining ED Commands 

•Commands, such as the I, J, R, S, and X commands, that require 
character strings or filespecs must be either the last command 
on a line or must terminate with a CTRL-Z or ESC character, 
even . if no character string or filespec is given. 

The examples in the previous section show the memory buffer and the 
position of the character pointer. The examples in this section 
show how the screen looks during an editing session. Remember that 
the character pointer is imaginary, but you must picture its 
location because ED's commands display and edit text in relation to 
the character pointer. 

Moving the Character Pointer 

To move the CP to the end of a line without calculating the number 
of characters, combine an L command with a C command, L-2C. This 
command string accounts for the <cr><lf> sequence at the end of the 
line. 

Change the C command in this command string to move the CP more 
characters to the left. You can use this command string if you must 
make a change at the end of the line and you do not want to 
calculate the number of characters before the change, as in the 
following example: 

1: *T 
1: Emily Dickinson said, 
1: *L-7CT 

said, 
1: * 

Disp1aying Text 

A T command types from the CP to the end of the line. To see the 
entire line, you can combine an L command and a T command. Type Olt 
to m:>ve the CP from the middle to the beginning of the line and then 
display the entire line. In the following example, the CP is in the 
middle of the line. OL moves the CP to the beginning of the line. 
T types from the CP to the end of the line, allowing you to see the 
entire line. 

3: *T 
sense of living 

3: *OLT 
3: the mere sense of living 
3: * 

The command OTT displays the entire line without moving the CP. 

6-15 



Personal CP/M User's Guide Combining ED Commands 

To verify that an ED command moves the CP correctly, combine the 
command with the T command to display the line. The following 
example combines a C command and a T command. 

2: *8CT 
ecstasy in living -

2: * 

4: *B#T 
1: Emily Dickinson said, 
2: "I find ecstasy in living -
3: the mere sense of living 
4: is joy enough." 
1: * 

Editing 

To edit text and verify corrections quickly, combine the edit 
commands with other ED commands that move the CP and display text. 
Command strings like the one that follows move the CP, delete 
specified characters, and verify changes quickly. 

1: *15C5DOLT 
1: Emily Dickinson, 
l: * 

Combine the edit command K with other ED commands to delete entire 
lines and verify the correction quickly, as follows: 

1: *2L2KBIT 
1: Emily Dickinson said, 
2: "I find ecstasy in living -
l: * 

The abbreviated form of the I (insert) command makes simple textual 
changes. To make and verify these changes, combine the I command 
string with the C command and the OLT command string as follows. 
Remember that the insert string must be terminated by a CTRL-Z. 

1: *20Ci to a friend-ZOLT 
1: Emily Dickinson said to a friend, 
1: * 

ADVANCED ED COMMANDS 

The basic editing commands discussed previously allow you to use ED 
for all your editing. The following ED commands, however, enhance 
ED 1 s usefulness. 

6-16 



Personal CP/M User's Guide Advanced ED Commands 

Moving the CP and Displaying Text 

The P (Page) Command 

Although you can display any amount of text at the screen with a T 
conunarrl, it is sometimes more convenient to page through the buffer, 
viewing whole screens of data and moving the CP to the top of each 
new screen at the same time. To do this, use ED's P command. The P 
command takes the following forms: 

nP, -n:i;> 

where n is the number of pages to be displayed. If you do not 
specify n, ED types the 23 lines following the CP and then moves the 
CP forward 23 lines. This leaves the CP pointing to the first 
character on the screen. 

To display the current page without moving the CP, enter OP. The 
special character 0 prevents the movement of the CP. If you specify 
a negative number for n, P pages backwards towards the top of the 
file. 

The n: (Line Number) Command 

When line numbers are being displayed, ED accepts a line number as a 
command to specify a destination for the CP. The line number 
command takes the following form: 

n: 

where n is the number of the destination line. This command places 
the CP at the beginning of the specified line. For example, the 
command 4: moves the CP to the beginning of the fourth line. 

Remember that ED dynamically renumbers text lines in the buffer each 
time a line is added or deleted. There fore, the number of the 
destination line you have in mind can change during editing. 

The :n (Through Line Number) Command 

The inverse of the line number command executes a command through a 
certain line number. You can use this command with only three ED 
commands: the K (kill) command, the L (line) command, and the T 
(type) command. The :n command takes the following form: 

:ncommand 

where n is the line number through which the command is to be 
executed. The :n part of the command does not move the CP, but the 
command that follows it might. 

6-17 



Personal CP/M User's Guide Advanced ED Commands 

You can combine n: with :n to specify a range of lines through which 
a command should be executed. For example, the command 2::4T types 
the second, third, and fourth lines: 

1: *2: :4T 
2: "I find ecstasy in living -
3: the mere sense of living 
4: is joy enough." 
2: * 

Finding and Replacing Character Strings 

ED supports a find command, F, that searches through the memory 
buffer arrl places the CP after the word or phrase you want. The N 
command allows ED to search through the.entire source file instead 
of just the buffer. The J command searches for and then juxtaposes 
character strings. 

The F (Find) Command 

The F command performs the simplest find function; it takes the 
form: 

nFstring 

where n is the occurrence of the string to be found. Any number you 
enter must be positive because ED can only search from the CP to the 
bottom of the buffer. If you enter no number, ED finds the next 
occurrence of the string in the file. In the following example, the 
second occurrence of the word living is found. 

1: *2f1iving 
3: * 

The character pointer moves to the beginning of the third line where 
the second occurrence of the word "living" is located. To display 
the line, combine the find command with a type command. Note that 
if you follow an F command with another ED command on the same 
line, you must terminate the string with a CTRL-Z, as follows 

1: *2f1iving•zo1t 
3: *the mere sense of living 

It makes a difference whether you enter the F command in upper or 
lowercase. If you enter F, ED internally translates the argument 
string to uppercase. If you specify £, ED looks for an exact match. 
For example, Fcp/m searches for Personal CP/M, but fcp/m searches 
for cp/m, and cannot find Personal CP/M. 

6-18 



Personal CP/M User's Guide Advanced ED Commands 

If ED does not find a match for the string in the memory buffer, it 
issues the message, 

BREAK "#" AT 

where the symbol # indicates that the search failed during the 
execution of an F command. 

The N Command 

The N command extends the search function beyond the memory buffer 
to include the source file. If the search is successful, it leaves 
the CP pointing to the first character after the search string. The 
N command takes the form : 

nNstring 

where n is the occurrence of the string to be found. If no number 
is entered, ED looks for the next occurrence of the string in the 
f ile. The case of the N command has the same effect on an N command 
as it does on an F command. Note that if you follow an N command 
with another ED command, you must terminate the string with a CTRL­
z. 

When an N command is executed, ED searches the memory buffer for the 
specified string, but if ED does not find the string, it does not 
issue an error message. Instead, ED autornatica :!.ly writes the 
searched data from the buffer into the new file. Then ED performs a 
OA command to fill the buffer with unsearched data from the source 
file. ED continues to search the buffer, write out data, and append 
new data until it either finds the string or reaches the end of the 
source file. If ED reaches the end of the source file, ED issues 
the following message: 

BREAK "#" AT 

Because ED writes the searched data to the new file before looking 
for more data in the source fil e , ED usually writes the contents of 
the buffer to the new file before finding the end of the source file 
and issuing the error message. 

Note: You must use the H command to continue an edit session after 
the source file is exhausted and the memory buffer is emptied. 

6-19 



Personal CP/M User's Guide Advanced ED Commands 

The J (Juxtapose) Command 

The J command inserts a string after the search string, then deletes 
any characters between the end of the inserted string to the 
beginning of the a third delete-to string. This juxtaposes the 
string between the search and delete-to strings with the insert 
string. The J command takes the form : 

nJsearch stringAZinsert str i ngAZdelete-to string 

where n is the occurrence of the search st r ing . I f no number is 
specified, ED searches for the next occurrence of the search string 
in the memory buffer. In the following example, ED searches for the 
word "Dickinson", inserts the phrase "told a friend" after it, and 
then deletes everything up to the comma . 

1: *IT 
1: Emily Dickinson said, 
2: 11 I find ecstasy in living -
3: the mere of living 
4: is joy enough. 11 

1: *jDickinsonAZ told a friendAZ, 
1: *Olt 
1: Emily Dickinson told a friend, 
1: * 

If you combine this command with other commands, you must terminate 
the delete-to string with a CTRL-Z or ESC, as in the following 
example. If an uppercase J command letter is specified, ED looks 
for uppercase search and delete-to strings and inserts an uppercase 
insert string. 

The J command is especially useful when revising comments in 
assembly language source code, as follows 

236: SORT LXI H, SW ;ADDRESS TOGGLE SWITCH 
236: *j:AZADDRESS SWITCH TOGGLEAZALAZOLT 
2 3 6: SORT LXI H, SW ; ADDRESS SWITCH TOGGLE 
236: * 

In this example, ED searches for the first semicolon and inserts 
ADDRESS SWITCH TOGGLE after the mark and then deletes to the 
<cr><lf> sequence, represented by CTRL-L . In any search string, you 
can use CTRL-L to represent a <cr><lf> when the phrase that you want 
extends across a line break. You can also use a CTRL-I in a search 
string to represent a tab. 

Note: If long strings make your command longer than your screen 
line length, enter a CTRL-E to cause a physical carriage return at 
the screen. A CTRL-E returns the cursor to the left edge of the 
screen, but does not send the command line to ED. Remember that no 

6-20 



Personal CP/M User's Guide Advanced ED Commands 

ED command line containing strings can exceed 100 characters. When 
you finish your command, press the carriage return key to send the 
command to ED. 

The M (Macro) Command 

An ED macro command, M, can increase the usefulness of a string of 
commands. The M command allows you to group ED commands together 
for repeated execution. The M command takes the following form: 

nMcommand string 

where n is the number of times the command string is to be executed. 
A negative number is not a valid argument for an M command. If no 
number is specified, the special character # is assumed, and ED 
executes the command string until it reaches the end of data in the 
buffer or the end of the source file, depending on the commands 
specified in the string. In the following example, ED executes the 
four commands repetitively until it reaches the end of the memory 
buffer: 

3: * 

1: *mf1ivingAZ-6diLivingAZOlt 
2: 11 I find ecstasy in Living -
3: the mere sense of Living 

BREAK II#" AT ... z 

The terminator for an M command is a carriage return; therefore, an 
M conunarrl must be the last command on the line. Also, all character 
strings that appear in a macro must be terminated by CTRL-Z or ESC. 
If a character string ends the combined-command string, it must be 
terminated by CTRL-Z, then followed by a <er> to end the M command. 

The execution of a macro command always ends in a BREAK 11 #11 message, 
even when you have limited the number of times the macro is to be 
performed, and ED does not reach the end of the buffer or source 
file. Usually the command letter displayed in the message is one of 
the commands from the string and not M. 

To abort a macro command, press a CTRL-C at the keyboard. 

The Z (Sleep) Command 

Use the Z command to make the editor pause between operations. The 
pauses give you a chance to review what you have done. The Z 
command takes the form: 

nZ 

6-21 



Personal CP/M User's Guide Advanced ED Commands 

where n is the number of seconds to wait before proceeding to the 
next instruction. 

Usually, the Z command has no real effect unless you use it with a 
macro command. The following example shows you how you can use the 
Z comrnarrl to cause a brief pause each time ED finds the word TEXT in 
a file. 

A>*mflivingAZOttlOz 

Moving Text Blocks 

To move a group of lines from one area of your data to another, use 
an X conunand to write the text block into a temporary LIB file, then 
a K command to remove these lines from their original location, and 
finally an R command to read the block into its new location. 

The X (Transfer} Command 

The X command takes the forms: 

nX 
nXfi lespec"'Z 

where n is the number of lines from the CP towards the bottom of the 
buffer that are to be transferred to a file. Therefore, n must 
always be a positive number. The nX command with no file specified 
creates a temporary file named X$$$$$$$.LIB. This file is erased 
when you terminate the edit session. The nX command with a file 
specified creates a file of the specified name. If no filetype is 
specified, LIB is assumed. This file is saved when you terminate 
the edit session. If the X command is not the last command on the 
line, the command must be terminated by a CTRL-Z or ESC. In the 
following example, just one line is transferred to the temporary 
file: 

l: *X 
1: *t 
l: *Emily Dickinson said, 
1: *kt 
l: *"I find ecstasy in living -
l: * 

If no library file is specified, ED looks for a file named 
X$$$$$$$.LIB. If the file does not exist, ED creates it. If a 
previous X command already created the library file, ED appends the 
specified lines to the end of the existing file. 

Use the special character O as the n argument in an X command to 
delete any file from within ED. 

6-22 



Personal CP/M User's Guide Advanced ED Commands 

The R (Read) Command 

The X conunand transfers the next n lines from the current line to a 
library file. The R command can retrieve the transferred lines. 
The R command takes the forms: 

R 

Rf ilepsec 

If no filename is specified, X$$$$$$$ is assumed. If no filetype is 
specified, LIB is assumed. R inserts the library file in front of 
the CP; therefore, after the file is added to the memory buffer, the 
CP points to the same character it did before the read, although the 
character is on a new line number. If you combine an R command with 
other commands, you must separate the filename from subsequent 
command letters with a CTRL-Z as in the following example where ED 
types the entire file to verify the read. 

1: *41 
*R .... ZB#T 

1: "I find ecstasy in living -
2: the mere sense of living 
3: is joy enough. " 
4: Emily Dickinson said, 
1: * 

Saving or Abandoning Changes: ED Exit 

You can save or abandon editing changes with the following three 
commands. 

The H (Head of File) Command 

An H command saves the contents of the memory buffer without ending 
the ED session, but it returns to the head of the file. It saves 
the current changes and lets you reedit the file without exiting ED. 
The H command takes the following form: 

H 

followed by a carriage return. 

To execute an H command, ED first finalizes the new file, 
transferring all lines remaining in the buffer and the source file 
to the new file. Then ED closes the new file, erases any BAK file 
that has the same file specification as the original source file, 
an::l renames the original source file filename.BAK. ED then renames 
the new file, which has had the file type$$$, with the original file 
specification. Finally, ED opens the newly renamed file as the new 
source file for a new edit, and opens a new $$$ file. When ED 
returns the * prompt, the CP is at the beginning of an empty memory 
buffer. 

6-23 



Personal CP/M User's Guide Advanced ED Commands 

If you want to send the edited material to a file other than the 
original file, use the following command form: 

ED filespec differentfilespec 

If you then restart the edit with the H command, ED renames the file 
differentfilename.$$$ to differentfilename.BAK and creates a new 
file of differentfilespec when you finish editing. 

The o (Original) Command 

An 0 command abandons changes made since the beginning of the edit 
and allows you to return to the original source file and begin 
reediting without ending the ED session. The O command takes the 
form: 

0 

followed by a carriage return. When you enter an 0 command, ED 
confirms that you want to abandon your changes by asking 

0 (Y/N)? 

You must respond with either a Y or an N: if you press any other 
key, ED repeats the question. When you enter Y, ED erases the 
temporary file and the contents of the memory buffer. When the * 
prompt returns, the character pointer is pointing to the beginning 
of an empty memory buffer, just as it is when you start ED. 

The Q (Quit) Command 

A Q command abandons changes made since the beginning of the ED 
session and exits ED. The Q command takes the form: 

Q 

followed by a carriage return. 

When you enter a Q command, ED verifies that you want to abandon the 
changes by asking 

Q (Y/N)? 

You must respond with either a Y or an N: if you press any other 
key, ED repeats the question. When you enter Y, ED erases the 
temporary file, closes the source file, and returns control to 
Personal CP/M. 

l!lote: You can enter a CTRL-Break or a CTRL-C to return control 
immediately to Personal CP/M. This does not give ED a chance to 
close the source or new files, but it prevents ED from deleting any 
temporary files. 

6-24 



Personal CP/M User's Guide ED Error Messages 

ED ERROR MESSAGES 

ED returns one of two types of error messages: an ED error message 
if ED cannot execute an edit command, or a Personal CP/M error 
message if ED cannot read or write to the specified file. An ED 
error message takes the form: 

BREAK "x" AT c 

where x is one of the symbols defined in the following table and c 
is the command letter where the error occurred. 

Tab1e 6-4. ED Error Syabo1s 

Symbol I Meaning 

# Search failure. ED cannot find the string 
specified in a F, S, or N command. 

?c Unrecognized command letter c. ED does 
not recognize the indicated command 
letter, or an E, H, 0, or Q command is not 
alone on its command line. 

0 No .LIB file. ED did not find the LIB 
file specified in an R command. 

> Buffer full. ED cannot put anymore 
characters in the memory buffer, or string 
specified in an F, N, or S command is too 
long. 

E Command aborted. A keystroke at the 
keyboard aborted command execution. 

F File error. Followed by either disk FULL 
or DIRECTORY FULL. 

The following examples show how to recover from common editing error 
conditions. For example, 

BREAK ">" AT A 

means that ED filled the memory buffer before completing the 
execution of an A command. When this occurs, the character pointer 
is at the end of the buffer and no editing is possible. Use the OW 
command to write out half the buffer or use an 0 or H command and 
reedit the file. 

BREAK 11 #11 AT F 

6-25 



Personal CP/M User's Guide ED Error Messages 

means that ED reached the end of the memory buffer without matching 
the string in an F command. At this point, the character pointer is 
at the end of the buffer. Move the CP with a B or n: line number 
command to resume editing. 

BREAK II F" AT F 
DISK FULL 

Use the OX command to erase an unnecessary file on the disk or a 
B#Xd:buffer.sav command to write the contents of the memory buffer 
onto another disk. 

BREAK 11 F 11 AT n 
DIRECTORY FULL 

Use the same commands described in the previous message to recover 
from this file error. 

The following table defines the disk file error messages ED returns 
when it cannot read or write a file. 

Table 6-5. ED Disk File Error Messages 

Message 

Bdos Err on d: 
Function NNN 

Meaning 

R/O 
File: FILENAME.TYP 

Disk d: has Read/Only attribute. This 
occurs if a different disk has been 
inserted in the drive since the last cold 
or warm boot. 

** FILE IS READ ONLY ** 

The file specified in the command to 
invoke ED has the R/O attribute. ED can 
read the file so that the user can examine 
it, but ED cannot change a Read/Only file. 

End of Section 6 

6-26 



INTRODUCTION 

Section 7 
CP/M Assembler 

The CP/M assembler reads assembly language source files from the diskette and 
produces 8080 machine language in Intel hex format. The CP/M assembler is initiated by 
typing 

ASM filename 

or 

ASM filename.parms 

In both cases, the assembler assumes there is a file on the diskette with the name 

filename.ASM 

which contains an 8080 assembly language source file . The first and second forms shown 
above differ only in that the second form allows parameters to be passed to the assembler 
to control source file access and hex and print file destinations . 

In either case, the CP/M assembler loads and prints the message 

CP/M ASSEMBLER VER n.n 

where n.n is the current version number. In the case of the first command, the assembler 
reads the source file with assumed file type ASM and creates two output files 

ti lename. HEX 

and 

filename.PAN 

The HEX file contains the machine code corresponding to the original program in Intel 
hex format, and the PRN file contains an annotated listing showing generated machine 

7-1 



Personal CP/M User's Guide Program Format 

code, error flags, and source lines. If errors occur during translation, they will be listed in 
the PRN file as well as at the console. 

The form ASM filename parms can be used to redirect input and output files from 
their defaults . In this case, the parms portion of the command is a three-letter group that 
specifies the origin of the source file, the destination of the hex file, and the destination of 
the print file. The form is 

filename.p1 p2p3 

where pl, p2, and p3 are single letters 

P1: A,B, ... , P designates the disk name that contains the source file 

p2: A,B, ... , P designates the disk name that will receive the hex file 

Z skips the generation of the hex file 

p3: A,B, ... , P designates the disk name that will receive the print file 

X places the listing at the console 

Z skips generation of the print file 

Thus, the command 

ASM X.AAA 

indicates that the source file (X.ASM) is to be taken from disk A and that the hex (X.HEX) 
and print (X .PRN) files are also to be created on disk A. This form of the command is 
implied if the assembler is run from disk A. That is, given that the operator is currently 
addressing disk A, the above command is equivalent to 

ASM X 

The command 

ASM X.ABX 

indicates that the source file is to be taken from disk A, the hex file is to be placed on disk 
B, and the listing file is to be sent to the console . The command 

ASM X.BZZ 

takes the source file from disk Band skips the generation of the hex and print files (this 
command is useful for fast execution of the assembler to check program syntax). 

The source program format is compatible with the Intel 8080 assembler (macros are 
not implemented in ASM; see the optional MAC macro assembler). There are certain 
extensions in the CP/M assembler that make it somewhat easier to use. These extensions 
are described below. 

PROGRAM FORMAT 

An assembly language program acceptable as input to the assembler consists of a 
sequence of statements of the form 

line# label operation operand ;comment 

7-2 



Personal CP/M User's Guide Forming the Operand 

where any or all of the fields may be present in a particular instance. Each assembly 
language statement is terminated with a carriage return and line feed (the line feed is 
inserted automatically by the ED program), or with the character!, which is treated as an 
end-of-line by the assembler (thus, multiple assembly language statements can be writ­
ten on the same physical line if separated by exclamation mark symbols). 

The line# is an optional decimal integer value representing the source program line 
number, and ASM ignores this field if present. 

The label field takes the form 

identifier 

or 

identifier: 

and is optional, except where noted in particular statement types. The identifier is a 
sequence of alphanumeric characters where the first character is alphabetic. Identifiers 
can be freely used by the programmer to label elements such as program steps and 
assembler directives, but cannot exceed 16 characters in length. All characters are 
significant in an identifier, except for the embedded dollar symbol($), which can be used 
to improve readability of the name. Further, all lower case alphabetics are treated as if 
they were upper case. The following are all valid instances of labels 

x 

x: 

X1Y2 

xy 

yxl: 

X1x2 

long$name 

longer$named$data: 

x234$5678$9012$3456: 

The operation field contains either an assembl~r directive or pseudo-operation, or an 
8080 machine operation code. The pseudo-operations and machine operation codes are 
described below. 

The operand field of the statement, in general, contains an expression formed out of 
constants and labels, along with arithmetic and logical operations on these elements. 
Again, the complete details of properly formed expressions are given below. 

The comment field contains arbitrary characters following the; symbol until the next 
real or logical end-of-line . These characters are read, listed, and otherwise ignored by the 
assembler. The CP/M assembler also treats statements that begin with an* in column one 
as comment statements, which are listed and ignored in the assembly process. 

The assembly language program is formulated as a sequence of statements of the 
above form, terminated by an optional END statement. All statements following the 
END are ignored by the assembler. 

FORMING THE OPERAND 

To describe the operation codes and pseudo-operations completely, it is necessary first 
to present the form of the operand field, since it is used in nearly all statements. 
Expressions in the operand field consist of simple operands (labels, constants, and 
reserved words), combined in properly formed subexpressions by arithmetic and logical 
operators . The expression computation is carried out by the assembler as the assembly 
proceeds . Each expression must produce a 16-bit value during the assembly. Further, the 
number of significant digits in the result must not exceed the intended use. That is, if an 
expression is to be used in a byte move immediate instruction, the most significant 8 bits 
of the expression must be zero. The restriction on the expression significance is given 
with the individual instructions . 

7-3 



Personal CP/M User's Guide Forming the Operand 

Lables 

As discussed above, a label is an identifier that occurs on a particular statement. In 
general, the label is given a value determined by the type of statement that it precedes . If 
the l~bel occurs on a statement that generates machine code or reserves memory space 
(e.g., a MOY instruction or a OS pseudo-operation), the label is given the value of the 
program address that it labels . If the label precedes an EQU or SET, the label is given the 
value that results from evaluating the operand field. Except for the SET statement, an 
identifier can label only one statement. 

When a label appears in the operand field, its value is substituted by the assembler . 
This value can then be combined with other operands and operators to form the operand 
field for a particular instruction. 

Numeric Constants 

A numeric constant is a 16-bit value in one of several bases. The base, called the radix 
of the constant, is denoted by a trailing radix indicator. The radix indicators are 

8 

0 

Q 

D 

H 

binary constant (base 2) 

octal constant (base 8) 

octal constant (base 8) 

decimal constant (base 10) 

hexadecimal constant (base 16) 

Q is all alternate radix indicator for octal numbers since the letter 0 is easily confused 
with the digit 0. Any numeric constant that does not terminate with a radix indicator is 
assumed to be a decimal constant . 

A constant is thus composed as a sequence of digits, followed by an optional radix 
indicator, where the digits are in the appropriate range for the radix. That is, binary 
constants must be composed of 0 and 1 digits, octal constants can contain digits in the 
range 0-7, while decimal constants contain decimal digits . Hexadecimal constants contain 
decimal digits as well as hexadecimal digits A (100), B (110), C (120), D (130), E (140), 
and F (150) . The user should note that the leading digit of a hexadecimal constant must be 
a decimal digit to avoid confusing a hexadecimal constant with an identifier (a leading O 
will always suffice). A constant composed in this manner must evaluate to a binary 
number that can be contained within a 16-bit counter, otherwise it is truncated on the 
right by the assembler. Similar to identifiers, imbedded $ signs are allowed within 
constants to improve their readability. Finally, the radix indicator is translated to upper 
case if a lower case letter is encountered. The following are all valid instances of numeric 
constants 

1234 

1234H 

33770 

12340 

OFF EH 

Ofe3h 

Reserved Words 

11008 

33770 

1234d 

1111$0000$1111$00008 

33$77$220 

Offffh 

There !ire several reserved character sequences that have predefined meanings in the 

7-4 



Personal CP/M User's Guide Forming the Operand 

operand field of a statement. The names of 8080 registers are given below. When they are 
encountered, they produce the values shown to the right . 

A 7 

B 0 

c 1 

D 2 

E 3 

H 4 

L 5 

M 6 

SP 6 

PSW 6 

(Again, lower case names have the same values as their upper case equivalents.) Machine 
instructions can also be used in the operand field and evaluate to their internal codes. In 
the case of instructions that require operands, where the specific operand becomes a part 
of the binary bit pattern of the instruction (e.g., MOV A,B), the value of the instruction 
(in this case MOV) is the bit pattern of the instruction with zeroes in the optional fields 
(e .g ., MOV produces 40H) . 

When the symbol $ occurs in the operand field (not imbedded within identifiers and 
numeric constants), its value becomes the address of the next instruction to generate, not 
including the instruction contained within the current logical line. 

String Constants 

String constants represent sequences of ASCII characters and are represented by 
enclosing the characters within apostrophe symbols ('). All strings must be fully con­
tained within the current physical line (thus allowing! symbols within strings) and must 
not exceed 64 characters in length. The apostrophe character itself can be included within 
a string by representing it as a double apostrophe (the two keystrokes"), which becomes a 
single apostrophe when read by the assembler. In most cases, the string length is 
restricted to either one or two characters (the DB pseudo-operation is an exception}, in 
which case the string becomes an 8- or 16-bit value, respectively. Two character strings 
become a 16-bit constant, with the second character as the low order byte, and the first 
character as the high order byte . 

The value of a character is its corresponding ASCII code. There is no case translation 
within strings, and thus both upper and lower case characters can be represented. The 
user should note, however, that only graphic (printing) ASCII characters are allowed 
within strings. 

Valid strings are 

'A' 'AB' 'ab' 'c' 
,, 'a"' ,,,, ,,,, 

'Walla Walla Wash.' 
'She said "Hello" to me.' 
'I said "Hello" to her.' 

which represent 

A AB ab c 
a' 

Walla Walla Wash. 
She said "Hello" to me 
I said "Hello" to her 

7-5 



Personal CP/M User's Guide Forming the Operand 

Arithmetic and Logical Operators 

The operands described above can be combined in normal algebraic notation using any 
combination of properly formed operands, operators, and parenthesized expressions. 
The operators recognized in the operand field are 

a+b 

a-b 

+b 

-b 

a* b 

alb 

a MOD b 

NOT b 

a AND b 

a OR b 

a XOR b 

a SHL b 

a SHR b 

unsigned arithmetic sum of a and b 

unsigned arithmetic difference between a and b 

unary plus (produces b) 

unary minus (identical to 0 - b) 

unsigned magnitude multiplication of a and b 

unsigned magnitude division of a by b 

remainder after a I b 

logical inverse of b (all Os become 1.s, ls become Os), where b is 
considered a 16-bit value 

bit-by-bit logical and of a and b 

bit-by-bit logical or of a and b 

bit-by-bit logical exclusive or of a and b 

the value that results from shifting a to the left by an amount b, 
with zero fill 

the value that results from shifting a to the right by an amount b, 
with zero fill. 

In each case, a and b represent simple operands (labels, numeric constants, reserved 
words, and one or two character strings) or fully enclosed parenthesized subexpressions 
such as 

10+20 10h+37Q LI /3 (L2+4) SHA 3 

('a' and 5fh) + 'O' ('B'+B) OR (PSW+M) 

(1 +(2+c)) shr (A-(8+1 )) 

Note that all computations are performed at assembly time as 16-bit unsigned operations. 
Thus, -1 is computed as 0-1, which results in the value Offffh (i.e., all ls). The resulting 
expression must fit the operation code in which it is used. For example, if the expression is 
used in an ADI (add immediate) instruction, the high order 8 bits of the expression must 
be zero. As a result, the operation ADI -1 produces an error message (-1 becomes Offffh, 
which cannot be represented as an 8-bit value), while ADI (-1) AND OFFH is accepted by 
the assembler since the AND operation zeroes the high order bits of the expression. 

Precedence of Operators 

As a convenience to the programmer, ASM assumes that operators have a relative 
precedence of application that allows the programmer to write expressions without 
nested levels of parentheses . The resulting expression has assumed parentheses that are 
defined by the relative precedence. The order of application of operators in unparenthe­
sized expressions is listed below. Operators listed first have highest precedence (they are 
applied first in an unparenthesized expression), while operators listed last have lowest 

7-6 



Personal CP/M User's Guide Assembler Directives 

precedence. Operators listed on the same line have equal precedence, and are applied 
from left to right as they are encountered in an expression 

• I MOD SHL SHA 

- + 

NOT 

AND 

OR XOR 

Thus, the expressions shown to the left below are interpreted by the assembler as the 
fully parenthesized expressions shown to the right 

a* b + c 

a+ b • c 

a MOD b * c SHL d 

a OR b AND NOT c + d SHL e 

(a*b)+c 

a+ (b * c) 

((a MOD b) * c) SHL d 

a OR (b AND (NOT (c + (d SHL e)))) 

Balanced parenthesized subexpressions can always be used to override the assumed 
parentheses; thus, the last expression above could be rewritten to force application of 
operators in a different order as 

(a OR b) AND (NOT c) + d SHL e 

resulting in the assumed parentheses 

(a OR b) AND ((NOT c) + (d SHL e)) 

An unparenthesized expression is well-formed only if the expression that results from 
inserting the assumed parentheses is well-formed. 

ASSEMBLER DIRECTIVES 

Assembler directives are used to set labels to specific values during the assembly, 
perform conditional assembly, define storage areas, and specify starting addresses in the 
program. Each assembler directive is denoted by a pseudo-operation that appears in the 
operation field of the line. The acceptable pseudo-operations are 

ORG 

END 

EQU 

SET 

IF 

ENDIF 

DB 

set the program or data origin 

end program, optional start address 

numeric "equate" 

numeric "set" 

begin conditional assembly 

end of conditional assembly 

define data bytes 

7-7 



Personal CP/M User's Guide 

DW 

OS 

define data words 

define data storage area 

The individual directives are detailed below. 

The ORG Directive 

The ORG statement takes the.form 

label ORG expression 

Assembler Directives 

where "label" is an optional program identifier and expression is a 16-bit expression, 
consisting of operands that are defined before the ORG statement. The assembler begins 
machine code generation at the location specified in the expression. There can be any 
number of ORG statements within a particular program, and there are no checks to 
ensure that the programmer is not defining overlapping memory areas. The user should 
note that most programs written for the CP/M system begin with an ORG statement of 
the form 

ORG 100H 

which causes machine code generation to begin at the base of the CP/M transient 
program area. If a label is specified in the ORG statement, the label is given the value of 
the expression (this label can then be used in the operand field of other statements to 
represent this expression). 

The END Directive 

The END statement-is optional in an assembly language program, but if it is present it 
must be the last statement (all subsequent statements are ignored in the assembly) . The 
two forms of the END directive are 

label END 

label END expression 

where the label is again optional. If the first form is used, the assembly process stops, and 
the default starting address of the program is taken as 0000. Otherwise, the expression is 
evaluated, and becomes the program starting address (this starting address is included in 
the last record of the Intel formatted machine code hex file, which results from the 
assembly). Thus, most CP/M assembly language programs end with the statement 

END 100H 

resulting in the default starting address of lOOH (beginning of the transient program 
area). 

7-8 



Personal CP/M User's Guide Assembler Directives 

The EQU Directive 

The EQU (equate) statement is used to set up synonyms for particular nu·meric values. 
The form is 

label EQU expression 

where the label must be present and must not label any other statement. The assembler 
evaluates the expression, and assigns this value to the identifier given in the label field . 
The identifier is usually a name that describes the value in a more human-oriented 
m_anner. Further, this name is used throughout the program to "parameterize" certain 
functions . Suppose data received from a teletype appear on a particular input port and 
data are sent to the teletype through the next output port in sequence . The series of 
equate statements could be used to del:ihe these ports for a particular hardware 
environment 

EQU 10H TTY BASE 

TTYIN 

TTY OUT 

EQU TTYBASE 

EQU TTYBASE+1 

;BASE PORT NUMBER FOR TTY 

;TTY DATA IN 

;TTY DATA OUT 

At a later point in the program, the statements that access the teletype could appear as 

IN TTYIN ;READ TTY DATA TO REG-A 

OUT TTY OUT ;WRITE DATA TO TTY FROM REG-A 

making the program more readable than if the absolute 1/0 ports had been used. Further, 
if the hardware environment is redefined to start the teletype communications ports at 
7FH instead of lOH, the first statement need only be changed to 

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY 

and the program can be reassembled without changing any other statements. 

The SET Directive 

The SET statement is similar to the EQU, taking the form 

label SET expression 

except that the label can occur on other SET statements within the program. The 
expression is evaluated and becomes the current value associated with the label. Thus, 
the EQU statement defines a label with a single value, while the SET statement defines a 
value that is valid from the current SET statement to the point where the label occurs on 
the next SET statement . The use of the SET is similar to the EQU statement, but is used 
most often in controlling conditional assembly. 

7-9 



Personal CP/M User's Guide Assembler Directives 

The IF and ENDIF Directives 

The IF and ENDIF statements define a range of assembly language statements that are 
to be included or excluded during the assembly process . The form is 

IF expression 

statement#1 

statement#2 

statement#n 

ENDIF 

Upon encountering the IF statement, the assembler evaluates the expression following 
the IF (all operands in the expression must be defined ahead of the IF statement). If the 
expression evaluates to a nonzero value, then statement#! through statement#n are 
assembled; if the expression evaluates to zero, the statements are listed but not 
assembled . Conditional assembly is often used to write a single "generic" program that 
includes a number of possible run-time environments, with only a few specific portions of 
the program selected for any particular assembly. The following program segments, for 
example, might be part of a program that communicates with either a teletype or a CRT 
console (but not both) by selecting a particular value for TTY before the assembly begins . 

TRUE 
FALSE 

TTY 

TTY BASE 
CRT BASE 

CONIN 
CON OUT 

CONIN 
CON OUT 

EQU 
EQU 

EQU 

EQU 
EQU 
IF 

EQU 
EQU 
ENDIF 

IF 

EQU 
EQU 

ENDIF 

IN 

OUT 

OFFFFH 
NOT TRUE 

TRUE 

10H 
20H 
TTY 

TTY BASE 
TTYBASE+1 

NOT TTY 

CRT BASE 
CRTBASE+1 

CONIN 

CONOUT 

;DEFINE VALUE OF TRUE 
;DEFINE VALUE OF FALSE 

;TRUE IF TTY, FALSE IF CRT 

;BASE OF TTY 1/0 PORTS 
;BASE OF CRT 1/0 PORTS 
;ASSEMBLE RELATIVE TO 
;TTY BASE 
;CONSOLE INPUT 
;CONSOLE OUTPUT 

;ASSEMBLE RELATIVE TO 
;CRT BASE 
;CONSOLE INPUT 
;CONSOLE OUTPUT 

;READ CONSOLE DATA 

;WRITE CONSOLE DATA 

In this case, the program would assemble for an environment where a teletype is 
connected, based at port IOH. The statement defining TTY could be changed to 

TTY EQU FALSE 

and, in this case, the prog ram would assemble for a CRT based at port 20H. 

7-10 



Personal CP/M User's Guide Assembler Directives 

·The DB Directive 

The DB directive allows the programmer to define initialized storage areas in single 
precision (byte) format. The statement form is 

label DB e#1, e#2, ... , e#n 

where e#l through e#n are either expressions that evaluate to 8-bit values (the high 
order bit must be zero) or are ASCII strings of length no greater than 64 characters. 
There is no practical restriction on the number of expressions included on a single 
source line. The expressions are evaluated and placed sequentially into the machine code 
file following the last program address generated by the assembler. String characters are 
similarly placed into memory starting with the first character and ending with the last 
character. Strings of length greater than two characters cannot be used as operands in 
more complicated expressions. The user should note that ASCII characters are always 
placed in memory with the parity bit reset (0). Also, there is no translation from lower to 
upper case within strings. The optional label can be used to reference the data area 
throughout the remainder of the program. Examples of valid DB statements are 

data: 

sign-on: 

DB 
DB 

DB 
DB 

The DW Directive 

0, 1,2,3,4,5 
data and Offh,5,3770, 1 +2+3+4 

'please type your name',cr,lf,O 
'AB' SHR 8, 'C', 'DE' AND 7FH 

The OW statement is similar to the DB statement except double precision (two byte) 
words of storage are initialized. The form is 

label DW e#1, e#2, ... , e#n 

where e#l through e#n are expressions that evaluate to 16-bit results. The user should 
note that ASCII strings of one or two characters are allowed, but strings longer than two 
characters are disallowed. In all cases, the data storage is consistent with the 8080 
processor: the least significant byte of the expression is stored first in memory, followed 
by the most significant byte. Examples are 

daub: DW 
DW 

The DS Directive 

Offefh ,dou b+4.signon-$,255+255 
'a', 5, 'ab', 'CD', 6 shl 8 or llb. 

The OS statement is used to reserve an area of uninitialized memory, and takes the 
form 

label DS expression 

7-11 



Personal CP/M User's Guide Operation codes 

where the label is optional. The assembler begins subsequent code generation after the 
area reserved by the OS. Thus, the OS statement given above has exactly the same effect 
as the statement 

label: EQU $ ;LABEL VALUE IS CURRENT CODE LOCATION 
ORG $+expression ;MOVE PAST RESERVED AREA 

OPERATION CODES 

Assembly language operation codes form the principal part of assembly language 
programs and form the operation field of the instruction. In general, ASM accepts all the 
standard mnemonics for the Intel 8080 microcomputer, which are given in detail in Intel's 
"8080 Assembly Language Programming Manual." Labels are optional on each input line . 
The individual operators are listed briefly in the following sections for completeness, 
although it is understood that the Intel manuals should be referenced for exact operator 
details. In the following tables, 

e3 

e8 

e16 

represents a 3-bit value in the range 0-7 which can be one of the 
predefined registers A, B, C, 0, E, H, L, M, SP, or PSW. 

represents an 8-bit value in the range 0-255. 

represents a 16-bit value in the range 0-65535. 

These expressions can be formed from an arbitrary combination of operands and opera­
tors. In some cases, the operands are restricted to particular values within the allowable 
range, such as the PUSH instruction. These cases will be noted as they are encountered. 

In the sections that follow, each operation code is listed in its most general form, along 
with a specific example, with a short explanation and special restrictions. 

Jumps, Calls, and Returns 

The Jump, Call, and Return instructions allow several different forms that test the 
condition flags set in the 8080 microcomputer CPU. The forms are 

JMP e16 JMP L1 Jump unconditionally to label 

JNZ e16 JNZ L2 Jump on nonzero condition to label 

JZ e16 JZ 100H Jump on zero condition to label 

JNC e16 JNC L 1+4 Jump no carry to label 

JC e16 JC L3 Jump on carry to label 

JPO e16 JPO $+8 Jump on parity odd to label 

JPE e16 JPE L4 Jump on even parity to label 

JP e16 JP GAMMA Jump on positive result to label 

JM e16 JM al Jump on minus to label. 

CALL e16 CALL S1 Call subroutine unconditionally 

CNZ e16 CNZ S2 Call subroutine on nonzero 
condition 

7-12 



Personal CP/M User's Guide 

CZ 

CNC 

cc 
CPO 

CPE 

CP 

CM 

RST 

RET 

RNZ 

RZ 

RNC 

RC 

RPO 

RPE 

RP 

RM 

e16 

e16 

e16 

e16 

e16 

e16 

e16 

e3 

CZ 100H 

CNC S1+4 

cc 53 

CPO $+8 

CPE S4 

CP GAMMA 

CM b1$c2 

RST 0 

Operation Codes 

Call subroutine on zero condition 

Call subroutine if no carry set 

Call subroutine if carry set 

Call subroutine if parity odd 

Call subroutine if parity even 

Call subroutine if positive result 

Call subroutine if minus flag. 

Programmed restart, equivalent to 
CALL 8*e3, except one byte call. 

Return from subroutine 

Return if nonzero flag set 

Return if zero flag set 

Return if no carry 

Return if carry flag set 

Return if parity is odd 

Return if parity is even 

Return if positive result 

Return if minus flag is set. 

Immediate Operand Instructions 

Several instructions are available that load single or double precision registers or 
single precision memory cells with constant values, along with instructions that perform 
immediate arithmetic or logical operations on the accumulator (register A). 

MVI e3,e8 

ADI e8 

ACI e8 

SUI e8 

SBI e8 

ANI e8 

XRI e8 

ORI ea 

MVI B,255 

ADI 1 

ACI OFFH 

Move immediate data to register 
A, B, C, D, E, H, L, or M (memory) 

Add immediate operand to A with-
out carry 

Add immediate operand to A with 
carry 

SUI L + 3 Subtract from A without borrow 
(carry) 

SBI L AND 11 B Subtract from A with borrow 
(carry) 

ANI $AND 7FH Logical "and" A with immediate 
data 

XRI 1111$00008 "Exclusive or" A with immediate 
data 

ORI LAND 1 +1 Logical "or" A with immediate data 

7-13 



Personal CP/M User's Guide 

CPI ea CPI 'a' 

LXI e3,e16 LXI B,100H 

Operation Codes 

Compare A with immediate data 
(same as SUI except register A not 
changed). 

Load extended immediate to regis­
ter pair (e3 must be equivalent to 
B,D,H, or SP) . 

Increment and Decrement Instructions 

The 8080 provides instructions for incrementing or decrementing single and double 
precision registers. The instructions are 

INR e3 INR E 

DCR e3 DCR A 

INX e3 INX SP 

DCX e3 DCX B 

Single precision increment register 
(e3 produces one of A, B, C, D, E, 
H, L, M) 

Single precision decrement regis­
ter (e3 produces one of A, B, C, D, 
E, H, L, M) 

Double precision increment regis­
ter pair (e3 must be equivalent to 
B,D,H, or SP) 

Double precision decrement regis­
ter pair (e3 must be equivalent to 
B,D,H, or SP) . 

Data Movement Instructions 

Instructions that move data from memory to the CPU and from CPU to memory are 
given below. 

MOV e3,e3 

LDAX e3 

STAX e3 

LHLO e16 

SHLO e16 

LOA e16 

MOV A,B Move data to leftmost element 
from rightmost element (e3 produ­
ces one of A,B,C,D,E,H,L, or M) . 
MOY M,M is disallowed 

LDAX B Load reg ister A from computed 
address (e3 must produce either B 
or D ) 

STAX D Store register A to computed 
address (e3 must produce either B 
or D) 

LHLD L 1 Load HL direct from location e16 
(double precision load to Hand L) 

SHLD L5+x Store HL direct to location e16 
(double precision store from Hand 
L to memory) 

LOA Gamma Load register A from address e16 

7-14 



Personal CP/M User's Guide 

STA e16 STA X3-5 

POP e3 POP PSW 

PUSH e3 PUSH B 

IN ea IN 0 

OUTe8 OUT 255 

XTHL 

PCHL 

SPHL 

XCHG 

Arithmetic Logic Unit Operations 

Operation Codes 

Store register A into memory at 
e16 

Load register pair from stack, set 
SP (e3 must produce one of B, D, 
H, or PSW) 

Store register pair into stack, set 
SP (e3 must produce one of B, D, 
H, or PSW) 

Load register A with data from 
port e8 

Send data from register A to port 
e8 

Exchange data from top of stack 
with HL 

Fill program counter with data 
from HL 

Fill stack pointer with data from 
HL 

Exchange DE pair with HL pair 

Instructions that act upon the single precision accumulator to perform arithmetic and 
logic operations are 

ADD e3 

ADC e3 

SUB e3 

SBB e3 

ANA e3 

XRA e3 

ORA e3 

CMP e3 

DAA 

CMA 

ADD B 

ADC L 

SUB H 

SBB 2 

ANA 1+1 

XRA A 

ORAB 

CMP H 

7-15 

Add register given by e3 to accum­
ulator without carry (e3 must pro­
duce one of A, B, C, D, E, H, or L) 

Add register to A with carry, e3 as 
above 

Subtract reg e3 from A without 
carry, e3 is defined as above 

Subtract register e3 from A with 
carry, e3 defined as above 

Logical "and" reg with A, e3 as 
above 

"Exclusive or" with A, e3 as above 

Logical "or" with A, e3 defined as 
above 

Compare register with A, e3 as 
above 

Decimal adjust register A based 
upon last arithmetic logic unit 
operation 

Complement the bits in register A 



Personal CP/M User's Guide Error Massages 

STC 

CMC 

RLC 

ARC 

RAL 

RAR 

DAD e3 DAD B 

Set the carry flag to 1 

Complement the carry flag 

Rotate bits left, (re)set carry as a 
side effect (high order A bit 
becomes car ry) 

Rotate bits right, (re)set carry as 
side effect (low order A bit 
becomes carry) 

Rotate carry/A register to left 
(carry is involved in the rotate) 

Rotate carry/A register to right 
(carry is involved in the rotate) 

Double precision add register pair 
e3 to HL (e3 must produce B, D, H, 
or SP). 

Control Instructions 

The four remaining instructions categorized as control instructions are 

HLT 

DI 

El 

NOP 

Halt the 8080 processor 

Disable the interrupt system 

Enable the interrupt system 

No operation. 

ERROR MESSAGES 

When errors occur within the assembly language program, they are listed as single 
character flags in the leftmost position of the source listing. The line in error is also 
echoed at the console so that the source listing need not be examined to determine if 
errors are present. The error codes are 

D 

E 

L 

N 

0 

p 

Data error: element in data statement cannot be placed in the 
specified data area. 

Expression error: expression is ill-formed and cannot be computed 
at assembly time. 

Label error: label cannot appear in this context (may be duplicate 
label). 

Not implemented: features that will appear in future ASM versions 
(e .g., macros) are recognized, but flagged in this version. 

Overflow: expression is too complicated (i .e., too many pending 
operators) to be computed and should be simplified. 

Phase error: label does not have the same value on two subsequent 
passes through the program. 

7-16 



Personal CP/M User's Guide A Sample Session 

R Register error: the value specified as a register is not compatible 
with the operation code. 

s 
v 

Syntax error: statement is not properly formed. 

Value error: operand encountered in expression is improperly 
formed. 

Several error messages are printed that are due to terminal error conditions: 

NO SOURCE FILE PRESENT 

NO DIRECTORY SPACE 

SOURCE FILE NAME ERROR 

SOURCE FILE READ ERROR 

OUTPUT FILE WRITE ERROR 

CANNOT CLOSE FILE 

A SAMPLE SESSION 

The file specified in the ASM com­
mand does not exist on disk. 

The disk directory is full; erase files 
that are not needed and retry. 

Improperly formed ASM file name 
(e.g., it is specified with ? fields). 

Source file cannot be read properly 
by the assembler; execute a TYPE 
to determine the point of error. 

Output files cannot be written 
properly; most likely cause is a full 
disk; erase and retry. 

Output file cannot be closed; check 
to see if disk is write protected. 

The following session shows interaction with the assembler and debugger in the 
development of a simple assembly language program. The I arrow represents a carriage 
return keystroke . 
A>ASM SORT; Assemble SORT .ASM 

CP/M ASSEMBLER - VER 1.0 

015C Next free address 
003H USE FACTOR Percent of table used 00 to ff (hexadecimal) 
END OF ASS EMBLY 

A>DIR SORT.*; 

SORT ASM Source file 
SORT BAK Backup from last edit 
SORT PRN Print file (contains tab characters) 
SORT HEX Machine code file 
A>TYPE SORT.PAN; 

t 
Source>:..._li_n_e _____ _ 

SORT PROGRAM IN CP/M ASS EMBLY LANGUAGE 
START AT THE BEGINNING OF THE TRANSIENT 
PROGRAM AREA 

Machine code location 
0100......--- ORG 100H 

7-17 



Personal CP/M User's Guide A Sample Session 

Generated machine code 
0100 214601/sORT: LXI H,SW ;ADDRESS SWITCH TOGGLE 

;SET TO 1 FOR FIRST ITERATION 
;ADDRESS INDEX 

0103 3601 MVI M,1 
0105 214701 LXI H,I 
0108 3600 MVI M,O ;I= 0 

010A 7E COMPL: 
0108 FE09 
0100 021901 

0110 214601 
0113 7EB7C20001 

0118 FF 

Truncated 
0119 ~ 

5F16002148 CONT: 
0121 4E792346 

0125 23 

0126 965778239E 

0128 DA3F01 

012E B2CA3F01 
0132 5670285E 
0136 7128722B73 

0138 21460134 

COMPARE I WITH ARRAY SIZE 
MOV A,M ;A REGISTER= I 
CPI N-1 ;CY SET IF I < (N-1) 
JNC CONT ;CONTINUE IF I<= (N-2) 

END OF ONE PASS THROUGH DATA 
LXI H,SW ;CHECK FOR ZERO SWITCHES 
MOVA, M! ORA A! JNZ SORT ;END OF SORT IF SW=O 

AST 7 ;GO TO THE DEBUGGER INSTEAD OF REB 

CONTINUE THIS PASS 
ADDRESSING I, SO LOAD AV(I) INTO REGISTERS 

MOVE, A! MVI D, O! LXI H, AV! DADD! DAD D 
MOV C, M! MOVA, C! INX H! MOV B, M 
LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B 

MOV HAND L TO ADDRESS AV(l+1) 
INX H 

COMPARE VALUE WITH REGS CONTAINING AV (I) 
SUB M! MOV D, A! MOVA, B! INX H! SBB M ;SUBTRACT 

BORROW SET IF AV(l+1) > AV(I) 
JC INCi ;SKIP IF IN PROPER ORDER 

CHECK FOR EQUAL VALUES 
ORA D! JZ INCi ;SKIP IF AV(I) = AV(l+1) 
MOV D, M! MOV M, B! OGX H! MOV E, M 
MOV M, C! DCX H! MOV M, D! OGX H! MOV M, E 

INCREMENT SWITCH COUNT 
LXI H,SW! INR M 

INCREMENT I 
013F 21470134C31NCI : LXI H,I! INR M! JMP COMP 

DATA DEFINITION SECTION 
0146 00 SW: DB 0 ;RESERVE SPACE FOR SWITCH COUNT 
0147 I: OS 1 ;SPACE FOR INDEX 
0148 050064001 EAV: OW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767 
OOOA = ~ EQU ($-AV)/2 ;COMPUTE N INSTEAD OF PRE 

015C C'l""\n-r ~END 
A>TYPE SORT.HEX Equate value 

:100110002146017EB7C20001FF5F16002148011988 Machine code m 
:10010000214601360121470136007EFE0902190140 } . . 

:10012000194E79234623965778239EDA3F01B2CAA7 HEX format 

7-18 



Personal CP/M User's Guide A Sample Session 

:100130003F015670285E71287228732146013421 C7 
:07014000470134C30A01006E 
:10014800050064001E00320014000700E8032C0188 
:04015800640001 BOBE 
: 0000000000 

} 

Machine code in 
HEX format 

A>DDT SORT.HEX! Start debug run 

16K DDT VER 1.0 
NEXT PC 
015C 0000 Default address (no address on END statement) 
-XP1 

P=OOOO 100; Change PC to 100 

-UFFFFf Untrace for 65535 steps 

COZOMOEOIO A=OO B=OOOO D=OOOO H=OOOO 
-T10t Trace 1016 steps 

COZOMOEOIO A=01 8=0000 D=OOOO H=0146 
COZOMOEOIO A=01 B=OOOO D=OOOO H=0146 
COZOMOEOIO A=01 B=OOOO D=OOOO H=0146 
COZOMOEOIO A=01 B=OOOO D=OOOO H=0147 
COZOMOEOIO A=01 8=0000 D=OOOO H=0147 
COZOMOEOIO A=OO B=OOOO D=OOOO H=0147 
C1ZOM1 EOIO A=OO 8=0000 D=OOOO H=0147 
C1ZOM1 EOIO A=OO 8=0000 D=OOOO H=0147 
C1ZOM1 EOIO A=OO 8=0000 D=OOOO H=0146 
C1ZOM1 EOIO A=01 8=0000 D=OOOO H=0146 
COZOMOEOIO A=01 8=0000 D=OOOO H=0146 
COZOMOEOIO A=01 8=0000 D=OOOO H=0146 
COZOMOEOIO A=01 8=0000 D=OOOO H=0146 
COZOMOEOIO A=01 B=OOOO D=OOOO H=0146 
COZOMOEOIO A=01 8=0000 D=OOOO H=0147 
COZOMOEOIO A=01 8=0000 D=OOOO H=0147 
-A10D 

010DJC1191 
01101 

Change to a jump on carry 

-XP/ 

S=0100 
Abort with rubout, 
P=0100 LXI H,0146*0100 

S=0100 P=0100 LXI H, 0146 
S=0100 P=0103 MVI M, 01 
S=0100 P=0105 LXI H, 0147 
S=0100 P=0108 MVI M, 00 
S=0100 P=010A MOV A, M 
S=0100 P=010B CPI 09 
S=0100 P=010D JNC 0119 
S=0100 P=0110 LXI H, 0146 
S=0100 P=0113 MOV A, M 
$=0100 P=0114 ORA A 
S=0100 P=0115 JNZ 0100 
S=0100 P=0100 LXI H, 0146 
S=0100 P=0103 MVI M, 01 
S=0100 P=0105 LXI H, 0147 
S=0100 P=0108 MVI M, 00 
S=0100 P=01 QA MOV A, M*01 OB 

Stopped at IOBH/ 

P=01 OB 100/ Reset program counter back to beginning of program 

-T101 Trace execution for IOH steps 
Altered instruction 

COZOMOEOIO A=OO B=OOOO D=OOOO H=0147 S=0100 P=0100 LXI H,0146 
COZOMOEOIO A=OO 8=0000 D=OOOO H=0146 $=0100 P=0103 MVI M,01 
COZOMOEOIO A=OO 8=0000 D=OOOO H=0146 S=0100 P=0105 LXI H,0147 
COZOMOEOIO A=OO 8=0000 D=OOOO H=0147 S=0100 P=0108 MVI M,00 
COZOMOEOIO A=OO 8=0000 D=OOOO H=0147 S=0100 P=010A MOV A,M 
COZOMOEOIO A=OO 8=0000 0=0000 H=0147 S=0100 P=010B CPI 09 
C1ZOM1 EOIO A=OO 8=0000 D=OOOO H=0147 S=0100 P=010D JC 0119---­
C1ZOM1 EOIO A=OO 8=0000 D=OOOO H=0147 S=0100 P=0119 MOV E,A 
C1ZOM1 EOIO A=OO 8=0000 0=0000 H=0147 S=0100 P=011A MVI D,00 

7-19 



Personal CP/M User's Guide 

C1ZOM1 EOIO A=OO 
C1ZOM1EOIO A=OO 
COZOM1 EOIO A=OO 
COZOM1 EOIO A=OO 
COZOM1 EOIO A=OO 
COZOM1 EOIO A=05 
COZOM1 EOIO A=05 
-L1001 

8=0000 
8=0000 
8=0000 
8=0000 
8=0005 
8=0005 
8=0005 

D=OOOO 
D=OOOO 
D=OOOO 
D=OOOO 
D=OOOO 
D=OOOO 
D=OOOO 

H=0147 
H=0148 
H=0148 
H=0148 
H=0148 
H=0148 
H=0149 

0100 
0103 
0105 
0108 
010A 
0108 
010D 
0110 
0113 
0114 
0115 
-Lf 

LXI H,0146 
MVI M,01 
LXI H,0147 
MVI M,00 
MOV A,M 
CPI 09 
JC 0119 
LXI H,0146 
MOV A,M 
ORA A 
JNZ 0100 

List some code 
from lOOH 

0118 RST 07 } 
0119 MOV E,A List more 
011A MVI D,00 
011C LXI H,0148 

-Abort list with rubout 

A Sample Session 

S=0100 P=011C LXI H,0148 
S=0100 P=011 F DAD D 
S=0100 P=0120 DAD D 
S=0100 P=0121 MOV C,M 
S=0100 P=0122 MOV A,C 
S=0100 P=1023 INX H 
S=0100 P=0124 MOV 8,M:0125 

Automatic breakpoint/ 

-G, 118! Start program from current PC (0125H) and run in real time to llBH 

*0127 Stopped with an external interrupt 7 from front panel (program was 
-T4! . . looping indefinitely) 

Look at loopmg program m trace mode~ 

COZOMOEOIO A=38 8=0064 D=0006 H=0156 S=0100 P=0127 MOV D,A 
COZOMOEOIO A=38 8=0064 D=3806 H=0156 S=0100 P=0128 MOV A,8 
COZOMOEOIO A=OO 8=0064 D=3806 H=0156 S=0100 P=0129 INX H 
COZOMOEOIO A=OO 8=0064 D=3806 H=0157 S=0100 P=012A S88 M*0128 
-D148 

,...Data are sorted, but program does not stop. 
0148 05 00 07 00 14 00 1E 00 .. . . . . . . 
0150 32 00 64 00 64 00 2C 01 EB 03 01 80 00 00 00 00 2.D.D., ... . ... . 

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. . ............ . 

-GO f Return to CP/M 

A> DDT SORT. HEX1 Reload the memory image 

16K DDT VER . 1.0 
NEXT PC 
015C 0000 
-XP 

P=OOOO 100f Set PC to beginning of program 

7-20 



Personal CP/M User's Guide 

-L 10D' 

010D 
0110 

List bad OPCODE 

JNC0119/ 
LXI H,0146 

-Abort list with rubout 
-A 1 OD; Assemble new OPCODE 

010D JC 119; 

0110; 

-L100; List starting section of program 

0100 LXI H,0146 
0103 MVI M,01 
0105 LXI H,0147 
0108 MVI M,00 

-Abort list with rubout 
-A 103,i Change switch initialization to 00 

0103 MVI M,O; 

0105; 

-~ C Return to CP/M with ctl-C (GO works as well) 

A Sample Session 

SAVE 1 SORT.COM1 

A>DDT SORT.COM~ 

Save 1 page (256 bytes, from lOOH to lffH) on disk in case 
there is need to reload later 

16K DDT VER 1.0 
NEXT PC 

Restart DDT with saved memory image 

0200 0100 COM file always starts with address lOOH 
-G~ Run the program from PC=lOOH 

*0118 
-D148 

Programmed stop (RST 7) encountered 

;Data properly sorted 
0148 05 00 07 00 14 00 1E 00 . .... . . . 
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D . .... .. . . 

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

-GO ~ Return to CP/M 

7-21 



Personal CP/M User's Guide 

A>ED SORT.ASM/ Make changes to original program 

*N,O "ZOTTI 
MVI 

Find next " ,O" 

M, 0 ;I= 0 

*-f Up one line in text 
LXI H, I ;ADDRESS INDEX 

*-; Up another line 
MVI M, 1 ;SET TO 1 FOR FIRST ITERATION 

*KT1 Kill line and type next line 
LXI H, I ;ADDRESS INDEX 

*I I Insert new line 
MVI M, 0 ;ZERO SW 

*T~ 
LXI H, I ;ADDRESS INDEX 

*NJNC "ZOT; 
JNC*T; 
CONT ;CONTINUE IF I<= (N-2) 

*-2DIC ·zoL Ti 
JC CONT ;CONTINUE IF I<= (N-2) 

*E; r- Source from disk A 
+ y-- HEX to disk A 

A>ASM SORT.AAZf Skip PRN file 

CP/M ASSEMBLER - VER 1.0 

015C Next address to assemble 
003H USE FACTOR 
END OF ASSEMBLY 

A>DDT SORT.HEX; 

16K DDT VER 1.0 
NEXT PC 
015C 0000 
-G100; 

*0118 
-01481 

Test program changes 

0148 05 00 07 00 14 00 1f~;~~ ~~~t~~ . 

A Sample Session 

0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D ......... . 
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... . ..... .. .... . 

-Abort with rubout 

-GO; Return to CP/M-program checks OK. 

7-22 



Section 8 
CP/M Dynamic Debugging Tool 

INTRODUCTION 

The DDT program allows dynamic interactive testing and debugging of programs 
generated in the CP/M environment. Invoke the debugger with a command of one of the 
following forms: 

DDT 

DDT filename.HEX 

DDT filename.COM 

where " filename" is the name of the program to be loaded and tested . In both cases, the 
DDT program is brought into main memory in place of the Console Command Processor 
(the user should refer to Chapter 5 for standard memory organization), and resides 
directly below the Basic Disk Operating System portion of CP/M. The BOOS starting 
address, located in the address field of the JMP instruction at location SH, is altered to 
reflect the reduced Transient Program Area size. 

The second and third forms of the DDT command perform the same actions as the 
first, except there is a subsequent automatic load of the specified HEX or COM file. The 
action is identical to the sequence of commands 

DDT 

!filename.HEX or !filename.COM 

R 

where the I and R commands set up and read the specified program to test . (The user 
should see the explanation of the I and R commands below for exact details.) 

Upon initiation, DDT prints a sign-on message in the format 

DDT VER m.m 

where m.m is the revision number. 

8-1 



Personal CP/M User's Guide DDT Commands 

Following the sign-on message, DDT prompts the operator with the character"-" and 
waits for input commands from the console . The operator can type any of several single 
character commands, terminated by a carriage return to execute the command. Each line 
of input can be line-edited using the standard CP/M controls 

rubout 

ctl-U 

ctl-C 

remove the last character typed 

remove the entire line, ready/ for retyping 

system reboot. 

Any command can be up to 32 characters in length (an automatic carriage return is 
inserted as the 33rd character), where the first character determines the command type 

A 

D 

F 

G 

L 

M 

R 

s 
T 

u 
x 

enter assembly language mnemonics with operands 

display memory in hexadecimal and ASCII 

fill memory with constant data 

begin execution with optional bre~kpoints 

set up a standard input file control block 

list memory using assembler mnemonics 

move a memory segment from source to destination 

read program for subsequent testing 

substitute memory values 

trace program execution 

untraced program monitoring 

examine and optionally alter the CPU state. 

The command character, in some cases, is followed by zero, one, two, or three hexade­
cimal values, which are separated by commas or single blank characters . All DDT numeric 
output is in hexadecimal form . The commands are not executed until the carriage return 
is typed at the end of the command. 

At any point in the debug run, the operator can stop execution of DDT by using either 
a ctl-C or Go (jmp to location OOOOH), and save the current memory image by using a 
SA VE command of the form 

SAVE n filename.COM 

where n is the number of pages (256 byte blocks) to be saved on disk. The number of blocks 
is determined by taking the high order byte of the address in the TP A and converting this 
number to decimal. For example, if the highest address in the Transient Program 
Area is 1234H, the number of pages is 12H or 18 in decimal. The operator could type a 
ctl-C during the debug run, returning to the Console Command Processor level, followed 
by 

SAVE 18 X.COM 

8-2 



Personal CP/M User's Guide DDT Commands 

The memory image is saved as X.COM on the diskette and can be directly executed by 
typing the name X. If further testing is required, the memory image can be recalled by 
typing 

DDT X.COM 

which reloads the previously saved program from location lOOH through page 18 
(23FFH). The CPU state is not a part of the COM file; thus, the program must be 
restarted from the beginning to test it properly. 

DDT COMMANDS 

The individual commands are detailed below. In each case, the operator must wait for 
the prompt character(-) before entering the command. If control is passed to a program 
under test and the program has not reached a breakpoint, control can be returned to DDT 
by executing a RST 7 from the front panel. In the explanation of each command, the 
command letter is shown in some cases with numbers separated by commas, and the 
numbers are represented by lower case letters. These numbers are always assumed to be 
in a hexadecimal radix and from one to four digits in length (longer numbers will be 
automatically truncated on the right). 

Many of the commands operate upon a "CPU state" that corresponds to the program 
under test. The CPU state holds the registers of the program being debugged and initially 
contains zeroes for all registers and flags except for the program counter (P) and stack 
pointer (5), which default to lOOH. The program counter is subsequently set to the 
starting address given in the last record of a HEX file if a file of this form is loaded (see the 
I and R commands) . 

The A (Assembly) Command 

DDT allows in-line assembly language to be inserted into the current memory image 
using the A command, that takes the form 

As 

wheres is the hexadecimal starting address for the inline assembly. DDT prompts the 
console with the address of the next instruction to fill and reads the console, looking for 
assembly language mnemonics (see the Intel 8080 Assembly Language Reference Card 
for a list of mnemonics), followed by register references and operands in absolute 
hexadecimal form . Each successive load address is printed before reading the console. The 
A command terminates when the first empty line is input from the console. 

Upon completion of assembly language input, the operator can review the memory 
segment using the DDT disassembler (see the L command) . 

The user should note that the assembler/disassembler portion of DDT can be overlaid 
by the transient program being tested, in which case the DDT program responds with an 
error condition when the A and L commands are used. 

8-3 



Personal CP/M User's Guide DDT Commands 

The D (Display) Command 

The D command allows the operator to view the contents of memory in hexadecimal 
and ASCII formats. The forms are 

D 

Ds 

Ds,f 

In the first case, memory is displayed from the current display address (initially lOOH) and 
continues for 16 display lines. Each display line takes the form shown below 

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc 

where aaaa is the display address in hexadecimal and bb represents data present in 
memory starting at aaaa. The ASCII characters starting at aaaa are to the right (repres­
ented by the sequence of e's), where nongraphic characters are printed as a period(.) . The 
user should note that both upper and lower case alphabetics are displayed, and will 
appear as upper case symbols on a console device that supports only upper case. Each 
display line gives the values of 16 bytes of data, with the first line truncated so that the 
next line begins at an address that is a multiple of 16. 

The second form of the D command is similar to the first, except that the display 
address is first set to address s. The third form causes the display to continue from 
address s through address f. In all cases, the display address is set to the first address not 
displayed in this command, so that a continuing display can be accomplished by issuing 
successive D commands with no explicit addresses . 

Excessively long displays can be aborted by pushing the return key. 

The F (Fill) Command 

The F command takes the form 

Fs,f,c 

wheres is the starting address, f is the final address, and c is a hexadecimal byte constant. 
DDT stores the constant cat address s, increments the value of sand tests against f. Ifs 
exceeds f, the operation terminates, otherwise the operation is repeated. Thus, the fill 
command can be used to set a memory block to a specific constant value. 

The G (Go) Command 

A program is executed using the G command, with up to two optional breakpoint 
addresses. The G command takes the forms 

G 

Gs 

Gs,b 

Gs,b,c 

G,b 

G,b,c 

8-4 



Personal CP/M User's Guide DDT Commands 

The first form executes the program at the current value of the program counter in the 
current machine state, with no breakpoints set (the only way to regain control in DDT is 
through a RST 7 execution). The current program counter can be viewed by typing an X 
or XP command. The second form is similar to the first except that the program counter 
in the current machine state is set to address s before execution begins. The third form is 
the same as the second, except that program execution stops when address bis encoun­
tered (b must be in the area of the program under test) . The instruction at location bis not 
executed when the breakpoint is encountered. The fourth form is identical to the third, 
except that two breakpoints are specified, one at band the other at c. Encountering either 
breakpoint causes execution to stop, and both breakpoints are cleared. The last two forms 
take the program counter from the current machine state and set one and two break­
points, respectively. 

Execution continues from the starting address in real-time to the next breakpoint. 
There is no intervention between the starting address and the break address by DDT. If 
the program under test does not reach a breakpoint, control cannot return to DDT 
without executing a RST 7 instruction. Upon encountering a breakpoint, DDT stops 
execution and types 

*d 

where d is the stop address . The machine state can be examined at this point using the X 
(Examine) command. The operator must specify breakpoints that differ from the pro­
gram counter address at the beginning of the G command. Thus, if the current program 
counter is 1234H, then the commands 

G,1234 

and 

G400,400 

both produce an immediate breakpoint without executing any instructions . 

The I (Input) Command 

The I command allows the operator to insert a file name into the default file control 
block at SCH (the file control block created by CP/M for transient programs is placed at 
this location; see Chapter 5). The default FCB can be used by the program under test as if 
it had been passed by the CP/M Console Processor . The user should note that this file 
name is also used by DDT for reading additional HEX and COM files. The form of the I 
command is 

I filename 

or 

lfilename.typ 

If the second form is used and the filetype is either HEX or COM, subsequent R 
commands can be used to read the pure binary or hex format machine code. (Section 4.2.8 
gives further details .) 

8-5 



Personal CP/M User's Guide DDT Commands 

The L (List) Command 

The L command is used to list assembly language mnemonics in a particular program 
region. The forms are 

L 

Ls 

Ls,f 

The first form lists twelve lines of disassembled machine code from the current list 
address. The second form sets the list address to sand then lists twelve lines of code. The 
last form lists disassembled code from s through address f. In all three cases, the list 
address is set to the next unlisted location in preparation for a subsequent L command. 
Upon encountering an execution breakpoint, the list address is set to the current value of 
the program counter (G and T commands) . Again, long typeouts can be aborted using the 
return key during the list process. 

The M (Move) Command 

The M command allows block movement of program or data areas from one location 
to another in memory. The form is 

Ms,f,d 

where s is the start address of the move, f is the final address, and d is the destination 
address. Data are first removed from s to d, and both addresses are incremented. If s 
exceeds f, the move operation stops; otherwise, the move operation is repeated. 

The R (Read) Command 

The R command is used in conjunction with the I command to read COM and HEX 
files from the diskette into the transient program area in preparation for the debug run. 
The forms are 

R 

Rb 

where bis an optional bias address that is added to each program or data address as it is 
loaded. The load operation must not overwrite any of the system parameters from OOOH 
through OFFH (i.e., the first page of memory). If bis omitted, then b=OOOO is assumed. 
The R command requires a previous I command, specifying the name of a HEX or COM 
file. The load address for each record is obtained from each individual HEX record, while 
an assumed load address of lOOH is used for COM files . The user should note that any 
number of R commands can be issued following the I command to reread the program 
under test, assuming the tested program does not destroy the default area at 5CH. Any 
file specified with the filetype "COM" is assumed to contain machine code in pure binary 
form (created with the LOAD or SA VE command), and all others are assumed to contain 
machine code in Intel hex format (produced, for example, with the ASM command.) 

8-6 



Personal CP/M User's Guide 

Recall that the command 

DDT filename.filetype 

which initiates the DDT program, is equivalent to the commands 

DDT 

-lfilename.filetype 

-R 

DDT Commands 

Whenever the R command is issued, DDT responds with either the error indicator"?" 
(file cannot be opened, or a checksum error occurred in a HEX file), or with a load message 
taking the form 

NEXT PC 

nnnn pppp 

where nnnn is the next address following the loaded program and pppp is the assumed 
program counter (lOOH for COM files , or taken from the last record if a HEX file is 
specified). 

The S (Set) Command 

The S command allows memory locations to be examined and optionally altered. The 
form of the command is 

Ss 

where s is the hexadecimal starting address for examination and alteration of memory . 
DDT responds with a numeric prompt, giving the memory location, along with the data 
currently held in memory. If the operator types a carriage return, the data are not altered. 
If a byte value is typed, the value is stored at the prompted address . In either case, DDT 
continues to prompt with successive addresses and values until either a period(.) is typed 
by the operator or an invalid input value is detected . 

The T (Trace) Command 

The T command allows selective tracing of program execution for 1to65535 program 
steps. The forms are 

T 

Tn 

In the first case, the CPU state is displayed and the next program step is executed. The 
program terminates immediately, with the termination address displayed as 

*hhhh 

where hhhh is the next address to execute. The display address (used in the D command) 
is set to the value of Hand L, and the list address (used in the L command) is set to hhhh . 
The CPU state at program termination can then be examined using the X command. 

8-7 



Personal CP/M User's Guide DDT Commands 

The second form of the T command is similar to the first, except that execution is 
traced for n steps (n is a hexadecimal value) before a program breakpoint occurs. A 
breakpoint can be forced in the trace mode by typing a rubout character. The CPU state is 
displayed before each program step is taken in trace mode . The format of the display is the 
same as described in the X command. 

The user should note that program tracing is discontinued at the CP/M interface and 
resum~ after return from CP/M to the program under test. Thus, CP/M functions that 
access I/O devices, such as the diskette drive, run in real-time, avoiding I/O timing 
problems. Programs running in trace mode execute approximately 500 times slower than 
real-time since DDT gets control after each user instruction is executed. Interrupt 
processing routines can be traced, but commands that use the breakpoint facility (G, T, 
and U) accomplish the break using an RST 7 instruction, which means that the tested 
program cannot use this interrupt location . Further, the trace mode always runs the 
tested program with interrupts enabled, which may cause problems if asynchronous 
interrupts are received during tracing. 

The operator should use the return key to get control back to DDT during trace, 
rather than executing an RST 7, to ensure that the trace for curren t instruction is 
completed before interruption. 

The U (Untrace) Command 

The U command is identical to the T command except that intermediate program steps 
are not displayed . The untrace mode allows from 1 t<? 65535 (OFFFFH) steps to be 
executed in monitored mode and is used principally to retain control of an executing 
program while it reaches steady state conditions . All conditions of the T command apply 
to the U command. 

The X (Examine) Command 

The X command allows selective display and alteration of the current CPU state for 
the program under test. The forms are 

x 
Xr 

where r is one of the 8080 CPU registers 

c Carry flag (0/1) 

z Zero flag (0/1) 

M Minus flag (0/1) 

E Even parity flag (0/1) 

lnterdigit carry (0/1) 

A Accumulator (0-FF) 

B BC register pair (0-FFFF) 

D DE register pair (0-FFFF) 

H HL register pair (0-FFFF) 

s Stack pointer (0-FFFF) 

p Program counter (0-FFFF) 

8-8 



Personal CP/M User's Guide Implementation Notes 

In the first case, the CPU register state is displayed in the format 

CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst 

where f is a O or 1 flag value, bb is a byte value, and dddd is a double-byte quantity 
corresponding to the register pair. The "inst" field contains the disassembled instruction, 
which occurs at the location addressed by the CPU state's program counter. 

The second form allows display and optional alteration of register values, where r is 
one of the registers given above (C, Z, M, E, I, A, B, D, H, S, or P). In each case, the flag or 
register value is first displayed at the console. The DDT program then accepts input from 
the console. If a carriage return is typed, the flag or register value is not altered. If a value 
in the proper range is typed, the flag or register value is altered . The user should note that 
BC, DE, and HL are displayed as register pairs . Thus, the operator types the entire 
register pair when B, C, or the BC pair is altered. 

IMPLEMENTATION NOTES 

The organization of DDT allows certain nonessential portions to be overlaid to 
gain a larger transient program area for debugging large programs. The DDT program 
consists of two parts: the DDT nucleus and the assembler/disassembler module. The 
DDT nucleus is loaded over the Console Command Processor, and, although loaded with 
the DDT nucleus, the assembler/disassembler is overlayable unless used to assemble or 
disassemble. 

In particular, the BOOS address at location 6H (address field of the JMP instruction at 
location SH) is modified by DDT to address the base location of the DDT nucleus, which, 
in turn, contains a JMP instruction to the BOOS. Thus, programs that use this address 
field to size memory see the logical end of memory at the base of the DDT nucleus rather 
than the base of the BOOS. 

The assembler/disassembler module resides directly below the DDT nucleus in the 
transient program area. If the A, L, T, or X commands are used during the debugging 
process, the DDT program again alters the address field at 6H to include this module, 
further reducing the logical end of memory. If a program loads beyond the beginning of 
the assembler/disassembler module, the A and L commands are lost (their use produces a 
"?"in response) and the trace and display (T and X) commands list the " inst" field of the 
display in hexadecimal, rather than as a decoded instruction. 

8-9 



Personal CP/M User's Guide An Example 

AN EXAMPLE 

The following example shows an edit, assemble, and debug for a simple program that 
reads a set of data values and determines the largest value in the set. The largest value is 
taken from the vector and stored into "LARGE" at the termination of the program 

A>ED SCAN.ASM 

*I ~ 

LOOP 
LOOP: 

NFOUND 

;1 
:I 
VECT: 
LEN 
LARGE: 

t-Z 
*BOP; 

LOOP: 

NFOUND: 

Create source program; 

"f" represents carriage return. 

ORG 

MVI 
MVI 
LXI 
MOV 
SUB 
JNC 

1-00H 

B, LEN 
C, 0 
H,VECT 
A,M 
c 
NFOUND 

;START OF TRANSIENT 
;AREA; 
;LENGTH OF VECTOR TO SCAN; 
;LARGER_RST VALUE SO FAR; 
;BASE OF VECTOR! 
;GET VALUEI 
.:LARGER VALUE INC?/ 
;JUMP IF LARGER VALUE NOT 
;FOUND I 

NEW LARGEST VALUE. STORE IT TO CI 
MOV C, A 
INX H 
OCR B 
JNZ LOOP 

END OF SCAN, STORE CI 

;TO NEXT ELEMENT! 
;MORE TO SCAN? I 
:FOR ANOTHER I 

MOV A, C ;GET LARGEST VALUE I 
STA LARGE! 
JMP 0 ;REBOOT I 

TEST DATA 
DB 
EQU 
OS 
ENDI 

ORG 
MVI 
MVI 
LXI 
MOV 
SUB 
JNC 

2,0,4,3,5,6, 1,5 
$-VECT 
1 

100H 
B,LEN 
C,O 
H,VECT 
A,M 
c 
NFOUND 

;LENGTH 
;LARGEST VALUE ON EXITI 

;START OF TRANSIENT AREA 
;LENGTH OF VECTOR TO SCAN 
;LARGEST VALUE SO FAR 
;BASE OF VECTOR 
;GET VALUE 
;LARGER VALUE IN C? 
;JUMP IF LARGER VALUE NOT 
;FOUND 

NEW LARGEST VALUE, STORE IT TO C 
MOV C,A 
INX H 
OCR B 
JNZ LOOP 
END OF SCAN, STORE C 
MOV A,C 
STA LARGE 
JMP 0 

TEST DATA 

8-10 

;TO NEXT ELEMENT 
;MORE TO SCAN? 
;FOR ANOTHER 

;GET LARGEST VALUE 

;REBOOT 



Personal CP/M User's Guide 

VECT: 
LEN 
LARGE: 

*Ef - End of edit 

DB 
EQU 
OS 
END 

A>ASM SCAN~ Start Assembler 

CP/M ASSEMBLER - VER 1.0 

0122 

An Example 

2,0,4,3,5,6,1,5 
$-VECT ;LENGTH 
1 ;LARGEST VALUC: ON EXIT 

002H USE FACTOR 
END OF ASSEMBLY Assembly complete; lock at program listing 

A>TYPE SCAN.PAN I 
Code address 
0100---

Source program 

0100 0608 l 
0102 OEOO Machine code 
0104 211901 
0107 7E LOOP: 
0108 91 
0109 020001 

010C 4F 

ORG 100H ;START OF TRANSIENT AREA 
MVI B,LEN ;LENGTH OF VECTOR TO SCAN 
MVI C,O ;LARGEST VALUE SO FAR 
LXI H,VECT. ;BASE OF VECTOR 
MOV A,M ;GET VALUE 
SUB C ;LARGER VALUE IN C? 
JNC NFOUND ;JUMP IF LARGER VALUE NOT 

;FOUND 
NEW LARGEST VALUE, STORE IT TO C 
MOV C, A 

0100 23 
010E 05 
010F C20701 

NFOUND:INX H 
OCR B 
JNZ LOOP 

;TO NEXT ELEMENT 
;MORE TO SCAN? 
;FOR ANOTHER 

0112 79 
0113 322101 

0116 C30000 
Code-data listing 
truncated \. 

0119 0200040305\. 
0008 = Value of 
0121 equate 
0122 

VECT: 
LEN 
LARGE: 

END OF SCAN, STORE C 
MOV A, C ;GET LARGEST VALUE 
STA LARGE 

JMP 0 ;REBOOT 

TEST DATA 
DB 2,0,4,3,5,6, 1,5 
EQU $-VECT ;LENGTH 
OS 1 ;LARGEST VALUE ON EXIT 
END 

A>DDT SCAN.HEX,t Start debugger using hex format machine code 

DDT VER 1.0 
NEXT PC Next instruction 
0121 0000 
-X ~ ""'-Last load address + 1 

COZOMOEOIO A=OO B~OOO 0=0000 H=OOOO S=0100 P=OOOO 

-XP/ Examine registers before debug run 

P=OOOO 100 I Change PC to 100 

-XI Look at registers again 

8-11 

to execute at 
PC=O 

I 
OUT 7F 



Personal CP/M User's Guide An Example 

COZOMOEOIO A=OO 8=0000 0=0000 H=OOOO S=0100 P=0100 MVI B,08, 
-L100I I " PC changed . Next instruction 

0100 
0102 
0104 
0107 
0108 
0109 
010C 
0100 
010E 
010F 
0112 

-LI 

0113 
0116 
0119 
011A 
011 B 
011C 
011 D 
011 E 
0120 
0121 
0124 

MVI 
MVI 
LXI 
MOV 
SUB 
JNC 
MOV 
INX 
OCR 
JNZ 
MOV 

STA 
JMP 
STAX 
NOP 
INR 
INX 
OCR 
MVI 
OCR 
LXI 
LXI 

B,08 
C,00 
H,0119 
A,M 
c 
0100 
C,A 
H 
B 
0107 
A,C 

0121 
0000 
B 

B 
B 
B 
B,01 
B 
0,2200 
H,0200 

Disassembled machine 
code at IOOH 
(see source listing 
for comparison ) 

A lit tle more machine 
code. Note that pro-
gram ends at location 
116 with a JMP to 
0000. Remainder of 
listing is assembly of 
data . 

to execute at PC=lOO 

-A116/ Enter in-line assembly mode to change the JMP to 0000 into a RST 7, which 
will cause the program under test to return to DDT if 116H is ever executed. 

0116 RST 7 

01171 (Single carriage return stops assemble mode ) 

-L 1131 List code at 113H to check that RST 7 was properly inserted 

STA 0121 0113 
0116 
0117 
0118 
0119 
011A 
0118 
011C 

RST 07 in place of JMP 
NOP 
NOP 
STAX B 
NOP 
INR B 
INX B 

-XI Look at reg isters 

COZOMOEOIO A=OO 8=0000 0=0000 H=OOOO S=0100 P=0100 MVI B,08 
-TI 

Execute Program fo r one stop. 

COZOMOEOIO A=OO 8=0000 0=0000 
-Tl 

Initial CPU state, before /is executed 

H=OOOO S=0100 P=0100 MVI IB,08*,0102 
Automatic breakpoint 

8-12 



Personal CP/M User's Guide An Example 

Trace one step again (note 08H in B) 

COZOMOEOIO A=OO B=0800 0=0000 H=OOOO 8=0100 P=0102 MVI C,00*0104 
-T ~ 

Trace again (Register C is cleared) 

COZOMOEOIO A=OO B=0800 0=0000 H=OOOO 8=0100 P=0104 LXI H,0119*0107 
-T3! Trace three steps 

COZOMOEOIO A=OO B=0800 0=0000 H=0119 8=0100 P=0107 MOV A,M 
COZOMOEOIO A=02 B=0800 0=0000 H=0119 8=0100 P=0108 SUB C 
COZOMOEOl1 A=02 B=0800 0=0000 H=0119 S=0100 P=0109 JNC 0100*0100 

-D
119f Display memory starting at 119H. Automatic breakpoint at lODH/ 

0119 02 00 04 03 05 06 01 . Prqgr.arn data / Lowercase x -._ 
0120 05 11 00 22 21 00 02 7E EB 77 13 23 EB OB @ B1 ... "! .. . W. #.@ 
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00 . ' ... ) ... . .... . 
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ . 
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0160 oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo P~~a: ~r~:¥si>)~)r~~ 
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 inASCII with a"." 
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ~~:th~ P~:s!~i~~: ~( 
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 !'!J.ng~~P.~i.c ...... . 
01AO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ~~?~?~!~~s ....... . 
01 BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ . 
01CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 . .... . ...... . ... . 
-X f 

Current CPU state '4.. 
COZOMOEOl1 A=02 B=0800 0=0000 H=0119 S=0100 P=010D INX H 
-T5f 

Trace 5 steps from current CPU state 
COZOMOEOl 1 A=02 B=0800 0=0000 H=0119 
COZOMOEOl1 A=02 8=0800 0=0000 H=011A 
COZOMOEOl1 A=02 B=0700 0=0000 H=011A 
COZOMOEOl 1 A=02 B=0700 D=OOOO H=011 A 
COZOMOEOl 1 A=OO B=0700 D=OOOO H=011 A 
U5f 

Trace without listing intermediate states 

S=0100 P=0100 INX H 
S=0100 P=01 OE OCR B 
S=0100 P=010F JNZ 0107 
S=0100 P=0107 MOV A, M 
S=0100 P=0108 SUB cy.109 

Automatic breakpoint 

COZ1MOE111 A=OO 8=0700 0=0000 H=011A S=0100 P=0109 JNC 0100*0108 
-x f 

,-CPU state at end of US 
COZOMOE111 A=04 8=0600 0=0000 H=011 B S=0100 P=0108 SUB C 
-G~ Run program from current PC until completion (in real-time) 

*0116 breakpoint at 116H, caused by executing RST 7 in machine code. 
-x f 

CPU state at end of program 
COZ1MOE111 A=OO B=OOOO 0=0000 H=0121 S=0100 P=0116 RST 07 

-XPf -........ Examine and change program counter 

P=0116 100/ 

-X ~ 

COZ1MOE111 A=OO B=OOOO 0=0000 H=0121 S=0100 P=0100 MVI B,08 
-T10,i 

8-13 



Personal CP/M User's Guide An Example 

First data element 
Current largest value 

Trace 10 (hexadecimal) steps Subtract for comparison C 

COZ1MOE111 A=OO B=0800 D 000 -0121 S=0100 P=0100 MVI B,08 
COZ1MOE111 A=OO B=OOOO =000 H=0121 S=0100 P=0102 MVI C,O 
COZ1MOE111 A=OO B=08 D=O 0 H=0121 S=0100 P=0104 LXI H,O 19 
COZ1MOE111 A=OO B= 00 D 000 H=0119 S=0100 P=0107 MOV 
COZ1MOE111 A=02 -0800 =0000 H=0119 S=0100 P=0108 SUB C 
COZOMOEOl1 A B=O 0 D=OOOO H=0119 S=0100 P=0109 JNC 010D 
COZOMOEOl1 A=02 B=0800 D=OOOO H=0119 S=0100 P=010D I H 
COZOMOEOl 1 A=02 B=0800 D=OOOO H=011 A S=0100 P=01 OE CR B 
COZOMOEOl1 A=02 B=0700 D=OOOO H=011A S=0100 P=010F JNZ 0107 
COZOMOEOl1 A=02 8=0700 D=OOOO H=011A S=0100 P=010 MOV A,M 
COZOMOEOl 1 A=OO 8=0700 0=0000 H=011 A S=0100 P=01 8 SU 8 C 
COZ1MOE111 A=OO 8=0700 0=0000 H=011A S=0100 P=O 09 JNC 0100 
COZ1MOE111 A=OO 8=0700 D=OOOO H=011A S=0100 P= 10D INX H 
COZ1MOE111 A=OO 8=0700 0=0000 H=011B S=0100 -010E OCR 8 
COZOMOE111 A=OO 8=0600 D=OOOO H=011B S=O~OO =010F JNZ 0107 
COZOMOE111 A=OO 8=0600 D=OOOO H=0118 S=010 P=0107 MOV A,M*0108 

-A 1091 Insert a "hot patch" into Program should have moved the 
the machine code value from A into C since A>C. 

0109 JC 10D/ to change the Since this code was not executed, 
JNC to JC it appears that the JNC should 

have been a JC instruction 

-GOI Stop DDT so that a version of 
the patched program can be saved 

A>SAVE 1 SCAN.COM I Program resides on first 
page, so save 1 page. 

A>DDT SCAN.COM~ 
'Restart DDT with the save memory 

DDT VER 1.0 image to continue testing 
NEXT PC 
0200 0100 
-L 1001 List some code 

0100 MVI 8,08 
0102 MVI C,00 
0104 LXI H,0119 
0107 MOV A,M 
0108 SUB C 
0109 JC 0100 Previous patch is present in X.COM 
010C MOV C,A 
0100 INX H 
010E OCR 8 
010F JNZ 0107 
0112 MOV A,C 
-XPI 

P=0100/ 

8-14 



Personal CP/M User's Guide An Example 

-T101 
Trace to see how patched version operates Data is moved from A to C 

COZOMOEOIO A=OO 8=0000 0=0000 H=OOOO S=01 P=0100 MVI B,08 
COZOMOEOIO A=OO 8=0800 0=0000 H=OOOO 100 P=0102 MVI C,00 
COZOMOEOIO A=OO 8=0800 0=0000 H=OO S=0100 P=0104 LXI H,0119 
COZOMOEOIO A=OO 8=0800 0=0000 H= 19 S=0100 P=0107 MOV A,M 
COZOMOEOIO A=@ 8=0800 0=000 =0119 S=0100 P=0108 SUB C 
COZOMOEOl1 A=02 =0800 O= 0 H=0119 S=0100 P=0109 JC 0100 
COZOMOEOl 1 A=02 B 800 =0000 H=0119 S=0100 P=01 OC MOV C,A 
COZOMOEOl1 A=02 B=O 0=0000 H=0119 S=0100 P=0100 INX H 
COZOMOEOl 1 A=02 8=0802 0=0000 H=011 A S=0100 P=010E OCR B 
COZOMOEOl1 A=02 8=0702 0=0000 H=011A S=0100 P=010F JNZ 0107 
COZOMOEOl 1 A=02 8=0702 0=0000 H=011 A S=0100 P=0107 MOV A, M 
COZOMOEOl 1 A=OO 8=0702 0=0000 H=011 A S=0100 P=0108 SUB C 
C1ZOM1 EOIO A=FE 8=0702 0=0000 H=011A S=0100 P=0109 JC 0100 
C1ZOM1 EOIO A=FE 8=0702 0=0000 H=011A S=0100 P=0100 INX H 
C1ZOM1EOIO A=FE 8=0702 0=0000 H=011B S=0100 P=010E OCR B 
C1ZOMOE111 A=FE 8=0602 0=0000 H=011 B S=0100 P=010F JNZ 0107*0107 
-XI Breakpoint after 16 steps/ 

C1ZOMOE111 A=FE 8=0602 D=OOOO H=011 B 5=0100 P=0107 MOV A,M 
-G, 1081 Run from current PC and breakpoint at 108H 

Next data item 
C1ZOMOE111 A=O<B=0602 0=0000 H=011 B 5=0100 P=0108 SUB C 
-T f 

Single step for a few cycles 
C1ZOMOE111 A=04 8=0602 0=0000 H=011B S=0100 P=0108 SUB C*0109 
-T f 

COZOMOEOl1 A=02 8=0602 0=0000 H=011B S=0100 P=0109 JC 010D*010C 
-XI 

COZOMOEOl 1 A=02 8=0602 0=0000 H=011 B 5=0100 P=01 OC MOV C,A 
-G f Run to completion 

*0116 
-XI 

COZ1MOE111 A=03 8=0003 0=0000 H=0121 5=0100 P=0116 AST 07 
-S1211 Look at the value of "LARGE" 

0121 031 Wrong value! 

0122 001 

0123 221 

0124 211 

8-15 



Personal CP/M User's Guide 

0126 02; 

0127 7E! _ End of the S command 

-L100! 

0100 
0102 
0104 
0107 
0108 
0109 
010C 
0100 
010E 
010F 
0112 

-L f 

0113 
0116 
0117 
0118 
0119 
011A 
0118 
011C 
0110 
011 E 
0120 
-XPf 

MVI 
MVI 
LXI 
MOV 
SUB 
JC 
MOV 
INX 
OCR 
JNZ 
MOV 

STA 
AST 
NOP 
NOP 
STAX 
NOP 
INR 
INX 
OCR 
MVI 
OCR 

8,08 
C,00 
H,0119 
A,M 
c 
0100 
C,A 
H 
B 
0107 
A,C 

0121 
07 

B 

B 
B 
B 
8,01 
B 

P=0116 100~ Reset the PC 

-T ~ 

Review the code 

Single step, and watch data values 

An Example 

COZ1MOE111 A=03 8=0003 0=0000 H=0121 S=0100 P=0100 MVI 8,08*0102 

-T f 

COZ1MOE111 A=03 8=0803 0=0000 H=0121 S=0100 P=0102 MVI C,00*0104 
-T f 

Count set ""- /"Largest" set 
COZ1MOE111 A=03 8=0800 0=0000 H=0121 S=0100 P=0104 LXI H,0119*0107 
-T; 

/Base address of data set 
COZ1MOE111 A=03 8=0800 0=0000 H=0119 S=0100 P=0107 MOV A,M*0108 
-T f 

/First data item brought to A 
COZ1MOE111 A=02 8=0800 0=0000 H=0119 S=0100 P=0108 SUB C*0109 
-T f 

COZOMOEOl 1 A=02 8=0800 0=0000 H=0119 8=0100 P=0109 JC 0100*010C 
-T; 

8-16 



Personal CP/M User's Guide An Example 

COZOMOEOl1 A=02 B=0800 0=0000 H=0119 S=0100 P=010C MOV C,A*010D 
-T f 

/First data item moved to C correctly 
COZOMOEOl1 A=02 B=0802 0=0000 H=0119 S=0100 P=010D INX H*010E 
-T f 

COZOMOEOl1 A=02 B=0802 0=0000 H=011A S=0100 P=010E OCR B*010F 
-T f 

COZOMOEOl1 A=02 8=0702 0=0000 H=011A S=0100 P=010F JNZ 0107*0107 
-TI 

COZOMOEOl1 A=02 8=0702 0=0000 H=011A S=0100 P=0107 MOV A,M*0108 
-T ii 

/Second data item brought to A 
COZOMOEOl1 A=OO 8=0702 0=0000 H=011A S=0100 P=0108 SUB C*0109 
-TI 

/ Subtract destroys data value that was loaded! 
C1ZOM1 EOIO A=FE 8=0702 0=0000 H=011A S=0100 P=0109 JC 0100*0100 
-TI 

C1ZOM1 EOIO A=FE 8=0702 0=0000 H=011A S=0100 P=010D INX H*010E 
-L1001 

0100 
0102 
0104 
0107 
0108 
0109 
010C 
0100 
010E 
010F 
0112 
-A108,t 

MVI 
MVI 
LXI 
MOV 
SUB 
JC 
MOV 
INX 
OCR 
JNZ 
MOV 

B,08 
C,00 
H,0119 

~·~This should have been a CMP so that register A 

0100 
would not be destroyed . 

C,A 
H 
B 
0107 
A,C 

0108 CMP Cf Hot patch at 108H changes SUB to CMP 

0109 

-GO,t Stop DDT for SAVE 

fl\> SAVE 1 SCAN.COM I Save memory image 

P\>DDT SCAN.COM/ Restart DDT 

DDT VER 1.0 
NEXT PC 
0200 0100 
-XP/ 

P=0100 

-L1161 

8-17 



Personal CP/M User ' s Guide 

0116 
0117 
0118 
0119 
011A 

RST 
NOP 
NOP 
STAX 
NOP 

07 

B 

Look at code to see if it was properly loaded 
(long typeout aborted with rubout) 

-G, 1161 Run from lOOH to completion 

*0116 
-XC ~ Look at carry (accidental typo) 
C1f 
-X f Look at CPU state 

C1Z1MOE111 A=06 8=0006 D=OOOO H=0121 S=0100 P=0116 RST 07 
-8121; Look at "large"-it appears to be correct . 

0121 06f 

0122 OOf 

0123 22 

-GO/ Stop DDT 

A>ED SCAN.ASM I Re-edit the source program, and make both changes 

*NSUB/ 
*OLT/ 

ct1-z, SUB 
*SSUBIZCMP!ZOL Tl 

CMP 

c ;LARGER VALUE INC? 

c ;LARGER VALUE INC? 

An Example 

JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND 
*SNCtZCtZOL T / 

JC NFOUND ;JUMP IF LARGER VALUE NOT FOUND 
*EI 

Re-assemble, selecting source from disk A 
A>ASM SCAN.AAZ/ -Hex to disk A 

Print to Z (selects no print file) 
CP/M ASSEMBLER VER 1.0 

0122 
002H USE FACTOR 
END OF ASSEMBLY 

8- 1 8 



Personal CP/M User's Guide 

A>DDT SCAN.HEX I Re-run debugger to check changes 

DDT VER 1.0 
NEXT PC 
0121 0000 
-L 1161 

0116 JMP 0000 

0119 STAX B 

011A NOP 
011B INR B 

- (rubout) 

Check to ensure end is still at 116H 

-G100,1161 Go from beginning with breakpoint at end 

*0116 Breakpoint reached 
-01211 Look at "LARGE" 

An Example 

-------Correct value computed 
0121 @:-oo 22 21 00 02 7E EB 77 13 23 EB OB 78 B1 '! ... W. # .. X. 
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00 . ' ... ) ...... ... . 
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .... .. ......... . 

- (rubout) Aborts long type-out 

GOI Stop DDT, debug session complete. 

8-19 





Appendix A 
Personal CP/M Messages 

Messages come from sev·eral different sources. Personal CP/M 
displays error messages when there are errors in calls to the Basic 
Disk Operating System (BDOS). Personal CP/M also displays messages 
when there are errors in command lines. Each utility supplied with 
Personal CP/M has its own set of messages. The following lists 
Personal CP/M messages and utility messages. You might see messages 
other than those listed here if you are running an application 
program. Check the application program's documentation for 
explanations of those messages. 

Table A-1. Personal CP/K Error Messages 

Message 

ABORTED 

BAD DELIMETER 

Bad Load 

Meaning 

PIP. You stopped a PIP operation by 
pressing a key. 

STAT. 
errors. 

Check command line for typing 

CCP error message, or SAVE error message. 

CP/M Error on d: Disk I/O 

The disk I/O error results from an error 
condition returned to the BDOS from the 
BIOS module. The file system makes BIOS 
read and write calls to execute file­
related BDOS calls. If the BIOS read or 
write routine detects an error, it returns 
an error code to the BDOS resulting in 
this error. 

A-1 



Personal CP/M User's Guide A Personal CP/M Messages 

Table A-1. (continued) 

Message Meaning 

CP/M Error on d: Invalid Drive 

The invalid drive error results from an 
error condition returned to the BDOS from 
the BIOS module. The BDOS makes a BIOS 
SELECT DISK call prior to accessing a 
drive to perform a requested BDOS 
function. If the BIOS does not support 
the selected disk, the BDOS returns an 
error code resulting in this error 
message. 

CP/M Error on d: Read/Only File 

The Read/Only file error is returned when 
a program attempts to write to a file that 
is marked with the Read/Only attribute. 
It is also returned to a program that 
attercpts to write to a system file opened 
under user zero from a nonzero user 
number. 

CP/M Error on d: Read/Only Disk 

Break "x" at c 

The Read/Only Disk error is returned when 
a program writes to a disk that is in 
Read/Only status. A drive can be placed 
in Read/Only status explicitly with the 
BDOS WRITE PROTECT DISK function. 

ED. "x" is one of the symbols described 
below and c is the command letter being 
executed when the error occurred. 

# Search failure. ED cannot find the 
string specified in an F, S, or N command. 

? Unrecognized command letter c. ED does 
not recognize the indicated command 
letter, or an E, H, Q, or O command is not 
alone on its command line. 

O The file specified in an R command 
cannot be found. 

A-2 



Personal CP/M User's Guide A Personal CP/M Messages 

Message 

Table A-1. (continued) 

Meaning 

> Buffer full. ED cannot put any more 
characters in the memory buffer, or the 
string specified in an F, N, or S command 
is too long. 

E Command aborted. A keystroke at the 
console aborted command execution. 

F Disk or directory full. This error is 
followed by either the disk or directory 
full message. Refer to the recovery 
procedures listed under these messages. 

CANNOT CLOSE DESTINATION FILE--{filespec} 

PIP. An output file cannot be closed. Take 
appropriate action after checking to see 
if the correct disk is in the drive and 
that the disk is not write protected. 

Cannot close, R/O 
CANNOT CLOSE FILES 

CANNOT READ 

CANNOT WRITE 

CP/M cannot write to file. This usually 
occurs because the disk is write 
protected. 

SUBMIT. This error can occur during 
SUBMIT file processing. Check if the 
correct system disk is in the A drive and 
that the disk is not write protected. The 
SUBMIT job can be restarted after 
rebooting Personal CP/M. 

PIP. PIP cannot read the specified 
source. Reader might not be implemented. 

PIP. The destination specified in the PIP 
command is illegal. You probably 
specified an input device as a 
destination. 

A-3 



Personal CP/M User's Guide A Personal CP/M Messages 

Message 

Checksum error 

Table A-1. (continued) 

Meaning 

PIP. A hex record checksum error was 
encountered. The hex record that produced 
the error must be corrected, probably by 
recreating the hex file. 

CHECKSUM ERROR 
LOAD ADDRESS hhhh 
ERROR ADDRESS hhhh 
BYTES READ: 
hhhh: 

LOAD. File contains incorrect data. 
Regenerate hex file from the source. 

Command Buffer Overflow 

SUBMIT. The SUBMIT buffer allows up to 
2048 characters in the input file. 

Command too long 

SUBMIT. A command in the SUBMIT file 
cannot exceed 125 characters. 

CORRECT ERROR, TYPE RETURN OR CTL-Z 

PIP. A hex record checksum was 
encountered during the transfer of a hex 
file. Correct the hex file with the 
checksum error, probably by recreating the 
hex file. 

DESTINATION IS R/O, DELETE (Y/N)? 

PIP. The destination file specified in a 
PIP command already exists and it is 
Read/Only. If you type Y, the destination 
file is deleted before the file copy is 
done. 

A-4 



Personal CP/M User's Guide A Personal CP/M Messages 

Message 

Directory full 

Disk full 

Tab1e A-1. (continued) 

Meaning 

ED. There is not enough directory space 
for the file being written to the 
destination disk. You can use the 
OXfilespec command to erase unnecessary 
files on the disk without leaving the 
editor. 

SUBMIT. There is not enough directory 
space to write the $$$.SUB file used for 
processing SUBMITs. Erase some files or 
select a new disk and retry. 

ED. There is not enough disk space for 
the output file. This error can occur on 
the W, E, H, or X commands. If it occurs 
with X command, you can repeat the command 
prefixing the filename with a different 
drive. 

DISK READ ERROR-{filespec} 

PIP. The input disk file specified in a 
PIP command cannot be read properly. This 
is usually the result of an unexpected 
end-of-file. Correct the problem in your 
file. 

DISK WRITE ERROR-{filespec} 

PIP. A disk write operation cannot be 
successfully performed during a PIP 
command, probably due to a full disk. 
Erase some unnecessary files, or get 
another disk with more space and execute 
PIP again. 

SUBMIT. The SUBMIT program cannot write 
the $$$.SUB file to the disk. Erase some 
files, or select a new disk and try again. 

A-5 



Personal CP/M User's Guide A Personal CP/M Messages 

Table A-1. (continued) 

Message Meaning 

ERROR: BAD PARAMETER 

PIP. You entered an illegal parameter in 
PIP command. Retype the entry correctly. 

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh 

LOAD. Displayed if LOAD cannot find the 
specified file or if no filename is 
specified. 

ERROR: CANNOT CLOSE FILE, LOAD ADDRESS hhhh 

LOAD. caused by an error code returned by 
a BDOS function call. Disk might be write 
protected. 

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh 

LOAD. cannot find source file. Check 
disk directory. 

ERROR: DISK READ, LOAD ADDRESS hhhh 

LOAD. caused by an error code returned by 
a BDOS function call. 

ERROR: DISK WRITE, LOAD ADDRESS hhhh 

LOAD. Destination Disk is full. 

ERROR: INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh 

LOAD. The address of a record was too far 
from the address of the previously 
processed record. This is an internal 
limitation of LOAD, but it can be 
circumvented. Use DDT to read the hex file 
into memory, then use a SAVE command to 
store the memory image file on disk. 

A-6 



Personal CP/M User's Guide A Personal CP/M Messages 

Tab1e A-1. (continued) 

Message Meaning 

ERROR: NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh 

LOAD. Disk directory is full. 

Error on line nnn message 

FILE ERROR 

FILE EXISTS 

SUBMIT. The SUBMIT program displays its 
messages in the format shown above, where 
nnn represents the line number of the 
SUBMIT file. Refer to the message 
following the line number. 

ED. Disk or directory full, and ED cannot 
write anything more on the disk. This is 
a fa ta 1 error, so make sure there is 
enough space on the disk to hold a second 
copy of the file before invoking ED. 

You have asked Personal CP/M to create or 
rename a file using a file specification 
that is already assigned to another file. 
Delete the existing file or use another 
file specification. 

REN. The new name specified is the name 
of a file that already exists. You cannot 
rename a file with the name of an existing 
file. If you want to replace an existing 
file with a newer version of the same 
file, either rename or erase the existing 
file, or use the PIP utility. 

File exists, erase it 

ED. The destination filename already 
exists when you are placing the 
destination file on a disk different from 
the source. Erase the file or select 
another disk to receive the output file. 

A-7 



Personal CP/M User's Guide A Personal CP/M Messages 

Table A-1. (continued) 

Message Meaning 

** FILE IS READ/ONLY ** 

Fi le Not Found 

ED. The file specified in the command to 
invoke ED has the Read/Only attribute. ED 
can read the file, so the user can examine 
it, but ED cannot change a Read/Only file. 

Personal CP/M cannot find the specified 
file. Check that you have entered the 
correct drive specification or that you 
have the correct disk in the drive. 

ED. ED cannot find the specified file. 
Check that you have entered the correct 
drive specif i cation or that you have the 
correct disk in the drive. 

STAT. STAT cannot find the specified 
file. The message might appear if you 
omit the drive specification. Check to 
see if the correct disk is in the drive. 

FILE NOT FOUND-{filespec} 

PIP. You specified an input file that 
does not exist. 

Filename required 

ED. You typed the ED command without a 
filename. Reenter the ED command followed 
by the name of the file you want to edit 
or create. 

A-8 



Personal CP/M User's Guide A Personal CP/M Messages 

Table A-1. (continued) 

Message Meaning 

Invalid Assignment 

STAT. You specified an invalid drive or 
file assignment, or misspelled a device 
name. This error message might be 
followed by a list of the valid file 
assignments that can follow a filename. 
If an invalid drive assignment was 
attempted, the message "Use: d:=R/O" is 
displayed, showing the proper syntax for 
drive assignments. 

Invalid control character 

SUBMIT. The only valid control characters 
in the SUBMIT files of the type SUB are "A 
through "z. Note that in a SUBMIT file 
the control character is represented by 
typing the circumflex, "',not by pressing 
the control key. 

INVALID DIGIT-{filespec} 

PIP. An invalid hex digit has been 
encountered while reading a hex file. 
Correct the hex file with the invalid hex 
digit by recreating the hex file. 

Invalid Disk Assignment 

STAT. Might appear if you follow the 
drive specification with anything except 
=R/O. 

Invalid File Indicator 

INVALID · FORMAT 

STAT. Appears if you do not specify R/O, 
R/W, DIR, or sYS. 

PIP. The format of your PIP command is 
illegal. See the description of PIP. 

A-9 



Personal CP/M User's Guide A Personal CP/M Messages 

Table A-1. (continued) 

Message Meaning 

INVALID HEX DIGIT 
LOAD ADDRESS hhhh 
ERROR ADDRESS hhhh 
BYTES READ: 
hhhh 

LOAD. File contains incorrect hex digit. 

INVALID SEPARATOR 

PIP. You have placed an invalid character 
for a separator between two input 
filenames. 

INVALID USER NUMBER 

n? 

PIP. You have specified a user number 
greater than 15. User numbers are in the 
range 0 to 15. 

USER. You specified a user area number 
greater than 15. For example, if you type 
USER 18<cr>, the screen displays 11 18? 11 

NO DIRECTORY SPACE-{filespec} 

PIP. There is not enough directory space 
for the output file. Erase some 
unnecessary files, or get another disk 
with more directory space and execute PIP 
again. 

NO FILE-{filespec} 

DIR, ERA, REN, PIP. Personal CP/M cannot 
find the specified file, or no files 
exist. 

A-10 



Personal CP/M User's Guide A Personal CP/M Messages 

Table A-1. (continued) 

Message Meaning 

NO INPUT FILE PRESENT ON DISK 

No memory 

NO SPACE 

DUMP. The file you requested does not 
exist. 

There is not enough memory available for 
loading the program specified. 

SAVE. Too many files are already on the 
disk, or no room is left on the disk to 
save the information. 

No SUB file present 

SUBMIT. For SUBMIT to operate properly, 
you must create a file with filetype of 
SUB. The SUB file contains usual Personal 
CP/M commands. Use one command per line. 

NOT A CHARACTER SOURCE 

PIP. The source specified in your PIP 
command is illegal. You have probably 
specified an output device as a source. 

** NOT DELETED ** 

NOT FOUND 

Parameter error 

PIP. PIP did not delete the file, which 
might have had the R/O attribute. 

PIP. PIP cannot find the specified file. 

SUBMIT. Within the SUBMIT file of type 
sub, valid parameters are $0 through $9. 

A-11 



Personal CP/M User's Guide A Personal CP/M Messages 

Message 

QUIT NOT FOUND 

Read error 

READER STOPPING 

Record Too Long 

Table A-1. (continued) 

Meaning 

PIP. The string argument to a Q parameter 
was not found in your input file. 

TYPE. An error occurred when reading the 
file specified in the type command. Check 
the disk and try again. The STAT filespec 
command can diagnose trouble. 

PIP. Reader operation interrupted. 

PIP. PIP cannot process a record longer 
than 128 bytes. 

Requires CP/M 2.0 or later 

XSUB. XSUB requires the fac i lit ie s of 
CP/M 2.0 or newer version. 

Requires Personal CP/M 1.0 or newer for operation 

START NOT FOUND 

PIP. This version of PIP requires the 
facilities of Personal CP/M 1.0 or newer 
version. 

PIP. The string argument to an S 
parameter cannot be found in the source 
file. 

II sYSTEM II FILE NOT ACCESSIBLE 

You tried to access a file set to sYS with 
the STAT command. 

A-12 



Personal CP/M User's Guide A Personal CP/M Messages 

Tab1e A-1. (continued) 

Message Meaning 

** TOO MANY FILES ** 

STAT. There is not enough memory for STAT 
to sort the files specified, or more than 
512 files were specified. 

UNEXPECTED END OF HEX FILE-{FILESPEC} 

PIP. An end-of-file was encountered prior 
to a termination hex record. The hex file 
without a termination record should be 
corrected, probably by recreating the hex 
file. 

Unrecognized Destination 

PIP. Check command line for valid 
destination. 

Use: STAT d=R/O 

STAT. An invalid STAT crive command was 
given. The only valid drive assignment in 
STAT is STAT d:R/O. 

VERIFY ERROR:-{filespec} 

PIP. When copying with the V option, PIP 
found a difference when rereading the data 
just written and comparing it to the data 
in its memory buffer. Usually this 
indicates a failure of either the 
destination disk or drive. 

A-13 



Personal CP/M User's Guide A Personal CP/M Messages 

Table A-1. (continued) 

Message Meaning 

WRONG CP/M VERSION (REQUIRES 2.0) 

XSUB ACTIVE 

SUBMIT. XSUB has been invoked. 

XSUB ALREADY PRESENT 

SUBMIT. XSUB is already active in memory. 

YOUR INPUT? 

If CP/M cannot find the command you 
specified, it return.s the command name you 
entered followed by a question mark. 
Check that you have typed the command line 
correctly, or that the command you 
requested exists as a COM file on the 
default or specified disk. 

End of Appendix A 

A-14 



Appendix B 
ASCII and Hexadecimal Conversions 

ASCII stands for American Standard Code for Information Interchange. 
The code contains 96 printing and 32 nonprinting characters used to 
store data on a disk. Table B-1 defines ASCII symbols; Table B-2 
lists the ASCII and hexadecimal conversions. Table B-2 includes 
binary, decimal, hexadecimal, and ASCII conversions. 

Symbol I 
ACK 
BEL 
BS 
CAN 
CR 
DC 
DEL 
DLE 
EM 
ENQ 
EOT 
ESC 
ETB 
ETX 
FF 

Table B-1. ASCII Syabols 

Meaning 

acknowledge 
bell 
backspace 
cancel 
carriage return 
device control 
delete 
data link escape 
end of medium 
enquiry 
end of transmission 
escape 
end of transmission 
end of text 
form feed 

j Symbol j 
FS 
GS 
HT 
LF 
NAK 
NUL 
RS 
SI 
so 
SOH 
SP 
STX 
SUB 
SYN 
us 
VT 

B-1 

Meaning 

file separator 
group separator 
horizontal tabulation 
line feed 
negative acknowledge 
null 
record separator 
shift in 
shift out 
start of heading 
space 
start of text 
substitute 
synchronous idle 
unit separator 
vertical tabulation 



Personal CP/M User's Guide B ASCII and Hexadecimal Conversions 

Tab1e B-2. ASCII Conversion Table 

Binary 1 Decimal I Hexadecimal I ASCII 

0000000 0 0 NUL 
0000001 1 1 SOH (CTRL-A) 
0000010 2 2 STX (CTRL-B) 
0000011 3 3 ETX (CTRL-C) 
0000100 4 4 EOT (CTRL-D) 
0000101 5 5 ENQ ( CTRL-E) 
0000110 6 6 ACK (CTRL-F) 
0000111 7 7 BEL (CTRL-G} 
0001000 8 8 BS (CTRL-H) 
0001001 9 9 HT (CTRL-I} 
0001010 10 A LF (CTRL-J) 
0001011 11 B VT (CTRL-K) 
0001100 12 c FF (CTRL-L) 
0001101 13 D CR (CTRL-M) 
0001110 14 E so (CTRL-N) 
0001111 15 F SI (CTRL-0) 
0010000 16 10 DLE (CTRL-P) 
0010001 17 11 DCl (CTRL-Q) 
0010010 18 12 DC2 (CTRL-R) 
0010011 19 13 DC3 (CTRL-S) 
0010100 20 14 DC4 (CTRL-T) 
0010101 21 15 NAK (CTRL-U) 
0010110 22 16 SYN (CTRL-V) 
0010111 23 17 ETB (CTRL-W) 
0011000 24 18 CAN (CTRL-X) 
0011001 25 19 EM (CTRL-Y) 
0011010 26 lA SUB (CTRL-Z) 
0011011 27 lB ESC (CTRL-[) 
0011100 28 lC FS (CTRL-\) 
0011101 29 lD GS ( CTRL-]) 
0011110 30 lE RS (CTRL-"') 
0011111 31 lF us (CTRL- ) 
0100000 32 20 (SPACE) -
0100001 33 21 .! 
0100010 34 22 II 

0100011 35 23 # 
0100100 36 24 $ 
0100101 37 25 % 
0100110 38 26 & 
0100111 39 27 I 

0101000 40 28 ( 
0101001 41 29 ) 
0101010 42 2A * 
0101011 43 2B + 
0101100 44 2C I 

0101101 45 2D -
0101110 46 2E . 
0101111 47 2F I 

B-2 



Personal CP/M User's Guide B ASCII and Hexadecimal Conversions 

Table B-2. (continued) 

Binary I Decimal I Hexadecimal I ASCII 

0110000 48 30 0 
0110001 49 31 l 
0110010 50 32 2 
0110011 51 33 3 
0110100 52 34 4 
0110101 53 35 5 
0110110 54 36 6 
0110111 55 37 7 
0111000 56 38 8 
0111001 57 39 9 
0111010 58 3A : 
0111011 59 3B . , 
0111100 60 3C < 
0111101 61 3D = 
0111110 62 3E > 
0111111 63 3F ' ? 
1000000 64 40 @ 

1000001 65 41 A 
1000010 66 42 B 
1000011 67 43 c 
1000100 68 44 D 
1000101 69 45 E 
1000110 70 46 F 
1000111 71 47 G 
1001000 72 48 H 
1001001 73 49 I 
1001010 74 4A J 
1001011 75 4B K 
1001100 76 4C L 
100110 l 77 4D M 
1001110 78 4E N 
1001111 79 4F 0 
1010000 80 50 p 

1010001 81 51 Q 
1010010 82 52 R 
1010011 83 S3 s 
1010100 84 54 T 
1010101 85 SS u 
1010110 86 56 v 
1010111 87 57 y.; 
1011000 88 58 x 
1011001 89 S9 y 

1011010 90 SA z 
1011011 91 SB [ 
1011100 92 SC \ 
1011101 93 SD J 
1011110 94 SE 

,.. 

B-3 



Personal CP/M User's Guide B ASCII and Hexadecimal Conversions 

Table B-2. (continued) 

Binary I Decimal I Hexadecimal I ASCII 

1011111 95 SF < 
1100000 96 60 I 

1100001 97 61 a 
1100010 98 62 b 
1100011 99 63 c 
1100100 100 64 d 
1100101 101 65 e 
1100110 102 66 f 
1100111 103 67 g 
1101000 104 68 h 
1101001 105 69 i 
1101010 106 6A j 
1101011 107 6B k 
1101100 108 6C 1 
1101101 109 6D m 
1101110 110 6E n 
1101111 111 6F 0 
1110000 112 70 p 
1110001 113 71 q 
1110010 114 72 r 
1110011 115 73 s 
1110100 116 74 t 
1110101 117 75 u 
1110110 118 76 v 
1110111 119 77 w 
1111000 120 78 x 
1111001 121 79 y 
1111010 122 7A z 
1111011 123 7B { 
1111100 124 7C I 
1111101 125 7D } 
1111110 126 7E -
1111111 127 7F DEL 

End of Appendix B 

B-4 



Appendix C 
Filetypes 

Personal CP/M identifies every file by a unique file specification, 
which consists of a drive specification, a filename, a filetype, and 
an optional password. The filetype is an optional three-character 
ending separated from the filename by a period. The filetype 
indL:ates a special kind of file. Table C-1 lists common filetypes 
and their meanings. 

Table C-1. Common Filetypes 

Type I Meaning 

ASM Assembly language source file; the Personal 
CP/M assemblers assemble or translate a type 
ASM file into machine language. 

' 
BAK Backup file created by text editor; the editor 

renames the source file with this filetype to 
indicate that the original file has been 
processed. The original file stays on disk as 
the backu_.:; file, so you can refer to it. 

BAS CBASIC program source file. 

COM Machine lanquage program ( Z80, 8080, or 808 5}. 

ERL Pascal/MT+™ relocatable file. 

HEX Program file in hexadecimal format. 

INT CBASIC program intermediate language file. 

IRL Indexed REL file produced by LIB. 

LIB Used by MAC™ and RMAC™ for macro libraries. 
The ED R command reads files of type LIB. The 
ED X command writes files of type LIB. 
Printable file displayable on console or 
printe-r. 

OVL Program overlay file. PL/I-80"' compiler 
overlays files; you can create overlay files 
with LINK-80 ™ • 

PAS Pascal/MT+ source program f iletype. 

PLI PL/I-80 source program filetype. 

C-1 



Personal CP/M User's Guide C Filetypes 

Table C-1. (continued) 

Type I Meaning 

PRL Page Relocatable file; a file that does not 
require an absolute segment. It can be 
relocated in any page boundary (256 Bytes). 

PRN Pr in table file displayable on console or 
printer. 

REL Relocatable file produced by RMAC and PL/I-80 
that can be linked by LINK-80. 

SPR System Page Relocatable file; system files 
required to generate Personal CP/M, such as 
BNKBDOS. SPR, BDOS. SPR, BIOS. SPR, and 
RESBDOS.SPR. 

SUB Filetype required for submit file containing 
one or more Personal CP/M commands. The SUBMIT 
program executes commands in files of type SUB, 
providing a batch execution mode for Personal 
CP/M. 

SYM 

SYS 

Symbol table file. MAC, 
output files of type SYM. 
files of type SYM. 

RMAC, and LINK-80 
SID™ and ZSIDw read 

Syst_em file for Personal CP/M. 

TEX Source file for TEX"' , the Digital Research 
text formatter. 

TOK Pascal/MT+ intermediate language file. 

XRF Cross-reference file produced by XREF. 

$$$ Temporary file. 

End of Appendix c 

C-2 



Appendix D 
Personal CP/M Control Character Summary 

Table D-1. Personal CP/M Control Characters 

Character I 
CTRL-C 

CTRL-E 

CTRL-H 

CTRL-J 

CTRL-M 

CTRL-R 

CTRL-U 

CTRL-X 

RUBOUT 

Meaning 

Warm boot (restarts) the CP/M operating 
system when typed at the beginning of a 
line. 

Forces a physical carriage return but does 
not send the command line to Personal CP/M. 
Moves the cursor to the beginning of the 
next line without erasing your previous 
input. 

Deletes a character and moves the cursor 
left one character position. 

Sends the command line to 
returns the cursor to 
current line. Has the 
RETURN or a CTRL-M. 

Personal CP/M and 
the le ft of the 

same effect as a 

Sends the command line to Personal CP/M and 
returns the cursor to the left of the 
current line . Has the same effect as a 
RETURN or a CTRL-J. 

Places a # sign at the current cursor 
location, moves the cursor to the next line, 
and displays any partial command you typed 
so far. 

Discards all the characters in the command 
line (but leaves them displayed), places a 
# at the current cursor position, and moves 
the cursor to the next command line. 

Discards all the charac ters in the command 
line (actually removes them from display), 
and moves the cursor to the beginning of the 
current line. 

Deletes the last character typed and echoes 
it at the console. 

End of Appendix D 

D-1 





()I 5-4 
*, 5-5 
* prompt, 5-8 
:00 records, 5-17 
<er>, 5-4 
7, 5-5 
[], 5-4 
... , 5-4 
"bl I 5-4 
I, 5-4 

A 

A command, 5-8 
add line numbers, 5-17 
alternative items, 5-4 
ambiguous filespec, 2-4 
ASCII, 

symbols, B-1 
conversion table, B-2 

Assembler, 7-1 
The ORG Directive, 7-8 
The END Directive, 7-8 
The EQU Directive, 7-9 
The IF and ENDIF Directive, 

7-10 
The DB Directive, 7-11 
The DW Directive, 7-11 
The DS Directive, 7-11 

attributes, 2-6 
AUX:, 5-13 
auxiliary 

input device, 5-13 
output device, 5-13 

AXI:, 5-13 
AXO, 5-13 

B 

B option, 5-16 
backup disks, 5-11 
basic editing commands, 6-7 
batch commands, 5-22 
block mode option, 5-16 
booting the system, 1-1 
built-in commands, 1-3, 

4-1, 4-2 

c 

CBASIC, 5-2 

Index 

change f ilenarne 
see filenames 

changing disks 
see disks 

character pointer, 6-6 
characters 

special, 5-2 
cold start, 1-1 
COM, 2-2 
combine files, 5-11 
command 

description, 5-3 
form rules, 5-3 
keyword, 1-2, 5-3 
line, 1-2 
mode, 5-8 
summary, 5-1 
tail, 1-2 

commands 
summary, 5-1 
transient utility, 4-3 

CON:, 5-13 
console 

input device, 5-13 
output device, 5-13 

control character, 1-2 
copy 

files, 5-11 
memory, 5-21 

create file, 5-8, 5-11 
CTRL, 5-4 

key, 1-2 
CTRL-Z, 5-14 
cursor, 1-2 

D 

data files, 2-1 
default drive, 2-3 
delete character, 5-16 
DDT (Dynamic Debugging Tool), 

8-1 
The A (Assembly) Command, 

8-3 
The D (Display) Command, 8-4 
The F (Fill) Command, 8-4 
The G (Go) Command, 8-4 
The I (Input) Command, 8-5 
The L (List) Command, 8-6 
The M (Move) Command, 8-6 
The R (Read) Command, 8-6 

Index-1 



The S (Set) Command, 8-7 
The T (Trace) Command, 8-7 
The U (Untrace) Command, 

8-8 
The X (Examine) Command, 

8-8 
DESPOOL, 5-29 
dest-filespec, 5-5 
DIR (directory), 2-1, 2-6, 

4-2' 5-4 
attribute, 5-7 
command, 1-3, 5-7 
space, 2-7 

devices 
auxiliary input, 5-13 
auxiliary output, 5-13 
console input, 5-13 
console output, 5-13 

disks 
backup, 5-11 
changing, 2-7 
file error messages, 6-26 

display 
file, 5-31 
filenames, 5-7 

Dn option, 5-16 
drive, 2-7 

E 

attribute, 2-7 
protection, 2-7 
specifier, 2-2, 2-3, 

2-4, 5-1 

E option, 5-16 
echo transfer, 5-16 
ED, 2-2, 4-3, 5-8, 6-1 

combined commands, 6-14 
commands, 5-8 
CP, 5-8 
error messages, 6-26 
error symbols, 6-25 
file error messages, 6-26 
numeric argument, 6-6 
prompt, 6-2 

edit file, 5-8 
editor, 6-1 
end-of-file, 5-14 
EOF:, 5-14 
ERA (erase), 4-2 

command, 5-10 
file, 5-10 

F 

F option, 5-16 
file, 2-1 

categories, 2-2 
create, 2-2 
protection, 2-6 

search, 4-4 
specification, 2-2, 

2-3, 5-1 
file attribute, 2-4, 

2-6, 5-12 
DIR , 2-6 
Read/Only, 2-6 
Read/Write, 2-6 
SYS , 2-6 

filenames, 2-2, 5-1 
change, 5-22 

protection, 2-6 
searching for, 4-4 

filespec, 5-1 
filetype, 2-2, 5-1, 5-2, C-1 
form feeds, 5-16 

G 

G option, 5-16 
group commands, 5-22 

B 

H option, 5-17 
Hex transfer, 5-17 

I 

I option, 5-17 
Ignore, 5-17 
insert mode, 5-8, 6-12 

K 

keyboard, 5-13 

L 

L option, 5-17 
library file, 6-22 
line editing, 3-1 

control characters, 3-2, 
3-3, 5-8, 6-13, D-1 

line numbers, 5-14, 6-4, 6-17• 
LINK-80, C-1 
list 

file , 5-11 
filename, 5-7 

LOAD command, 5-33 
loading Personal CP/M, 1-1 
logical device names, 5-13 
lowercase, 5-17 
LST:, 5-13 

M 

Index-2 

MAC , C- 1 
memory buffer, 6-2 

size, 6-4 



multiple commands, 4-5 

N 

n, 5-4 
N option, 5-17 
NO PAGE, 5-31 
nonbanked line-editing 

control characters, 3-3 
number,5-4 

0 

o, 5-4 
O option, 5-17 
object file transfer, 5-17 

online disk, 2-7 
options, 5-4 

list, 5-4 

p 

P option, 5-17 
PAGE, 5-31 

option, 5-31 
eject, 5-14, 5-17 
length, 5-17 

Pascal/MT+, C-1 
password, 2-2 
Peripheral Interchange 

Program, see PIP 
PIP, 2-1, 2-2, 4-3, 5-5, 5-11 

command, 5-11 
options, 5-16 

PL/I-80, C-1 
printer echo, 3-1 
PRN: I 5-14 
program, 1-1 

fi~es, 2-1 

0 

Q option, 5-17 
quit copy, 5-17 

R 

R option, 5-17 
R/O, 2-7 I 5-4 
R/W I 2-7 
range of options, 5-4 
read system files, 5-17 
Read/Only, 2-6 
Read/Write, 2-6 
ready status, 2-7 
REN (Rename), 4-2, 

5-19, 5-20 
repeat editing 

commands, 6-21 

reset, 2-7 
RETURN key, 1-2 
RMAC, C-1 

s 

S option, 5-18 
s string, 5-4 
SAVE, 4-2 

command, 5-21 
editing changes, 6-5 
memory, 5-21 

screen, 5-13 
set current user number, 5-31 
SID, C-2 
special characters, 5-2 
start copy, 5-18 
start system, 1-1 
STAT, 4-3 

command, 5-22 
storage space, 2-7 
SUBMIT, 4-3 

command, 5-28 
syntax notation, 5-3 to 5-5 
SYS, 2-6, 5-4 
system 

T 

prompt, 1-2, 2-7 
reset, 1-2 
start, 1-1 

T option, 5-18 
tab expansion, 5-14, 5-18 
terminating programs, 4-5 
TEX, C-2 
text editor, 2-2 
transient 

program commands, 4-3 
utility commands, 

1-3, 4-1 
TYPE, 4-2, 5-3 

command, 5-31 

u 

U option, 5-18 
uppercase, 5-18 

translation, 6-12, 
6-13, 6-18 

USER, 4-2 
command, 5-31 

v 

numbers, 2-4, 2-6, 5-16 
range 5-31 

V option, 5-18 
verify copy, 5-18 
version number, 1-1 

Index-3 



w 

W command, 5-8 
option, 5-18 

wildcard, 5-1, 5-5 
characters, 2-4 
patterns, 2-6 

write over R/O, 5-18 

x 

X$$$$$$$.LIB file, 6-22 
XSUB, 4-3 

z 

Z option, 5-18 
zero parity bit, 5-18 
ZSID, C-2 

Index-4 



Glossary 

ambiguous filename: Filename that contains either of the Personal 
CP/M wildcard characters, ? or *, in the primary filename, the 
filetype, or both. When you use wildcard characters, you create an 
ambiguous filespec and can easily reference more than one Personal 
CP/M file. See Section 2 of this manual. 

applications program: Program that solves a spec i fie problem. 
Typical applications programs are business accounting packages, word 
processing (editing) programs, and mailing list programs. 

argument: Symbol indicating a place into which you can substitute a 
number, letter, or name to give an appropriate meaning to a command 
line. 

ASCII: The American Standard Code for Information Interchange is a 
stan1ard code for representation of numbers, letters, and symbols. 
An ASCII text file is a file that can be intelligibly displayed on 
the video screen or printed on paper. 

attribute: File characteristic that can be set to on or off. 

backup: Copy of a disk or file made for safe keeping, or the 
creation of the backup disk or file. 

bit: Switch in memory that can be set to on (1) or off (O). Bits 
are grouped into bytes. 

block: Area of disk. 

bootstrap: Process of loading an operating system into memory. 
Bootstrap procedures vary from system to system. The boot for an 
operating system must be customized for the memory size and hardware 
environment that the operating system manages. Typically, the boot 
is loaded automatically and executed at power up or when the· 
computer is reset. Sometimes called a cold start. 

buffer: Area of memory that temporarily stores data during the 
transfer of information. 

built-in commands: Commands that perrnanen tly reside in memory. 
They respond quickly because they are not accessed from a disk. 

byte: Unit of memory or disk storage containing eight bits. 

character string: Any combination of letters, numbers, or special 
characters on your keyboard. 

Glossary-1 



Personal CP/M· User's Guide Glossary 

command: Elements of a Personal CP/M command line. In general, a 
Personal CP/M command has three parts: the command keyword, the 
command tail, and a carriage return keystroke. 

command file: Series of coded machine executable instructions 
stored on disk as a program file, invoked in Personal CP/M by typing 
the command keyword next to the system prompt on the console. 
Personal CP/M command files generally have a filetype of COM. Files 
are either command files or data files. Same as a command program. 

command keyword: Name that identifies an Personal CP/M command, 
usually the primary filename of a file of type COM , or a built-in 
command. The command keyword precedes the command tail and the 
carriage return in the command line. 

command syntax: Statement that defines the correct way to enter a 
command. The correct structure generally includes the command 
keyword, the command tail, and a carriage return. A syntax line 
usually contains symbols that you should replace with actual values 
when you enter the command. 

command tail: Part of a command that fo1lows the command keyword in 
the command line. The command tail can include a drive 
specification, a filename and/or filetype, and options or 
parameters, but cannot exceed 128 characters. Some commands do not 
require a command tail. 

concatenate: Term that describes one of PIP's operations that 
combines two or more separate files into one new file in the 
specified sequence. 

console: Primary input/output device. The console consists of a 
listing device such as a screen and a keyboard through which the 
user communicates with the operating system or applications program. 

control character: Nonprinting character combination that sends a 
simple command to Personal CP/M. Some control characters perform 
line editing functions. To enter a control character, hold down the 
CTRL key on your terminal and strike the character key specified. 
See Append ix D. 

cursor: One-character symbol that can appear anywhere on the 
console screen. The cursor indicates the position where the next 
keystroke at the console will have an effect. 

data file: Nonexecutable collection of similar information that 
generally requires a command file to manipulate it. 

default: Currently selected disk drive and/or user number. Any 
command that does not specify a disk drive or a user number 
references the default disk drive and user number. When Personal 
CP/M is first invoked, the default disk drive is drive A, and the 
default user number is 0, until changed with the USER command. 

Glossary-2 



Personal CP/M User's Guide Glossary 

de1iaiter: Special characters that separate different items in a 
command line. For example, in Personal CP/M, a colon separates the 
drive spec from the filename. A period separates the filename from 
the filetype. Brackets separate any options from their command or 
filespec. Commas separate one item in an option list from another. 
All of the preceding special characters are delimiters. 

directory: Portion of a disk that contains descriptions of each 
file on the disk. In response to the DIR command, Personal CP/M 
displays the filenames stored in the directory. 

DIR attribute: File attribute. 
be displayed by a DIR command. 
default user number only. 

A file with the DIR attribute can 
The file can be accessed from the 

disk, diskette: Magnetic media used to store information. 
Programs and data are recorded on the disk in the same way that 
music is recorded on a cassette tape. The term diskette refers to 
smaller capacity removable floppy diskettes. Disk can refer to a 
diskette, a removable cartridge disk, or a fixed hard disk. 

disk drive: Peripheral device that reads and writes on hard or 
floppy disks. Personal CP/M assigns a letter to each drive under 
its control. For example, Personal CP/M can refer to the drives in 
a four-drive system as A, B, C, and D. 

editor: Utility program that creates and modifies text files. An 
editor can be used for creation of documents or creation of code for 
computer programs. The Personal CP/M editor is invoked by typing 
the command ED next to the system prompt on the console. 

executable: Ready to be run by the computer. Executable ccxie is a 
series of instructions that can be carried out by the computer. For 
example, the computer cannot execute names and addresses, but it can 
execute a program that prints all those names and addresses on 
mailing labels. 

execute a program: Start a program executing. When a program is 
running, the computer is executing a sequence of instructions. 

FCB: See File Control Block. 

file: Collection of characters, instructions or data stored on a 
disk. The user can create files on a disk. 

File Control Block: Structure used for accessing files on disk. 
Contains the drive, filename, filetype and other information 
describing a file to be accessed or created on the disk. 

filename: Name assigned to a file. A filename can include a 
primary filename of 1-8 characters and a filetype of 0-3 characters. 
A period separates the primary filename from the filetype. 

Glossary-3 



Personal CP/M User's Guide Glossary 

file specification: Unique file identifier. A complete Personal 
CP/M file specification includes a disk drive specification followed 
by a colon (d:), a primary filename of 1 to 8 characters, a period, 
and a file type of 0 to 3 characters. For example, b : example. tex is 
a complete Personal CP/M file specification. 

filetype: Extension to a filename. A filetype can be from 0 to 3 
characters and must be separated from the primary filename by a 
period. A filetype can tell something about the file. Certain 
programs require that files to be processed have certain filetypes. 

floppy disk: Flexible magnetic disk used to store information. 
Floppy disks come in 5 1/4- and 8-inch diameters. 

hard disk: Rigid, platter-like, magnetic disk sealed in a 
container. A hard disk stores more information than a floppy disk. 

hardware: Physical components of a computer. 

hex file: ASCII-printable representation of a command (machine 
language) file. 

hexadecimal notation: Notation for the base 16 number system using 
the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F to 
represent the sixteen digits. Machine code is often converted to 
hexadecimal notation because it can be easily represented by ASCII 
characters and therefore printed on the console screen or on paper 
(see Appendix B). 

input: Data going in to the system, usually from an opera tor typing 
at the terminal or by a program reading from the disk. 

interface: Object that allows two independent systems to 
communicate with each other, as an interface between hardware and 
software in a microcomputer. 

I/O: Abbreviation for input/output. 

keyword: See command keyword. 

kilobyte: 1024 bytes denoted as lK. 32 kilobytes equal 32K. 1024 
kilobytes equal one megabyte, or over one million bytes. 

list device: Device such as a printer onto which data can be listed 
or printed. 

logical: Representation of someth ing that might or might not be the 
same in its actual physical form. For example, a hard disk can 
occupy one physical drive, and yet you can divide the available 
storage on it to appear to the user as if it were in several 
different drives. These apparent drives are the logical drives. 

Glossary-4 



Personal CP/M User's Guide 

megabyte: Over one million bytes: 1024 kilobytes. 
kilobyte. 

Glossary 

See byte and 

microprocessor: Silicon chip that is the Central Processing Unit 
(CPU) of the microcomputer. 

opera ting system: Collection of programs that supervises the 
running of other programs and the management of computer resources. 
An operating system provides an orderly input/output environment 
between the computer and its peripheral devices. 

option: One of many parameters that can be part of a command tail. 
Use options to specifiy additional conditions for a command's 
execution. 

output: Data that the system sends to the console or disk. 

parameter: Value in the command tail that provides additional 
information for the command. Technically, a parameter is a required 
element of a command. 

peripheral devices: Devices external to the CPU. For example, 
terminals, printers, and disk drives are common peripheral devices 
that are not part of the processor, but are used in conjunction with 
it. 

physical: Actual hardware of a computer. The physical environment 
varies from computer to computer. 

primary filename: First 8 characters of a filename. The primary 
filename is a unique name that helps the user identify the file 
contents. A primary filename contains 1 to 8 characters and can 
include any letter or number and some special characters. The 
primary filename follows the optional drive specification and 
precedes the optional f iletype. 

program: Series of specially coded instructions that performs 
specific tasks when executed by a computer. 

prompt: Characters displayed on the screen to help the user decide 
what the next appropriate action is. A system prompt is a special 
prompt displayed by the operating system. The system prompt 
indicates to the user that the operating system is ready to accept 
input. The Personal CP/M system prompt is an alphabetic character 
followed by an angle bracket. The alphabetic character indicates 
the default drive. Some applications programs have their own 
special system prompts. 

Glossary-5 



Personal CP/M User's Guide Glossary 

Read/Cklly: Attribute that can be assigned to a disk file or a disk 
drive. When assigned to a file, the Read/Only attribute allows you 
to read from that file but not change it. When assigned to a drive, 
the Read/Only attribute allows you to read any file on the disk, but 
prevents you from adding a new file, erasing or changing a file, 
renaming a file, or writing on the disk. The SET command can set a 
file or a drive to Read/Only. Every file and drive is either 
Read/Only or Read/Write. The default setting for drives and files 
is Read/Write, but an error in resetting the disk or changing media 
automatically sets the drive to Read/Only until the error is 
corrected. Files and disk drives can be set to either Read/Only or 
Read/Write. 

Read/Write: Attribute that can be assigned to a disk file or a disk 
drive. The Read/Write attribute allows you to read from and write 
to a specific Read/Write file or to a any file on a disk that is in 
a drive set to Read/Write. A file or drive can be set to either 
Read/Only or Read/Write. 

record: Collection of data. A file consists of one or more records 
stored on disk. An Personal CP/M record is 128 bytes long. 

RO: See Read/Only. 

RW: See Read/Write. 

sector: Portion of a disk track. There are a specified number of 
sectors on each track. 

software: Specially coded programs that transmit machine-readable 
instructions to the computer, as opposed to hardware, which is the 
actual physical components of a computer. 

source file: ASCII text file that is an input file for a processing 
program, such as an editor, text formatter, or assembler. 

string: See character string. 

syntax: Format for entering a given command. 

system attribute: File attribute. You can give a file the system 
attribute by using the SYS option in the SET command. A file with 
the SYS attribute is not displayed in response to a DIR command; you 
must use DIRS. If you give a file with user number O the SYS 
attribute, you can read and execute that file from any user number 
on the same drive. Use this feature to make your commonly used 
programs available under any user number. 

system prompt: Symbol displayed by the operating system indicating 
that the system is ready to receive input . See prompt. 

terminal: See console. 

track: Concentric rings dividing a disk. There are 77 tracks on a 
typical eight-inch floppy disk. 

Glossary-6 



Personal CP/M User's Guide Glossary 

turn-key application: Application designed for the noncomputer­
oriented user. For example, a typical turn-key application is 
designed so that the operator needs only to turn on the computer, 
insert the proper program disk, and select the desired procedure 
from a selection of functions (menu) displayed on the screen. 

upward compatible: Term meaning that a program created for the 
previously released operating system (or compiler, etc.) runs under 
the newly released version of the same operating system. 

user number: Number from 0 to 15 assigned to a file when it is 
created. User numbers can organize files into sixteen file groups. 

Utility Tool: Program that enables the user to perform certain 
operations, such as copying files, erasing files, and editing files. 
Utilities are created for the convenience of programmers and users. 

wildcard characters: Special characters that give Personal CP/M a 
pattern to match when it searches the directory for a file. 
Personal CP/M recognizes two wildcard characters, 7 and *. The 7 
can be substituted for any single character in a filespec, and the* 
can be substituted for the primary filename or the filetype or both. 
By placing wildcard characters in a filespec, you create an 
ambiguous filespec and can quickly reference one or more files. 

End of Glossary 

Glossary-7 





Personal CP /M ™ 
8-Bit Operating System 

Programmer's Guide 



COPYRIGHT 

Copyright © 1984 by Digital ~esearch Inc. All 
rights reserved. No part of this publication may be 
reproduced, transmitted, transcribed, stored in a 
retrieval system, or translated into any language or 
computer langua9e, in any form or by any means, 
electronic, mechanical, magnetic, optical, chemical, 
manual, or otherwise, without the prior written 
permission of Digital Research Inc., Post Office Box 
579, Pacific Grove, California, 93950. 

Readers are granted permission to 
example programs, either in whole or 
their own programs. 

DISCLAIMER 

include . the 
in part, in 

Digital Research Inc. makes no representations or 
warranties with respect to the contents' hereof and 
specifically disclaims any implied warranties of 
merchantability or fitness for any particular 
purpose. Further, Digital Research Inc. reserves 
the right to revise this publication and to make 
changes from time to time in the content hereof 
without obligation of Digital Research Inc. to 
notify any person of such revision or changes. 

TRADEMARKS 

CP/M, Digital Research, and its logo are registered 
trademarks of Digital Research Inc. ASM, MAC, 
Personal CP/M, SID, and TEX are trademarks of 
Digital Research Inc. Z80 and Zilog are registered 
trademarks of Zilog, Inc. 



Foreword 

Personal CP/M™ is a microcomputer operating system designed for 
the Zilog® Z80® or any compatible microprocessor. To run 
Personal CP/M, your computer must have an ASCII console, which 
includes a keyboard, video display screen, or another display 
device, 1 to 16 disk drives, and a munimum or 32K of Random 
Access Memory (RAM) • 

This manual describes the Basic Disk Operating System (BOOS) 
functions of Personal CP/M, and how to call the functions using 
Zilog z 8 0 assembler language. It is writ ten for experienced 
programmers who are writing application software in the Personal 
CP /M environment. It assumes you are familiar with the system 
features and utilities described in the Per son al CP /M Op er a ting 
System User's Guide (cited as Personal CP /M User's Guide) , the 
?2rscnal CP/M Operating System System Guide (cited as Personal CP/M 
System Guide), and the Programmer's Utilities Guide for the CP/M 
Family of Operating Svstems(cited as Programmer's Utilities Guide). 

Section l of this manual describes the components of the operating 
system, where they reside in memory, and how they wor~ together to 
provide a standard operating environment for application programs 

Section 2 describes how an application program can call on Personal 
CP/ M to perform serial input and output and manage disk files. It 
also provides a detailed description of each operating system 
function. 

Section 3 presents five example programs. 

The appendixes contain a summary of system functions, BDOS error 
handling information, and user number conventions. 

This manual displays computer output in second color and user 
output in boldface second color. 

iii 





Table of Contents 

l Introduction to Personal CP/~ 

l. 2 P2rsonal C? / )1 Memory Organization . 

1.3 Program Execution .. 

1.4 Calling a Function 

2 Operating System Call Conventions 

2.1 

2.2 

2.3 

FDOS Operation 

File Structure 

2.2.l File Records 
2.2.2 File Control 

BDOS Function Calls 

SYSTEM RESET 
CONSOLE INPUT 
CONSOLE OUTPUT 
AUXILIARY INPUT . 

. . . . . 

. . . . 
Block . 
. . . . . . 

AUXILIARY OUTPUT . . . . . . . 
LIST OUTPUT . . . . 
DIRECT CONSOLE I/0 . . . . 
.::\UXILIARY INPUT ST.\TUS . . . . 
AUXILIARY OUTPUT STATUS . . . . . . . . 
?RJNT STRING . . . . 
READ CONSOLE BUFFER . . . . 
GET CONSOLE STATUS 
~ETURN VERSION NUMBER . 
~ESET DISK SYSTEM . 
SELECT DISK . 
OPEN FILE . . . . . 
CLOSE FILE . . . . 
SEARCH FOR FIRST 
SEARCH FOR NEXT . 
DELETE FILE . . . • • • . 
READ SEQUENTIAL . . 
WRITE SEQUENTIAL 
MAKE FILE . . . . • 
RENAME FILE . . . . 
RETURN LOGIN VECTOR . 
RETURN CURRENT DISK 
SET OMA ADDRESS . . 
GET ADDR (ALLOC) 

v 

1-::. 

l-i. 

1-2 

1-3 

2-2 

2-3 

2-3 
2-4 

2-7 

2-8 
2-9 

2-10 
2-11 
2-12 
2-13 
2-14 
2-15 
2-.16 
2-17 
2-18 
2-20 
2-~l 

2-22 
2-23 
2-2~ 
2-26 
2-27 
2-28 
2-29 
2-30 
2-32 
2-34 
2-35 
2-36 
2-37 
2-38 
2-39 



3 

Table of Contents 
(continued) 

~RITE PROTSCT DISK 
GET READ / ONLY VECTOR 
SET FILE ATTRIBUTES . 
GET ADDR (DISK PARMS) 
SET/GET USER CODE . 
READ RANDOM . . . 
WRITE RANDOM 
COMPUTE FILE SIZE 
SET RANDOM RECORD . 
RESET DRIVE . . . 
WRITE RANDOM WITH ZERO FILL . 
SET BOOS ERROR MODE . . 
FLUSH BUFFERS . . . . . . 
GET/SET CONSOLE MODE 
GET/SET OUTPUT DELIMITER 
PRINT BLOCK . . . . . . 
LIST BLOCK . . . . . 
DIRECT SCREEN FUNCTIONS 

Sample Programs 

3.1 Sample File-to-File Copy Program. 

3 . 2 Sample File Dump Utility 

3 . 3 Sample Random Access Program 

3.4 Full Duplex Terminal Emulator 

v 1. 

2-·rn 
2-41 
2-42 
2-43 
2-44 
2-45 
2-47 
2-49 
2-51 
2-52 
2-53 
2-54 
2-55 
2-56 
2-57 
2-58 
2-59 
2-60 

3-1 

3-2 

3-2 

3-4 



Appendixes 

A System Function Summary 

3 3~CS Zr=or 3andling 

C User Number Conventions 

Tables 

2-l. 
2-2. 
2-3. 
2-4. 
' ) -- -:J. 

2-ti. 
2-7. 
2-8. 
2-9. 
2-10. 

Tables, Figures, and Listing 

Personal CP/M Filetypes 
File Control Block Fields 
Function 6 Entry Parameters 
Edit Control Characters 
~essages for Physical Errors Returned 
GET/SET CONSOLE MODE Definition 
Subfunctions for Function li3 
Plane Characteristics Description 
Bit Modification . . .. . 
Bit Combination ..... . 

3-1. Direct Mode Commands 
3-2. :1enu Mode Commands . 

A-l. System Function Summary 

3-l. Register A BDOS Er~or Codes 
3- ? SOOS Directory Codes 
3-3. BDOS Error Flags .. 
3-~. BOOS Physical ~rrors 

vii 

' . ~-..:... 

3-l 

C-1 

2-3 
2-5 

2-14 
2-19 
2-54 
2-56 
2-bl 
2-67 
2-70 
2-70 

3-7 
3-7 

J,,-l 

B-3 
3-3 
B-4 
3-~ 



Figures 

1-1. 

2-l. 
2-2. 

3-1. 
3-2. 
3-3. 
3-4. 

Listing 

Tables, Figures, and Listing 
(continued) 

Personal CP/M Memory Organiz~tion 

File Control Block Format ..... 
Frame and Rectangle Logical Relationships 

Full Duplex Terminal Emulator Flowchart 
Scrolling a Block of Text . . . . . . . 
How To Use Pop-up Menu . . . . . . . 
Highlighting a Block of Text .... 

2-1. Assembly Language Program Segment 

viii 

l-2 

2-4 
2-67 

3-5 
3-8 

3-10 
3-11 

2-2 



Section 1 
Introduction to Personal CP/M 

Th i .3 :nan~ .3.i d escri"8es Personal ·:P/ M syst:=rn organi z3.tio n, including 
the s t.::-'..lcture of memory and system entry points. This manual 
provides information necessary to write programs that operate under 
Personal CP/M and use the peripheral and disk I/O facilities of the 
system. 

1.1 Components of Personal CP/M 

Personal CP/M is divided into the Basic Input/Output System (BIOS), 
the Basic Disk Operating System (BDOS), and the Console Command 
Processor ( CCP), which executes in the upper portion of the 
Transient Program Area (TPA). The BIOS, a hardware-dependent 
module, is the exact low-level interface to a particular ~omputer 
system for peripheral device I/O. Although a stan.dard BIOS is 
supplied by Digital Research®, explicit instruct ions are provided in 
the Personal CP/M System Guide for field reconfiguration of the BIOS 
to match most hardware environments. The BDOS is a hardware­
independent module that provides a standard operating environment 
for transient programs by making services available through numbered 
system function calls. 

1.2 Personal CP/M Memory Organization 

The BIOS and BDOS are combined into a single module with a common 
entry point and referred to as the FDOS. ·rhe CCP module is a 
distinct program that uses the FDOS to provide you with the user 
i 11t-<:>l'." tac~ to the ope'!'.' a. t: i.ng sy5tem . The 1'PA i . '3 ;:i_n rt i:-~a of memory 
where nonresident operating system utilities and user (transient) 
programs are executed. If necessary, programs in the TPA can 
overwrite the CCP to use all available memory to do its job. The 
presence of the CCP is not required for any application program. 
The lower portion of memory is reserved for system information and 
is detailed in Section 2.2.2, "File Control Block," and in the 
Personal CP/M System Guide. The memory organization of the Personal 
CP/M system is shown in Figure 1-1. 

1-1 



Personal CP/M Programme r' s Guide 

High 
Memory 
FBASE: 

TBA SE 
(0100H) : 

FOOS ( BDOS~BIOS ) 

BOOT System Parameters 
(0000H): Page Zero 

1 . 2 Memor y Organization 

TPA 

Figure 1-1. Personal CP/M Memory Organization 

The memory address corresponding to FBASE varies from version to 
version and is described in the Personal CP/M System Guide. As seen 
from the preceding diagram, TBASE=OlOOH and BOOT=OOOOH, which is the 
base of Random Access Memory (RAM). At location BOOT, there is a 
jump to the machine code in the BIOS, which performs a system warm 
start. The BIOS warm start routine loads and initializes the 
program variables necessary to return control to the CCP. Thus, 
transient programs need only jump to location BOOT to return control 
to Personal CP/M at the command level. The principal entry point to 
the FDOS is at location OOOSH, where there is a jump to FBASE. The 
address field at 0006H contains t h e value of FBASE and can be used 
to determine the size of available memory, assuming that a transient 
program is overlaying the CCP. 

1.3 Progr~m Execution 

Transient programs are loaded into the TPA and e x ecuted through the 
CCP by typing command lines following each prompt. The CCP is 
capable of parsing the following general form of the command line: 

command 
command f ilel 
command filel file2 

Programs with different command tail formats must do their own 
parsing of the command tail stored in the buffer at 0080H. 

If the command is a built-in function of Personal CP/M, it is 
executed immediately. Otherwise, the CCP searches the currently 
addressed disk for a file in the following form: 

command.COM 

1-2 



Personal CP/M Programmer's Guide 1.3 Program Execution 

If the file is found, it is assumed to be a ;nemory image of a 
program that executes in the TPA and thus implicitly originates at 
TBA.SE in memory. The CCP loads t~e COM file f~om the disk into 
me;nory starting at TBASE. Th;: CCM file can extend up to ti::e 
begi~ni~g of FBASE, using all the TPA arsa. Personal CP / ~ loads ~ 
.::om:nand :il8 fr.?m user 0 i:: it :-ias t:1e system a.tt:cibute s.st, when 
':1:.e ..:;',,.lr::-~nt '..lser :iumber is g;:-·satc:.(' t~an 0. (.See :\ppendi:{ C for ;:10::-s 
lnfor~ation on user number conventions.) 

If the command is followed by one or two file specifications, the 
CCP prepares one or two File Control Block (FCB) names in the system 
parameter area, the page zero area of memory. These optional FCBs 
are in the form necessary to access files through the FDOS and are 
described in Section 2, "Operating System Call Conventions." 

The transient program receives control from the CCP and begins 
execution using the I/O facilities of the FDOS. The CCP uses a 
"call" instruction to transfer control to the transient program. 
Thus, the program can execute a return to the CCP upon completion of 
its processing, provided that it has not written over any portion of 
the CCP, or it can execute a jump to location BOOT to pass control 
back to the warm boot routine in Personal CP/M. In no case should 
the program use any memory above the TPA (FBASE-1). 

1.4 Calling a Function 

The transient program can use the Personal CP/M I/O facilities to 
communicate with your console and peripheral devices, including the 
disk subsystem. To access the I/O system, the transient program 
passes a function number and a parameter to Personal CP/M through 
the FOOS entry point at location BOOT+OOOSH. In the case of a disk 
read, for example, the transient program sends the function number 
~orresponding to the di3k read, with the address of an FCB, to the 
?~rsonal CP/M FDOS. In turn, the FDOS performs the operation and 
~eturns with either a disk r~ad completion indication or an error 
number indicating that the disk read was unsuccessful . 

.3o:ne functions have been added or changed from previous 
:P/ M® products to increase the programming capabilities of Personal 
CPj:--1. Functions 7 (AUXILIARY INPUT STATUS) and 8 (.~UXILIARY OUTPUT 
STATUS) have been changed from GET and SET I/O BYTE to enable you to 
write a program that performs auxiliary I/O (such as a 
communications program, file transfer program, or a terminal 
emulator) and which is portable across different hardware 
environments. Function 45 (SET BDOS ERROR MODE) gives you more 
control over error handling by allowing a BDOS error to be reporteu 
back to the program that called the function. This feature allows a 
program to control how it responds to BDOS errors. Normally, 
programs that encounter a BDOS error would be automatically 
terminated. Function 48 (FLUSH BUFFERS) takes all sector buffers 
and immediately writes them to the disk. This feature reduces the 
risk of losing file information when the BIOS uses blocking and 
deblocking, and a system failure occurs. Functions 109 (GET/SET 
CONSOLE MODE), 110 (GET/SET OUTPUT), 111 (PRINT BLOCK), 113 (DIRECT 

1-3 



Personal CP/M Programmer's Guide 1.4 Calling a Function 

SCREEN FUNCTIONS) are present in Personal CP/M to improve console 
I/O performance. Function 112 (LIST BLOCK) is included to improve 
printer I/O performance. 

End of Section l 

1-4 



Section 2 
Operating System Call Conventions 

":'~1i3 sec:.ion pr".)vi ,:.as ::i.~tailed informa~ion .::::i.=- :naking direct 
operating system calls from user programs. Many of the functions 
listed below, however, can be accessed more easily through the I/O 
macro library provided with the MAC™ macro assembler and listed in 
the Programmer's Utilities Guide. 

Personal CP/M functions available for access by transient programs 
fall into three categories: simple device I/O, disk file I/O, and 
high performance video. 

The simple device operations include the following: 

• read a console character 
• write a console character 
• read character from auxiliary device 
• write character to auxiliary device 
• write a list device character 
• get auxiliary I/O status 
• print console buffer 
• read console buffer 
• interrogate console ready 
• get/set output delimiter 
• print block 
• list block 

The following FDOS operations perform disk I/O: 

• disk system reset 
• drive selection 
• file creation 
• file open 
• file close 
• directory search 
• file delete 
• file rename 
• random or sequential read 
• random or sequential write 
• interrogate selected disk 
• set DMA address 
• set/reset file indicators 
• return current disk 
• compute file size 
• set BDOS error mode 
• flush buffers 

2-1 



Personal CP/M Programmer's Guide 2 Call Conventions 

The ~igh performance video operations are as follows: 

• direct screen functions 

2.1 FDOS Cperation 

As mentioned in Sec ti on 1. 4, to access the FOOS functions, the 
transient program passes a function number and information address 
to location BOOT+OOOSH. In general, the program passes a function 
number in register C. Single-byte entry parameters are passed in 
Hegister E and double-byte entry parameters are passed in Register 
DE. Single-byte values are returned in register A and double-byte 
values are returned in register pair HL. A zero value is returned 
when the function number is out of range. Register A = L and 
register B = H upon return in al l cases. Personal CP/M functions 
and their numbers are listed in At?pendix A, "System Function 
Summary." 

Note: Functions 28 (WRITE PROTEC T DISK) and 32 (SET/GET USER CODE) 
should be avoided in application programs to maintain upward 
compatibility with multi-user CP/ M products. 

Upon entry to a transient program, the CCP leaves the stack pointer 
set to a 32-level stack area with the CCP return address pushed onto 
the stack, leaving 31 levels before overflow occurs. Although this 
stack is usually not used by a transient program (most transients 
return to the CCP through a jump to location BOOT), it is large 
enough to make Personal CP/M system calls because the FDOS switches 
to a local stack at system entry. For example, toe assembly­
languag e program segment below reads characters continuously until 
an asterisk is encountered, at which ti~e control returns to the 
c:?, assuming a standard CP/M system with BOOT = OOOOH . 

Listing 2-1. Assembly Language Program Segment 

3DOS £QU OOOSH ;STANDARD CP/ M ENTRY 
CON IN 2QU l ;CONSOLE INPUT FUNCTION 

ORG OlOOH ;BASE OF TPA 
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER 

CALL BOOS ;RETURN CHARACTER IN <A> 
CPI I* I ;END OF PROCESSING? 
JNZ NEXTC ;LOOP IF NOT 
RET ;RETURN TO CCP 
END 

2-2 



Personal CP/M Programmer ' s Guide 2.2 File Structure 

2.2 File Structure 

?er .3onal CP / .M i:nplemen ts a named file s true tu re on each disk, 
?roviding an organization that allows a ~articular file to contain 
any number of logical s e ctors--from none ~~ full drive capacity. 
Zach logical drive has a separate disk directory and file data area. 
T~e disk f ilenames a =e i n three parts: the d rivs se lect code ( o ne 
..: :-:aracter ) , t:-ie : il~na:me ( consisti ng of one-tc -e i ght non":JJ..an k 
characters), and the filetype (consisting of zero-to-three nonblank 
characters). Valid characters used in creating filenames and 
filetypes are alpnabetic characters, numeric characters, and the 
following punctuation characters: " # $ % ft & @ + ' - ' /. You 
can also create a filename or filetype with lowercase characters, 
but you can only access it from a program. It wi 11 not be 
accessible from the CCP. The filename distinguishes individual 
files in each category. The filetype names the generic category of 
a particular file. The filetypes listed in Table 2-1 name a few 
generic categories that have been established, although some 
filetypes are arbitrary. 

Table 2-1. 

Filetype 

ASM 
PRN 
HEX 
BAS 
INT 
COM 
PLI 
REL 
TEX 
BAK 
SYM 
$$$ 

2.2.1 File Records 

Personal CP/M Filetypes 

Meaning 

assembler source 
printer listing 
Hex machine code 
basic source file 
intermediate code 
command file 
PL/I source file 
relocatable module 
TEX Formatter source 
ED source backup 
SID 'M symbol file 
temporary file 

Files in Personal CP/M can be thought of as a sequence of up to 
65,536 logical sectors of 128 bytes each, numbered from 0 through 
65,535, thus allowing a maximum of eight megabytes for each file. 
Note, however, that although the logical sectors may be considered 
logically contiguous, they may not be physically contiguous in the 
disk data area. Internally, all files are divided into 16K-byte 
segments called logical extents, so that counters are easily 
maintained as eight-bit values. The division into extents is 
discussed in Section 2.2.2, "File Control Block": however, they are 
not particularly significant for the programmer because each extent 
is automatically accessed in both sequential and random access 
modes. 

2-3 



Personal CP/M Programmer's Guide 2.2 File Structure 

Personal CP/M BOOS calls recognize only 128-byte logical sectors. 
To create a t:xt (ASCII) file, insert ODH followed by OAH (carriage 
return and line feed) at the end of each line of the source file. 
Acd lAd (CTRL-Z) at the end of the ASCII file. To f'ind the end of a 
bin3.ry .Eile, call Function 35 (COi·1PUTE FILE SIZE) with ti1e FC.!3 
add:ess in regi3t2r DE. Function 35 returns the number of logical 
sectors that have been ~ritten. 

2.2.2 File Control Block 

In the file operations starting with Function 15, DE usually 
addresses an FCB. Transient programs often use the default FCB area 
reserved by Personal CP/M at location BOOT+OOSCH (normally OOSCH) 
for simple file op er a tions. Personal CP /M provides a default buff er 
location for disk I/Oat location BOOT+0080H (normally 0080H), which 
is the initial default DMA address (see Function 26). 

The FCB data area consists of a sequence of 33 bytes when the file 
is accessed sequentially, and a series of 36 bytes when the file is 
accessed randomly. The default FCB, normally located at 005CH, can 
be used for random access files, because the three bytes starting at 
BOOT+007DH are available for this purpose. Figure 2-1 shows the FCB 
format with the following fields: 

dr fl f2 I I £8 tl t2 t3 ex sl s2 re dO I I dn er rO rl r2 

00 01 02 08 09 10 11 12 13 14 15 16 31 32 33 34 35 

Figure 2-1. File Control Block Format 

Table 2-2 describes each of the f i elds in the file control block 
figure. 

2-4 



Personal CP/M Programmer's Guide 2.2 File Structure 

Table 2-2. File Control Block Fields 

Field I 
dr 

fl. •. f8 

tl, t2, t3 

ex 

sl 

s2 

re 

dO ••• dn 

er 

rO, rl, r2 

Definition 

drive code (0-16) 
0 = use default drive for file 
l = auto disk select ~rive A, 
2 = auto disk select drive B, 

16 = auto disk select drive P. 

contain the filename in ASCII 
uppercase, witn high bit = O 

contain the f iletype in ASCII 
uppercase, with high bit = O. tl', 
t2', and t3' denote the bit of 
these positions. tl' = 1 => 
Read/Only file, t2' = l => SYS 
file, no DIR list 

contains the current extent number, 
normally set to 00 by the user, but 
in range 0-31 during file I/O 

reserved for internal system use 

reserved for internal system use, 
set to zero on call to OPEN, MAKE, 
SEARCH 

record count for extent ex; takes 
on values from 0-127 

filled in by Personal 
reserved for system use 

CP/M; 

current record to read or write in 
a sequential file operation; 
normally set to zero by user 

optional random record number in 
the range 0-65535 (0-FFFF); rO, 
rl, r2 constitute an 16-bit value 
with low byte rO, high byte rl, and 
byte r2 = 0. 

Each file being accessed through Per son al CP/M must have a 
corresponding FCB, which provides the name and allocation 
information for all subsequent file operations. Bytes 1 through 11 
are set by the CCP to the ASCII character values for the filename 

2-5 



Personal CP/M Programmer's Guide 2.2 File Structure 

and f iletype . Byte 0 is set to the drive code. All other fields 
are set to zero. When constructing your own FCB, it is your 
responsibility to fill the lower 1 2 bytes o f t he FCB and initialize 
the er field to zero. 

FCBs are stored by the operating system in a directory area of the 
disk and brought into central memory before y ou proceed with file 
operations (see the OPEN FILE and MAKE FILE functions). The memory 
copy of the FCB is updated as file operations take place and later 
recorded permanently on disk at the termination of the file write 
operations (see the CLOSE command ) . 

The CCP constructs the first 12 bytes of two optional FCBs for a 
transient command by scanning t he remainder of the command line 
following the transient name, denoted by f ilel and file2 in the 
prototype command line described in Section 1. 3, "Program 
Execution, " with unspecified f i elds set to ASCII blanks. If no 
filenames are specified in the original command, the fields 
beginning at BOOT+OOSDH and BOOT+006DH con ta in blanks. In all 
cases, the CCP translates lowercase letters to pppercase to be 
consistent with the Personal CP/M file-naming conventions. The 
first FCB is constructed at location BOOT+OOSCH and can be used as 
is for subsequent file operations. The second FCB occupies the 
dO ... dn portion of the first FCB and must be moved to another area 
of memory before use. For example, assume the command line shown 
below is typed; then, the CCP loads the file PROGNAME.COM into the 
TPA and initializes the default FCB at BOOT+OOSCH to drive code 2, 
filename X, and filetype ZOT: 

A>PROGNAME B:X.ZOT Y.ZAP 

The drive code for file 2 takes the default value 0, which the CCP 
places at BOOT+006CH, with the filename Y placed into location 
BOOT+006DH and filetype ZAP located eight bytes later at BOOT+0075H. 
The CCP sets all remaining fields through er to zero. Note again 
that it is your responsibility to move this second filename and 
filetype to another area, usually a separate file control block that 
you create, before opening the file that begins at BOOT+OOSCH, 
because the open operation overwrites the second name and type. 

As an added convenience, the default buffer area at location 
BOOT+OOSOH is initialized to the command tail typed by the operator 
following the program name. The first position contains the number 
of characters, followed by the actual characters. Given the above 
command line, the area beginning at BOOT+0080H is initialized as 
follows. The characters are translated to uppercase ASCII. 
Uninitialized memory follows the last valid character: 

BOOT+OOBOH: 

+00 +01 +02 +03 +04 +05 ·+06 +07 +08 +09 +OA +OB +OC +OD +OE +OF 
OE 'B' ':' 'X' 'Z' 'O ' ' T' 'Y' 'Z' 'A' 'P' 00 

2-6 



Personal CP/M Programmer's Guide 2.2 File Structure 

Again, it is your responsibility as the programmer to extract the 
information from this buffer before any file operations are 
perfor~ed, unless you explicitly change the default DMA address. 

2.3 BCOS ~unction Calls 

2-7 



Personal CP/M Programmer's Guide SYSTEM RESET 

FUNCTION 0: SYSTEM RESET 

Entry Parameters: 
Register C: OOH 

Returned Value: none 

The SYSTEM RESET function returns control to the Personal CP/M 
operating system at the CCP level. The CCP reinitializes the disk 
subsystem. It also selects drive A. This function has exactly the 
same effect as a jump to location BOOT. 

2-8 



Personal CP/M Programmer's Guide CONSOLE INPUT 

FUNCTION 1: CONSOLE INPUT 

Entry Paramet=rs: 
Register C: OlH 

Returned Value: 
Register A: ASCII character 

The CONSOLE INPUT function reads the next console character to 
register A. Graphic characters, along with carriage return, line 
feed, and back space (CTRL-H) are echoed to the console. Tab 
characters, CTRL-I, move the cursor to the next tab stop. A check 
is made for start/stop scroll, CTRL-S. The FOOS does not return to 
the calling program until a character has been typed, thus 
suspending execution if a character is not ready. 

2-9 



Personal CP/M Programmer's Guide CONSOLE OUTPUT 

FUNCTION 2: CONSOLE OUTPUT 

Entry Parameters: 
Register C: 02H 
Register E: ASCII character 

Returned Value: none 

The CONSOLE INPUT function sends the ASCII character from register E 
to the console device. As i!l Function 1, tabs are expanded and 
checks are made for start/stop scroll and printer echo (see Function 
109) . 

2-10 



Personal CP/M Programmer's Guide AUXILIARY INPUT 

FUNCTION 3: AUXILIARY INPUT 

3ntry ?aramet2rs: 
Register C: 03H 

Returned Value: 
Register A: ASCII character 

The AUXILIARY INPUT function reads the next character from the 
auxiliary input device into register A. Control does not return 
until the character has been read. 

2-11 



Personal CP/M Programmer's Guide AUXILIARY OUTPUT 

FUNCTION 4: AUXILIARY OUTPUT 

Entry Parameters: 
Register C: 04H 
Register E: ASCII character 

Returned Value: none 

The AUXILIARY OUTPUT function sends t he character from register E to 
the auxiliary output device. Control does not retu r n until the 
character can be sent. 

2-12 



Personal CP/M Programmer's Guide LIST OUTPUT 

FUNCTION 5; LIST OUTPUT 

Entry Parameters: 
Register C: 05H 
Register E: ASCII character 

Returned Value: none 

The LIST OUTPUT function sends the ASCII character in register E to 
the logical listing device. Control does not return until the 
character can be sent. 

2-13 



Personal CP/M Programmer's Guide DIRECT CONSOLE I/O 

FUNCTION 6: DIRECT CONSOLE I/O 

Entry Parameters: 
Register C: 
Register E: 

Returned Value: 
Register A: 

06H 
OFFH (input/ 

status) or 
OFEH (status) or 
char (output) 

char or status 
(no value) 

DIRECT CONSOLE I/O is supported under Personal CP/M for those 
specialized applications where basic console input and output are 
required. Use of this function bypasses all ~~rsonal CP/M normal 
control character functions (for example, CTRL-S and CTRL-P). 
Programs that perform DIRECT CONSOLE I/O through the BIOS under 
previous CP/M products should be changed to use this function so 
that they can be fully supported under future products. A program 
calls Function 6 by passing one of the three different values in 
register E. The values and their meanings are summarized in Table 
2-3. 

Table 2-3. Function 6 Entry Parameters 

Register E Value 

OFFH 

OFEH 

ASCII character 

Meaning 

Console input/status command returns an 
input character; if no character is ready, 
a value of zero is returned. 

Console status command (on return, register 
A contains OOH if no character is ready; 
otherwise, it contains FFH.) 

Function 6 assumes register E contains a 
valid ASCII character and sends it to the 
console. 

2-'14 



Personal CP/M Programmer's Guide AUXILIARY INPUT STATUS 

FUNCTION 7: AUXI~IARY I~PUT STA~1S 

~ntry Paramet2r3: 
Register C: 07H 

Returned Value: 
Register A: Auxiliary Input Status 

OOH = no character for 
input 

OFFH = character ready 
for input 

The AUXILIARY INPUT S'I'ATUS function returns the value OFFH in 
register A if a character is ready for input from the logical 
auxiliary input device, AUXH~: • If no character is ready for input, 
the value OOH is returned. 

2-15 



Personal CP/M Programmer's Guide AUXILIARY OUTPUT STATUS 

FUNCTION 8: AUXILIARY OUTPUT STATUS 

Entry Parameters: 
Register C: 

Returned Value: 
Register A: 

08H 

Auxiliary Output Status 
OOH = device not ready 

for output 
OFFH = device ready 

The AUXILIARY OUTPUT STATUS function returns the value OFFH in 
register A if the logical auxiliary output device, AUXOUT:, is ready 
to accept a character for output. If the device is not ready for 
output, the value OOH is returned. 

2-16 



Personal CP/M Programmer's Guide PRINT StRING 

FUNCTION 9: PRINT STRING 

Entry ?arameters: 
Register C: 09H 

Registers DE: String address 

Returned Value: none 

The PRINT STRING function sends the character string stored in 
memory at the location given by DE to the console device, until a 
dollar sign, $, is encountered in the string. Function 110 can 
change the delimiter for Function 9. However, the delimiter is 
initialized to $ when a program begins execution. Tabs are expanded 
as in Function 2, and checks are made. for start/stop scroll and 
printer echo (see Function 109). 

2-17 



Personal CP/M Programmer's Guide READ CONSOLE BUFFER 

FUNCTION 10: READ CONSOLE BUFFER 

Entry Parameters: 
Register C: OAH 

Reg i sters DE: Buffer address 

Returned Value: 
Console characters i n buffer 

The READ CONSOLE BUFFER function reads a line of edited console 
input into a buffer addressed by registers DE. Console input is 
terminated when either input buffer overflows or a carriage return 
or line feed is typed. Function 10 takes the following form, where 
mx is the maximum number of characters that the buffer will hold, l 
to 255, and nc is the number of characters read (set by FOOS upon 
return) followed by the characters read from the console. 

DE:+O +l +2 +3 +4 +5 +6 +7 +8 .+n 

rnx nc cl c2 c3 c4 cS c6 c7 ?? 

If nc < mx, then uninitialized positions follow the last character, 
denoted by two question marks, ??, in the above figure. A number of 
control functions, summarized in Table 2-4, are recognized during 
line editing. Note that if a CTRL-P is encountered by Function 10, 
i~ toggles printer erhn, 

2-18 



Personal CP/M Programmer's Guide READ CONSOLE BUFFER 

Table 2-4. Edit Control Characters 

Character l 
.!'.'uo/del 

CTRL-E 

CTRL-H 

CTRL-J 

CTRL-M 

CTRL-R 

CTRL-U 

CTRL-X 

Edit :ontrol Function 

:2moves and echoes the last character 

~~jaot3 ~hen at tie beginning o f l!na 

causes ?hysical end of line 

backspaces one character position 

(line feed) terminates input line 

(return) terminates input line 

retypes the current line after new line 

removes current line 

(same as CTRL-U) 

2-19 



Personal CP/M Programmer's Guide GET CONSOLE STATUS 

FUNCTION 11: GET CONSOLE STATUS 

Entry Parameters: 
Register C: 

Returned Value: 
Register A: 

OBH 

Console status 
OOH = no character 

ready 
OFFH = c haracter 

read y 

The GET CONSOLE STATUS function checks to see if a character has 
been typed at the console. If a character is ready, the value OFFH 
is returned in register A. Otherwise, a OOH value is returned. 

2-20 



Personal CP/M Programmer's Guide RETURN VERSION NUMBER 

FUNCTION 12: RETURN VERSION NUMBER 

Entry Parameters: 
Register C: OCH 

Returned Value: 
Registers HL: Version number 0028H 

The RETURN VERSION NUMBER function provides information that allows 
version independent programming. A two-byte value is returned, with 
H = 00 designating the CP/M release. Return version numbers 20H 
through 27H are designated for all previous CP/M Release 2 versions; 
0028H is designated for Personal CP/M Release 1.0. Personal CP/M 
returns a hexadecimal 28 in register L. Function 12 is useful for 
wri~ing application programs that :nust run on multiple CP/M 
products. 

2-21 



Personal CP/M Programmer's Guide RESET DISK SYSTEM 

FUNCTION 13: RESET DISK SYSTEM 

Entr y Parameters: 
Register C: ODH 

Returned Value: none 

The RESET DISK SYSTEM function is used to restore the file system to 
a reset state where all disks are set to Read/Write (see Functions 
28 and 29). Disk drive A is selected and the default OMA address is 
reset to BOOT+0080H. This function can be used, for example, by an 
application program that requires a disk change without a system 
reboot. 

2-22 



Personal CP/M Programmer's Guide SELECT DISK 

FUNCTION 14: SELECT DISK 

Entry Parameters: 
Register C: OEH 
Register E: Selected disk 

Returned Value: 
A: Error flag 

OOH if successful, 
or OFFH if failed 

H: Physical error 

The SELECT DISK function designates the disk drive named in register 
E as the default disk for subsequent file operations, with E = O for 
drive A, l for drive B, and so on through 15, corresponding to drive 
P in a full 16-drive system. The drive is placed in an on-line 
status, which activates its directory until the next cold start, 
warm start, or RESET DISK SYSTEM operation. FCBs that specify 
drive code zero (dr = OOH) automatically reference the currently 
selected default drive. Drive code values between l and 16 ignore 
the selected default drive and directly reference drives A through 
P. 

Upon return, register A contains a zero if the SELECT DISK operation 
was successful. If a physical error was encountered, the SELECT 
DISK function performs different actions depending on the BDOS error 
mode (see Function ~5). If the BDOS error mode is in the default 
T.ode, a message identifying the error is displayed at the console 
(see Appendix B, "BDOS Error Handling"), and the calling program is 
terminated. Otherwise, the SELECT DISK function returns to the 
calling program with register A set to OFFH and register H set to 
one of the following physical error codes: 

01 Disk I/O error 
04 Invalid drive 

2-23 



Personal CP/M Programmer's Guide 

FUNCTION 15: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

OPEN FILE 

OFH 
FCB address 

OOH if successful, 
or OFFH if failed 
OOH if successful, 
or Physical error 
(see below) 

OPEN FILE 

The OPEN FILE operation is used to activa t e a file that currently 
exists in the disk directory for the current ly active user number. 
The FOOS scans the referenced disk directory for a match in 
positions 1 through 14 of the FCB referenced by DE (byte s2 is 
automatically zeroed). Normally, bytes ex and sl of the FCB are 
zero. 

If a directory element is matched, the relevant directory 
information is copied into bytes dO through dn of FCB, thus allowing 
access to the files through subsequent read and write operations. 
An existing file must not be accessed until a successful OPEN FILE 
operation is completed. Upon return, the OPEN FILE function returns 
a directory code with the value 0 if the operation was successful or 
OFFH (255 decimal) if the file cannot be found. If question marks 
ccc~r in the FCB, the first matching FCB is activated. The current 
field (er) must be zeroed by the program if the file is to be 
accessed sequentially from the first record. 

Function 15 opens a file under user 0 when the current user number 
is nonzero, if two conditions exist: 

• the file is not present under the current user number, and 
• the file under user 0 has the system attribute T2' set 

However, files opened in this way cannot be writ ten to. (See 
Function 32 and Appendix C, "User Number Conventions," for more 
discussion of user numbers.) 

Upon return, the OPEN FILE function returns a OOH in register A if 
the open was successful, or OFFH, 255 decimal, if the file was not 
found. Register H is set to zero in both of these cases. If a 
physical error was encountered t h e Function 15 performs different 
actions depending on the BOOS error mode (see Function 45). If the 
BOOS error mode is in the default mode, a message identifying the 

2-24 



Personal CP/M Programmer's Guide OPEN FILE 

error is displayed at the console (see Appendix B), and the program 
is terminated. Otherwise, the OPEN FILE function returns to the 
calling program with register A set to OFFH, and register H set to 
one of the following physical error codes: 

01 Dis~ I/O 2r:or 
04 .. Invalid drive e=ror 

2-25 



Personal CP/M Programmer's Guide 

FUNCTION 16: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

CLOSE FILE 

lOH 
FCB address 

OOH if successful, 
or OFFH if failed 
OOH if successful, 
or Physical error 
{see below) 

CLOSE FILE 

The CLOSE FILE function per forms the inverse of the OPEN FILE 
function. Given that the FCB addressed by DE has been previously 
activated through an OPEN FILE or MAKE FILE function, t he CLOSE FILE 
function permanently records the new FCB in the reference disk 
directory {see Functions 15 and 22). The FCB matching process for 
the CLOSE FILE is identical to the OPEN FILE function. The 
directory code returned for a successful CLOSE FILE operation is O, 
while a OFFH (255 decimal) is returned if the filename cannot be 
found in the directory. If write operations have occurred, the 
CLOSE FILE operation is necessary to record the new directory 
information permanently. 

Upon return, the CLOSE FILE function returns a OOH in register A if 
the close was successful, or FFH, 255 decimal, if the file was not 
found. Register II is set to zero in both cases. If a phy·sical 
error is encountered, the CLOSE FILE function performs different 
actions depending on the BOOS error mode (see Function 45). If the 
BOOS error mode is in the default mode, a message identifying the 
error is displayed at the console, and the calling program is 
terminated. Otherwise, the CLOSE FILE function returns to the 
calling program with register A set to OFFH and register H set to 
one of the following physical error codes: 

01 Disk I/O error 
02 Read/Only disk 
04 Invalid drive error 

2-26 



Personal CP/M Programmer's Guide SEARCH FOR FIRST 

FUNCTION 17: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

SEARC3 FOR ?IRST 

llH 
FCB address 

Directory code 
00 - 03 if successful, 
or OFFH if failed 
H: OOH ir successful, or 
Physical error (see 
below) 

SEARCH FOR FIRST scans the directory for a match with the file given 
by the FCB addressed by DE. The value 255 (hexadecimal FF) is 
returned if the file is not found; otherwise, O, 1, 2, or 3 is 
returned indicating the file is present. When the file is found, 
the current DMA address is filled with the record containing the 
directory entry, and the relative starting position is A *32 (that 
is, rotate the A register left five bits, or ADC A five times). 
Although not normally required for application programs, the 
directory information can be extracted from the buffer at this 
position. Byte 0 of a returned directory entry contains the file's 
user number. 

An ASCII question mark (63 decimal, 3F hexadecimal) in any position 
from fl through ex matches the corresponding field of any directory 
entry on the default or auto-selected disk drive. If the dr field 
contains an ASCII question mark, the auto disk select function is 
disabled and the default disK is searched, with the SEARCH FOR FIRST 
f~nction returning any matched entry, allocated or free, belonging 
to any user number. This latter function is not normally used oy 
application programs, but it allows complete flexibility to scan all 
current directory values. If the dr field is not a question mark, 
the s2 byte is automatically zeroed. 

If a physical error is encountered, the SEARCH FOR FIRST function 
performs actions depending on the BOOS error mode (see Function 45). 
If the BOOS error mode is in the default mode, a message identifying 
the error is displayed at the console, and the calling program is 
terminated. Otherwise, Function 17 returns to the calling program 
with register A set to OFFH, and register H set to one of the 
following physical error codes: 

01 Disk I/O error 
04 Invalid drive error 

2-27 



Personal CP/M Programmer's Guide SEARCH FOR NEXT 

FUNCTION 18: SEARCH FOR NEXT 

Entry Parameters: 
Register C: 

Returned Value: 
Register A: 

H: 

12H 

Directory code 
00 - 03 if successful, 
or OFFH if failed 
OOH if successful or 
Physical error (see 
Function 17) 

The SEARCH FOR NEXT function is similar to the SEARCH FOR FIRST 
function, except that the direc t ory scan continues from the last 
matched entry. Similar to Function 17, Function 18 returns the 
decimal value 255 in A when no more directory items match. 

2-28 



Personal CP/M Programmer's Guide 

FUNCTION 19: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

DELETE FILE 

13H 
FCB address 

OOH if successful, 
or OFFH if failed 
OOH if successful, 
or Physical error 
(see below) 

DELETE FILE 

The DELETE FILE function removes files that match the FCB addressed 
by DE. The filename and type may contain ambiguous references (that 
is, question marks in various positions), but the drive select code 
cannot be ambiguous, as in the SEARCH FOR FIRST and SEARCH FOR NEXT 
functions. For files that have question marks (ambiguous deletes) 
in the filename and/or filetype, no files are deleted if any of the 
files are marked Read/Only. 

Upon return, the DELETE FILE function returns a OOH in register A if 
successful, or OFFH, 255 decimal, if no file that matches the 
referenced FCB is found. Register H is set to zero in both cases. 
If a physical error is encountered, Function 19 performs different 
actions depending on the BDOS error mode (see Function 45). If the 
BOOS error mode is the default mode, a message identifying the error 
is displayed at the console and the calling program is terminated. 
Otherwise, the DELETE FILE function returns to the calling program 
with register A set to OFFH and register H set to one of the 
following physical error codes: 

01 Disk I/O error 
02 Read/Only disk 
03 Read/Only file 
04 Invalid drive error 

2-29 



Personal CP/M Programmer's Guide READ SEQUENTIAL 

FUNCTION 20: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

READ SEQUENTIAL 

l4H 
FCB address 

Error code 
OOH if suc cessful, 
o r 01, 1 0, or 255 
i f failed 
OOH if suc cessful, 
o r Phys i c a l error 
if failed 

Given that. the FCB addressed by DE has been activated through an 
OPEN FILE or MAKE FILE function, the READ SEQUENTIAL function reads 
the next 128-byte record from the fi l e into memory at the current 
DMA address. The record is read from position er of the extent, and 
the c r field is automatically incremented to the next record 
position. If the er field overflows, the next logical extent is 
automatically opened and the er fie l d is reset to zero in 
preparation for the next read operation. 

Upon return, the READ SEQUENTIAL function sets register A to zero if 
the read operation is successful. Otherwise, register A contains an 
error code identifying the error as shown below: 

01 : Reading unwritten data (end-of-file) 
10 : Media change occurred 
255: Physical error, ~efer t o register H 

Error Code 01 is returned if no data ex i sts at the next record 
position of the file. Usually, the no dat a situation is encountered 
at the end of a file. However, it can also occur if an attempt is 
made to re ad a data block that. has not been er ea ted. These 
situations are usually restricted to files created or appended with 
the BDOS random write functions (see Functions 34 and 40). 

Error Code 10 is returned if a media change occurs on the drive 
after the referenced FCB is activated by a BDOS OPEN FILE or MAKE 
CALL. 

2-30 



Personal CP/M Programmer's Guide READ SEQUENTIAL 

Error Code 255 is returned if a physical error is encountered and 
the BDOS error mode is return error mode, or return and display 
error mode (see Function 45). If the error mode is the default 
mcde, a message identifying the physical error is displayed at the 
~onsole, and the calling progr~m is ter~inated. When a physical 
error i3 returned to the calling progr1m, register H contains one of 
t~1e f:JllowLng eri:::Jr cedes: 

01 Disk I/O error 
04 Invalid drive error 

2-31 



Personal CP/M Programmer's Guide WRITE SEQUENTIAL 

FUNCTION 21: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

WRITE SEQUENTIAL 

lSH 
FCB address 

Error code 
OOH if successful, 
or 01, 02, 10, or 
255 if failed 
OOH if successful, 
or Physical error 
if failed 

Given that the FCB addressed by DE has been activated through an 
OPEN FILE or MAKE FILE function, the WRITE SEQUENTIAL function 
writes the 128-byte data record at the current DMA address to the 
file named by the FCB. The record is placed at position er of the 
file, and the er field is automatically incremented to the next 
record position. If the er field overflows, the next logical extent 
is automatically opened and the er field is reset to zero in 
preparation for the next WRITE SEQUENTIAL operation. WRITE 
SEQUENTIAL operations can take place into an existing file, in which 
case, newly written records overlay those that already exist in the 
file. 

Upon r2turn, the WRITE SEQUENTI~L function sets register A to zero 
if the operation is successful. Otherwise, register A contains an 
error code identifying the error as shown below: 

01 No available directory space 
02 No available data block 
10 Media change occurred 
255: Physical error, refer to register H 

Error Code 01 is returned when Function 21 attempts to create a new 
extent that requires a new d i rectory entry, and no available 
directory entries exist on the selected disk drive. 

Error Code 02 is returned when the WRITE SEQUENTIAL attempts to 
allocate a new data block to the file, and no unallocated data 
blocks exist on the selected disk drive. 

2-32 



Personal CP/M Programmer's Guide WRITE SEQUENTIAL 

Error Code 10 is returned if a media change occurs on the drive 
after the referenced FCB is activated by a BOOS OPEN FILE or MAKE 
FILE call. 

Error Code 255 is returned if a physical error is encountered and 
t~e BDOS error mode is return error mode, or return and display 
er:or mode ' (see Function ~5). If the error mode i3 the default 
mode, a message identifying the physical error is displayed at the 
console, and the calling program is terminated. When a physical 
error is returned to the calling program, register H contains one of 
the following error codes: 

. 01 Disk I/O error 
02 Read/Only disk 
03 Read/Only file or 

File open from user 0 when the 
current user numbei is nonzero 

04 Invalid drive error 

2-33 



Personal CP/M Programmer's Guide 

FUNCTION 22: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

MAKE FILE 

1 6H 
FCB address 

OOH if successful, 
or OFFH if failed 
OOH if successful, 
or Physical error 
(see below) 

MAKE FILE 

The MAKE FILE operation is similar to the OPEN FILE operation except 
that the FCB must name a file that does not exist in the currently 
referenced disk directory (that is, the one named explicitly by a 
nonzero dr code or the default disk if dr is zero). The FDOS 
creates the file and initializes both the directory and main memory 
value to an empty file. As the programmer, you must ensure that no 
duplicate filenames occur, and a preceding DELETE FILE operation is 
sufficient if there is any possibility of duplication. The MAKE 
FILE function has the side effect of activating the FCB and thus a 
subsequent OPEN FILE is not necessary. 

Upon return, Function 22 returns a OOH in register A the operation 
is successful, or OFFH, 255 decimal, if no directory space is 
available. Register H is set to zero in both of these cases. If a 
physical error is encountered, the HAKE FILE .Lune t i on per: forms 
different actions depending on t he BDOS error mode (see Function 
4 5) . If the BDOS error mode is the default mode, a message 
identifying the error is displayed at the console, and the calling 
program is terminated. Otherwise , the MAKE FILE function returns to 
the calling program with register A set to OFFH, and register H set 
to one of the following physical error codes: 

01 Disk I/O error 
02 Read/Only disk 
04 Invalid drive error 

2-34 



Personal CP/M Programmer's Guide 

FUNCTION 23: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

RENAME FILE 

17H 
FCB address 

OOH if successful, 
or OFFH if failed 
OOH if successful, 
or Physical error 
(see below) 

RENAME FILE 

The RENAME FILE function uses the FCB addressed by DE to change file 
named in the first 16 bytes to the file named in the second 16 
bytes. The drive code dr at position O is used to select the drive, 
while the drive code for the new filename at position 16 of the FCB 
is assumed to be zero. 

Upon return, the RENAME FILE function returns a OOH in register A if 
the operation is successful, or OFFH, 255 decimal, if the file named 
by the first filename in the FCB is not found. Register H is set to 
zero in both cases. If a physical error is encountered, the RENAME 
FILE function performs different actions depending on the BDOS error 
mode (see Function 45). If the BDOS error mode is the default mode, 
a message identifying the error is displayed at the console and the 
p::: og ram is terminated. Otherwise, Function 23 returns to the 
=3lling program with register A set to OFFH and register TI set to 
one of the following physical error codes: 

01 Disk I/O error 
02 Read/Only disk 
03 Read/Only file 
04 Invalid drive error 

2-35 



Personal CP/M Programmer's Guide RETURN LOGIN VECTOR 

FUNCTION 24: RETURN LOGIN VECTOR 

Entry Parameters: 
Register C: 18H 

Returned Value: 
Registers HL: Login vector 

The RETURN LOGIN VECTOR value returned by Personal CP/M is a 16-bit 
value in HL, where the least significant bit of L corresponds to the 
first drive A and the high-order bit of H corresponds to the 16th 
drive, labeled P. A 0 bit indicates that the drive is not on-line, 
while a 1 bit marks a drive that is actively on-line as a result of 
an explicit disk drive selection or an implicit drive select caused 
by a file operation that specified a nonzero dr field. The user 
should note that compatibility is maintained with previous CP/M 
products, because registers A and L contain the same values upon 
return. 

2-36 



Personal CP/M Programmer's Guide RETURN CURRENT DISK 

FUNCTION 25: RETURN CURRENT DISK 

Entry Parameters: 
Register C: 19H 

Returned Value: 
Register A: Current Disk 

The RETURN CURRENT DISK function returns the currently selected 
default disk number in register A. The disk numbers range from o 
through 15, corresponding to drives A through P. 

2-37 



Personal CP/M Programmer's Guide SET DMA ADDRESS 

FUNCTION 26: SET DMA ADDRESS 

Entr y Parameters: 
Register C: lAH 

Registers DE: DMA address 

Returned Value: none 

DMA is an acronym for Direct Memory Address, which is often used in 
connection with disk controllers that directly access the memory of 
the mainframe computer to transfer data to and from the disk 
subsystem. Many computer systems use nonDMA access (that is, the 
data is transferred through programmed I/O operations). In Personal 
CP/M, the DMA address means the address at which the 128-byte data 
record resides before a disk write and after a disk read. Upon cold 
start, warm start, or RESET DISK SYSTEM, the DMA address is 
automatically set to BOOT+OOSOH. The SET DMA ADDRESS function can 
be used to change this default value to address another area of 
memory where the data records reside. Thus, the DMA address becomes 
the value specified by DE until it is changed by a subsequent SET 
DMA ADDRESS function, cold start, warm start, or RESET DISK SYSTEM. 

2-38 



Personal CP/M Programmer's Guide GET ADDR (ALLOC) 

FUNCTION 27: GET ADDR (ALLOC) 

Entry Parameters: 
Register C: lBH 

Returned Value: 
Registers HL: ALLOC address if 

successful, or 
OFFFFH if failed 

An allocation vector is maintained in main memory for each on-line 
disk drive. Various system programs use the information provided by 
the allocation vector to determine the amount of remaining storage 
(see the STAT program}. The GET ADDR (Alloc) function returns the 
base address of the allocation vector for the currently selected 
disk drive. However, the allocation information might be invalid if 
the selected disk has been marked Read/Only. Although this function 
is not normally used by application programs, additional details of 
the allocation vector are found in the Personal CP/M System Guide. 

If a physical error is encountered when the BOOS error mode is one 
of the return modes (see Function 45), Function 27 returns the value 
OFFFFH in the register pair HL. 

2-39 



Personal CP/M Programmer's Guide WRITE PROTECT DISK 

FUNCTION 28: WRITE PROTECT DISK 

Entry Parameters: 
Register C: lCH 

Returned Value: none 

The WRITE PROTECT DISK function provides temporary write protection 
for the currently selected disk. A Read/Only disk stays Read/Only 
until reset by Function 13 or 37. Any attempt to write to a 
Read/Only disk produces the message 

CP/M error on d: Read/Only Disk 

or returns a physical error 2 if in BOOS return error mode (see 
Function 45). 

2-40 



Personal CP/M Programmer's Guide GET READ/ONLY VECTOR 

FUNCTION 29: GET READ/ONLY VECTOR 

Entry Parameters: 
Register C: lDH 

Returned Value: 
Registers HL: R/O vector value 

The GET READ/ONLY VECTOR function returns a bit vector in register 
pair HL, which indicates drives that have the temporary Read/Only 
bit set. As in Function 24, the least significant bit corresponds 
to drive A- while the most significant bit corresponds to drive P. 
The Read/Only bit can only be set by an explicit call to Function 
28. 

2-41 



Personal CP/M Programmer's Guide SET FILE ATTRIBUTES 

FUNCTION 30: SET FILE ATTRIBUTES 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

lEH 
FCB address 

OOH if successful, 
or OFFH if failed 
OOH if successful, 
or Physical error 
(see below) 

The SET FILE ATTRIBUTES function allows the permanent indicators 
attached to files to be modified by a program. In particular, the 
RO and system attributes (tl' and t2') can be s~t or reset. The DE 
pair addresses an unambiguous filename with the appropriate 
at tributes set or reset. Function 30 searches for a match and 
changes the matched directory entry to contain the selected 
indicators. Indicators fl' through f8' are not currently used in 
Personal CP/M. Indicators fl' through f4' may be used by 
application programs since they are not involved in the matching 
process during OPEN FILE and CLOSE FILE operations. Indicators fS' 
through f8' and t3' are reserved. 

Upon return, Function 30 returns a OOH in register A if the function 
is successful, or OFFH, 255 decimal, if the file specified by the 
referenced FCB is not found. Register H i s set to zero in both of 
these cases. If a physical error is encountered, the SET FILE 
ATTRIBUTES function performs different actions depending on the BOOS 
error mode (see Function 45). If the BDOS error mode is the default 
mode, a message identifying the error is displayed at the console, 
and the program is terminated. Otherwise, Function 30 returns to 
the calling program with register A set to OFFH, and register H set 
to one of the following physical error codes: 

01 Disk I/O error 
02 Read/Only disk 
04 Select error 

2-42 



Personal CP/M Programmer's Guide GET ADDR (DISK PARMS) 

FUNCTION 31: GET ADDR (DISK PARMS) 

Sntry Parameters: 
Register C: lFH 

Returned Value: 
Registers HL: DPB address if 

successful, or 
OFFFFH if failed 

The GET ADDR (DISK PARMS) function returns the address of the BIOS 
resident disk parameter block in HL. This address can be used for 
either of two purposes. First, the disk parameter values can be 
extracted for display and space computation purposes, or transient 
programs can dynamically change the values of current disk 
parameters when the disk environment changes, if required. 
Normally, application programs do not require this facility. 

If a physical error is encountered when the BOOS error mode is one 
of the return modes (see Function 45), Function 31 returns the value 
OFFFFH in register pair HL. 

2-43 



Personal CP/M Programmer's Guide SET/GET USER CODE 

FUNCTION 32: SET/GET USER CODE 

Entry Parameters : 
Register C : 
Register E : 

Returned Value: 
Register A: 

20H 
OFFH (get) or 
User code (set) 

Current code 
or (no value) 

An application program can change or interrogate the currently 
active user number by calling Function 32. If register E = OFFH, 
the value of the current user number is returned in register A, 
where the value is in the range of 0 to 15. If register E is not 
OFFH, the current user number is changed to the value of E, modulo 
16. 

2-44 



Personal CP/M Programmer's Guide 

FUNCTION 33: 

Entry Parameters: 
Register C: 

Returned Value: 
Register A: 

H: 

READ RANDOM 

21H 

Error code 
OOH if successful, 
or nonzero if failed 
{see below) 
OOH if successful, 
or Physical error 
(see below) 

READ RANDOM 

The READ RANDOM function is similar to the READ SEQUENTIAL operation 
of previous CP/M products, except that the read operation takes 
place at a particular record number, selected by the 24-bit value 
constructed from the 3-byte field following the FCB {byte positions 
rO at 33, rl at 34, and r2 at 35). You should note that the 
sequence of 24 bits is stored with least significant byte first 
(rO), middle byte next {rl), and high byte last {r2). Personal CP/M 
does not reference byte r2, except in computing the size of a file 
{Function 35). Byte r2 must be zero, however, since a nonzero value 
indicates overflow past the end of file. 

Thus, the rO, rl byte pair is treated as a double byte, or word 
value, that contains the record to read. This value ranges from 0 
to 65,535, providing access to any particular record of the eight­
megabyte file. To process a file using random access, the base 
extent (extent 0) must first be opened. Although the base extent 
may or may not contain any allocated data, this step ensures that 
the file is properly recorded in the directory and is visible in DIR 
requests. The selected record number is then stored in the random 
record field (rO, rl), and the BOOS is called to read the record. 

Upon return from the call, register A either contains an error code, 
as listed below, or the value 00, indicating the operation was 
successful. In the latter case, the current OMA address contains 
the randomly accessed record. Note that contrary to the SEQUENTIAL 
READ operation, the record number is not advanced. Thus, subsequent 
READ RANDOM operations continue to read the same record. 

Upon each READ RANDOM operation, the logical extent and current 
record values are automatically set. Thus, the file can be 
sequentially read or written, starting from the current randomly 
accessed position. In this case, the last randomly read record will 
be reread as one switches from random mode to SEQUENTIAL READ and 

2-45 



Personal CP/M Programmer's Guide READ RANDOM 

the last record will be rewritten as one sw itches to a SEQUENTIAL 
WRITE operation. The user can advance the random record position 
following each READ RANDOM or WRITE RANDOM to o btain the effect of 
sequential I/O operation . 

Upon return, the READ RANDOM funct ion set s regis t er A to zero if the 
read operation was successful. Oth erwise , r egiste r A conta i ns one 
of the following e r ror codes: 

01 
03 
04 
06 
10 
255: 

Reading unwritten data (end-of-file) 
Cannot close current extent 
Seek to unwritten extent 
Random record number out of range 
Media change occurred 
Physical error, refer to register H 

Error Code 01 is returned if no data exists at the next record 
position of the file. Usually, the no-data situation i s encountered 
at the end of a file. However, it can also occur if an attempt is 
made to read a data block that has not bee n previously written. 

Error Code 03 is returned when the READ RANDOM functio n cannot close 
the current extent prior to moving to a new extent. 

Error Code 04 is returned when a READ RANDOM operation accesses an 
extent that has not been created. 

Error Code 06 is returned when byte 35, r2, of the referenced FCB is 
nonzero. 

Error Code 10 is returned if a media change occurs on the drive 
after the referenced FCB is activated by a BOOS OPEN FILE or MAKE 
FILE call. 

Error Code 255 is returned if a physical error is encountered, and 
the BOOS error mode is one of the return modes (see Function 45). 
If the error mode is the default mode, a message identifying the 
physical error is displayed at the console, and the calling program 
is terminated. When a physical error is returned to the calling 
program, register H contains one of the following error codes: 

01 Disk I/O error 
04 Invalid drive error 

2- 4 6 



Personal CP/M Programmer's Guide 

FUNCTION 34: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

WRITE R..'\.NDOM 

22H 
FCB address 

Error code 
OOH if successful, 
or nonzero if failed 
(see below) 
OOH if successful, 
or Physical error 
(see below) 

WRITE RANDOM 

The WRITE RANDOM operation is initiated similarly to the READ RANDOM 
call, except that data is written to the disk from the current OMA 
address. If the disk extent or data block that is the target of the 
WRITE RANDOM has not yet been allocated, the allocation is per formed 
before the operation continues. As in the READ RANDOM operation, 
the random record number is not changed as a result of the WRITE 
RANDOM. The logical extent number and current record positions of 
the FCB are set to correspond to the random record being written. 
Again, READ SEQUENTIAL or WRITE SEQUENTIAL operations can begin 
following a WRITE RANDOM, with the notation that the currently 
addressed record is either read or rewritten again as the sequential 
operation begins. You can also advance the random record position 
:Qllo~-:i:1g each ~·7RITE I<A~~DOM to get the effect of a i·JRITE SEQUENTIAL 
operation. Note that reading or writing the last record of an 
extent in random mode does not cause an automatic extent switch as 
it does in sequential mode. 

Upon return, the WRITE RANDOM function sets register A to zero if 
the operation is successful. Otherwise, register A contains one of 
the following error codes: 

02 No available data block 
03 Cannot close current extent 
05 No available directory space 
06 Random record number out of range 
10 Media change occurred 
255: Physical error, refer to register H 

2-47 



Personal CP/M Programmer's Guide WRITE RANDOM 

Error Code 02 is returned when the WRITE RANDOM command attempts to 
allocate a new data block to the file and no unallocated data blocks 
exist on the selected disk drive. 

Error Code 03 is returned when the WRITE RANDOM function cannot 
close the current extent prior to moving to a new extent. 

Error Code 05 is returned when the WRITE RANDOM function attempts to 
create a new extent that requires a new directory entry and no 
available directory entries exist on the selected disk drive. 

Error Code 06 is returned when byte 35, r2, of the referenced FCB is 
nonzero. 

Error Code 10 is returned if a media change occurs on the drive 
after the referenced FCB is activated by a BDOS OPEN FILE or MAKE 
FILE call. 

Error Code 255 is returned if a physical error is encountered and 
the BDOS error mode is one of the return modes (see Function 45). 
If the error mode is the default mode, a message identifying the 
physical error is displayed at the console, and the calling program 
is terminated. When a physical error is returned to the calling 
program, it is identified by register H as shown below: 

01 Disk I/O error 
02 Read/Only disk 
03 Read/Only file or 

File open from user 0 when the 
current user number is nonzero 

04 Invalid drive error 

2-48 



Personal CP/M Programmer's Guide COMPUTE FILE SIZE 

FUNCTION 35: 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

COMPUTE FILE SIZE 

23H 
FCB Address 

OOH if successful, 
or OFFH if failed 
OOH if successful, 
or Physical error 
(see below) 

When computing the size of a file, the DE register pair addresses an 
FCB in random mode format (bytes rO, rl, and r2 are present). The 
FCB contains an unambiguous filename is used in the directory scan. 
Upon return, the random record bytes contain the virtual file size, 
which is, in effect, the record address of the record following the 
end of the file. Following a call to Function 35, if the high 
record byte r2 is 01, the file contains the maximum record count 
65,536. Otherwise, bytes rO and rl constitute a 16-bit value as 
before (rO is the least significant byte) , which is the file size. 

Data can be appended to the end of an existing file by calling 
Function 35 to set the random record position to the end of file and 
then performing a sequence of WRITE RANDOM operations starting at 
the preset record address. 

The virtual size of a file corresponds to the physical size when the 
file is written sequentially. If the file was created in random 
mode and holes exist in the allocation, the file might contain fewer 
records than the size indicates. For example, if only the last 
record of an eight-megabyte file is written in random ~ode (that is, 
record number 65,535), the virtual size is 65,536 records, although 
only one block of data is actually allocated. 

Note: The BDOS does not require that the file be open to use 
Function 35. However, if the file has been written to, it must be 
closed before calling Function 35. Otherwise, an incorrect file 
size might be returned. 

2-49 



Personal CP/M Programmer's Guide COMPUTE FILE SIZE 

Upon return, Function 35 returns a zero in register A if the file 
specified by the referenced FCB is found, or an OFFH in register A 
if the file is not found. Register H is set to zero in both of 
these cases. If a physical error is encountered, Function 35 
performs different actions depending on the BOOS error mode (see 
Function 45). If the BDOS error mode is the default mode, a message 
identifying the error is displayed at the console and the program is 
terminated. Otherwise, Function 35 returns to the calling program 
with register A set to OFFH, and register H set to one of the 
following physical errors: 

01 Disk I/O error 
04 Invalid drive error 

2-50 



Personal CP/M Programmer's Guide SET RANDOM RECORD 

FUNCTION 36: SET RANDOM RECORD 

Entry Parameters: 
Register C: 24H 

Registers DE: FCB address 

Returned Value: 
Random record field set 

The SET RANDOM RECORD function returns the random record number of 
the next record to be accessed from a file that has been read or 
written sequentially to a particular point. This value is returned 
in the random record field, bytes rO, rl, and r2 of the FCB 
addressed by the register pair DE. Function 36 can be useful in two 
ways. 

First, it is often necessary initially to read and scan a sequential 
file to extract the positions of various key fields. As each key is 
encountered, Function 36 is called to compute the random record 
position for the data corresponding to this key. If the data unit 
size is 128 bytes, the resulting record number minus one is placed 
into a table with the key for later retrieval. After scanning the 
entire file and tabularizing the keys and their record numbers, you 
can move directly to a particular record by performing a RANDOM READ 
using the cor::::esponding random record number that you saved earlier. 
The scheme is easily generalized when variable record lengths are 
involved because the program need only store the buffer-relative 
~yte position along with the key and record number to find the exact 
starting position of the keyed data at a later time. 

A second use of Function 36 occurs when switching from a SEQUENTIAL 
~EAD or SEQUENTIAL WRITE over to RANDOM READ or RANDOM WRITE. A 
file is sequentially accessed to a particular point in the file; 
then Function 36 is called to set the record number, and subsequent 
RANDOM READ and RANDOM WRITE operations continue from the next 
record in the file. 

2-51 



Personal CP/M Programmer's Guide RESET DRIVE 

FUNCTION 37: RESET DRIVE 

Entry Parameters: 
Register C: 25H 

Registers DE: Drive vector 

Returned Value: none 

The RESET DRIVE function programmatically restores specified drives 
to the reset state. A RESET DRIVE is not logged in and is in 
Read/Write status. The passed parameter in register pair DE is a 
16-bit vector of drives to be reset, where the least significant bit 
corresponds to the first drive A, and the high-order bit corresponds 
to the 16th drive, labelled P. Bit values of l indicate that the 
specified drive is to be reset. 

2-52 



Personal CP/M Programmer's Guide WRITE RANDOM WITH ZERO FILL 

FUNCTION 40: WRITE RANDOM WITH ZERO FILL 

Entry Parameters: 
Register C: 

Registers DE: 

Returned Value: 
Register A: 

H: 

28H 
FCB address 

Error code 
OOH if successful, 
or nonze~o if failed 
(see Function 34) 
OOH if successful, 
or Physical error 
(see Function 34) 

The WRITE RANDOM WITH ZERO FILL operation is similar to Function 34, 
with the exception that a previously unallocated block is filled 
with zeros before the data is written. 

2-53 



Personal CP/M Programmer's Guide SET BDOS ERROR MODE 

FUNCTION 45: SET BOOS ERROR MODE 

Entry P3rameters: 
Register C: 

E: 
2DH 
BDOS error mode 
OFFH - Return error 
OFEH - Return and 

display 
Any other - Default 

mode 

Returned Value: none 

Function 45 sets the BDOS error mode for the calling program to the 
mode specified in register E. If register E is set to OFFH, 255 
decimal, the error mode is set to return error mode. If register E 
is set to OFEH, 254 decimal, the error mode is set to return and 
display mode. If register E is set to any other value, the error 
mode is set to the default mode. 

The SET BDOS ERROR MODE function determines how physical errors are 
handled for a program. The operation can exist in three modes: the 
default mode, return error mode, and return and display error mode. 
In the default mode, the BOOS displays a system message at the 
con so 1 e that identifies the error and terminates the calling 
?rogram. In the return modes, the BOOS sets register A to OFFH, 255 
decimal, places an error code that identifies the physical error in 
r·2gister H, and returns to the calling program. In return and 
display mode, the BDOS displays the system message before returning 
to the calling program. No system messages are displayed, however, 
Nhen the BOOS is in return error mode. 

Table 2-5 lists the physical error codes and their corresponding 
C?/M error messages. See Appendix B for more information on BOOS 
error handling. 

Table 2-5. Messages for Physical Errors Returned 

Physical Error Corresponding 
Codes Returned Personal CP/M Message 

1 Disk I/O error 
2 Read/Only disk 
3 Read/Only file 
4 Invalid drive error 

2-54 



Personal CP/M Programmer's Guide 

FUNCTION 48: 

Entry Parameters: 
Register C: 

Returned Value: 
Register A: 

Register H: 

FLUSH BUFFERS 

30H 

OOH if successful, 
or Error flag if 
failed 
Physical error 

FLUSH BUFFERS 

The FLUSH BUFFERS function forces the write of any write-pending 
records contained in internal blocking/deblocking buffers. 

Upon return, register A is set to zero if the operation is 
successful. If a physical error is encountered, the FLUSH BUFFERS 
function performs different actions depending on the SET BOOS ERROR 
MODE (see Function 45). If Function 45 is in the default mode, a 
message identifying the error is displayed at the console and the 
cal 1 i ng program is terminated. Otherwise, the FLUSH BUFFERS 
function returns to the calling program with register A set to OFFH 
and register H set to the following physical error code: 

01 Disk I/O error 
02 Read/Only disk 
04 Invalid drive error 

2-55 



Personal CP/M Programmer's Guide GET/SET CONSOLE MODE 

FUNCTION 109: GZT/SET CONSOLE MODE 

Entry Parameters: 
Register C: 

Register DE: 

Returned Value: 
Register HL: 

6DH 
OFFFFH (Get)or 
Console mode (Set) 

Console mode or 
(no value) 

A program can set or interrogate the console mode by calling 
Function 109. If register pair DE = OFFFFH, the current console 
mode is returned in register HL. Otherwise, Function 109 sets the 
console mode to the value contained in register pair DE. 

The GE'l'/SET CONSOLE MODE is a 16-bit system parameter that 
determines the action of certain BDOS console I/O functions. The 
definition of the GET/SET CONSOLE MODE is described in Table 2-6. 

Table 2-6. GET/SET CONSOLE MODE Description 

Bits 

0 through 3 

~ equals 0 

4. equals l 

5 through 15 

I Definition 

Reserved 

Enable tab expansion, pcincer echo, 
and CTRL-S checking for Functjons 
2, 9, and 111. 

Raw console output. Disable ·tab 
expansion, printer echo, and CTRL-S 
checl~ i ng. 

Reserved 

Note that the GET/SET CONSOLE MODE bits are numbered from right to 
left. The CCP initializes the GET/SET CONSOLE MODE to zero when it 
loads a program. 

2-56 



Personal CP/M Programmer's Guide GET/SET OUTPUT DELIMITER 

?UNCTION 110: GET/SET OUTPUT DELIMITZR 

Sntry Parameters: 
Register C: 

Register DE: 
E: 

Returned Value: 
Register A: 

6EH 
OFFFFH (Get) or 
Output delimiter (Set) 

Output delimiter or 
(no value) 

A program can set or interrogate the current output delimiter by 
calling Function 110. If register pair DE = OFFFFH, the current 
output delimiter is returned in register A. Otherwise, Function 110 
sets the output delimiter to the value contained in register E. 
Function 110 sets the string delimiter for Function 9, PRINT STRING. 
The default delimiter value is a dollar sign, $. The CCP sets the 
GET/SET OUTPUT DELIMITER to the default value when a transient 
program is loaded. 

2-57 



Personal CP/M Programmer's Guide PRINT BLOCK 

FUNCTION 111: PRINT BLOCK 

Entr y Paramete r s: 
Register C: 6FH 

Register DE: CCB address 

Returned Value: none 

The PRINT BLOCK function sends the charac t er string located by the 
character control block, CCB, addressed in register pair DE to the 
logical console, CONOUT : . If the conso l e mode is in the default 
state, Function 111 expands tab characters, CTRL-I, in columns o~ 
eight characters. It also checks for CTRL-S (stop/start scroll) and 
echoes to the logical list device , LST:, if printer echo, CTRL-P, 
has been invoked. The CCB format is as follows: 

byte 0 - l: 
byte 2 - 3: 

Address of character string (word value) 
Length of character string (word value) 

2-58 



Personal CP/M Programmer's Guide LIST BLOCK 

FUNCTION 112: LIST BLOCK 

Entry Parameters: 
Register C: 70H 

Register DE: CCB address 

Returned Value: none 

The LIST BLOCK function sends the character string located by the 
CCB addressed in register pair DE to the logical list device, LST:. 
The CCB format is as follows: 

byte 0 - 1: 
byte 2 - 3: 

Address of character string {word value) 
Length of character string (word value) 

2-59 



Personal CP/M Programmer's Guide DIRECT SCREEN FUNCTIONS 

FUNCTION 113: 

Entry Parameters: 
Register C: 

Register DE: 

DIRECT SCREEN FUNCTIONS 

71 H 
Address of SFB 

byte 0 Subfunction number 

byte 1-2: 

OR 
byte 1 
byte 2 

Address of extended 
information 

Co lumn value 
Row value 

Returned Value: none 

The DIRECT SCREEN FUNCTIONS call provides d i r ect access to cursor 
mov em en t and screen editing functions t y pically used by video 
intensive applications, such as word processing and spreadsheets. 
This direct access is important pr i marily on computer systems with 
memory-mapped displays. While most BIOS display drivers provide 
some terminal emulation for these functions, the overhead involved 
in interpreting an ESCAPE sequence into the corresponding screen 
function can slow a video intens i ve application to an unacceptable 
degree. The DIRECT SCREEN FUNCTIONS cal l not only allows direct 
access to these screen functions, but also can return information to 
the calling program about whether a specific function executes fast 
or slowly on a particular system (see Subfunction 1). Table 2-7 
lists the subfunctions for Funct ion 113. 

2-60 



Personal CP/M Programmer's Guide DIRECT SCREEN FUNCTIONS 

Table 2-7. Subfunctions for Function 113 

Sui::lf'..lnction Description 

0: SUBFUNCTIONS SUPPORTED 

Ret;,.irned value: 
Register HL: Pointer to bit vec~or 

stored as 

byte 0: 07 06 05 04 03 02 01 00 

byte 1: 15 14 13 12 11 10 09 08 

byte 2: 23 22 21 20 19 18 17 16 

byte 3: 27 26 25 24 

Corresponding bit is on if subfunction 
is supported. 

1: SUBFUNCTIONS EMULATED 

Returned value: 
Register HL: 

2: DISPLAY SIZE 

Returned value: 
Register H: 
Register L: 

3: IDENTIFY TERMINAL 

Returned value: 
Register HL: 

2-61 

Pointer to bit vector 
stored as above. Bit is 
on if subfunction is 
emulated (and therefore 
slower). 

Number oi columns (1-n). 
Number of rows (1-n). 

Pointer to null 
terminated identifier 
string. For a VT-52 
type terminal, it would 
return a pointer to the 
byte string (ESCAPE, /, 
K, NULL). 



Personal CP/M Programmer's Guide DIRECT SCREEN FUNCTIONS 

Table 2-7. (continued } 

Sub function Description 

4: CURSOR UP 

!,love cursor up but does not scroll 
screen down if cursor was at top of 
page. 

5: CURSOR DOWN 

Move cursor down but does not scroll 
screen up if cursor was at bottom of 
page. 

6: CURSOR LEFT 

Wrap depends on mode set up by 
subfunction 26 or 27. 

7: CURSOR RIGHT 

Wrap depends on mode set by 
subfunction 26 or 27. 

8: CURSOR HOME 

Move cursor to top left-hand corner 
of screen. 

9 : CURSOR ON 

Make cursor visible. 

10: CURSOR OFF 

Make cursor invisible. 

11: DIRECT CURSOR ADDRESSING 

Move cursor to absolute column and 
row in SFB. 

2-62 



Personal CP/M Programmer's Guide DIRECT SCREEN FUNCTIONS 

Table 2-7. (continued) 

Subfunction Description 

l2: CLEAR ~ISPLAY 

Aove cursor :c :op :2i:-ha~d cocn2~ 

of screen and erase scr~en. 

13: ERASE TO END OF LINE 

14: ERASE TO END OF SCREEN 

15: ENTER ANSI MODE 

16: ENTER VT-52 MODE 

17: ENTER GRAPHICS MODE 

18: EXIT GRAPHICS MODE 

19: ENTER ALTERNATE KEYPAD MODE 

20: EXIT ALTERNATE KEYPAD MODE 

21: 2NTER HOLD SCREEN MODE 

22: EXIT HOLD SCREEN MODE 

23: ENTER REVERSE VIDEO MODE 

24: EXIT REVERSE VIDEO MODE 

25: REVERSE LINE-FEED 

2-63 

Not supported by the 
MZ-800 P-CP/M 



Personal CP/M Programmer's Guide DIRECT SCREEN FUNCTIONS 

Table 2-7. (continued) 

Suofunction Description 

26: ENABLE WRAP-AROUND AT END OF LINE 

27: TRUNCATE CHARACTERS AT END Of LINE 

28-255: (Reserved) 

2-64 



Section 3 
Sample Programs 

3.1 Sample File-to-File Copy Program 

This program provides a relatively simple example of file 
operations. (Refer to the assembler source for the program on disk 
in File COPY.ASM.) The program source file is created using the 
CP/M ED program and then assembled using ASM™ or MAC, resulting in a 
HEX file. The LOAD program is used to produce a COPY.COM file that 
executes directly under the CCP. The program begins by setting the 
stack pointer to a local area and proceeds to move the second name 
from the default area at 006CH to a 33~byte file control block 
cal led DFCB. The DFCB is then prepared for file operations by 
clearing the current record field. 

At this point, the source and destination FCBs are ready for 
processing, because the SFCB at 005CH is properly set up by the CCP 
upon entry to the COPY program. That is, the first name is placed 
into the default FCB, with the proper fields zeroed, including the 
current record field at 007CH. The program continues by opening the 
source file, deleting any existing destination file, and creating 
the destination file. If all this is successful, the program loops 
at the label COPY until each 128-byte record is read from the source 
file and placed into the destination file. When the data transfer 
is complete, the destination file is closed and the program returns 
to the CCP command level by jumping to BOOT. 

Note several simplifications in this particular program. First, 
there are no checks for invalid filenames that could contain 
ambiguous references. This situation could be detected by scanning 
the 32-byte default area starting at location 005CH for ASCII 
<]1Jestion marks. A r.her.k should also bP. mad?. t0 ensure that the 
filenames have been included (check locations OOSDH and 006DH for 
nonblank ASCII characters). Finally, a check should be made to 
ensure that the source and destination filenames are different. An 
improvement in speed could be obtained by buffering more data on 
each read operation. You could, for example, determine the size of 
memory by fetching FBASE from location 0006H and using the entire 
remaining portion of memory for a data buffer. In this case, you 
reset the DMA address to the next successive 128-byte area before 
each read. Upon writing to the destination file, the OMA address is 
reset to the beginning of the buffer and incremented by 128 bytes to 
the end as each record is transferred to the destination file. 

3-1 



Personal CP/M Programmer's Guide 3.2 Sample File Dump Utility 

3.2 Sample File Dump Utility 

The file dump program is more complex than t he simple c opy program. 
(Refer to the assembler source f o r the program on disk in File 
(DUMP.ASM.) The dump program reads an input file specified on the 

CCP command .une, and displays t he content of each record in 
hexadecimal format at t h e console . Note that the dump program saves 
the CCP's stack upon entr y , resets the stack to a local area, and 
restores the CCP's stack before ret u rning directly to the CCP. Thus 
the dump program does not perform a warm start at: the end of 
processing. 

3.3 Sample Random Access Program 

This section presents an extensive example of random access 
operation. (Refer to the assembler source for the program on disk 
in File RANDOM.ASM.) The program performs the simple function of 
reading or writing random records upon command from the terminal. 
When a program has been created, assembled , and placed into a file 
labeled RANDOM.COM, the following CCP-level command starts the test 
program. 

A>RANDOM X.DAT 

The program looks for a file named X. DAT and, if found, proceeds to 
prompt the console for input. If not found, the file is created 
before the prompt is given. Each prompt takes the following form 
and is followed by operator input, followed by a carriage return. 

next command? 

The input commands take the following fo r m where n is an integer 
value in the range 0 to 65535, and W, R, and Q are simple command 
characters corresponding to WRITE RANDOM, READ RANDOM, and quit 
processing, respectively. 

nW nR Q 

If the W command is issued, the RANDOM program issues the following 
prompt 

type data: 

The operator then responds by typing up to 127 characters, followed 
Dy a carriage return. RANDOM then writes the character string into 
the X. DAT file at record n. If the R command is issued, RANDOM 
reads record number n and displays the string value at the console, 
If the Q command is issued, the X.DAT file is closed, and the 
program returns to the CCP. For brevity, t he only error message 
is 

error, try again. 

3-2 



Personal CP/M Programmer's Guide 3.3 Sample Random Access 

The program begins with an initialization section where the input 
fila is opened or created, followed by a continuous loop at the 
label r~ady where the individual commands are interpreted. The DFBC 
at 005CH and tne default buffer at 0080H are used in all disk 
cper3tions. The ~tility subroutines then follow, which contain the 
~n i .:1:::: if al ~npu ~ l ine ?rocessor, called r.~adc. T'.1is par tic•Jlar 
?ccg:am s ~ows t~e ele~ents of :andcm access pr~cess~ng and can be 
1s.ac as :.;1e oas i,:; ::ir ::ur th er .? rog ram develol?men t. 

This particular program could be improved to enhance its operation. 
In fact, the Sample Random Access Program could even evolve into a 
simple data base management system. For example, you could assume a 
standard record size of 128 bytes, consisting of arbitrary fields 
within the record. A program, called GETKEY, could be developed 
that first reads a sequential file and extracts a specific field 
defined by the operator. For example, the following command would 
cause GETKEY to read the data base file NAMES.DAT and extract the 
LAST-NAME filed from each record, starting in position 10 and ending 
at character 20. 

A>GETKEY NAMES.DAT LASTNAME 10 20 

GETKEY builds a table in memory consisting of each particular 
LAST~AME field, along with its 16-bit record number location within 
the file. The GETKEY program then sorts this list and writes a new 
file, called LASTNAME. KEY, which is an alphabetical list of LASTNAJ."4E 
fields with their corresponding record numbers (also called an 
inverted index). 

If you renamed the program shown as QUERY and modified it so that it 
reads a sorted key file into memory, the command line might appear 
as 

A>QUERY NAa."IES.DAT LASTNAME.KEY 

Instead of reading a number, the QUERY program reads an alphanumeric 
st.c ing that is a particular k2y to find in the NAM.ES. DAT data base. 
Because the LASTNAJ.~E.KEY list is sorted, one can rind a particular 
~ntry rapidly by performing a binary search, similar to looking up a 
name in the telephone book. Starting at both ends of the list, you 
examine the entry halfway in between and, if not matched, splits 
either the upper half or the lower half for the next search. You 
will quickly reach the item you are looking for and find the 
corresponding record number. You should fetch and display this 
record at the console, just as was done in this program. 

With more work, you can allow a fixed grouping size that differs 
from the 128-byte record shown above. Do this by keeping track of 
the record number and the byte offset within the record. Knowing 
the group size, you randomly access the record containing the proper 
group, offset to the beginning of the group within the record read 
sequentially until the group size has been exhausted. 

3-3 



Personal CP/M Programmer's Guide 3.3 Sample Random Access 

Finally, you can improve QUERY considerably by allowing Boolean 
expressions, which compute the set of records that satisfy several 
relationships, such as a LASTNAME between HARDY and LAUREL and an 
AGE lower than 45. Display all the records that fit this 
d9scription. Finally, if your lists are getting too big to fit into 
memory, randomly access key files from the disk. 

3.4 Full Duplex Terminal Emulator 

The purpose of this example is to show how you can use Function 7 
(AUXILIARY INPUT STATUS) and Funct i on 8 (AUXILIARY OUTPUT STATUS). 
The example demonstrates a simple case of a terminal emulator as 
used in a portable communications program. "Portable" in this case 
means a hardware-independent program that can be used with many 
different kinds of computer systems. (Refer to the assembler source 
for the program on disk in File TERMINAL . ASM.) 

In Figure 3-1, the flowchart shows how this example works. 
numbers in the boxes on the flowchart refer to Personal 
function calls. 

3-4 

The 
CP/M 



Personal CP/M Programmer's Guide 3.4 

NO 

NO 

NO 

get console 
char[§] 

send 
char@] 

get AUX 
char rn 

send char 
to console [§] 

Terminal Emulator 

return 
to PCP/M 

Figure 3-1. Full Duplex Terminal Emulator Flowchart 

3-5 



Personal CP/M Programmer's Guide 3.4 Terminal Emulator 

AUXILIARY INPUT STATUS (Function 7) and AUXILIARY OUTPUT STATUS 
(Function 8) allow you to write portable communicat i ons programs. 
You can use Function 7 to check if a character is available on an 
auxiliary input device. Previously, if AUXILIARY INPUT (Function 3) 
was invoked and no character was available, the program would stop 
completely until a character was ready. The other alternative was 
for the program to go directly to the hardware port to check if a 
character was ready, thus creating machine-dependent code. 

Under Personal CP/M, the program can check the status and, even if 
no character is ready for input from the logical auxiliary input 
device, the program can continue to execute. The program in this 
example alternates between checking the keyboard and the auxiliary 
input device for available characters. The program can process a 
character from either the remote computer or the local terminal-­
whichever has a character availab l e. 

In the loop highlighted on the flowchart, the program asks if a 
character is available at the first Function 6 (DIRECT CONSOLE I/O) 
decision box. If the answer is no, the program queries AUXILIARY 
INPUT STATUS (Function 7) to see if a character is available. If 
the answer is still no, the program returns to Function 6. The 
dee is ion loop in this example shows how Function 7 allows the 
program to continue execution even though no characters are ready. 

3-6 



Dec :lex 

0 0 
l l 
2 2 
3 3 
4 4 
5 5 
6 6 

7 7 

8 8 

9 9 
10 A 

11 B 

12 c 

13 D 

14 E 

15 F 

16 10 

17 11 

18 12 

19 13 

20 14 

21 15 

Appendix A 
System Function Summary 

Table A-1. System Functicn Su;nmary 

~ame I Input ?arameter3 Retur!"led Value 

System Reset none none 
Console Input none A = ASCII char 
Console Output E = ASCII char none 
Auxiliary Input none A = ASCII char 
Auxiliary Output E = ASCII char none 
List Output E .. ASCII char none 
Direct Console E = OFFH/ A = char/status/ 
I/O OFEH/ no value 

char 
Auxiliary Input none A = AUXIN 
Status status 
Auxiliary none A = AUX OUT 
Output Status status 
Print String DE = String Addr none 
Read Console DE = Buff er Addr Chars in buffer 
Buffer 
Get Console none A = OOH/OFFH 
Status 
Return Version none HL: Version 
Number (0028H) 
Reset DisK none none 
System 
Select Disk E = Selected A = Err Flag/ 

DisK OOH/OFFH 
H = Phys err 

Open File DE "' FC3 Addr A = OOH/OFFH 
H = OOH/Phys err 

Close File DE = FC3 Addr A = OOH / OFFH 
H = OOH/ Phys er:: 

Search For DE = FC3 Addr A = Di.:: Code/00-
First 03 / 0FFH 

H = OOH/ Phys err 
Search For Next none A = Dir Code /0 0-

03/0FFH 
H = OOH/ Phys ~rr 

Delete File DE = FCS Addr A = OOH / OFFH 
H = OOH/ Phys err 

Read Sequential DE = FC.S Addr A = E~~ ~ ~ Code / OOH/ 
J l , 10, or 255 

H = OOH / Phys err 
Write DE = FCB Addr A = Err Code / OOH/ 
Sequential 01, 02, 10, 

or 255 
H = OOH/Phys err 

A-1 



Personal CP/M Programmer's Guide A System Function Summary 

Table A-1. (continued) 

Dec Hex Name Input Parameters 
I 

Returned l/al~e 

22 16 :-take File DE = FC3 Ader A = OO H/ OFFH 
H = OOH/ Phys err 

23 17 Rename File DE = FCS Addr A = OOH/O FFH 
H = OOH/ Ph y s err 

24 18 aeturn Login none HL = Login 
Vector 'lector * 

25 19 Return Current none A = Current Dis!< 
Disk 

26 lA Set OMA Address DE = OMA Addr none 
27 lB Get AODR none HL = Alloc Addr*/ 

(ALLOC) OFFFFH 
28 lC Write Protect none none 

Disk 
29 lD Get Read/Only none HL = R/ O Vector 

Vee tor Value* 
JO lE Set File DE = FCB Addr A = OOH/ OFFH 

H = OOH/ Phys err 
Jl lF Get ADDR (Disk none HL = DPB Add / 

Parms) OFFFFH 
32 20 Set/ Get User E = OFFH for Get A = Curr Code / no 

Code E = User Code value 
for Set 

33 21 Read Random DE = FCB Addr A = Err Code / OOH/ 
nonzero 

H = OO H/Phys err 
34 22 Write Random DE = FCB Addr A = Err Code / OOH/ 

nonzero 
H = OO H/ Phys err 

35 23 Compute File DE = FCB Addr A = OOH/ OFFH 
Size H = OOH/ Phys err 

36 24 Set Random DE = FCB Addr Random Record 
Record Field Set 

37 25 Reset Drive DE = Drive Vector none 
40 28 Write Random DE = FCB A = Err Code / OOH/ 

Wl th Zero Fill nonzero 
H = OOH / Phys err 

45 20 Set SOOS Error E = BOOS Err Mode none 
Mode 

48 30 Flusn l:luifers non•:! A = Err Flag / OOH 
H = ?hys err 

109 6D Get / Set Conso le DE = OFFFFH/ Mode HL = Co nso l e 
Mode Mode / no value 

110 6E Get / Set Output DE .,, ll FFFFH/ A = Output 
Delimiter E = Delimiter Delimiter / 

no value 
111 6F Print Block DE = CCB Addr none 
112 70 List Block OE = CCB Addr none 

A-2 



Personal· CP/M Programmer 1 s Guide A System Function Summary 

Table A-1. (continued) 

:Jee I ~ I .• ex Name I In;:iut ?arameters I ~eturned 'lalue 

.i.13 71 Direct Sc:-een DE :: SFS Addr none 
Functions 

.:.24 7C 3yte 3LT C::>9y DE :: acs .;cdr A :: JOH/ OFFH 
125 7D Byte BLT Alter DE :: 3C3 Addr A :: OOH/OFFH 

*Note that A = L, and B = H upon return. 

End of Appendix A 

A-3 





Appendix B 
BOOS Error Handling 

The BDOS file system responds to error situations in one of 
three ways: 

Method 1. 

Method ~. 

Metnod 3. 

It returns to the calling program with r~turn codes 
in register A, H, and L identifying the error. 

It displays an error message on the console, and 
branches to the BIOS· warm start entry point, 
thereoy terminating execution of the cal.iing 
program. 

It displays an error message on the console, and 
returns to the calling program as in ~ethod 1. 

~~e fiie syscem handles tne majority of errors it detects oy Metnod 
-· T~o examples of this kind of error are tne file-not-found error 
for the OPEN FILE function and the reading-unwritten-data error for 
a read function. More serious errors, such as disk I/O errors, are 
usually handled by Method 2. Errors in this category, called 
?hysical errors, can also be reported by Methods l and 3 under 
?rog ram control. 

The SET BDOS ERROR MODE, which can exist in tnr~e states, determines 
~cw the file system nandles physical er:ors. In the def~ult state, 
=ne 3DOS displays the er:or message, and terminates tne calling 
~r~gram, Aethod 2. I~ return error mode, the 3DOS returns control 

.3.na i.., :.-retl10d .L. In return and display moae, tne 3DOS re t;.:rns 
::ontrol to the calling ;:nog.:am 11i-ch tne error identifieC. in 
~2~~3t2rs A, 2, and L, and also displays che error message at ~ne 
:8nsoie, Aethcd ~. ~hile ooth return modes ?rotect a program from 
:2r~ination oecause of a physical error, the retur~ and display mode 
a~so allows the calling program to ca~e advantage of the ouiit-in 
--=rror reporting of the oDOS file system. P!.1.ysical errors are 
iisplayed on the ~onsole in the following for~at ~here d: identifies 
the drive selected when the error condition i:; detected; ~r ror 
message identifies the error. 

CP/M Error on d: error message 

B-1 



Personal CP/M Programmer's Guide B BDOS Er ror Handling 

The BDOS physical errors are id en ti f ied by the following error 
messages: 

• DisK I / O 
• Invalid drive 
• Read / Only file 
• Read / Only disk 

The disk I/O error resul~s from an error condition returned to the 
BOOS from the BIOS module. The file system makes BIOS read and 
write calls to execute file-related BOOS calls. If the BIOS read or 
write routine detects an error, it returns an error code to the BOOS 
resulting in this error. 

The invalid drive error also results from an error condition 
returned to the BOOS from the BIOS module. The BOOS makes a BIOS 
SELECT DISK call prior to accessing a drive to perform a requested 
BOOS function. If the BIOS does not support the selected disk, the 
BDOS returns an error code r~sulting in th i s error message. 

The Read/Only file error is returned whe n a program attempts to 
write to a file tnat is marked with the Read / Only attribute. It is 
also returned to a pro~ram that attempts to write to a system file 
opened under user zero from a nonzero user number. 

The Read/Only Disk error is returned when a program wr i tes to a disk 
that is in Read/Only status. A drive can oe placed in Read/Only 
status explicitly with the BOOS WRITE PROTECT DISK function. 

The following paragraphs describe the error return code conventions 
ot the BOOS file system functions. ' Most BOOS file system functions 
fall into three categories in regard to return codes: they return 
an error code, a directory code, or an error flag. 

The following BDOS functions return an error code in register A: 

20. READ SEQUENTIAL 
2i. WRITE SEQUENTIAL 
33. READ RANDOM 
34. WRITE RANDOM 
40. WRITE RANDOM WITH ZERO FILL 

The error code definitions for register A are shown in Table B-1. 

B- 2 



Personal CP/M Programmer's Guide B BDOS Error Handling 

Table B-1. Register A BOOS Error Codes 

Code 

00 
255 

01 

02 
03 
04 
05 
06 
10 

I Meaning 

Function successful 
Physical error, refer to register H 
Reading unwritten data or no available 
directory space (Write Sequential) 
No available data block 
Cannot close current extent 
Seek to unwritten extent 
No available directory space 
Random record number out of range 
Media changed (a media change was 
detected on the FCB's drive after 
the FCB was opened) 

T~e following BDOS functions return a directory code in register 
.~: 

17. SEARCH FOR FIRST 
ld. S~ARCH FOR NEXT 

Directory code definitions for register A are shown in Taole B-2. 

Table B-2. BDOS Directory Codes 

Code 

00 - 03 
253 

I Meaning 

Successful function 
Unsuccessful function 

.'\ successful directory code identifies the relative starting 
?Osition of the directory entry in the calling program's current DMA 
cuff2r. If the SET BDOS ERROR MODE function is used to place the 
3GCS in return error mode, tne following functions return an error 
flag on physical errors.: 

14. SELECT DISK 
15. OPEN FILE 
16. CLOSE FILE 
19. DELETE FILE 
22. MAKE FILE 
23. RENAME FILE 
30. SET FILE ATTRIBUTES 
35. COMPUTE FILE SIZE 
48. FLUSH BUFFERS 

B-3 



Personal CP/M Programmer's Guide B BDOS Error Handling 

The error flag definitions for register A are shown in Table B-3. 

Code 

0 l) 
25'.) 

I 

Table B-3. BDOS Error Flags 

ivleaning 

Successful function 
Physical error, refer to register H 

The BDOS returns nonzero values in register H to identify a physical 
error if the SET BDOS ERROR MODE is in one of the return modes. 
Except for functions that return a directory code, register equal to 
255 indicates that register H identifies the physical error. For 
functions that return a directory code, if register A equals 255, 
and register H is not equal to zero, register H identifies the 
physical error. Table B-4 shows the physical error codes returned in 
register H. 

Code 

00 
01 
02 
03 

04 

Table B-4. BOOS Physical Errors 

I Meaning 

No error, or not a pnysical error 
Disk I/O error 
Read/Only disk 
Read/Only file or file opened under 
user zero from another user number 
Invalid Drive : drive select error 

The following t~o functions represent a special case because Lhey 
return an address in registers H and L. 

27. GET ADDR (ALLOC) 
Jl. GET ADDR (DISK PARMS) 

When the BDOs is in return error mode and it detects a physical 
~rror for these functions, it returns to the calling program with 
registers A, H, and L all set to 255. Otherwise, they return no 
error code. 

End of Appendix B 

B-4 



Appendix C 
User Number Conventions 

T":•e Persona,l CP/M user facility divides .:ach drive di.:-2ctory into 16 
logically independent directories, designated as user 0 through user 
15. Physically, all user directories share the directory area of a 
ar1ve. In most other aspects, however, they are independent. For 
example, files with the same name can exist on different user 
numbers of the same drive with no conflict. However, a single file 
cannot reside under more than one user number. 

Only one user number is active for a program at one time, and the 
current user number applies to ali drives on the system. 
Furthermore, the FCB format does not contain any field that can be 
used to override the current user number. As a result, all file and 
directory operations reference directories associated with the 
current user number. However, it is possible for a program to 
access files on different user numbers; this can be accomplished by 
setting the user number to the file's user number with the BDOS Set 
User function before making the desired BDOS function call for the 
file. Note that this technique must be used carefully. An error 
occurs if a program attempts to read or write to a file under a user 
number different from the user number that was active when the file 
was opened. 

When the CCP loads and executes a transient program, it initializes 
the user number to the value displayed in the system prompt. If the 
system prompt does not display a user number, user zero is implied. 
A transient program can change its user number by making a BDOS set 
user function call. Changing the user number in this way does not 
affect the CCP's user number displayed in the system prompt. When 
the transient program terminates, the CCP' s user number is restored. 

User 0 has special properties under Personal CP/M. When the current 
user number is not equal to zero and if a requested file is not 
present under the current user number, the file system automatically 
attempts to open the file under user zero. If the file exists under 
user zero and if it has the system attribute, t2', set, the file is 
opened from user zero. Note, however, that files opened in this way 
cannot be written to: they are available only for read access. This 
procedure allows utilities that may include overlays and any other 
commonly accessed files to be placed on user zero, but also be 
available for access from other user numbers. As a result, commonly 
needed utilities need not be copied to all user numbers on a 
directory, and you can control which user zero files are directly 
accessible from other user numbers. 

End of Appendix C 

C-1 





A 

allocation vector, 2-39 
ambiguous references, 2-29 
ASCII question mark, 2-27 
ASM, 3-1 
asterisk, 2-2 
automatic extent switch, 2-47 
auto disk select function, 

2-27 
auxiliary 

input device, 2-11 
output device, 2-12 

AUXILIARY INPUT, 2-11 
AUXILIARY INPUT STATUS, 1-3, 

2-15, 3-4 
AUXILIARY OUTPUT, 1-3, 2-12 
AUXILIARY OUTPUT, STATUS, 

2-16, 3-4 
AUXIN, 2-15 
AUXOUT, 2-16 

B 

basic conso.Le 
input, 2-14 
output, 2-14 

3asic Disk Operating System 
(BDOS) , .L-l, 2-4 

directory codes, 3-3 
error flags, .3-4 
error handling, B-l 
error mode, 2-33 
physical errors, 3-4 

3DOS .2:RROR 
Register A, :a-3 

3DOS OPEN FILE, 2-30, 2-46 
Basic Input/Output System 

(BIOS) , l-1 
resident disk parameter 

block, 2-43 
oit 

combination, 2-71 
modification, 2-71 
vector, 2-41 

ouilt-in function, 1-2 

Index 

c 

C plane characteristics, 2-68 
carriage return, 2-18 
CCB 

See Character Control Block 
CCP 

See Console Command Processor 
Character 

Control Block (CCB), 2-58, 
2-59 

string, 2-17 
CLEAR, 2-70 
CLOSE command, 2-o 
CLOSE FILE, 2-26 
cold start, 2-23, 2-38 
COM file, 1-3 
command line parsing, 1-2 
command tail, 1-2 
compatibility, 2-14, 2-2.L, 2-36 
components, J.-1 
COMPUTE FILE SIZE, 2-4~ 

console character, 2-9 
Console Command Processor 

(CCPJ, .L-l, 2-8 
CONSOLE INPUT, 2-9 
console input, 2-18 
console mode 

interrogate, 2-50 
set, 2-Sb 

CONSOLE OUTPUT, 2-10, 2-~7 

current extent, 2-~6 
close, 2-48 
not created, 2-46 

current record values, 2-46 
cursor movement, 2-bO 

D 

default 
buffer area, 2-6 
disk, 2-23 
disk number, 2-37 
mode, 2-54 

Index-1 



- - - - - - ---- - ----- ---

DELETE FILE, 2-29, 2-34 
destination rectangle, 2-65 
device operations, 2-1 
DFCB, 3-l 
DIRECT CONSOLE I/O, 2-l4 
Direct Memory Address (DMA) , 

2-27, 2-30, 2-32, 2-38, 
2-47 

direct operating system calls, 
2-1 

DIRECT SCREEN FUNCTIONS, 
1-4, 2-60 

DIRECT SCREEN 
subfunctions, 2-60 
directory code, B-2 

disk 
controller, 2-38 
directory, 2-3 
file, 2-1 
I/O, 2-1 
I/O errors, 3-l, B-2 
parameter values, 2-43 

OMA 
See Direct Memory Address 

drive select code, 2-3 
drives 

E 

reset, 2-52 
restored, 2-52 

C:D program, 3-1 
edit control characters, 2-19 
edited console input 

See console input 

function 6, 2-14 
error 

code, 8-2 
flag, B-2 
return code conventions, B-2 

ESCAPE sequence, 2-60 

F 

FBASE memory address, l-2 
FCB, l-3, 2-6, 2-24, 2-26, 

2-29, 2-32, 2-34, 2-35, 
2-42, 2-47, 2-49, C-1 

nonzero, 2-46 
FOOS, l-1, 2-2 
file 

activation, 2-24 
change, 2-35 
Control Block, 1-3, 2-5 

control block format, 2-4 
data area, 2-3 
match, 2-27, 2-28 
records, 2-3 
read into memory, 2-30 
sample file dump utility, 

3-2 
sample file-to-file copy 

program, 3-1 
structure, 2-3 
system reset, 2-22 
system restore, 2-22 

filenames, 2-3 
filetype, 2-3 
FLUSH BUFFERS, 1-3, 2-55 
function calls, 1-3 

G 

GET ADDR (ALLOC), 2-39 
GET ADDR (DISK PARMS), 2-43 
GET CONSOLE STATUS, 2-20 
GET READ/ONLY VECTOR, 

2-22, 2-41 
GET/SET CONSOLE, 2-10 
GET/SET CONSOLE MODE, 1-4, 2-56 
GET/SET OUTPUT, 1-3 
GET/SET OUTPUT DELIMITER, 

2-17, 2-57 
GET/SET USER CODE, 2-24 
graphic character, 2-9 

H 

high performan~e video, ~-L 

I 

I/O macro iibrary, 2-1 
input buffer overflow, 2-18 
internal blocking/deblocking 

buffers, 2-55 
invalid drive error, B-2 

L 

line feed, 2-18 
LIST BLOCK, 1-4, 2-59 
LIST OUTPUT, 2-13 
LOAD program, 3-l 
logical 

extent, 2-3, 2-46 

Index-2 



·1ist device, 2-L3, 2-58, 2-59 random mode format, 2-49 
LST, 2-58, 2-59 RAJ.~DOM READ, 2-Sl 

random record 

:nacro assemoier (~1AC), ~- L , 3-l 
:•1A!\E C.~LL , 2- 3 0 
:·1A.i< :S F I LE , 2 - 6 , 2 - 2 6 , 2 - 3 0 , 

2-32, 2-34, 2-46 
media change, 2-32, 2-46, 2-48 
memory organization, 1-1 
memory-mapped displays, 2-bO 

N 

new data clock, 2-32, 2-47 
new extent, 2-32 

create, 2-48 
no-data situation, 2-46 
nonDMA access, 2-38 

0 

on-line disk drive, 2-39 
OPEN FILE, 2-6, 2-24, 2-26, 

2-30 t 2-32 t 2-34 
output delimiter 

interrogate, 2-57 
set, 2-57 

overflow, 2-2, 2-30, 2-32 
override current user numoer 

See user numoer 

p 

permanent indicators 
modification, 2-42 

pnysical errors, 2-33, 2-46, 
2-·tS, 2-54, B-l 

pop-up menu, 3-6, 3-9 
?KINT BLOCK, l-4, 2-58 
PRINT STRING, 2-17, 2-57 
printer echo, 2-10, 2-17 
program execution, 1-2 

Q 

question mark 
ambiguous reference, 2-29 

R 

random access, J-2 
file processing, 2-45 

number, 2-51 
position, 2-47, 2-49 

RANDOM WRITS, 2-31 
READ CONSOLE BUFFER, 2-io 
READ RANDOM, 2-45, 2-47 

error codes, 2-46 
READ SEQUENTIAL, 2-30, 2-45 
Read/Only 

. disk error, B-2 
file error, B-2 

record number, 2-~5 
reference disK, 2-26 
RENAME FILE, 2-35 
RESET DISK SYSTEM, 2-22, 2-23, 

2-38 
RESET DRIVE, 2-52 
return and display error mode, 

2-31, 2-33, 2-54 
return and display mode, 2-54 
RETURN CURRENT DISK, 2-37 
recurn error mode, 2-31, 2-33, 

2-S4 
RETURN LOGIN VECTOR, 2-36 
RETURN VERSION NUMBER, 2-21 

s 

sample file dump utility, 3-2 
sample file-to-file copy 

program, 3-1 
sample random access program, 

3-2 
screen editing f~nctions, 2-60 
scrolling, 3-ci, 3-8 
SEARCH FOR FI~ST, ~-27, ~-28, 

2-29 
SEARCH FOR NEXT, 2-28 I 2-29 
SELECT DISK, 2-23 
sequential file 

read and scan, 2-s~ 
SEQUENTIAL READ, 2-45, 2-Sl 
SEQUENTIAL WRITE, 2-51 
SET I 2-70 
SET BOOS ERROR, 2-25, 2-26, 

2-27, 2-29, 2-35, 2-39, 
2-40, 2-42, 2-~3, 2-46, 
2-48, 2-49, B-1 

default state, B-l 
return and display error 

mode, B-l 
return error mode, B-1 

Index-3 



SET BDOS ERROR MODE, 1-3, 
2-34, 2-54, 2-55, B-1 

SET DMA ADDRESS, 2-38 
SET FILE ATTRIBUTES, 2-42 
SET RANDOM RECORD, 2-51 
SET/GET USER CODE, 2-2, 2-44 
simple device I/O, 2-1 
source rectangle, 2-65 
spreadsheets, 2-60 
stack pointer, 2-2 
start/stop scroll, 2-10, 2-17 
system 

calls, 2-2 
function summary, A-1 
parameter area, 1-3 

SYSTEM RESET, 2-8 

T 

tab characters, 2-9, 2-10 
text (ASCII) file, 2-4 
TPA 

See Transient Program Area 
transient program, 1-3 
Transient Program Area (TPA) , 

1-1 

u 

unallocated block, 2-53 
unambiguous filename, 2-49 
user directories, C-1 
user number, 2-24 

conventions, C-1 
override current user 

111.Jrnber, C-1 
set or interrogate, 2-44 

?ersion independent 
programming, 2-21 

''idea 
intensive applications, 2-60 
operations, 2-2 

virtual file size, 2-49 

w 

warm start, 2-23, 2-38 
word processing, 2-60 

write 
operations, 2-2b 
protection, 2-•rn 
write-pending records, 2-55 

WRITE PROTECT DISK, 2-2, 2-22, 
2-40, 2-41 

WRITE RANDOM, 2-30, 2-~7, 2-53 
WRITE RANDOM WITH ZERO FILL, 

2-30, 2-53 
WRITE SEQUENTIAL, 2-32 

Index-4 



Personal CP/M ™ 
8-Bit Operating System 

Syste01 Guide 



COPYRIGHT 

Copyright © 1984 by Digital Research Inc. All 
rights reserved. No part of this publication may be 
reproduced, transmitted, transcribed, stored in a 
retrieval system, or translated into any language or 
computer language, in any form or by any means, 
electronic, mechanical, magnetic, optical, chemical, 
manual o:c otherwise, without the prior written 
permission of Digital Research I nc, Post Office Box 
579, Pacific Grove, California, 93950. 

DI SCLAIMER 

Digital Research Inc. makes no representations or 
warranties with respect to the contents hereof and 
specifically disclaims any implied warranties of 
merchan tabi 1 i ty or fitness for any particular 
purpose. Further, Digital Research Inc. reserves 
the right to revise this publication and to make 
changes from time to time in the content hereof 
without obligation of Digital Research Inc. to 
notify any person of such revision or changes. 

TRADEMARKS 

CP/M and Digital Research an.d its logo are 
registered trademarks of Digital Research Inc. 
Personal CP/M, DDT, LINK-80, MAC, SID, and TEX are 
trademarks of Digital Research Inc. IBM is a 
registered trademark of International Business 
Machines. Zilog and Z80 are registered trademarks 
of Zilog Inc. 



Foreword 

Personal CP/M™ is a single-user operating system for 8-bit computers 
that use the Zilog® Z80® microprocessor. Personal CP/M is upward­
compatible with its predecessor, CP/M® release 2, and offers more 
features and higher performance than CP/M release 2. This manual 
describes the procedures required to adapt Personal CP/M for a 
custom hardware environment. 

Personal CP/M Documentation Set 

The Personal CP/M documantation set includes the following 
manuals: 

• Extension of MZ-800 P-CP/M 

• S stem User's Guide (cited as 

•Personal CP/M 8-Bit O eratin S stem·Pro rammer's Guide (cited 
as Personal CP M Programmer's Guide) 

• Personal CP/M 8-Bit Operating System System Guide (cited as 
Personal CP/M System Guide) 

The Extension of MZ-800 P-CP/M manual contains explanation of 
the parts of the User's Guide, Programmer's Guide, and System 
Guide which change when the P-CP/M is used with the MZ-800, and 
information on the addtional utilities available with the 
MZ-800. 

The Personal CP/M User's Guide introduces the Personal CP/M 
opera ting system and tells how to use it. The Personal CP/M 
Programmer's Guide presents information for application programmers 
who are creating or adapting programs to run under Personal CP/M . 

This manual, the Personal CP/M System Guide, describes the steps 
necessary to create or modify a Personal CP/M Basic Input/Output 
System tailored for a specific hardware environment. This manual 
assumes you are familiar with systems programming in Z80 assembly 
language and that you have access to a CP/M release 2 system. It 
also assumes you understand the target hardware and that you have 
functioning disk I/O drivers. 

You should be familiar with the Personal CP/M Programmer's Guide, 
which describes the system calls used by the application programmer 
to interface with the operating system. The Programmer's Utilities 
Guide for the CP/M Family of Operating Systems documents the 
assembling and debugging utilities. 

iii 



Bow the System Guide Is Organized 

Section 1 of the Personal CP/M System Guide is an overview of the 
component modules of the Personal CP/M operating system. Section 2 
provides a description of system generation for all-RAM and ROM/RAM 
systems. 

Section 3 describes bootstrapping procedures for Personal CP/M. 
Section 4 describes the entry points and the required input and 
returned parameters of all the modules of the BIOS. Section 5 
describes the diskette header and other pertinent data. 

In this manual, boldface type represents user input. 

iv 



Table of Contents 

1 System overview 

1.1 
1. 2 

Introduction . • . • . • • 
Personal CP/M Organization 

1. 2 .1 
1. 2. 2 
1. 2 .3 
1. 2.4 

Memory Layout . • . . . . . • . . • • • 
Console Command Processor (CCP) .•••.. 
Basic Disk Operating System 
Basic Input/Output System . . • . • • . 

1.3 Input/Output Devices 

1.3.1 
1. 3. 2 

Character Devices • . . 
Disk Devices • . • • . ••• 

1.4 System Generation and Cold Start Operation 

2 Syste• Generation 

3 

2.1 Overview . . . . . . . . . . . . . . . . . . . 
2.2 Creating a Personal CP/M System File 

2.2.1 All-RAM Systems 
2.2.2 RAM/ROM Systems 

Bootstrap Procedures 

4 BIOS Functions 

4.1 Introduction 

4.2 BIOS Entry Points . 

4.3 BDOS Entry Points • 

4.4 BIOS Entry Descriptions . 

BOOT Function . 
WBOOT Function 
CONST Function 
CONIN Function 
CONOUT Function 

.. . . . . 

v 

1-1 
1-1 

1-1 
1-2 
1-2 
1-2 

1-3 

1-3 
1-3 

1-4 

2-1 

2-1 

2-2 
2-3 

3-1 

4-1 

4-1 

4-3 

4-4 

4-4 
4-6 
4-7 
4-7 
4-8 



5 Disk 

5.1 

5.2 

5.3 

5.4 

Table of Contents 
(continued) 

LIST Function . . . . . . . . . . . . . . 
AUXOUT Function • . • • . . • . . • . . . . 
AUXIN Function . • . • . • • • . • . . 
HOME Function • • • • • • • . . . . 
SELDSK Function • • • • . • • . • • . • . . . • 
SETTRK Function . . . • • • • • • • • • . 
SETSEC Function . . • • • • . • . . . . • . . . • • 
SETDMA Function • • • • . • • • . . . . . . 
READ Function . . • . . • . . . • • • . . 
WRITE Function • • • • • . . . • . . . . . . • 
LIST ST Function • . . . • . . . • . • • • • . . • • 
SECTRN Function . . • . . . . . . • . . 
?AUXIS Function . . . . . . • . . . . . 
? AUXOS Function • • • • • • • . • • • . . . . • 
?FLUSH Function . . • • . . . . . . . . 
?DISCO Function . . • • • . . . 
?MOV Function . • . . . • . . 
?DSCRF Function . • • . . . . 

Definition Information 

Introduction . . . . . . . . . . . . . . . . . . . 
Disk Definition Tables . . . . . . . 
5.2.l Disk Parameter Header . . . . . . . . . 
5.2.2 Disk Parameter Block . . . . . . . 
The DISKDEF Macro Library . . . . . . 
Sector Blocking and Deb locking . . . . . . 

vi 

4-8 
4-9 
4-9 

4-10 
4-11 
4-12 
4-12 
4-13 
4-14 
4-15 
4-15 
4-16 
4-17 
4-17 
4-18 
4-19 
4-19 
4-20 

5-1 

5-1 

5-1 
5-4 

5-7 

5-11 



Tables 

4-1. 
4-2. 
4-3. 
4-4. 

5-1. 
5-2. 

Figures 

Tables and Figures 

Standard BIOS Functions . . . . . . . . . . . . 
PUBLIC BIOS Subroutines • • . . • • . . . . 
Memory Page Zero Definitions . . .. 
Direct Screen Subfunctions Description •.. 

Disk Parameter Header Elements . . 
Disk Parameter Block Description • 

1-1. Typical Personal CP/M Memory Layout 

2-1. 
2-2. 

5-1. 
5-2. 
5-3. 

All-RAM System Configuration 
ROM/RAM System Configuration . 

Disk Parameter Header . . . . . . . . . . . . . 
Array of DPH Entries • • . . . . . . . . . . . . 
SELDSK Example . . . . . . . . . . . . . . . 

vii 

4-1 
4-2 
4-5 

4-21 

5-2 
5-4 

1-2 

2-2 
2-3 

5-1 
5-3 
5-3 





1.1 Introduction 

Section 1 
System Overview 

This section is an overview of the Personal CP/M operating system, 
with a description of the system components and how they relate to 
each other. Included is a discussion of memory configurations and 
supported hardware. The last portion summarizes the creation of a 
customized version of the Personal CP/M Basic Input Output System 
(BIOS). 

Personal CP/M provides an environment for program execution on 
computer systems that use the Zilog Z80 microprocessor chip. 
Personal CP/M provides rapid access to data and programs through a 
file structure that supports dynamic allocation of space for 
sequential and random access files. 

Personal CP/M supports a maximum of 16 logical floppy or hard disks, 
or disk-like devices, with a storage capacity of up to 512 megabytes 
each. The maximum file size supported is 32 megabytes. You can 
configure the number of directory entries and block size to satisfy 
various needs. 

Personal CP/M is supplied for user memory sizes up to 64 kilobytes. 
The operating system requires about 6 kilobytes of memory plus that 
needed for the BIOS. 

1.2 Personal CP/M Organization 

Personal CP/M is composed of three system modules: the Console 
Command Processor (CCP), the Basic Disk Operating System (BOOS), and 
the Basic Input/Output System (BIOS). These modules are linked 
together to form the operating system. They are discussed 
individually in this section. 

1.2.1 Memory Layout 

The Personal CP/M operating system is designed to reside in the top 
of available memory. Figure 1-1 illustrates two types of memory 
configurations: ROM/RAM and an all-RAM system. All or part of the 
operating system code can reside in ROM, with the remaining portion 
(data areas) at the top of available RAM. In this event, a gap in 
memory between RAM and ROM can exist. For systems with all RAM, the 
entire operating system will be at the top of the available memory 
(typically 64 kilobytes maximum). 

1-1 



Personal CP/M System Guide 1 .2 Personal CP/M Organization 

ROM Al l RAM 
FFFF - FFFF -

BIOS Code BIOS Data 

BOOS Code BOOS Data 

RAM BIOS Code 

BIOS Data BOOS Code 

BDOS Data CCP 

CCP 

TPA TPA 
0100 - 0100 -

Page Zero Page Zero 
0000 - 0000 -

Figure 1-1. Typical Personal CP/M Memory Layout 

1.2.2 Console Command Processor 

The Console. Command Processor (CCP) provides the user interface to 
Personal CP/M. The CCP uses the BDOS to read user commands and load 
programs, and provides several built-in user commands. It also 
provides parsing of command lines entered at the console. 
Typically, the standard CCP autoloads the Visual CCP (VCCP). 

1.2.3 Basic Disk Operating System 

The Basic Disk Operating System (BDOS) provides operating system 
services to applications programs and to the CCP. These include 
character I/O, disk file I/O (the BDOS disk I/O operations comprise 
the Personal CP/M file system), and others. 

1.2.4 Basic Input/Output Syste• 

The Basic Input/Output System (BIOS) is the interface between 
Personal CP/M and its hardware environment. All physical input and 
output is done by the BIOS. It includes all physical device 
drivers, tables defining disk characteristics, and other hardware­
specific functions and tables. The CCP and BOOS do not change for 

1-2 



Personal CP/M System Guide 1.2 Personal CP/M Organization 

different hardware environments because all hardware dependencies 
have been concentrated in the BIOS. Each hardware configuration 
needs its own BIOS. Section 4 describes the BIOS functions in 
detail. Section 5 discusses the disk parameter and formatting data 
and blocking/deblocking algorithms. 

1.3 Input/Output Devices 

Personal CP/M recognizes two basic types of I/O devices: character 
devices and disk drives. Character devices are serial devices that 
handle one character at a time. Disk devices handle data in units 
of 128 bytes, called logical sectors, and provide a large number of 
physical sectors which can be accessed in random, nonsequential 
order. Logical and physical sector sizes can be different. In 
fact, real systems might have devices with characteristics different 
from disks, such as a block-accessible, random-access tape cassette ­
dev ice. It is the BIOS's responsibility to resolve differences 
between the logical device models and the actual physical devices. 

1.3.1 Character Devices 

Character devices are input/output devices that accept or supply 
streams of ASCII characters to the computer. Typical character 
devices are consoles, printers, and modems. In Personal CP/M, 
operations on character devices are done one character at a time. 

1.3.2 Disk Devices 

Disk devices are used for file storage. They are organized into 
sectors and tracks. Each logical sector contains 128 bytes of data. 
(If physical sector sizes other than 128 bytes are used on the 
actual disk, then the BIOS must do a logical-to-physical mapping to 
simulate 128-byte logical sectors to the rest of the system.} All 
disk I/O in Personal CP/M is done in one-sector units. Usually, a 
track or cylinder of a disk is a group of physical sectors. The 
number of sectors on a track is a constant depending on the 
particular device. (The characteristics of a disk device are 
specified in the Disk Parameter Block for that device. See Section 
5 for more information.) 

To locate a particular physical sector, the disk, track number, and 
sector number must all be specified. 

1-3 



Personal CP/M System Guide 1.4 System Generation 

1.4 System Generation and Cold Start Operation 

Generating a Personal CP/M system is done by linking together the 
CCP, BDOS, and BIOS to create the operating system. Section 2 
discusses how to create the opera ting system. The bootstrap process 
is discussed in Section 3. 

End of Section 1 

1-4 



2.1 Overview 

Section 2 
System Generation 

This section describes how to build a custom version of Personal 
CP/M by combining your BIOS with the BOOS supplied by Digital 
Research. Section 3 describes how to boot the system. 

This section assumes that you have access to a working 8-bit CP/M 
system capable of reading the standard single-sided, single-density 
8-inch disk on which Personal CP/M is distributed. You should also 
be able to create the media (disks, disk-like devices, or ROMs) that 
the target system will use. It is also assumed that the BIOS is 
written with an assembler that generates a REL format relocatable 
object file compatible with the Digital Research LINK-80 .. linker. 

The Personal CP/M operating system is generated by using the linker 
to resolve external label references between the BDOS and B!OS, and 
to bind them and the CCP to absolute memory locations. 

2.2 Creating a Persona1 CP/M System File 

The CCP and the BOOS for Personal CP/M are distributed on the 
following three files: 

• CCP.REL - for use with all systems 

• BDOSH.REL - for use with systems in which the BDOS and BIOS are 
loaded into and executed from RAM 

• BDOSL •. REL - for use with systems in which the BDOS and BIOS are 
executed in ROM 

You must link your BIOS with one of the two BOOS files. The 
BDOSH.REL file is used in systems in which the data segment is 
linked to a higher address than the code segment, as is typical of 
systems that execute out of RAM. The BDOSL.REL file is used in 
systems in which the data segment, which must reside in RAM, is 
linked to a lower address than the code segment, as is the case in a 
system where BDOS and BIOS execute out of a ROM at the top end of 
the address space. 

Each of the Personal CP/M elements, CCP, BDOS, and BIOS, must begin 
on a page boundary; that is, at an address that is a multiple of 
lOOH. The BDOS contains linkage information that automatically 
forces the BIOS to begin on a page boundary. 

2-1 



Personal CP/M System Guide 2.2 Cr eating a System File 

For systems in which the BDOS and BIOS execute out of ROM, the BIOS 
data segment should consist of 'define storage' pseudo-ops only. 
Any data that must be initialized at cold or warm boot time should 
be transferred from read-only images o f t h e data in the BIOS code 
segment. 

2.2.1 All-RAM Systems 

To generate a Personal CP/M operating system image file that can be 
loaded into RAM at or near the top of the memory address space, the 
following procedure should be used: 

1. Determine the highest page boundary on which the BDOS can be 
located. This is done by adding the size of the BDOS code 
segment (llOOH} and the BDOS da t a segment (OOBFH for 
BDOSH.REL}, plus the size of your BIOS code and data segments. 
For example, if your BIOS code segment is OA23H bytes, and the 
data segment is 0280H bytes, then the following memory map 
represents the logical arrangement of the Personal CP/M system 
within memory: 

FFFF 
BIOS data 

FCE2 
BDOS data 

FC23 
BIOS code 

F200 
BDOS code 

ElOO 

Figure 2-1. All-RAM System Configuration 

2. Link the BDOS and BIOS together with the following command: 

A>link pcpm[lelOO]=bdosh,bios 

See the Programmer's Utilities Guide for LINK-80 command line 
options. This creates the f i le PCPM.COM, which contains an 
absolute image of the object code to be loaded at ElOOH, rather 
than the standard COM file, which contains an image of the 
object code to be loaded at OlOOH. Note that the BDOS data 
segment is not required to start on a page boundary in this 
case. 

2-2 



Personal CP/M System Guide 2.2 Creating a System File 

3. Link the CCP to reside at OSOOH less than the load address used 
in the previous LINK command: 

A>link ccp[ld900) 

4. The CCP .COM and PCPM.COM files, together with a Cold Boot 
Loader, can now be written to the system area of the storage 
media for the target computer. A typical computer system 
executes a small loader program from ROM, that loads the Cold 
Boot Loader in from the system area of the storage medium. The 
Cold Boot Loader then loads the CCP and BDOS/BIOS to the 
addresses that they are linked to, and finally transfers 
control to the cold boot entry point of the BIOS. 

2.2.2 RAM/ROM Systems 

To generate a Personal CP/M operating system image file that can 
execute from ROM at or near the top of the memory address space, the 
following procedure should be used: 

l. Determine a page boundary in ROM at which to locate BOOS. Do 
this by adding the size of the BOOS code segment (llOOH) and 
the size of your BIOS code segment. From the size of the BOOS 
data segment (OOCCH for BOOSL.REL) plus the size of your BIOS 
data segment, determine a page boundary near the top of RAM at 
which to iocate the data segments. Assuming an BK byte ROM at 
the top of the address space, and a BIOS with the same size 
segments as in the "all-RAM" example, then the following memory 
map represents the logical arrangement of the Personal CP/M 
system within memory: 

FFFF 

FlOO 

£000 

DCCC 

DCOO 

Unused ROM 

BIOS code 

BOOS code 

BIOS data 

BOOS data 

} 
} 

ROM 

RAM 

Figure 2-2. ROM/RAM System Configuration 

2-3 



Personal CP/M System Guide 2.2 Creating a System File 

2. Link the BDOS and BIOS together with the command: 

A>link pcpm[ldcOO , ddcOO,peOOO ] =bdosl, b ios 

This creates the file PCPM . COM, which contains an absolute 
image of the object data and code to be loaded at DCOOH, rather 
than the standard COM file, which contains an image of the 
object code to be loaded at OlOOH . Note that the BDOS data 
segment is required to start on a page boundary in this case 

3. Link the CCP to reside at 0800H less than the load address used 
in the previous LINK command: 

A>link ccp[ld400] 

4. The first part of the PCPM.COM file contains an image of the 
data segments of BDOS and BIOS. The fi rst 2*n sectors of the 
file, where n is the number of pages difference between the 
data address and the program address in the LINK command for 
PCPM.COM, must be discarded by your utility program that 
creates the ROM. This is because the data segments reside in 
RAM, and must be treated as uninitialized (see Section 2.2). 
In the example above, 8 sectors (2*4 pages) would be discarded. 
The remainder of the PCPM.COM file is then programmed into the 
ROM. 

5. The CCP.COM file, which needs to be reloaded at every Warm 
Boot, can now be written to the system area of the storage 
media for the target computer. Another possibility, provided 
that there is sufficient room (0800H bytes) left over in the 
ROM, is to store a copy of the CCP in ROM and move it to its 
execution address at Cold and Warm Boot times. 

End of Section 2 

2-4 



Section 3 
Bootstrap Procedures 

The bootstrap process involves the following three procedures: 

1. Do any necessary preliminary hardware initialization. 

2. Get the executable object code of the Personal CP/M operating 
system into memory for execution. 

3. Transfer control to the BOOT entry point of the BIOS. 

If Personal CP/M is executing out of RAM, the cold boot loader must 
load the CCP, BOOS, and BIOS into memory at the addresses to which 
they were linked from the system area of the computer's disk, or 
disk-like storage media. 

If Personal CP/M is executing out of ROM, the BIOS has the 
responsibility of loading the CCP into memory at cold and warm boot. 
As mentioned in Sect ion 2, the BIOS is also responsible for 
initializing any RAM data areas necessary to its operation. 

End of Section 3 

3-1 





Section 4 
BIOS Functions 

4.1 Introduction 

All Personal CP/M hardware dependencies are concentrated in 
subroutines that are collectively referred to as the Basic 
Input/Output System (BIOS). A Personal CP/M system implementor can 
tailor Personal CP/M to fit nearly any Z80 operating environment. 
This section describes the calling conventions and parameters of 
each BIOS function, and the actions it must perform. 

4.2 BIOS Entry Points 

Entry to the BIOS is through a jump table located at the beginning 
of BIOS and labels declared PUBLIC. For Personal CP/M, there are 17 
fixed jump vectors, with additional functions being defined as 
PUBLIC. The 17 jump vectors are listed in Table 4-1, and the PUBLIC 
routines are listed in Table 4-2. The BIOS subroutines can be empty 
for certain functions (contain a single RET instruction) during 
reconfiguration of Personal CP/M, but the entries must be present in 
the jump vector and PUBLIC declarations as well. 

Function I 
BOOT 

WBOOT 

CONST 

CO NIN 

CO NO UT 

LIST 

AUX OUT 

AUXIN 

HOME 

SELDSK 

Table 4-1. Standard BIOS Functions 

Input 

None 

None 

None 

None 

C=Character 

C=Character 

C=Character 

None 

None 

C=Drive 0-15 
E=initial select flag 

4-1 

I Output 

None 

None 

A=OFFH if ready 
A=OOH if not ready 

A=Character 

None 

None 

None 

A=Character 

None 

HL=DPH address 
HL=OOOH if invalid 

drive 



Personal CP/M System Guide 4.2 BIOS Entry Points 

Function I 
SETTRK 

SET SEC 

SETDMA 

READ 

WRITE 

LISTST 

SECT RN 

Function I 
?AUXIS 

?AUXOS 

?FLUSH 

?DISCD 

?MOV 

?DSCRF 

?BYTBC* 

?BYTBA* 

Table 4-1. (continued) 

Input 

BC=Track No 

BC=Sector No 

BC=DMA Address 

None 

C=deblocking code 

None 

BC=Logical Sector 
Number 

I Output 

None 

None 

None 

A=OOH if no Error 
A=OlH if Nonrecoverable 

Error 

A=OOH if no Error 
A=OlH if Nonrecoverable 

Error 

A=OOH if not ready 
A=OFFH if ready 

HL=Physical Sector 
Number 

DE=Translation Table 
Address 

Table 4-2. PUBLIC BIOS Subroutines 

Input 

None 

None 

None 

None 

HL=destination 
address 

DE=source address 

DE=SFB address 

DE=COPY block 
address 

DE=ALTER block 
address 

I output 

A=OOH if not ready 
A=OFFH if ready 

A=OOH if not ready 
A=OFFH if ready 

A=OOOH if no error 
A=OOlH if physical error 
A=002H if disk R/O 

None 

HL & DE point to next 
bytes following MOVE 

None 

A=OOH implemented copy 
A=OFFH not implemented 

A=OOH successful alter 
A=OFFH not implemented 

* Not supported by the MZ-800 P-CP/M 

4-2 



Personal CP/M System Guide 4.2 BIOS Entry Points 

All simple character I/O operac~ons are assumed to be performed in 
ASCII, both uppercase and lowercase. With some programs an end-of­
file condition for an input device is given by an ASCII -z (lAH). 
Peripheral devices are seen by Personal CP/M as logical devices, and 
are assigned physical devices within the BIOS. 

To operate, BOOS needs the CONST, CONIN, CONOUT, ?FLUSH, and ?MOV 
subroutines (LIS'r, AUXIN, and AUXOUT may be used by PIP, but not the 
BDOS). The initial version of BIOS may have empty subroutines for 
the remaining ASCII devices. 

The characteristics of each device are as follows: 

CONSOLE 

LIST 

AUXILIARY 
INPUT 

AUXILIARY 
OUTPUT 

The principal inte.ra~tive console 
communicates with the user. ·rypically, 
CONSOLE is a memory-mapped video display. 

that 
the 

The principal listing device, if it exists in 
your system. This is an output-only function. 

An auxiliary input device, such as serial 
I/O, paper tape reader, modem, or tape storage 
peripheral. ·rhis is an input only function. 

An auxiliary output device, such as serial 
I/O, paper tape punch, modem, or tape storage 
peripheral. This is an output-only function. 

A single peripheral can be simultaneously the LIST, AUXIN, or AUXOUT 
device. If no peripheral device is assigned as the LIST, AUXIN, or 
AIJXOUT device, the BIOS you create should give an appropriate error 
message. This prevents the system from hanging if the device is 
accessed by PIP or some user program. 

When the BDOS calls a BIOS function, certain registers will contain 
information (entry parameters), and are described in the folowing 
paragraphs. Also, specific registers are used to return information 
to the BDOS (returned values). The BIOS returns single-byte results 
in register A, and double-byte values in register pair H and L. For 
reasons of compatibility, register A = L and register B = H upon 
return in all cases. The size of the result depends on the 
particular function. 

4.3 BDOS Entry Points 

The BDOS contains three PUBLIC entry points: ?bdosc, ?bdosw, and 
?bdos. The ?bdosc entry point is called by the BIOS Cold Boot code 
(see the description of the BOOT entry point). The ?bdosw entry 
point is called by the BIOS Warm Boot code (see the description of 
the WBOOT entry point). Finally, the ?bdos entry point is used as 
the address of the jump instruction written to location OOOSh at 
both Cold and Warm Boot time. 

4-3 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

4.4 BIOS Entry Descriptions 

BIOS Function: BOOT 

Get control from Cold Boot Loader 
and initialize system. 

Entry Parameters: None 

Returned Values: None 

The BOOT entry point gets control from the Cold Start Loader or 
Power On/Reset code, and is responsible for the following actions: 

1. Do any remaining system hardware initialization. 

2. Load the CCP, if it was not loaded by the Cold Start Loader. 

3. Display a sign-on message (optional) . 

4. Set OOOOH to jump to BIOS WBOOT entry point. 

5. Set 0003H to OOH to default to the standard 'A>' CCP, or to OlH 
to default to the Visual CCP. 

6. Set OOOSH to jump to ?bdos. 

7. Call the ?bdosc entry point in BDOS. 

8. Load register C with the default user number in the high 
nibble, and the default drive number in the low nibble. 

9. Jump to CCP+0003H for the standard CCP, or to CCP+OOOOH for the 
Visual CCP . 

4-4 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

Table 4-3 gives a description of the locations in page zero (OOOOH 
through OOFFH) that are used by BOOT and other portions of Personal 
CP/M. 

Tab1e 4-3. Memory Page Zero Definitions 

Locations I 
00 - 02H 

03H 

04H 

OSH - 07H 

08H - 0027H 

030H - 037H 

038H - 03AH 

03BH - 03FH 

040H - 04FH 

OSOH - OSBH 

OSCH - 07CH 

07DH - 07FH 

080H - OFFH 

Contents 

Contains a jump instruction to the warm 
start entry point. This permits a 
programmed restart (JMP OOOOH). 

Used as the VCCP flag: if clear (O), then 
jump to standard CCP; if set ( l), then 
load and execute the VCCP. 

Current default user number (high nibble) 
and current default drive number (low 
nibble). 

Contains a jump instruction to the BDOS. 
A CALL OOOSH provides the primary entry 
point to the BDOS described in the 
Personal CP/M Programmer's Guide. 

Interrupt locations l through 5 not used. 

Interrupt location 6, not currently used, 
but reserved. 

Restart 7; contains a jump instruction 
into the DDTn• or SID"' program when running 
in debug mode for programmed breakpoints, 
but is not otherwise used by Personal 
CP/M. 

Not currently used; reserved. 

A 16-byte area reserved for scratch by 
BIOS, but is not used for any purpose in 
the distribution version of Personal CP/M. 

Not currently used; reserved. 

Default file control block produced for a 
transient program by the CCP. 

Optional default random record position. 

Default 128-byte disk buffer. Also filled 
with the command line when a transient is 
loaded under the CCP. 

4-5 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function : WBOOT 

Get control when a warm start occurs. 

Entry Parameters: None 

Returned Value: None 

The WBOOT entry point gets control whenever a Warm Boot occurs. 
That is, a user program jumps to OOOOH or calls BDOS with register C 
set equal to 0, and is responsible for the following actions: 

1. Load the CCP. 

2. Set OOOOH to jump to BIOS WBOOT entry point. 

3. Set OOOSH to jump to ?bdos. 

4. Call the ?bdosw entry point in BOOS. 

5 . Load register c wi th the contents of 0004H. 

6. If 0003H equals OOH, then jump to CCP+0003H, otherwise jump to 
CCP+OOOOH. 

4-6 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: CONST 

Sample the status of the console input device. 

Entry Parameters: None 

Returned Value: A=OFFH if a console character 
is ready to be read 

A=OOH if no console character 
is ready to be read 

Read the status of the currently assigned console device and return 
OFFH in register A if a character is ready to be read, or OOH if a 
character is not ready. 

BIOS Function: CON IN 

Read a character from the console. 

Entry Parameters: None 

Returned Value: A=console character 

Read the next console character into register A with no parity. If 
no console character is ready, wait until a character is available 
before returning. 

4-7 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: CONOUT 

Output a character to console. 

Entry Parameters: C=console character 

Returned Value: None 

This function sends the character from register C to the console 
output device. The character is in ASCII. You might need to 
include a delay or filler characters for a linefeed or carriage 
return if your console device requires some time interval at the 
end of the line. 

BIOS Function: LIST 

Output character to list device. 

Entry Parameters: C=character 

Returned Values: None 

This function sends an ASCII character from register C to the 
currently assigned listing device. If your list device requires 
some communication protocol, it must be handled here. 

4-8 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: AUXOUT 

Output a character to the 
auxiliary output device. 

Entry Parameters: C=character 

Returned Values: None 

This function sends an 8-bit character from register C to the 
currently assigned auxiliary output device. 

BIOS Function: AUXIN 

Read a character from the 
auxiliary input device. 

Entry Parameters: None 

Returned Value: A=character 

This function reads the next 8-bit character from the AUXIN device 
into register A. 

4-9 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: HOME 

Select track 00 of the specified drive. 

Entry Parameters: None 

Returned Values: None 

This function positions the disk head of the currently selected disk 
to the track 00 position. Usually, you can translate the HOME call 
into a call on SETTRK with a parameter of O. 

4-10 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: SELDSK 

Select the specified disk drive. 

Entry Parameters: C=disk drive (0-15) 
E=initial select flag 

Returned Values: HL=address of the Disk Parameter 
Header if drive exists 

=OOOOH if drive does not exist 

This function selects the disk drive specified in register C for 
further operations. Register C contains O for drive A, 1 for drive 
B, and so on up to 15 for drive P. 

On each disk select, SELDSK must return in HL the base address of a 
16-byte area, called the Disk Parameter Header (DPH), as described 
in Section 5. For standard floppy disk drives, the contents of the 
header and associated tables do not change. The program segment 
included in the sample BIOS performs this operation automatically. 

If there is an attempt to select a nonexistent drive, SELDSK .returns 
HL=OOOOH as an error indicator. Although the function must return 
the header address on each call, it may be advisable to postpone the 
physical disk select operation until an I/O function (seek, read, or 
write) is actually performed. Disk select ope.rations can occur 
without performing any disk I/O, and many controllers will unload 
the head of the current disk before selecting the new drive. This 
could waste time, and cause an excessive amount of noise and head 
wear. The least-significant bit of register E is zero if this is 
the first occurrence of the drive select since the last cold or warm 
start. 

4-11 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: SETTRK 

Set specified track number. 

Entry Parameters: BC=track number 

Returned Values: None 

Register pair BC contains the track number for a subsequent disk 
access on the currently selected drive. The sector number in BC is 
the same as the number returned from the SECTRN entry point. You 
can choose to seek the selected track at this time, or delay the 
seek until the next read or write actually occurs. Register BC can 
take on values in the range 0-76, corresponding to valid track 
numbers for standard floppy disk drives, and 0-65535 for nonstandard 
disk subsystems. 

BIOS Function: SETS EC 

Set specified sector number. 

Entry Parameters: BC=sector number 

Returned Values: None 

Register pair BC contains the sector number for the subsequent disk 
access on the currently selected drive. This number is the value 
returned by SECTRN. Usually, actual sector selection is delayed 
until a READ or WRITE operation occurs. This number remains in 
effect until another SETSEC Function is performed. 

4-12 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: SE TD MA 

Set address for subsequent disk I/O. 

Entry Parameters : BC=Direct Memory 
Access Address 

Returned Values: None 

Register pair BC contains the Direct Memory Access {DMA) address for 
the subsequent READ or WRITE operation. For example, if B=OOH and 
C=80H when BDOS calls SETDMA, then the subsequent write operation 
gets its data from 80H through OFFH, until the next call to SETDMA 
occurs. The initial DMA address is assumed to be 80H. The 
controller need not actually support Direct Memory Access. If, for 
example, all data transfers are through I/O ports, the BIOS that is 
constructed uses the 128-byte area starting at the selected DMA 
address for the memory buffer during the subsequent read or write 
operations. 

4-13 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Funct i on: READ 

Read a sector from the specified drive. 

Entry Parameters: None 

Returned Values: A=OOOH if no errors occurred 
A=OOlH i f nonrecoverable error 

condition occurred 

Assuming that the drive has been selected, the 
been set, and the DMA address has been 
subroutine will attempt to read one sector. 
codes will be returned in register A: 

Zero=no errors detected 

track and sector have 
specified, the READ 
The following error 

Nonzero=nonrecoverable error condition detected 

Personal CP/M responds only to a zero or nonzero value. If an error 
occurs, BIOS should attempt at least ten retries to see if the error 
is recoverable. When an error is reported, the BDOS w i 11 output the 
message "BDOS ERR ON x: BAD SECTOR". The opera tor then has the 
option of typing a RETURN to ignore the error, or ~C to abort. 

4-14 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: WRITE 

Write a sector to the specified drive. 

Entry Parameters: None 

Returned Values: A=OOOH i:C no error occurred 
A=OOlH if nonrecoverab..i.e error 

occurred 

Write the data from the currently se..i.ected DMA address to the 
currently selected drive, track, and sector. Upon each call to 
WRI'rE, the BDOS provides the same error codes as the READ function. 

As in READ, the BIOS should attempt several retries before reporting 
an error. 

BIOS Function: LISTS'r 

Return the ready status of the list device. 

Entry Parameters: None 

Returned Values: A=OOri if list device is not 
ready to accept a character 

A=OFli'H if .iist device is 
ready to accept a character 

The .dIOS LISTS'r function returns the ready status of the list 
device. 

4-15 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: SECTRN 

Translate sector number given translate table. 

Entry Parameters: BC=logical sector number 
DE=transla te table address 

Returned Values: HL=physical sector number 

The user performs logical-to-physical sector translation to improve 
the overall response of Personal CP/M. Standard Personal CP/M is 
shipped on a single-sided, single-density 8-inch disk with a "skew 
factor" of 6, where six physical sectors are skipped between each 
logical read operation. This skew factor allows enough time between 
sectors for most programs to load their buffers without missing the 
next sector. In particular computer systems that use fast 
processors, memory, and disk subsystems, the skew factor can be 
changed to improve overall response. However, you should maintain a 
single-density IBM®-compatible version of Personal CP/M for 
information transfer into and out of the computer system, using a 
skew factor of 6. 

In general, SECTRN receives a logical sector number relative to zero 
in register BC, and a translate table address in register DE. The 
sector number is used as an index into the translate table. 
Registers HL returns the resulting physical sector number. For 
standard systems, the table and indexing code are provided in the 
sample BIOS and need not be changed. 

For the rest of this section, the aros entry points are defined as 
PUBLICs. 

4-16 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: ?AUXIS 

Return input status of auxiliary port. 

Entry Parameters: None 

Returned Values: A=OFFH if ready 
A=OOH if not ready 

The AUXIS routine checks the input status of the auxiliary port. 
This entry point allows full polled handshaking for communications 
support using an auxiliary port. 

BIOS Function: ?AUXOS 

Return the output status of auxiliary port. 

Entry Parameters: None 

Returned Values: A=OFFH if .ready to accept 
a character for 
transmission 

A=OOH if not ready 

The AUXOS routine checks the output status of the auxiliary port. 
This entry point allows full polled handshaking for communications 
support using an auxiliary port. 

4-17 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: ?FLUSH 

Force physical buffer flushing 
for user-supported deblocking. 

Entry Parameters : None 

Returned Values: A=OOH if no error occurred 
A=OlH if physical error occurred 
A=02H if disk is read-only 

The FLUSH buffer entry point allows the system to force physical 
sector buffer flushing when your BIOS is performing its own record 
blocking and deblocking . 

The BOOS calls the FLUSH routine to ensure that no dirty buffers 
remain in memory. The BIOS should immediately write any buffers 
that contain unwritten data. 

Note: If you do not implement FLUSH, the routine must return a zero 
in register A. This can be accomplished by: 

xra a 
ret 

4-18 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: ?DISCO 

Discard de blocking buffers. 

Entry Parameters: E=drive 
( O=A, l=B, ... lS=P) 

Returned Values: None 

This function must discard the contents of the deblocking buffers 
for the specified drive, or set a flag indicating that the buffer 
contents are not valid. 

BIOS Function: ?MOV 

Move a block of bytes from one 
location in memory to another. 

Entry Parameters: HL=destination address 
DE=source address 
BC=byte count 

Returned Values: HL and DE must point to 
next bytes following 
move operation 

The BOOS calls the MOVE routine to perform memory-to-memory block 
moves. This allows use of the zao LDIR instruction or special DMA 
hardware, if available. Note that arguments in HL and DE are 
reversed from the Z80 machine insruction, necessitating the use of 
XCHG instructions on either side of the LDIR. The BDOS uses this 
routine for all large memory copy operations. On return, the HL and 
DE registers are expected to point to the next bytes following the 
move. 

4-19 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

BIOS Function: ?DSCRF 

Perform direct screen functions. 

Entry Parame t ers: 

byte 0: 
byte 1-2: 

OR 

DE points to : 

Subfunction number 
Pointer to extended 
information 

byte 1: Column value 
byte 2: Row value 

Returned Values: Depends upon subfunction 
(described below) 

The Direct Screen Function routines provide direct access to cursor 
movement and screen editing functions for video-intensive 
applications, such as word process i ng and electronic spreadsheets. 
Direct access is important in systems with memory-mapped displays. 
This call not only permits direct access to these functions, but can 
also return information to the calling program about whether a 
specific function executes quickly or slowly on a part i cular system. 
If a particular function is emulated by BIOS display drivers, the 
system response will be slower than the direct screen access. 

Upon entry to this BIOS function, register DE points to a three-byte 
block containing the following: 

or 

Byte 0: Subfunction number 
Bytes 1-2: Pointer to extended information 

Byte 1; 
Byte 2: 

Column value 
Row value 

It is the responsibility of the BIOS to report in the bit map 
returned by subfunction O whether the subfunction is s upported. The 
subfunctions supported by DSCRF are described in the following 
paragraphs. 

4- 20 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

Tab1e 4-4. Direct Screen Subfunctions 

Subfunction I Description 

0 SUBFUNCTIONS SUPPORTED 
Returned value: HL=Pointer to a four byte 

block of memory as follows: 

byte 0: 

byte 1: 

byte 2: 

byte 3: 

07 

15 

23 

06 

14 

22 

05 04 

13 12 

21 20 

03 02 01 00 

11 10 09 08 

19 18 17 16 

27 26 25 24 

The corresponding bit is set if a particular 
subfunction is supported in the BIOS. 

1 SUBFUNCTIONS EMULATED 
Returned value: HL=Pointer to a four-byte 

block of memory as in 
Sub-function 0, above. 

2 DISPLAY SIZE 

3 

Returned Value: H=number of columns (n-1) 
L=number of rows (n-1) 

IDENTIFY TERMINAL 
Returned Value: HL=Pointer to null-terminated 

identifier string. 

For example, a VT-52-type terminal would return 
the bytes: ESCape, '/', 'K', NULL. 

4 CURSOR UP 
Does not scroll screen down if the cursor is at 
the top of screen. 

5 CURSOR DOWN 
Does not scroll screen up if the cursor is at the 
bottom of screen. 

4-21 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

Table 4-4. (continued) 

Subfunction I Description 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

CURSOR LEFT 
Wrap depends on the mode set by Subfunction 26 or 
27. 

CURSOR RIGHT 
Wrap depends on the mode set by Subfunction 26 or 
27. 

CURSOR HOME 
Move the cursor to the top left corner of screen. 

CURSOR ON 
Make the cursor visible. 

CURSOR OFF 
Make the cursor invisible. 

DIRECT CURSOR ADDRESSING 
Move the cursor to absolute column and row 
indicated by the second and third bytes pointed to 
by DE upon entry to the DSCRF function. 

CLEAR DISPLAY 
Move the cursor to the top left corner of the 
screen, and erase the screen. 

ERASE TO END OF LINE 
Erase all characters to the right of the cursor. 

ERASE TO END OF SCREEN 
Erase all characters to the right of the cursor to 
the end of the screen. 

ENTER ANSI MODE 
Place the display hardware in the ANSI mode. 

4-22 



Personal CP/M System Guide 4.4 BIOS Entry Descriptions 

Table 4-4. (continued) 

Subfunction l Description 

16 ENTER VT52 MODE 
Place the display hardware in the VT52 mode. 

17* ENTER GRAPHICS MODE 
Place the display hardware in the graphics mode. 

18* EXIT GRAPHICS MODE 

19* 

20* 

21 

22 

23 

24 

25 

26 

27 

28 to 255 

Return the display hardware to the current 
terminal mode, either ANSI or VT52. 

ENTER ALTERNATE KEYPAD MODE 

EXIT ALTERNATE KEYPAD MODE 

ENTER HOLD SCREEN MODE 

EXIT HOLD SCREEN MODE 

ENTER REVERSE VIDEO MODE 

EXIT REVERSE VIDEO MODE 

REVERSE LINE FEED 

ENABLE WRAP-AROUND A'r END OF LINE 

TRUNCATE CHARACTERS AT END OF LINE 

Reserved 

* Not supported by the MZ-800 P-CP/M 

4-23 





Section 5 
Disk Definition Information 

5.1 Introduction 

The BIOS provides a standard interface to the physical input/output 
devices in your system. The BIOS interface is defi.ned by the 
functions described in Section 4. Those functions, taken together, 
constitute a model of the hardware environment. Each BIOS is 
responsible for mapping that model onto the real hardware. 

In addition , the BIOS contains disk definition tables which define 
the characteristics of the disk devices which are present, and 
provides some storage for use by the BOOS in maintaining disk 
directory information. 

Section 4 describes the functions that must be performed by the 
BIOS, and the external interface to those functions. This Section 
con ta ins additional in formation describing the reserved locations in 
page zero, and the structure and significance of the disk definition 
tables and information about sector blocking and deblocking. 
Careful choices of disk parameters and disk buffering methods are 
necessary if you are to achieve the best possible performance from 
Personal CP/M. Therefore, this section should be read thoroughly 
before writing a custom BIOS. 

5.2 Disk Definition Tables 

As in other CP/M systems, Personal CP/M uses a set of tables to 
define disk device characteristics. This section describes each of 
these tables and discusses choices of certain parameters. 

5.2.1 Disk Parameter Header 

Each disk drive has an associated 16-byte Disk Parameter Header 
(DPH) that contains information about the disk drive and also 
provides a scratch pad area for certain BOOS operations. Each drive 
must have its own unique DPH. The format of a Disk Parameter Header 
is shown in Figure 5.1. 

XLT 0000 0000 0000 DIRBUF DPB csv ALV 

16b 16b 16b 16b 16b 16b 16b 16b 

Figure 5-1. Disk Parameter Header 

5-1 



Personal CP/M System Guide 5.2 Disk Definition Tables 

Each element of the DPH is a word (16-bit) value and is described in 
Table 5-1. 

Table 5-1. Disk Parameter Header Elements 

Address I 
XLT 

0000 

DIRBUF 

DPB 

csv 

ALV 

Description 

Address of the logical -to-physical sector 
translation table, if used for this 
particular d r ive. Otherwise, the value of 
OOOOH if there is no translation table for 
this drive (that is, the physical and 
logical sector numbers are the same). 
Disk drives with identical sector 
translation can share t he same translate 
table. 

Three scratch pad words for use within the 
BDOS. The initial value is unimportant. 

Address of a 128-byte scratch pad area for 
di.rectory operations within BDOS. All 
DPHs address the same scratch pad area. 

Address of a disk parameter block for this 
drive. Drives with identical disk 
characteristics can address the same disk 
parameter block. 

Address of a scratch pad area used for 
software check for changed disks. This 
address is different for each DPH. 

Address of a scratch pad area used by the 
BDOS to keep disk storage allocation 
information. This address is different 
for each DPH. 

Given n disk drives, the DPHs are arranged in an array. The first 
row of 16 bytes corresponds to drive 0, with the last row 
corresponding to drive n-1. The array appears in Figure 5-2. 

5-2 



Personal CP/M System Guide 5.2 Disk Definition Tables 

DPBASE: 

00 XLT 00 0000 0000 0000 DIRBUF DBP 00 csv 00 ALV 00 

01 XLT 01 0000 0000 0000 DIRBUF DBP 01 csv 01 ALV 01 

(and so on through) 

n-1 XLT n-1 0000 0000 0000 DIRBUF DBPn-1 CSVn-1 ALVn-1 

Figure 5-2. Array of DPH Entries 

The label DPBASE defines the base address of the DPH table. 

A responsibility of the SELDSK subroutine is to return the base 
address of the DPH for the selected drive. The following sequence 
of operations returns the table address, with a OOOOH returned if 
the selected drive does not exist. 

NDISKS 

SELDSK: 

EQU 4 ;NUMBER OF DISK DRIVES 

;SELECT DISK GIVEN BY BC 
LXI H,OOOOH ;ERROR CODE 
MOV A,C ;DRIVE OK? 
CPI NDISKS ;CY IF SO 
RNC ;RET IF ERROR 

;NO 
MOV 
MOV 
DAD 
DAD 
DAD 
DAD 
LXI 
DAD 
RET 

ERROR, CONTINUE 
L,C ;LOW (DISK) 
H,B ;HIGH( DISK) 
H ; *2 
H ;*4 
H ; *8 
H ; *16 
D,DPBASE ;FIRST DPH 
D ;DPH(DISK) 

Figure 5-3. SELDSK Example 

The translation vectors (XLT 00 through XLTn-1) are located 
elsewhere in the BIOS, and simply correspond one-for-one with the 
logical sector numbers zero through the sector count 1. 

5-3 



Personal CP/M System Guide 5.2 Disk Definition Tables 

5.2.2 Disk Parameter Block 

The Disk Parameter Block (DPB), which is addressed by one or more 
DPHs, takes this general form: 

SPT I BSH BL.'1 EXM DSM DRM ALO ALl CKS OFF 

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b 

where each is a byte or word value, as shown by the 8b or l6b 
indicator below the field. Table 5-2 gives a description of the 
Disk Parameter Block. 

Table 5-2. Disk Parameter Block Description 

Word Value I Description 

SPT total number of sectors per track 

BSH data allocation block shift factor, determined 
by the data block allocation size 

BLM data allocation block mask ((2~BSH)-l) 

EXM extent mask, determined by the data block 
allocation size and the number of disk blocks 

DSM total storage capacity of the disk drive 

DRM total number of directory entries that can be 
stored on this drive. (ALO,ALl determine 
reserved directory blocks.) 

CKS size of the directory check vector 

OFF number of reserved tracks at the beginning of 
the (logical) disk 

The values of BSH and BLM implicitly determine the data allocation 
size, BLS, which is not an entry in the DPB. Given that the 
designer has selected a value for BLS, the values of BSH and BLM are 
shown in the following tabulation: 

5-4 



Personal CP/M System Guide 

BLS 

1024 
2048 
4096 
8192 

16384 

BSH 

3 
4 
5 
6 
7 

BLM 

7 
15 
31 
63 

127 

5.2 Disk Definition Tables 

All values are decimal. The value of EXM depends upon both the BLS 
and whether the DSM value is less than 256 or greater than 255. For 
DSM less than 256, the value of EXM is given by: 

BLS EXM 

1024 0 
2048 1 
4096 3 
8192 7 

16384 15 

For DSM greater than 255, the value of EXM is given by: 

BLS EXM 

1024 N/A 
2048 0 
4096 1 
8192 3 

16384 7 

The value of DSM is the maximum data block number measured in BLS 
units supported by this particular drive. The product BLS * (DSM + 
1) is the total number of bytes held by the drive and, of course, 
must be within the capacity of the physical disk, not counting the 
reserved operating system tracks. 

The DRM entry is one less than the total number of directory entries 
that can take on a 16-bit value. The values of ALO and AL! are 
determined by DRM. ALO and AL! values together can be considered a 
string of 16-bits, as shown below: 

ALO ALl 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

5-5 



Personal CP/M System Guide 5.2 Disk Definition Tables 

Position 00 corresponds to the high-order bit of the byte ALO, and 
position 15 corresponds to the low-order bit of the'byte ALl. Each 
bit posit ion reserves a data block for a number of directory 
entries, thus allowing a total of 16 data block s to be assigned for 
directory entries (bits are assigned starting at 00 a nd filled to 
the right through position 15). Each directory entry occupies 32 
bytes, resulting in the following tabulation: 

BLS Directory Entr i es 

1024 32 times # bits 
2048 64 times # bits 
4096 128 times # bits 
8192 256 times # bits 

16384 512 times # bits 

If ORM = 127 (128 directory entries) and BLS = 1024, there are 32 
directory entries per block, requ i ring four reserved blocks. In 
this case, the four high-order bits of ALO are set, resulting in the 
values ALO = OFOH and ALl = OOH. 

The CKS value is determined as follows: 

1. If the disk drive media is removable , then CKS = (ORM + 1)/4, 
where ORM is the last directory entry number. 

2. If the media are fixed, then CKS = 0. No directory records are 
checked in this case. 

Finally, the OFF field determines the number of tracks that are 
skipped at the beginning of the p hysical disk. This value is 
automatically added whenever SETTRK is called. It can be used as a 
mechanism for skipping reserved opera ting system tracks or for 
partitioning a large disk into smaller segmented sections. 

To complete the discussion of the DPB, several DPHs can address the 
same DPB if their drive characteristics are identical. Further, the 
DPB can be dynamically changed when a new drive is addressed. Since 
the BDOS copies the DPB values to a local area whenever the SELDSK 
function is called, simply change the pointer in the DPH. 

Returning back to the DPH for a particular drive, the two address 
values, CSV and ALV, reference areas of un i nitialized memory in the 
BIOS data segment. The areas must be unique for each drive, and the 
size of each area is determined by the values in the DPB. 

5-6 



Personal CP/M System Guide S.2 Disk Definition Tables 

The size of the area addressed by CSV is CKS bytes, which is 
sufficient to hold the directory check information for this 
particular drive. If CKS = (DRM + 1)/4, you must reserve (DRM + 
1)/4 bytes for directory check use. If CKS = O, no storage is 
reserved. 

The size of the area addressed by ALV is determined by the maximum 
number of data blocks allowed for this particular disk, and is equal 
to 2*(DSM/8+1). Two copies of the allocation map for the disk are 
kept in this area: the first vector stores temporarily allocated 
blocks resulting from write operations, the second stores 
permanently allocated blocks resulting from CLOSE FILE operations. 

5.3 The DISKDBP Macro Library 

A macro library which is on the destribution disks, called DISKDEF, 
greatly simplifies the table construction process. Of course, you 
must have access to the MAC™ macro assembler to use the DISKDEF 
facility. 

A BIOS disk definition consists of the following sequence of macro 
statements: 

MACLIB DISKDEF 

..... 
DISKS n 
DISKDEF 0, ... 
DISKDEF 1, ... 

DISKDEF n-1 

ENDEF 

TheMACLIB statement loads the DISKDEF.LIB file (on the same disk as 
the BIOS) into MAC' s internal tables. The DISKS macro call follows, 
which specifies the number of drives to be configured with the 
user's system, where n is an integer from 1 to 16. A series of 
DISKDEF macro calls then follow that define the characteristics of 
each logical disk_, 0 through n-1 (corresponding to logical drives A 
through P). The DISKS and DISDEF macros generate the in-line fixed 
data tables described in the previous section, and must be placed in 
a nonexecutable portion of the BIOS, typically directly following 
the BIOS jump vector. 

5-7 



Personal CP/M System Guide 5.3 The DISKDEF Macro Library 

The remaining portion of the BIOS is defined following the DISKDEF 
macros, with the ENDEF macro call immediately preceding the END 
statement. The ENDIF (End of Diskdef) macro generates the necessary 
uninitialized RAM areas, which are located in memory above the BIOS. 

The form of the DISKDEF macro call is as follows: 

where 

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[O] 

dn is the logical disk number, 0 to n-1. 
fsc is the first physical sector number (O or 1). 
lsc is the last sector number. 
skf is the optional sector skew fac t or . 
bls is the data allocation block size. 
dks is the number of blocks on the disk. 
dir is the number of director y entries. 
cks is the number of "checked" directory entries. 
ofs is the track offset to logical track 00. 
[OJ is an optional 1.4 compatibility flag. 

The value dn is the drive number being defined with this DISKDEF 
macro invocation. Parameter fsc accounts for differing sector 
numbering systems is usually zero or one. The last numbered sector 
on the track is defined by lsc. When p r esent, the skf parameter 
defines the sector skew factor, which is used to create a sector 
translation table according to the skew. 

If the number of sectors is less than 256, a 1-byte table is 
created. Otherwise, each translation table element occupies two 
bytes. No sector translation table is created if the skf parameter 
is either omitted or equal to zero. The b l s parameter specifies the 
number of bytes allocated to each data block, and takes on the 
values 1024, 2048, 4096, 8192, or 16384 . Generally, performance 
increases with larger data block sizes since there are fewer 
directory references, and logically connected data records are 
physically close on the disk. Also, each directory entry addresses 
more data, and the BIOS-resident data space is reduced. 

The dks parameter specifies the total disk size in bls units. That 
is, if the bls = 2048 and dks = 1000, the total disk capacity is 
2, 048, 000 bytes. If dks is greater than 255, the block size 
parameter bls must be greater than 1024. The value of dir is the 
total number of directory entries, which may exceed 255, if desired . 
The cks parameter determines the number of directory items to check 
on each directory scan. It is used internally to detect changed 
disks during system operation, where an intervening cold or warm 
boot has not occurred. When a disk is r emoved, Personal CP/M 
automatically marks the disk as read-only . 

5-8 



PersonaL CP/M System Guide 5.3 The DISKDEF Macro Library 

As mentioned earlier, the value of cks=dir when the medium is easily 
changed, as in a floppy disk subsystem. If the disk is permanently 
JOOunted, the value of cks is typically zero, since the probability 
of changing disks without a warm start is low. 

The value of ofs determines the number of track~ to skip when this 
particular drive is addressed. This permits reserving a number of 
tracks for the operating system, or for simulating a number of 
drives on a single large capacity physical drive. 

Finally, the [O] parameter is included when file compatibility is 
required with versions of CP/M 1.4 that have been modified for 
higher density disks. This parameter ensures that only l6K bytes is 
allocated for each directory record, as was the case for earlier 
CP/M versions. Normally, this parameter is not included. 

For convenience and economy of table space, the special form 

DISKDEF i I j 

gives disk i the same characteristics as a previously defined drive 
j. A common 4-drive, single-density system, which is compatible 
with CP/M 1.4, is defined using the following macro invocations: 

DISKS 
DISKDEF 
DISKDEF 
DISKDEF 
DISKDEF 

ENDEF 

4 
0,1,26,6,1024,243,64,64,2 
1,0 
2,0 
3,0 

with all disks having the same parameter values of 26 sectors for 
each track (numbered l through 26), 6 sectors skipped between each 
access, 10 24 bytes for each data block, 243 data blocks, for a total 
of 243K-byte disk capacity, 64 checked directory entries, and two 
operating system tracks. 

The DISKS macro generates n DPHs, starting at the DPH table address 
DPBASE generated by the macro. Each disk header block contains 16 
bytes, as described earlier, and correspond one-for-one to each of 
the defined drives. For example, in a 4-drive system, the DISKS 
macro generates a table of the form: 

DP BASE 
DPEO: 
DPEl: 
DPE2 
DPE3 

EQU $ 
DW XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSVO,ALVO 
DW XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBl,CSVl,ALVl 
DW XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPB2,CSV2,ALV2 
DW XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPB3,CSV3,ALV3 

5-9 



Personal CP/M System Guide 5.3 The DISKDEF Macro Library 

where the DPH labels are included for reference purposes to show the 
beginning table addresses for each drive, zero through three. The 
values contained within the DPH are described in detail in Section 
5.2.1. The check and allocation vector addresses are generated by 
the ENDEF macro in the RAM area following the BIOS code and tables. 

You should note that if the skf (skew factor) parameter is omitted 
(or equal to zero), the translation table is omitted, and a OOOOH 
value is inserted in the XLT posit ion of the DPH for the disk. In a 
subsequent call to perform the logical-to-physical translation, 
SECTRAN receives a translation table address of DE=OOOOH and simply 
returns the original logical sector from BC in the HL register pair. 
A translate table is constructed wh en the skf parameter is present, 
and the (nonzero) table address is placed into the corresponding 
DPHs. For example, the following t a bulation is constructed when the 
standard skew factor (skf = 6) is specified in the DISKDEF macro 
call: 

XLTO: DB 
DB 

l,7,13,19,25,5,ll,17,23 , 3,9,15,21 
2,8,14,20,26,6,12,l8,24,4,l0,16,22 

Following the ENDEF macro call, a number of uninitialized data areas 
are defined. These data areas need not be a part of the BIOS that 
is loaded upon cold start, but must be available between the BIOS 
and the end of memory. The size of the uninitialized RAM area is 
determined by EQU statements gen erated by the ENDEF macro. For a 
standard four-drive system, the ENDEF macro might produce this: 

4C72 = 

4DBO = 
013C = 

BEGDAT EQU $ 
(data. areas) 
ENDDAT EQU $ 
DATSIZ EQU $-BEGDAT 

which indicates that uninitialized RAM begins at location 4C72H, 
ends at 4DBOH-l, and occupies 013CH bytes. You must ensure that 
these addresses are free for use after the system is loaded. 

After modification, you can utilize the STAT program to check drive 
characteristics, because STAT uses the disk parameter block to 
decode the drive information: 

STAT d:DSK: 

5-10 



Personal CP/M System Guide 5.3 The DISKDEF Macro Library 

This command decodes the disk parameter block for drive d (d=A 
through P) and displays the following values: 

r: 128-byte record capacity 
k: kilobyte drive capacity 
d: 32-byte directory entries 
c: checked directory entries 
e: records/extent 
b: records/block 
s: sectors/track 
t: reserved tracks 

Three examples of DISKDEF macro invocations are shown below, with 
corresponding STAT parameter values. The last example produces 
an 8-megabyte system: 

DISKDEF O,l,58,,2048,256,l28,128,2 
r=4096, k=512, d=l28, c=l28, e=256, b=l6, s=58, t=2 

DISKDEF 0,1,58,,2048,1024,300,0,2 
r=l6384, k=2048, d=300, c=O, e=l28, b=l6, s=58, t=2 

UISKDEF O,l,58,,16384,512,128,l28,2 
r=65536, k=8192, d=l28, cl28, e=l024, b=l28, s=58, t=2 

5.4 Sector Blocking and Deblocking 

Upon each call to the BIOS WRITE entry point, the Personal CP/M BDOS 
includes information that allows effective sector blocking and 
deblocking where the host subsystem has a sector size that is a 
multiple of the basic 128-byte unit. The purpose here is to present 
a general-purpose algorithm that can be included within the BIOS and 
that uses the BDO~ information to perform the operations 
automatically. 

On each call to WRI~E, the BDOS provides the following information 
in register C: 

O=normal sector write 
l=write to directory sector 
2=write to the first sector of a new data block 

Condition zero occurs whenever the next write operation is into a 
previously written area, such as a random mode record update, or 
when the write is to other than the first sector of an unallocated 
block, or when the write is not into the directory area. 

5-11 



Personal CP/M System Guide 5.3 The DISKDE.E' Macro Library 

condition one occurs when a write into the directory area is 
performed. 

Condit ion two occurs when the first record (only) of a newly 
allocated data block is written. In most cases, application 
programs read or write multiple 128-byte sectors in sequence; there 
is little overhead involved in either operation when blocking or 
deblocking records, since preread operations can be avoided when 
writing records. 

End of Section 5 

5-12 



Index 

"Z, 4-3 
?AUXIS, 4-2, 4-17 
?AUXOS, 4-2, 4-17 
?BDOS, 4-3 
?BDOSC,4-3 
?BDOSW, 4-3 
?DISCO, 4-2, 4-19 
?DSCRF, 4-2, 4-20 
?FLUSH, 4-2, 4-3 4-18 
?MOV, 4-2, 4-3, 4-19 

A 

ASC1I, 1-3 
AUXIN, 4-1, 4-3, 4-9 
AUXOUT, 4-1, 4-3, 4-9 

B 

Basic Disk Operating System, 
see BDOS 

Basic Input/Output System 
see BIOS 

BDOS, 1-2 
code, 1-2 
data, 1-2 
entry points, 4-3 
linking with BIOS, 2-1 

BDOSSH.REL file, 2-1 
BDOSL.REL file, 2-1 
BIOS, 2-1 

code, 1-2 
data, 1-2 
linking with BDOS, 2-1 
PUBLIC subroutines, 4-2 
standard functions, 4-1 

BIOS functions, 
?AUXIS, 4-17 
?AUXOS, 4-17 
?DISCD, 4-19 
?DSCRF, 4-20 
?FLUSH, 4-18 
?MOV, 4-19 
AUXIN, 4-9 
AUXOUT, 4-9 
BOOT, 4-4 
CONIN I 4-7 
CONOUT, 4-8 
CONST, 4-7 
HOME, 4-10 
LIST, 4-8 
LISTST, 4-15 

READ I 4-14 
SECTRN, 4-16 
SELDSK, 4-11 
SETDMA, 4-13 
SETSEC, 4-12 
SETTRK, 4-12 
WBOOT, 4-6 
WRITE, 4-15 

Blocking/Deblocking, 5-11 
BOOT, 4-1, 4-4 
boot 

cold, 2-2, 2-3, 2-4, 
3-1, 4-3 I 4-4 

warm, 2-2, 2-4, 3-1, 
4-3' 4-6 

bootstrap, 1-4, 3-1 

c 

CCP I 1-2 
CCP. REL, 2-1 
Character devices, 1-3 
Cold Boot Loader, 3-1 
CONIN, 4-1, 4-3, 4-7 
CONOUT, 4-1, 4-3, 4-8 
CONSOLE, 4-3 
Console Command Processor, 

see CCP 
CONST, 4-1, 4-3, 4-7 

D 

deblocking buffers, discard 
4-19 

devices, 
I/O, 1-3 
character, 1-3 
disk, 1-3 

direct screen functions, 4-20 
direct screen subfunctions, 

4-21 
disk, 1-3 

devices, 1-3 
disk definition table, 5-2 
DISKDEF. LIB file, 5-7 
Disk Parameter Block, 1-3, 5-4 
Disk Parameter Header, 5-1 

elements, 5-2 
disk select, 4-11 
DISKDEF Macro Library, 5-7 

Index-1 



E 

End-of-File (EOF) , 4-3 

F 

flush buffers, 4-18 

H 

HOME, 4-1, 4-10 

I 

I/0 devices, 1-3 

L 

LINK, 2-1 
generating all-RAM system, 

2-2 
generating RAM/ROM systems, 

2-4 
LIST, 4-1, 4-3, 4-8 
LISTST, 4-2, 4-15 

M 

memory layout, 1-1 
ROM and RAM configurations, 

1-1 
memory move, 4-19 

p 

page boundary, 2-1 
Page Zero, 4-5 
PIP, 4-3 
PUBLIC BIOS subroutines, 4-2 
PUBLIC, entry points, 4-3 

R 

RAM, 1-1, 1-2 I 2-1 
all-RAM, 2-2 

RAM/FOM, 2-3 
READ, 4-14 
read one sector, 4-14 
ROM, 1-1, 1-2, 2-1 

s 

bootstrap procedure, 3-1 
creation from PCPM.COM, 2-4 

sector, 1-3 
physical, 1-3 

read one, 4-13 
set, 4-12 
track, 4-11 
write one, 4-13 

Sector Blocking and Deblocking, 
5-11 

SECTRN, 4-2, 4-16 
SELDSK, 4-1, 4-11 

example, 5-3 
set sector, 4-12 
set track, 4-12 
SETDMA, 4-2, 4-13 
SETSEC, 4-2, 4-12 
SETTRK, 4-2, 4-12 
standard BIOS functions, 4-1 
system generation, 2-1 

T 

TPA, 1-2 
track, 1-3 

v 

Visual CCP (VCCP) , 1-2 

w 

WBOOT, 4-1, 4-6 
WRITE, 4-2, 4-15 

Index-2 



SHARP CORPORATION 
Osaka, Japan 

Printed in Japan 
Gcdruckt 1n Japan 
lmprimc au Japan 
Stampato 1n G1apponc 

c 1984 SHARP CORPORATION 

4M 0 .5-l(TINSE1288ACZZ) 2 


	2021-05-18-ob01
	2021-05-18-0001
	2021-05-18-0002
	2021-05-18-0003
	2021-05-18-0004
	2021-05-18-0005
	2021-05-18-0006
	2021-05-18-0007
	2021-05-18-0008
	2021-05-18-0009
	2021-05-18-0010
	2021-05-18-0011
	2021-05-18-0012
	2021-05-18-0013
	2021-05-18-0014
	2021-05-18-0015
	2021-05-18-0016
	2021-05-18-0017
	2021-05-18-0018
	2021-05-18-0019
	2021-05-18-0020
	2021-05-18-0021
	2021-05-18-0022
	2021-05-18-0023
	2021-05-18-0024
	2021-05-18-0025
	2021-05-18-0026
	2021-05-18-0027
	2021-05-18-0028
	2021-05-18-0029
	2021-05-18-0030
	2021-05-18-0031
	2021-05-18-0032
	2021-05-18-0033
	2021-05-18-0034
	2021-05-18-0035
	2021-05-18-0036
	2021-05-18-0037
	2021-05-18-0038
	2021-05-18-0039
	2021-05-18-0040
	2021-05-18-0041
	2021-05-18-0042
	2021-05-18-0043
	2021-05-18-0044
	2021-05-18-0045
	2021-05-18-0046
	2021-05-18-0047
	2021-05-18-0048
	2021-05-18-0049
	2021-05-18-0050
	2021-05-18-0051
	2021-05-18-0052
	2021-05-18-0053
	2021-05-18-0054
	2021-05-18-0055
	2021-05-18-0056
	2021-05-18-0057
	2021-05-18-0058
	2021-05-18-0059
	2021-05-18-0060
	2021-05-18-0061
	2021-05-18-0062
	2021-05-18-0063
	2021-05-18-0064
	2021-05-18-0065
	2021-05-18-0066
	2021-05-18-0067
	2021-05-18-0068
	2021-05-18-0069
	2021-05-18-0070
	2021-05-18-0071
	2021-05-18-0072
	2021-05-18-0073
	2021-05-18-0074
	2021-05-18-0075
	2021-05-18-0076
	2021-05-18-0077
	2021-05-18-0078
	2021-05-18-0079
	2021-05-18-0080
	2021-05-18-0081
	2021-05-18-0082
	2021-05-18-0083
	2021-05-18-0084
	2021-05-18-0085
	2021-05-18-0086
	2021-05-18-0087
	2021-05-18-0088
	2021-05-18-0089
	2021-05-18-0090
	2021-05-18-0091
	2021-05-18-0092
	2021-05-18-0093
	2021-05-18-0094
	2021-05-18-0095
	2021-05-18-0096
	2021-05-18-0097
	2021-05-18-0098
	2021-05-18-0099
	2021-05-18-0100
	2021-05-18-0101
	2021-05-18-0102
	2021-05-18-0103
	2021-05-18-0104
	2021-05-18-0105
	2021-05-18-0106
	2021-05-18-0107
	2021-05-18-0108
	2021-05-18-0109
	2021-05-18-0110
	2021-05-18-0111
	2021-05-18-0112
	2021-05-18-0113
	2021-05-18-0114
	2021-05-18-0115
	2021-05-18-0116
	2021-05-18-0117
	2021-05-18-0118
	2021-05-18-0119
	2021-05-18-0120
	2021-05-18-0121
	2021-05-18-0122
	2021-05-18-0123
	2021-05-18-0124
	2021-05-18-0125
	2021-05-18-0126
	2021-05-18-0127
	2021-05-18-0128
	2021-05-18-0129
	2021-05-18-0130
	2021-05-18-0131
	2021-05-18-0132
	2021-05-18-0133
	2021-05-18-0134
	2021-05-18-0135
	2021-05-18-0136
	2021-05-18-0137
	2021-05-18-0138
	2021-05-18-0139
	2021-05-18-0140
	2021-05-18-0141
	2021-05-18-0142
	2021-05-18-0143
	2021-05-18-0144
	2021-05-18-0145
	2021-05-18-0146
	2021-05-18-0147
	2021-05-18-0148
	2021-05-18-0149
	2021-05-18-0150
	2021-05-18-0151
	2021-05-18-0152
	2021-05-18-0153
	2021-05-18-0154
	2021-05-18-0155
	2021-05-18-0156
	2021-05-18-0157
	2021-05-18-0158
	2021-05-18-0159
	2021-05-18-0160
	2021-05-18-0161
	2021-05-18-0162
	2021-05-18-0163
	2021-05-18-0164
	2021-05-18-0165
	2021-05-18-0166
	2021-05-18-0167
	2021-05-18-0168
	2021-05-18-0169
	2021-05-18-0170
	2021-05-18-0171
	2021-05-18-0172
	2021-05-18-0173
	2021-05-18-0174
	2021-05-18-0175
	2021-05-18-0176
	2021-05-18-0177
	2021-05-18-0178
	2021-05-18-0179
	2021-05-18-0180
	2021-05-18-0181
	2021-05-18-0182
	2021-05-18-0183
	2021-05-18-0184
	2021-05-18-0185
	2021-05-18-0186
	2021-05-18-0187
	2021-05-18-0188
	2021-05-18-0189
	2021-05-18-0190
	2021-05-18-0191
	2021-05-18-0192
	2021-05-18-0193
	2021-05-18-0194
	2021-05-18-0195
	2021-05-18-0196
	2021-05-18-0197
	2021-05-18-0198
	2021-05-18-0199
	2021-05-18-0200
	2021-05-18-0201
	2021-05-18-0202
	2021-05-18-0203
	2021-05-18-0204
	2021-05-18-0205
	2021-05-18-0206
	2021-05-18-0207
	2021-05-18-0208
	2021-05-18-0209
	2021-05-18-0210
	2021-05-18-0211
	2021-05-18-0212
	2021-05-18-0213
	2021-05-18-0214
	2021-05-18-0215
	2021-05-18-0216
	2021-05-18-0217
	2021-05-18-0218
	2021-05-18-0219
	2021-05-18-0220
	2021-05-18-0221
	2021-05-18-0222
	2021-05-18-0223
	2021-05-18-0224
	2021-05-18-0225
	2021-05-18-0226
	2021-05-18-0227
	2021-05-18-0228
	2021-05-18-0229
	2021-05-18-0230
	2021-05-18-0231
	2021-05-18-0232
	2021-05-18-0233
	2021-05-18-0234
	2021-05-18-0235
	2021-05-18-0236
	2021-05-18-0237
	2021-05-18-0238
	2021-05-18-0239
	2021-05-18-0240
	2021-05-18-0241
	2021-05-18-0242
	2021-05-18-0243
	2021-05-18-0244
	2021-05-18-0245
	2021-05-18-0246
	2021-05-18-0247
	2021-05-18-0248
	2021-05-18-0249
	2021-05-18-0250
	2021-05-18-0251
	2021-05-18-0252
	2021-05-18-0253
	2021-05-18-0254
	2021-05-18-0255
	2021-05-18-0256
	2021-05-18-0257
	2021-05-18-0258
	2021-05-18-0259
	2021-05-18-0260
	2021-05-18-0261
	2021-05-18-0262
	2021-05-18-0263
	2021-05-18-0264
	2021-05-18-0265
	2021-05-18-0266
	2021-05-18-0267
	2021-05-18-0268
	2021-05-18-0269
	2021-05-18-0270
	2021-05-18-0271
	2021-05-18-0272
	2021-05-18-0273
	2021-05-18-0274
	2021-05-18-0275
	2021-05-18-0276
	2021-05-18-0277
	2021-05-18-0278
	2021-05-18-0279
	2021-05-18-0280
	2021-05-18-0281
	2021-05-18-0282
	2021-05-18-0283
	2021-05-18-0284
	2021-05-18-0285
	2021-05-18-0286
	2021-05-18-0287
	2021-05-18-0288
	2021-05-18-0289
	2021-05-18-0290
	2021-05-18-0291
	2021-05-18-0292
	2021-05-18-0293
	2021-05-18-0294
	2021-05-18-0295
	2021-05-18-0296
	2021-05-18-0297
	2021-05-18-0298
	2021-05-18-0299
	2021-05-18-0300
	2021-05-18-0301
	2021-05-18-0302
	2021-05-18-0303
	2021-05-18-0304
	2021-05-18-0305
	2021-05-18-0306
	2021-05-18-0307
	2021-05-18-0308
	2021-05-18-0309
	2021-05-18-0310
	2021-05-18-0311
	2021-05-18-0312
	2021-05-18-0313
	2021-05-18-0314
	2021-05-18-0315
	2021-05-18-0316
	2021-05-18-0317
	2021-05-18-0318
	2021-05-18-0319
	2021-05-18-0320
	2021-05-18-0321
	2021-05-18-0322
	2021-05-18-0323
	2021-05-18-0324
	2021-05-18-0325
	2021-05-18-0326
	2021-05-18-0327
	2021-05-18-0328
	2021-05-18-0329
	2021-05-18-0330
	2021-05-18-0331
	2021-05-18-0332
	2021-05-18-0333
	2021-05-18-0334
	2021-05-18-0335
	2021-05-18-0336
	2021-05-18-0337
	2021-05-18-0338
	2021-05-18-0339
	2021-05-18-0340
	2021-05-18-0341
	2021-05-18-0342
	2021-05-18-0343
	2021-05-18-0344
	2021-05-18-0345
	2021-05-18-0346
	2021-05-18-0347
	2021-05-18-0348
	2021-05-18-0349
	2021-05-18-0350
	2021-05-18-0351
	2021-05-18-0352
	2021-05-18-0353
	2021-05-18-0354
	2021-05-18-0355
	2021-05-18-0356
	2021-05-18-0357
	2021-05-18-0358
	2021-05-18-0359
	2021-05-18-0360
	2021-05-18-0361
	2021-05-18-0362
	2021-05-18-0363
	2021-05-18-0364
	2021-05-18-0365
	2021-05-18-0366
	2021-05-18-0367
	2021-05-18-0368
	2021-05-18-0369
	2021-05-18-0370
	2021-05-18-0371
	2021-05-18-0372
	2021-05-18-0373
	2021-05-18-0374
	2021-05-18-0375
	2021-05-18-0376
	2021-05-18-0377
	2021-05-18-0378
	2021-05-18-0379
	2021-05-18-0380
	2021-05-18-0381
	2021-05-18-0382
	2021-05-18-0383
	2021-05-18-0384
	2021-05-18-0385
	2021-05-18-0386
	2021-05-18-0387
	2021-05-18-0388
	2021-05-18-ob02



