

Part 1 Construction. Basic Principles. Operating Instructions

Contents

Part 2 Application Programmes

Section 1
Section 2
Section 3
Section 4
Section 5
Section 6
Section 7
Section 8
Section 9

Part 1

Introductionto the kit

The Manual-its objectives and usage
Construction procedure. Notes on soldering
Power Connect and Switch On

Usage Familiarisation

Basic Principles of the MK 14

MK14 Language-Binary and Huxmipmmal data . ..

Programming Notes
Architecture and Instruction Set

Section 10 RAM I/O

Introduction to the kit

The MK 14 comprises a full set of components to build up a
completely functional computer.
When the unit has been correctly assembled only the connection of a
suitable power source is needed for the display to light up and the user
then finds that command and control of the unit is literally at his fingertips
via the keyboard.
Having mastered the simple rules for operation of the keyboard and
interpretation of the display, itis immediately possible to study the
workings of the system and the computer’s instructions, and experiment
with elementary programming.
From this point the user can progress to the library of ready-written
programmes available in Part I of this manual, and to programmes of his
own invention. Because of the inherently enormous versatility of the
digital computer it is hard to suggest any particular direction which the
independent programmer may take. Arithmetic, logic, time measurement,
complex decision making, learning ability, storage of data, receiving
signals from other equipment and generating responses and stimuli can
all be called upon.
Thus calculators, games, timers, controliers (domestic, laboratory,
industrial), or combinations of these are all within the scope of the
machine.

External circuits Fig. 1.1

r rTI\ =X

input/ | | RAM cey || ROM TERMINAL
output | | Write-able Memory Fixed Memory k.b. Display

(user’s programme) (user control

supervision prog.)

| ¥ 3 ‘ A

Components of the kit include central processor, pre-programmed control
memory, read-write memory, input/output circuits, the terminal section
i.e. the keyboard and display, and interfacing to the terminal.

This line-up corresponds to the basic elements present in even the most
sophisticated multi-miliion pound computer. Indeed the fundamental
principles are identical. However, the user of the MK 14 who wishes to
understand and utilise these principles has the advantage of being able to
follow in detail the action and inter-action of the constituent parts,

which are normally inaccessible and invisible to the big computer operator,
Do notregard the MK 14 as an electronics construction project. The

MK 14 is a computer, and computers are about software. Itis the
programme which brings the computer to life, and it is the programme
which is capable of virtually infinite variation, adjustment and expansion.
Of course an understanding of the architecture of the machine and the
functions of the separate integrated circuits is valuable to the user. But
these aspects conform to a fairly standard pattern and the same
straightforward set of interconnection rules regardless of the task or
function the computer is performing.

P

The Manual
-its objectives and uses

The MK14 isintended to bring practical computing to the widest

possible range of users by achieving an absolute minimum cost. The wider the

user spectrum, the wider, to be expected will be the variation of expertise

the manual has to cater for; from the total novice, who wishes to learn the

basic principles and reguires thorough explanation of every aspect, to the
experienced engineer who has immediate practical applications in view.

Additionally, the needs of the beginner can be sub-divided into three parts:-

1. Aninformal step by step procedure to familiarise with the operation
of the MK1 4. If this is arranged as an inter-active ‘do’ and ‘observe’
seqguence, it becomes a comparatively painless method of getting a
practical ‘feel’ for the computing process. Section 5.

2. A formal definition/description of the significant details of the
microprocessor itself, i.e. its architecture and instruction set. Users
of all levels are strongly recommended to study this section, (Section
0) at an early stage. Itis supported by a programme of practical
exercises aimed to precisely demonstrate the elemental functions of
the device, and the framework inside which they operate. Itis
emphasised that to gain the most complete fluency in what are the
basics of the whole subject is not merely well worth the effort but is
essential to the user's convenience?

3. Anexplanation of the general principles of the digital processor,
along with the associated notation and conventions. Section O this
also breaks down into the joint aspects of hardware and software.,

Clearly parts of the above will also prove useful to the knowledgable user

who, however, will probably be able to skip the advice in section 3 on

basic electronic assembly technigue. The control part of this section
contains information specifically pertinent to the MK 14 and should be
read by all.

Further sections to be referenced when the MK 14 has been assembled,

and the user has built up a working understanding, are those discussing

programming techniques and methodology. From that point the
applications examples of varying degrees of complexity and function, in

Part Il, should be possible for the reader to tackle.

Construction procedure
Notes on soldering

The construction of the unitis a straightforward procedure consisting of
inserting the components in the correct positions and soldering them in
place. If this is done without error the system should become functional as
soon as power is applied. To ensure that this happens without any hitches
some recommendations and advice are offered. A step-by-step
construction procedure with a diagram is laid down. An appendix to this
section contains notes on soldering technigues.
Plug in socket option for integrated circuits
The |.C. components utilised in the MK 14 are both robust and reliable.
But accidents are possible—and should an |.C. be damaged either during
construction or later, it's identification and replacement is made many
orders easier if devices are mounted in sockets. Socket usage is therefore
most strongly recommended, particularly where the user is concerned
with computing rather than electronics. Science of Cambridge offer a
MK 1 4 rectification service specifying a component cost only replacement
charge when the system in gquestion is socket equipped.
Integrated Circuit Device Handling
M.0.S. integrated circuits historically have gained a reputation for
extreme vulnerability to damage from static electricity. Modern devices
while not unbreakable embody a high degree of protection. This means
that high static voltages will do no harm as long as the total energy
dissipated is small and a practical rule of thumb is that if the environment
is'such that you yourself don‘t notice static shocks, neither will the |.C.
It is essential for the soldering iron to be earthed if I.C.'s are being soldered
directly into the P.C. board. The earth must ground the soldering iron bit.
This warning applies to any work carried out which might bring the
soldering iron into contact with any |.C. pin.
Catastrophe is achievable with minimum trouble if certain components are
fitted the wrong way round.
Component Orientation and |.C. Pin Numbering
Three types belonging to the kit must be oriented correctly. These are the
I.C."s, the electrolytic capacitors and the regulator.
(i) |.C"sare oriented in relation to pin 1. Pin 1 can be identified by
various means; fig. 3.1 illustrates some of these:-

Drawing Viewed Fig. 3.1
from Top Pinn+1

Cut out —D

Slight indentation Pin 1

or protuberance Pin n

=

f

Pin 1 itself may bear a faint indentation or a slight_difference f(om other_
pins. The remaining pins are numbered consecutively clockwise from Pin
1 viewing device as in Fig. 3.1.

Note position of type no. is not a reliable guide. : '

(i) Electrolytic capacitors have a positive and a negative terminal. The
positive terminal is indicated by a’ + * sign on the printed circuit. The
capacitor may show a ‘ + * sign or a bar marking by the ppsmve
terminal. The negative is also differentiated from the po§|t'|ve by
being connected to the body of the device while the positive appears
to emerge from an insulator. X '

(i) The regulator has a chamfered edge and is otherwise assymmetrical-
refer to assembly diagram.

Assembly Procedure

Equipment required—soldering iron, solder, side-cutters or wire snippers.

Step No. Operation
1 Identify all resistors, bend leads according to diagram and

place on layout diagram in appropriate positions.

2 Insert resistors into printed circuit and slightly bend leads at
back of board so that resistors remain in place firmly agajnst
the P.C.

3 Solder resistors in place and cut surplus leads at back of
printed circuit.

4 Re-check soldered joints and component positioning.

b5 Identify all capacitors, bend leads according to diagram and
place on layout diagram in appropriate positions.

6 Insert capacitors into printed circuit and slightly bend leads
behind board so that capacitors remain in place firmly against
the P.C.

7 Solder capacitors in place and cut surplus leads behind P.C.
8 Check soldered joints, component positions and orientation.

9 (If sockets are being used skip to step 14). Identify and place
in position on diagram all |.C's with particular reference to
orientation.

10 Insert|.C'sinto P.C. Note:- The |.C. pins will exhibit a degree
of "splay’. This allows the device to be retained in the P.C.
mechanically after insertion so do not attempt to straighten,
and use the following technique: place one line of pins so they
just enter the board; using a suitable straight edged implement,

press opposing row of pins until they enter the board; push
companent fully home.

11 Re-check device positioning and orientation with EXTREME
care!

= — - T e

Step No.
12

13

14

15

16

18

19
20
21
22
23

24

25

207

28

Operation : Sy ’
Solder |.C'sin place. It is not necessary to snip projecting pins.

Re-check all |.C. soldered joints.
(skip to step 20)

Place appropriate sockets in position on diagram. See Fig. 3.3
Insert first or next socketin P.C. board. These components are
not self retaining so invert the board and press onto a suitably
resilient surface to keep socket firmly against the board while
soldering.

Solder socket into position.

(repeat steps 14-16 until all sockets are fitted)

Identify and place into position on diagram all |.C's with
particular reference to orientation.

Transfer |.C's one-by-one to P.C. assembly and place in
appropriate sockets.

Check all socket soldered joints.

Insert regulator and solder into position. See Fig. 3.4 (a).
Insert push button and solder into position. See Fig. 3.4 (b).
Mount keyboard. See Fig. 3.5.

Mount display. See Fig. 3.4 (c).

Ensure that all display interconnections are correctly aligned
and inserted.

Solder display into position.
Re-check all soldering with special reference to dry joints and
solder bridges as described in appendix on soldering technique.

(Optional but advisable). Forget the whole job for 24 hours.

Re-inspect the completed card by retracing the full assembly
procedure and re-checking each aspect (component type,
orientation and soldering) at each step.

When the final inspection is satisfactorily completed proceed to
section 4, Power Connect and Initial Operation.

Fig 3.4(al

Fig 3.4(b)

Push Button

Fig 3.4(c)

Display

Fig 3.5

- R ‘W' Buttons
BACK %
Keyboard g

Keyboard
Legend
Sheet

Keyboard
Contact
Sheet

= =

Appendix Soldering Technique

Poor soldering in the assembly of the MK 4 could create severe
difficulties for the constructor so here are a few notes on the essentials

of the skill.

The Soldering Iron Ideally, for this job, a 15W/25W instrument should
be used, with a bit tip small enough 1o place against any device pin and
the printed circuit without fouling adjacent joints. IMPORTANT —ensure
that the bit is earthed.

Solder resin cored should be used. Approx. 18 S.W.G. is most
convenient.

Using the Iron The bit should be kept clean and be sufficiently hot to
form good joints.

A plated type of bit can be cleaned in use by wiping on the dampened
sponge (if available), or a damp cloth. A plain copper bit corrodes fairly
rapidly in use and a clean flat working face can be maintained using an old
file.A practical test for both cleanness and temperature is to apply a touch
of solder to the bit, and observe that the solder melts instantly and runs
freely, coating the working face.

Forming the Soldered Joint—with the bit thus ‘wetted’ place itinto

firm contact with both the component terminal and the printed circuit
‘pad’, being soldered together. Both parts must be adequately heated.
Immediately apply solder to the face of the bit next to the joint. Solder
should flow freely around the terminal and over the printed circuit pad.
Withdraw the iron from the board in a perpendicular direction.

Take care not to ‘swamp’ the joint, a momentary touch with the solder
should be sufficient. The whole process should be complete in ane or
two seconds. The freely flowing solder will distribute heat to all part of the
joint to ensure a sound amalgam between solder and pad, and solder and
terminal. Do not hold the bit against the joint for more than a few seconds
either printed circuit track or the component can be damaged by
excessive heat.

Checking the Joint A good joint will appear clean and bright, and the
solder will have spread up the terminal and over the pad to a radius of
about yginch forming a profile as in Fig. 3.2(a).

flo:3.2 Unreliable or no contact
Printed circuit
track Printed circuit card
| I I :
a b c

Fig 3.2 (b) and (c) show exaggerated profiles of unsuccessful joints.
These can be caused by inadequate heating of one part, or the other, of
the joint, due to the iron being too cool, or not having been in direct
contact with both parts; or to the process being performed too quickly. An
alternative cause might be contamination of the unsoldered surface.

Re-making the Joint Place the ‘wetted’ iron against the unsatisfactory
joint, the solder will then be mostly drawn off. Re-solder the joint. If
contamination is the problem it will usually be eliminated after further
applications by the flux incorporated within the solder.

Solder ‘Bridges’—can be formed between adjacent tracks on the printed
circuit in various ways: —

(i) too cool an iron allowing the molten solder to be slightly tacky

(ii) excessive solder applied to the joint

(iii) bit moved away from the joint near the surface of the board instead

of directly upwards

These bridges are sometimes extremely fine and hard to detect, but are
easily removed by the tip of the cleaned soldering iron bit.

Solder Splashes—can also cause unwanted short circuits. Careless
shaking of excess solder from the bit, or allowing a globule of solder to
accumulate on the bit, must be avoided. Splashes are easily removed with
the iron.

In summary, soldering is a minor manual skill which requires a little
practise to develop. Adherence to the above notes will help a satisfactory
result to be achieved.

10

Power Connect

and Switch On

The MK 14 operates from a 5V stabilised supply. The unit incorporates its
own regulator, so the user has to provide a power source meeting the
following requirements: —

Current Basic kit only —400mA
consumption +RAM I/O option — + 50mA
+ extra RAM option — + 30mA

Max |/P permitted voltage (including ripple) 35V

Min I/P permitted voitage (including ripple) 7V
Batteries or a mains driven power supply may be used. When using
unregulated supplies ensure that ripple at the rated current does not
exceed the |/P voltage limits.
If a power source having a mean output voltage greater than IOV has to be
used, a heat sink must be fitted to the regulator. A piece of aluminium or
copper, approx. 18 s.w.g., of about two square inches in area, bolted to
the lug of the regulator should permit input voltages up to about 18V to
be employed.
Alternatively a suitable resistor fitted in series with the supply can be used.
To do this the value of the series resistor may be calculated as follows:-

2 x (minimum value |/P voltage -7) &

Resistor dissipation will be 0.5W/ 2
Having selected a suitable power supply the most important precaution to
observe is that of correct polarity. Connect power supply positive to
regulator I/P and power supply negative to system ground.
Switch on. ~
Proper operation is indicated by the display showing this: —

Congratulations—now proceed to the section on usage familiarisation
and learn to drive the MK14.

5 Usage Familiarisation

To help the user become accustomed to commanding and interrogating
the MK 14 an exercise consisting basically of a sequence of keyboard
actions, with the expected display results, and an explanatory comment,
is provided.

Readers who are not familiar with hexadecimal notation and data
representation should refer to section 7.

It will be clear to those who have perused the section dealing with MK 14
basic principles that to be able to utilise and understand the unititis
necessary firstly to have the facility to look at the contents of locations in
memory 1/0 and registers in the CPU, and secondly to have the facility to
change that information content if desired.

The following shows how the monitor programme held in fixed memory
enables this to be done.

Operator Display Comment
Action
Examining MK 14 Memory
Switchon ---- -- The left hand group of four characters is called
the address field, the right hand group is the
data field.
Dashes indicate that the MK 14 is waiting for a
GO or a MEM command.

MEM 0000 08 The contents of memory location zero is
displayed in the data field.

MEM 0001 90 Nextaddressinsequence is displayed, and the
data at that address.

MEM 0002 1D Addressagainincremented by one, and the
data at the new address is displayed.

MEM 0003 C2 Nextaddressand contents are displayed

The user is actually accessing the beginning of the monitor programme
itself. The iterns of data 08, 80, 1D, C2 are the first four instructions in
the monitor programme.

It is suggested that for practise a list of twenty or thirty of these is made
out and the appropriate instruction nmemonics be filled in against them
from the list of instructions in Section 9. Additionally, this memory
scanning procedure offers an introduction to the hexadecimal numbering
method used by the addressing system, as each MEM depression adds
one to the address field display.

11

Operator
Action

MEM

TERM

TERM
MEM

TERM

TERM
MEM
TERM
22
TERM
MEM
TERM
33
TERM

MEM

Display

XXXX

0000
OO0OF

00F1

OF12

OF12

OF12

OF12
OF13

OF13

OF13
OF13
OF13
OF14
OF14
OF14
OF14
OF15
OF15
OF15
OF15

OF16

XX

XX

XX

XX

XX

XX

01

01
XX

XX

01
11
11
XX
XX
22
22
XX
XX
33
33

XX

Comment

Loading MK14 Memory

note: —symbol X indicates when digit value is
unpredictable or un-important.

First digit is entered to L & D address field,
higher digits become zero.

Second address digit keyed enters display from
right.

Third address digit keyed enters display from
right.

This is first address in RAM available to the user
(basic version of kit).

TERM enters displayed address and prepares for
operator to load data.

Memory data has been keyed but is not yet
placed in RAM.

Data is now placed in RAM
Address is incremented.

New address is entered and unit waits for
memory data input.

New data.

is keyed

and placed in memory
Data

is

loaded

into

successive

locations

*

Operator Display Comment
Action
44 OF16 44

TERM OF16 44

OF12 OF12 01 Enteroriginal memory address and
MEM QRIS I check that data
MEM OF14 22 remains as
MEM OE1s 33 was
g MEM OF16 44 loaded.
- Switch power off and on again. Re-check contents of above locations.

Note that loss of power destroys read-write memory contents.
Repeat power off/on and re-check same locations several times—it is
expected that RAM contents will be predominately zero, and tend to
switch on in same condition each time. This effect is not reliable.

Operator Display Comment

Action

MEM XXXX XX Enteravery small programme

OF12TERMOF12 XX lItconsists of one instruction JMP-2 (90FE in

90 OF12 90 machine code). 90 represents JUMP programme

TERM MEM OF13 XX counter relative. FE represents — 2, the direction
TERMFE OF13 FE of the jump.
TERM OFE8 FE

-8 ABORT ----- -

GO OF13 -- Prepare to start user programme (TERM at
this point would start execution from
0F12).

- 0F12 OF12 -- Enterstartaddress.
TERM BLANK Commence execution. The dispiay becomes

blank, indicating that CPU has entered user
programme, and remains blank.

We have created the most elementary possible programme —one that
loops round itself. There is only one escape—RESET which will force
the CPU to return to location 1.

RESET S o Reset does not affect memory the instruction
JMP— 2 is still lurking to trap the user.

13

14

Basic Principles of the MK 14

Essentially the MK 14 operates on exactly the same principles as do all
digital computers. The ‘brain’ of the MK1 4 is a SC/MP micro-processor,
and therefore aspects of the SC/MP will be used to illustrate the following
explanation. However the principles involved are equally valid for a huge
machine from Internationa! Computers down to pocket calculators.
Moreover, these principles can be stated quite briefly, and are essentially
very simple.

‘Stored Programme’ Principle

The SC/MP CPU (Central Processing Unit) tends to be regarded as the
centre-piece because it is the ‘clever’ component—and so it is. But by
itself it can do nothing. The CPU shows its paces when it is given
INSTRUCTIONS. It can obey a wide range of different orders and perform
many complex digital operations. This sequence of instructions is termed
thePROGRAMME, and is STORED in the MEMORY element of the system.
Since these instructions consist of manipulation and movement if data, in
addition to telling the CPU what to do, the stored programme contains
information values for the CPU to work on, and telis the CPU where to get
information, and where to put results.

Three Element System

By themselves the two fundamental elements CPU and MEMORY can”
perform wondrous things—all of which would be totally useless, since no
information can be input from the outside world and no results can be
returned to the user. Consequently a third element has to be incorporated
—the INPUT/OUTPUT (1/0) section.

Fig. 6.1 The Three Element System

1/0 CPU Memory

These three areas constitute the HARDWARE of the system, so called
because however you may use or apply the MK 14, these basic structures
remain the same.

Independence of Software (Stored Programme) and Hardware

As with the other hardware, whatever particular instruction sequence is
present within the memory at any one time, the basic structure of the
memory element itself is unaltered.

Itis this factor which gives the MK1 4 its great versatility: by connecting
up its 1/0 and entering an appropriate programme into its memory it can
perform any digital function that can be contained within the memory
and 1/0 size.

Random Access Memory (RAM)

Further, when the memory in question consists of a read and write
element (RAM), in contrast to read only memory (ROM), this flexibility

is enhanced, as programme alterations, from minor modifications, to
completely different functions, can be made with maximum convenience.

Interconnection of Basic Elements

Element inter-connection is standardised as are the elements themselves.
Three basic signal paths, ADDRESS BUS (ABUS), DATA BUS (DBUS)
and CONTROL BUS, are required.

Fig. 6.2 Interconnections of Three Element System

i i ;

110 CPU Memory

i fices) i

Address Bus.

Data Bus.

These buses are, of course, multi-line. In the MK14 the Abus=12 lines,
Dbus = 8 lines and Control bus = 3lines. Expansion of memory or 1/0
simply requires connection of additional elements to this basic bus
structure.

MK 14 System Operation

Consider the MK 14 with power on and the RESET signal applied to the
SC/MP. This forces all data inside the CPU to zero and prevents CPU
operation.

When the RESET is released the CPU will place the address of the first
instruction on the Abus and indicate that an address is present by a signal
on the ADDRESS STROBE (NADS) line which is within the control bus.
The memory will then respond by placing the first instruction on the Dbus.
The CPU accepts this information and signals a READ STROBE (NRDS) via
a line within the control bus.

The CPU now examines this instruction which we will define as a no-
operation, (instructions are normally referred to by abbreviations called
NMEMONICS, the nmemonic fof this one is NOP).

In obedience the CPU does nothing for one instruction period and then
sends out the address of the second instruction. The memory duly
responds with a Load Immediate (LDI). The CPU interprets this to mean
that the information in the next position, in sequence, in memory will not
be an instruction but an item of data which it must place into its own main
register (ACCUMULATOR). so the CPU puts out the next address in
sequence, and when the memory responds with data, then obeys the
instruction.

The CPU now addresses the next position (LOCATION) in memory and
fetches another instruction—store (ST). This will cause the CPU to place
the data in the accumulator back on the Dbus and generate a WRITE
STROBE (NWRDS) via the control bus. (The programme's intention here
is to set output lines in the 1/0 element to a pre-determined value).
Before executing the store instruction the CPU addresses the next
sequential location in memory, and fetches the data contained in it. The
purpose of this data word is to provide addressing information needed,
at this point, by the CPU.

So far, consecutive addresses have been generated by the CPU in order
to fetch instructions or data from memory. In order to carry out the store

15

16

instruction the CPU must generate a different address, with no particular
relationship to the instruction address itself, i.e. an address in the 1/0
region.

The CPU now constructs this address using the aforementioned data
word and outputs it to the Abus. The 1/0 element recognises the address
and accepts the data appearing on the Dbus (from the CPU accumulator),
when signalled by the write strobe (NWRDS), also from the CPU.

Now the CPU reverts to consecutive addressing and seeks the next
instruction from memory. This is an Exchange Accumulator with
Extension register (XAE) and causes the CPU to simultaneously move the
contents of the accumulator into the extension (E) register, and move

the contents of the extension register into the accumulator. The
programmer’s intention in using this instruction here, could be to preserve
a temporary record of the data recently written to the 1/0 location.

No new data or additional address information is called for, so no second
fetch takes place. Instead the CPU proceeds to derive the next instruction
in sequence.

For the sake of this illustration we will look at a type of instruction which is
essential to the CPU’s ability to exhibit intelligence.

This is the jump (JMP) instruction, and causes the CPU to depart from the
sequential mode of memory accessing and ‘jump’ to some other location
from which to continue programme execution.

The JMP will be back to the first location.

A JMP instruction requires a second data word, known as the
DISPLACEMENT to define the distance and direction of the jump.
Examining the memory 1/0 contents map, Fig 6.3, shows location O to
be seven places back from the JMP displacement which therefore must
have a numerical value equivalent to— 7. (Detail elsewhere in this manual
will show that this value is not precisely correct, but itis valid as an
example).

The instruction fetched after executing the JMP will be the NOP again.

In fact the sequence of five instructions will now be re-iterated continually__
The programme has succumbed to a common bug—an endless loop, in
which for the time being we will leave it.

Fig. 6.3 Map of Memory Location Contents.

LOCATION No. LOCATION CONTENTS

0 NOP (instruction))
1 LD (instruction)
2 data (for use by LDI)
3 ST (instruction) MEMORY
4 address information (for use by ST) " REGION
5 XAE (instruction)
6 JMP (instruction)
7 —7 (displacement for JMP)

~— r— —— e

Formed by Initially undefined—after 3 becomes
CPU using same as loc. 2 > 1/0 REGION
data in loc. 4

| ———— ————, RS

This brief review of a typical sequence of MK14 internal operations has
emphasised several major points, All programme control and data derives
from the memory and 1/0. All programme execution is performed by the
CPU which can generate an address to any location in memory and 1/0,
and can control data movement to or from memory and 1/0.

Some instructions involve a single address cycle and are executed within
the CPU entirely. Other instructions involve a second address cycle to
fetch an item of data, and sometimes a third address cycle is also needed.
For the sake of simplicity this outline has deliberately avoided any detail
concerning the nature of the instruction/data, and the mechanics of the

system. These subjects are dealt with in greater depth in sections 5 and 7.

17

18

MK14 Language-Binary
and Hexadecimal

Discussion of the MK1 4 in this handbook so far has referred to various
categories of data without specifying the physical nature of that data. This
approach avoids the necessity of introducing too many possibly unfamiliar
concepts at once while explaining other aspects of the workings of

the system.

This section, then, gives electrical reality to the abstract forms of
information such as address, data, etc., which the computer has to
understand and deal with.

Binary Digit Computers use the most fundamental unit of information

that exists—the binary digit or BIT—the bit is quite irreducible and
fundamental. It has two values only, usually referred toas ‘O’ and “1°.
Human beings utilise a numbering system possessing ten digits and a
vocabulary containing many thousands of words, but the computer
depends on the basic bit.

However, the bit is readily convertible into an electrical signal. Five volts

is by far the most widely used supply line standard for electronic logic
systems. Thus a zero volt (ground) level represents ‘0, and a positive five
volt level represents ‘1°. Note that the SC/MP CPU follows this convention
which is known as positive logic; negative logic convention determines
inverse conditions, 1.e. 5V ="0', OV="1".

Logic Signal Voltage Limits For practical purposes margins must be
provided on these signal levels to allow for logic device and system
tolerances. Fig. 7.1 shows those margins.

Fig. 7.1
5 VOLT LEVEL

Margin for

! s Margin for
logic ‘1" signal

logic ‘1" error

Ambiguous area

Margin for
logic ‘O’ error

Margin for_]
logic ‘O’ signal

logic device logic device
output input

‘O’s and ‘1’s Terminology Many of the manipulation rules for ‘0‘s and
‘1’s are rooted in philosophical logic, consequently terms like ‘true’ and
‘false’ are often used for logic signals, and a ‘truth table’ shows all
combinations of logic values relating to a particular configuration. The

control engineer may find ‘on’ and ‘off’ more appropriate to his
application, while an electronic technician will speak of ‘high’ and ‘low’,
and to a mathematician they can represent literally the numerals one
and zero.

Using Bits in the MK 14 The two state signal may appear far too limited
for the complex operations of a computer, but consider again the basic
three element system and it’s communication bus.

Fig. 7.2
3 lines
¥ Control bus

110 CPU MEMORY

D Bus

12 lines A bus

The data bus for example comprises eight lines. Using each line separately
permits eight conditions to be signalled. However, eight lines possessing
two states each, yield 256(2%) combinations, and the A bus can yield
4096 combinations.

A group or WORD of eight bits is termed a BYTE

Decoding In order to tap the information potential implied by the use of
combinations, the elements in the MK 1 4 all possess the ability to
DECODE bit combinations. Thus when the CPU generates an address,

the memory /O element is able to select one out of 4096 locations.
Similarly, when the CPU fetches an instruction from memory it obeys one
out of 128 possible orders.

Apart from instructions, depending on context, the CPU treats information
on the data bus sometimes as a numerical value, or sometimes simply

as an arbitrary bit pattern, thereby further expanding data bus information
capacity.

Bits as Numbers When grouped into a WORD the humble bit is an
excellent medium for expressing numerical guantities. A simple set of
rules exist for basic arithmetic operations on binary numbers, which
although they lead to statements suchas 1+ 1=10, or 2,,and 2,,
make 100,, they can be executed easily by the ALU {Arithmetic and Logic
Unit) within the CPU. Note that the subscripts indicate the base of the
subscripted numbers.

Binary Numbers The table below compares the decimal values 0—15
with the equivalent binary notation.

19

20

Decimal Binary
0 0000

1 0001 Most A ngst

2 0010 significant s_ugrufucant

4 0100

5 0101

6 0110 3

7 0111 8 4 2 1 BINARY
8 1000

9 1001 10005| 1004 10g 1g DECIMAL
10 1010

14 1011

12 1100 Place values in binary and

13 1101 decimal systems

14 1110

1.6 T Fig. 7.3

The binary pattern is self evident, and it can also be seen how place value
of a binary number compares with that in the decimal system.
Expressed in a different way, moving a binary number digit one place to
the left doubles its value, while the same operation on a decimal digit
multiplies its value by ten.
The Binary pattern is self evident, and it can also be seen how place
value of a binary number compares with that in the decimal system.
Binary Addition—requires the implementation of four rules: —
0+0=0
O+1or1+0=1
1+ 1 =1 with carry (to next higher digit)
1+ 1 +carry (from next lower digit) = 1 with carry (to next higher digit)

Example: — 1110110
+1010101
11001011
(e
YWY % <—carryindications
Binary Subtraction
0—0=0
1—1=0
1—0=1
0—1 =1 with borrow (from next higher digit)

0—1—borrow (from next lower digit) = 1 with borrow (from next

higher digit) oM oY oG borrow
Examples:— A01 720 110 indications
—010 —001 —011
011 011 011

Program Notes

At the point the reader is likely to be considering the application
programmes in Part |l and perhaps devising some software of his own.
This section examines the manner in which a programme is written and
set out, the planning and preparation of a programme, and some basic
techniques.

When embarking on a programme two main factors should be
considered, they are: (i) hardware requirements, (ii) sequence plan.
Hardware Requirements An assessment should be made of the amount
of memory required for the instruction part of the programme, and the
amount needed for data storage. In a dedicated micro-processor system
these will occupy fixed, and read-write memory areas respectively. In the
MK 14, of course, all parts of the programme will reside in read-write
memory, simplifying the programmers task considerably, since local pools
for data can be set up indiscriminately.

However, even in the MK 14 more care must be given to the allocation of
memory space for common groups of data and for input/output needs.
The SC/MP C.P.U. offers a certain amount of on-chip input/outputin
terms of three latched flags, two sense inputs, and the serial in/serial out
terminals. So the designer must decide if these are more appropriate to
his application than the memory mapped /O available in the RAMIO
option.

Memory Map A useful aid in this part of the process is the memory map
diagram which gives a spatial representation to the memory and [/O
resources the programmer has at his disposal. Fig. 8.1 shows the MK 14
memory map including both add-in options

Standard RAM—=| RAM The map displays the memory as a column of
RAMIO 4K locations, (in this case each of eight bits),
DISPLAY | with location zero at the base and addresses

RAMIQ ascending upwards.

Optional RAM—} RAM The reader may be surprised that various
RAMIO sections of memory appear to reside in several

256 DISPLAY | areas atonce.

io locations — | RAMIO For example the monitor is repeated four

MONITOR } times in the lower 2K block. Note also that the
MONITOR) monitor will only operate correctly if executed
MONITOR | in the lowest section, as only this section has
51 2locations =] MONITOR |} the proper relationship to the RAM at the top.

Fig. 8.1

These multiple appearances of memory blocks are due to partial address
decoding technique employed to minimise decode components.

The map readily indicates that a CPU memory pointer (which can permit
access to a block of 256 1/0 locations) set to 0900, ¢ would give the
programme a stepping stone into the display O/P or the RAMIO facilities.

21

Flow Chart The flow chart provides a graphical representation of the
sequence plan. A processor is essentially a sequential machine and the
flow chart enforces this discipline. Fig. 8.2 is a very simple example of a
programme to count 100 pulses appearing at an input. Three symbols are
used (i) the circle for entry or exit points (ii) the rectangle for programme
operations (iii) the diamond for programme decisions.

A flow chart should always be prepared when constructing a programme.
Each block is a convenient summary of what may be quite a large number
of instructions. Of particular value is the overview provided of the paths
arising from various combinations of branch decisions.

Clear Count Location

is

Count Pulse

present
?

No

Yes

is
Count Pulse

absent
?

No

qu
Add One to Count Location l

Count
Location
=100?

Fig. 8.2 @

The flow chart can reveal wasteful repetition or logical anomalies, and
ensures that like a good story, the programme starts at the beginning,
progresses through the middle, and comes to a satisfactory end.
Programme Notation There is a well established convention and format
for writing down a programme listing. We will examine two lines extracted
from the MK 14 monitor programme itself in order to define the various
functions of the notation.

(a) (b) (c)
112 0003 GOOUT:
(d) (e) (f) (g)

113 0003 €20E LD ADH (2) ;GET GO ADDRESS

a) Line Number. All lines in the listing are consecutively numbered for
reference.

b) Location Counter. The current value of the location counter
(programme counter in the CPU) is shown wherever it is relevant
e.g. when the line contains a programme instruction or address label.

c) Symbolic Address Label. This is followed by a colon. Entry points to
sub-sections of programme can be labelled with meaningful
abbreviations making the programme easier to follow manually e.g.
at some other place in the programme a JUMP TO ‘GOOUT' might
occur. Automatic assemblers create an internal list of labels and
calculate the jump distances.

However the MK 14 user must do it the hard way.

d) Machine Code. The actual code in the memory is shown here. As it
is a two byte instruction the first two hexadecimal digits C2 are in
location 3 and OE is in location 4.

e) Nmemonic LD is the nmemonic for LOAD. This is the instruction
represented by C2 in machine code.

f) Displacement. ADH is another label, in this case for a data value. Note
that a table is provided in alpha-numeric order at the end of the listing,
of all symbols and their values.

g) Pointer Designation. Define the pointer to be referenced by this
instruction.

h) Comment. All text following the semi-colon is explanatory material to
explain the purpose of the instruction or part of programme.

23

Architecture and
Instruction Set

The SC/MP microprocessor contains seven registers which are accessible
to the programmer. The 8-bit accumulator, or AC, is used in all
operations. In addition there is an 8-bit extension register, E, which can
be used as the second operand in some instructions, as a temporary
store, as the displacement for indexed addressing, or in serial input/
output. The 8-bit status register holds an assortment of single-bit flags
and inputs:

SC/MP Status Register
7 6 5 40 ENREBON SR 00 vt 0
eYiL [oV S S R ek e E o e B Fo
Flags Description
Fo-F2 User assigned flags O through 2.
IE Interrupt enable, cleared by interrupt.
SA.SB Read-only sense inputs. If IE= 1, Sp is interrupt
input.
oV Overflow, set or reset by arithmetic operations.
CY L Carry/Link, set or reset by arithmetic operations or
rotate with Link.

The program counter, or PC, is a 16-bit register which contains the
address of the instruction being executed. Finally there are three 16-bit
pointer registers, P1, P2, and P3, which are normally used to hold
addresses. P3 doubles as an interrupt vector.

Addressing Memory

All memory addressing is specified relative to the PC or one of the

pointer registers. Addressing relative to the pointer registers is called
indexed addressing. The basic op-codes given in the tables below are

for PC-relative addressing. To get the codes for indexed addressing the
number of the pointer should be added to the code. The second byte of
the instruction contains a displacement, or disp., which gets added to the
value in the PC or pointer register to give the effective address, or EA, for
the instruction. This disp. is treated as a signed twos-complement binary
number, so that displacements of from —128,,t0 +127,, can be
obtained. Thus PC-relative addressing provides access to locations within
about 128 bytes of the instruction; with indexed addressing any location
in memory can be addressed.

Instruction Set

7723210 7

Op |m|ptr disp
Memory Reference byte 1 byte 2
Op Code
Mnemonic | Description Operation Base
LD Load (AC)=(EA) C000
ST Store (EA)=(AC) C800
AND AND (AC)<(AC) A (EA) D000
OR OR (AC)<(AC) V (EA) D800
XOR Exclusive-OR (AC)+=(AC) V (EA) EOOO
DAD Decimal Add (AC)*+(AC), o+ (EA) ;o + (CY/L);(CY/L) E800
ADD Add (AC)+=(AC) + (EA) + (CY/L);(CYIL),(OV) FOOO0
CAD Complement and Add| (AC)«<(AC) + —~(EA) + (CY/L);(CY/L),(OV) F800

Base Code Modifier

Op Code = Base + m + ptr + disp

Address Mode| m ptr disp Effective Address
PC-relative 0000 |0000 |00xx |EA=(PC)+disp
Indexed 0000 |[0100 |[0O0xx |EA=(ptr)+disp
0200
0300
Auto-indexed | 0400 | 0100 |00xx |[If disp2>0, EA=(ptr)
0200 If disp<O,EA = (ptr) +disp
0300

xx=—128to0 +127
Note: If disp=—128, then (E) is substituted for disp in calculating EA.

The operands for the memory reference instructions are the AC and a

memory address.

With these eight instructions the auto-indexed mode of addressing is

available; the code is obtained by adding 4 to the code for indexed

addressing. If the displacement is positive it is added to the contents of
the specified pointer register after the contents of the effective address
have been fetched or stored. If the displacement is negative it is added

to the contents of the pointer register before the operation is carried out.

This asymmetry makes it possible to implement up to three stacks in
memory; values can be pushed onto the stacks or pulled from them

with single auto-indexed instructions. Auto-indexed instructions can also
be used to add constants to the pointer registers where 16-bit counters

are needed.

A special variant of indexed or auto-indexed addressing is provided when

the displacement is specified as X'80. In this case it is the contents of
the extension register which are added to the specified pointer register
to give the effective address. The extension register can thus be used

simultaneously as a counter and as an offset to index a table in memory.

25

For binary addition the ‘add’ instruction should be preceded by an
instruction to clear the CY/L. For binary subtraction the ‘complement’
and add’ instruction is used, having first set the CY/L. Binary-coded-
decimal arithmetic is automatically handled by the ‘decimal add’

instruction.
i 0 Dt 1 5P 0
Op data
Immediate byte 1 byte 2
Mnemonic | Description Operation Op Code
Base
LDI Load Immediate (AC)+data C400
ANI AND Immediate (AC)<(AC) A data D400
ORI OR Immediate (AC)<(AC) V data DCOO
XRI Exclusive-OR Immediate|(AC)+(AC) V data E400
DAl Decimal Add Immediate [(AC)+(AC),, +data, o + (CY/L);(CY/L) ECOO
ADI Add Immediate (AC)+=(AC) + data + (CY/L);(CY/L),(OV) F400
CAl Complementand Add [(AC)<(AC) +“~data + (CY/L);(CY/L),(OV)| FcOO
Immediate
Base Code Modifier
Op Code = Base + data
the immediate instructions specify the actual data for the operation in
the second byte of the instruction.
Tt s sy 0
Extension Register o
Mnemonic| Description Operation Op Code
LDE Load AC from Extension | (AC)<(E) 40
XAE Exchange AC and Ext. | (AC)*(E) 01
ANE AND Extension (AC)+=(AC) A (E) 50
ORE OR Extension (AC)=(AC) V (E) 58
XRE Exclusive-OR Extension | (AC)<(AC) V (E) 60
DAE Decimal Add Extension | (AC)+(AC), ¢+ (E); o+ (CY/L), (CY/L) 68
ADE Add Extension (AC)=(AC) +(E) +(CY/L); (CY/L), (OV) 70
CAE Complement and Add (AC)=(AC) +~ (E) + (CY/L); 78
Extension (CYIL), (OV)

26

The extension register can replace the memory address as one operand in
the above two-operand instructions. The extension register can be loaded
by means of the XAE instruction.

i ke) s e 0
Op ptr disp
Memory Increment/Decrement Byl AR
Mnemonic Description Operation Op Code
Base
ILD Incrementand Load | (AC), (EA)—(EA)+ 1 A800
DLD Decrement and Load | (AC), (EA)«(EA)—1 B80O

Note: The processor retains control
of the input/output bus between the
data read and write operations.

Base Code Modifier

Op Code = Base + ptr + disp

ptr disp Effective Address
0100 | OOxx EA = (ptr) + disp
0200

0300

xx=—128to +127

The ‘decrement and load’ instruction decrements the contents of the

memory location specified by the second byte, leaving the result in the

accumulator. This provides a neat way of performing a set of instructions
several times. For example:

LOOP

LDI
ST

DLD
JNZ
will execute the instructions within the loop 9 times before continuing.
Both this and the similar ‘increment and load’ instruction leave the CY/L
unchanged so that multibyte arithmetic or shifts can be performed with
a single loop.

9
COUNT

COUNT
LOOP

27

Paicen 24309 7y lens 0
Op ptr disp
Transfer byte 1 ~ byte 2
Mnemonic | Description Operation Op Code
Base
JMP Jump (PC)=EA 9000
JP Jump if Positive | If (AC)>0, (PC)+<EA | 8400
JZ Jump if Zero If (AC)=0, (PC)=EA | 9800
JNZ Jump if Not Zero |If IAC)#0, (PC)=—EA | SCO0
Base Code Modifier
Op Code = Base + ptr + disp
Address Mode ptr disp Effective Address
PC-relative 0000 | 00xx EA = (PC) + disp
Indexed 0100 | 00xx | EA=(ptr) +disp
0200
0300
xx=—128t0 +127

Transfer of control is provided by the jump instructions which, as with
memory addressing, are either PC-relative or relative to one of the pointer
registers. Three conditional jumps provide a way of testing the value of
the accumulator. ‘Jump if positive” gives a jump if the top bit of the AC is
zero. The CY/L can be tested with:
;Copy status to AC

CSA
JP

NOCYL ;CY/Lis top of bit status

which gives a jump if the CY/L bit is clear.

w20
Pointer Register Move Op py
Op Codel

Mnemonic | Descripton operation Base
XPAL Exchange Pointer Low |(AC)**(PTR,:0) 30
XPAH Exchange Pointer High [(AC)*(PTR, ¢:s) 34
XPPC Exchange Pointer with PC|(PC)==(PTR) 3C
Base Code Modifier
Op Code = Base + ptr

The XPAL and XPAH instructions are used to set up the pointer registers,
or to test their contents. For example, to set up P3 to contain X'1234
the following instructions are used:

LD X102

XPAH 3

LDI X'34

XPAL 3

The XPPC instruction is used for transfer of control when the point of
transfer must be saved, such as in a subroutine call. The instruction
exchanges the specified pointer register with the program counter,
causing a jump. The value of the program counter is thus saved in the
register, and a second XPPC will return control to the calling point. For
example, if after the sequence above an XPPC 3 was executed the next
instruction executed would be the one at X' 1235. Note that this is one
beyond the address that was in P3 since the PC is incremented before
each instruction. P3 is used by the MK 14 monitor to transfer control to
the user’s program, and an XPPC 3 in the user’s program can therefore
be used to get back to the monitor provided that P3 has not been altered.

B s 0
3 Op
Shift Rotate Serial 1/0
Mnemonic | Description Operation Op Code
SIO Serial Input/Output (Ei)—>(Ei-y), SIN—=(E;), (Ex)>SOUT | 19
SR Shift Right (ACi)—~(ACi-,), 0O—~(AC,) 1C
SRL Shift Right with Link (ACi)—=™{ACi-,), CY/L)—=(AC,) 1D
RR Rotate Right (ACj)—=(ACj-,), (AC,)=(AC,) 1E
RRBL Rotate Right with Link | (ACj}=*(ACi-;), (AC,)=(CY/L)=>(AC,) | 1F

The SI0 instruction simultaneously shifts the SIN input into the top bit of
the extension register, the bottorn bit of the extension register going to the
SOUT output; it can therefore form the basis of a simple program to
transfer data along a two-way serial line. The shift @nd rotate with link
make possible multibyte shifts or rotates.

7 0 7 0
Op Disp
Double Byte Miscellaneous ~ byte byte 2
Op Codel
Mnemonic | Description Operation Base
DLY Delay countACto —1, 8F00
; delay=13+ 2(AC) + 2 disp + 2°
disp microcycles

Base Code Modifier

Op Code = Base + disp

29

The delay instruction gives a delay of from 13 to 131593 microcycles
which can be specified in steps of 2 microcycles by the contents of the
AC and the second byte of the instruction.

Note that the AC will contain X'FF after the instruction.

7 0
Op
Single-Byte Miscellaneous
Mnemonic | Description Operation Op Code
HALT Halt Puise H-flag 00
CCL Clear Carry/Link (CY/L)<0 02
SCL Set Carry/Link (CY/L)*+1 03
DINT Disabled Interrupt (IE)<0 04
IEN Enable Interrupt (IE)=1 05
CSA Copy Status to AC (AC)=(SR) 06
CAS Copy AC to Status (SR)=(AC) 07
NOP No Operation (PC)=(PC) + 1 08

30

The remaining instructions provide access to the status register, and to
the IE and CY/L bits therein. The HALT instruction will act as a NOP in the
MK 14 kit unless extra logic is added to detect the H-flag at NADS time,
in which case it could be used as an extra output.

Mnemonic Index of Instructions

Read Write Total

Mnemonic | Opcode | Cycles Cycles Microcycles
ADD FO 3 0 1.9

ADE 70 1 0 7

ADI F4 2 0 11

AND DO 3 0 18

ANE 50 1 0 6

ANI D4 Z 0 10

CAD F8 3 0 20

CAE 78 1 0 8

CAl FC 2 0 12

CAS 07 1 0 6

CCl 02 1 0 5

CSA 06 1 0 5

DAD E8 3 0 23

DAE 68 1 0 1t

DAl EC 2 0 15

DINT 04 1 0 6

DLD B8 3 1 22

DLY 8F 2 0 13-131593

Read Write Total
Mnemonic | Opcode [Cycles Cycles Microcycles
HALT 00 2 0 8
IEN 05 1 0 6
ILD A8 S 1 22
JMP 90 2 0 11
JNZ aC 2 0 9, 11 for Jump
JP 94 2 0 9, 11 for Jump
JZ 98 2 O 9, 11 for Jump
LD COo 3 0 18
LDE 40 1 0 6
LDI C4 2 0 10
NOP 08 1 0 5
OR D8 3 0 18
ORE 58 1 0 6
ORI DC 2 0 10
RR 1E 1 0 5
RRL 1F 1 0 5
SEIL 03 1 0 5
SIO 19 1 0 5
SR 16 1 0 5
SRL 1D 1 0 5
ST C8 2 1 18
XAE 01 1 0 7
XOR EO 3 0 18
XPAH 34 1 0 8
XPAL 30 1 0 8
XPPC 3C 1 0 7
XRE 60 1 0 6
XRI E4 2 0 10

Program Listings

The application program listings at the end of this manual are given in a
symbolic form known as ‘assembler listings’. The op codes are
represented by mnemonic names of from 2 to 4 letters, with the operands
specified as shown:

LD disp ;PC-relative addressing
LD disp (ptr) Indexed addressing
LD @disp (ptr) :Auto-indexed addressing

Constants and addresses are also sometimes represented by names of up
to six letters; these names stand for the same value throughout the
program, and are given that value either in an assignment statement, or
by virtue of their appearing as a label to a line in the program. Some
conventions used in these listings are shown below:

31

32

Statements

Directive

Assembler Format

Function

.END (address)

.BYTE exp(,exp...)

.DBYTE exp(,exp,...)

Signifies physical end of
source pprogram.

Generates 8-bit (single-byte)
data in successive memory
locations.

Generates 16-bit (double-
byte) data in successive
memory locations.

Statements

Assignment

.=20

TABLE: =.+10

LABEL: SYMBOL = EXPRESSION ;Symbol is assigned

;value of expression
;Set location counter
1o 20

:Reserve 10 locations
for table

RAM I/O

A socket is provided on the MK 14 to accept the 40 pin RAM I/O device
(manufacturers part no. INS8154). This device can be added without
any additional modification, and provides the kit user with a further 128
words of RAM and a set of 16 lines which can be utilised as logic inputs in
any combination.

These 16 lines are designated Port A (8 lines) and Port B (8 lines) and

are available at the edge connector as shown in Fig. 10.1.

SA (CPU interrupt I/P)

3
2
4
B
1
Port A <
5
0
‘data ready’ —handshake 6
input mode
‘data request’ —handshake INTR
L output mode E
= 0 IC8
]
2
3
Port B <
‘Data present’ handshake 4
I/P mode
‘Data ack’—handshake Vi =
O/P mode
i /
‘Data ready’ handshake O/P
L mode 6 RAM /O Device Mounting Position
‘Data ack’, handshake |/P mode

Fig. 10.1 RAM I/O Signal Lines

33

34

The RAM |/O can be regarded as two completely separate functional
entities, one being the memory element and the other the input/output
section. The only association between the two is that they share the same

package

and occupy adjacent areas in the memory 1/0 space. Fig. 10.2

shows the blocks in the memory map occupied by the RAM I/0, and it
can be seen that the one piece of hardware is present in four separate
blocks of memory.

800

8FF
900

9FF
A0O
AFF
BOO
BFF
c00
CFF
DOO
DFF
E00
EFF
FOO

FFF

e
Note:—Memory area is shown divided
RAM 10 into 256 byte blocks. The lowest
and highest location address is
DISRLAY shown in hex' at left.
RAM 1/Q
RAM
(optional)
RAM I/O
DISPLAY
RAM I/O
RAM
{standard) Fig. 10.2 Memory /0O Map Showing RAM I/O Areas

The primary advantage for the user, in this, is that programme located in
basic RAM, orin the extra RAM option, has the same address relationship
to the RAM 1/0O.

Fig. 10.3 shows how memory I/O space within the RAM |/O block is

allocated.
00
+ CLEARBIT PORT A 3
07T f Selected bit out
%fg:” CLEARBITPORTB & | of 8 determined by
10 low 3 bits of address
175: SET BIT PORT A N e.g. Addr. =0, bit=0 (Port A)
18 Addr. =IF, bit=7 (Port B)
1F‘= SET BIT PORT B
20| READ/WRITE PORT A
21| READ/WRITE PORT B
22 | DBUS (ACC) to ODA
23| DBUS (ACC) to ODB
24| DBUS (ACC) to MDR
2541 *
7F
80

L

L

i

128 BYTES RAM

I Fig. 10.3 RAM I/O Locations and Related Functions

RAM Section

This is utilised in precisely the same manner as any other area of RAM.
Input/Output Section

The device incorporates circuitry which affords the user a great deal of
flexibility in usage of the 16 input/output lines. Each line can be
separately defined as either an input or an output under programme
control. Each line can be independently either read as an input, or setto
logic ‘I" or 'O’ as an output. These functions are determined by the
address value employed. F

A further group of usage modes permit handshake logic i.e. a ‘data
request’, 'data ready’, ‘data receieved’, signalling sequence to take place
in conjunction with 8 bit parallel data transfers in or out through Port A.
Reset Control

This input from the RAM /O is connected in parallel with the CPU power-
on and manual reset. When reset is present all port lines are high
impedance and the device is inhibited from all operations.

Following reset all port lines are set to input mode, handshake facilities
are deselected and all port output latches are set to zero.

Input/Output Definition Control

At start-up all 16 lines will be in input mode. To convert a line or lines to
the output condition a write operation must be performed by programme
into the ODA (output definition port A) or ODB locations e.g. writing the
value 80 (Hex.) into ODB will cause bit 7 port B to become an output.
Single Bit Read

The logic value at an input pin is transferred to the high order bit (bit 7)
by performing a read instruction. The remaining bits in the accumulator
become zero.

The required bit is selected by addressing the appropriate location (see
Figs. 3 & 4).

By executing JP (Jump if Positive) instruction the programme can respond
to the input signal i.e. the jump does not occur if the |/P is a logic 'i’.

If a bit designated as an output is read the current value of that O/P is
detected.

Single Bit Load

This is achieved by addressing a write operation to a selected location
(see Figs. 10.1 & 10.4). Note that it is not necessary to preset the
accumulator to define the written bit value because it is determined by bit
4 of the address.

Eight Bit Parallel Read or Write

An eight bit value can be read from Port A or B to the accumulator, or the
accumulator value can be ocutput to Port A or B. See Figs. 10.3 & 10.4
for the appropriate address locations. Input/output lines must be pre-
defined for the required mode.

Port A Handshake Operations

To achieve eight bit data transfers with accompanying handshake via Port
A, two lines (6 and 7) from Port B are allocate special functions and must
be pre-defined by programme as follows:- bit 7-input, bit 6-output.
Additionally the INTR signal line is utilised.

Three modes of handshake function are available to be selected under
programme control. Fig. 10.4 shows values to be written into the three
higher order bits of the Mode Definition Register (see Fig. 10.1 for
location) for the various modes.

35

Bit Position & value in MDR
this condition
selected by reset X|1X]0

BASIC I/O

Note:-

STROBEDINPUT| X [O | | i) X=don't care

ii) Lower order
bits are don't

) care aiso.

STROBED OUTPUT| O | | I

sTroBepouTPuT| | | T
WITH TRI-STATE

e vy
Fig. 10.4 Mode Definition Register (MDR) Values and Operation Modes

‘Data Ready’, |/P Mode
‘Data Acknowledge’, O/P Mode

INTR to CPU
< Six lines (bits 0-5) Port B >
Eight lines Port A (handshake por£> RAM 11O

PERIPHERAL

N

B6 ‘Data Present’, |/P Mode B7 ‘Data Request/Acknowledge’, |/P Mode
‘Data Request/Acknowledge’, O/P Mode ‘Data Ready’, O/P Mode

Fig. 10.5 Handshake Interconnections and Function

INTR Signal

In order to inform the CPU of the state of the data transfer in handshake
mode the RAM 1/O generates the INTR SIGNAL: This signal will usually be
connected to the CPU interrupt input SA.

The INTR signal is activated by writing a logic ‘l" into B7 and is inhibited
by a logic ‘O’. Note that although B7 must be defined as an input, in
handshake mode the B7 output latch remains available to perform this
special function.

Strobed Input Mode

A peripheral circuit applies a byte of information to Port A and a low pulse
to B7. The pulse causes the data to be latched into the RAM /O Port A
register, and B6 is made high as a signal to the peripheral indicating that
the latch is now occupied. At the same time INTR (if enabled) goes high
indicating ‘data ready’ to the CPU,

The CPU responds with a byte read from Port A. The RAM I/O recognises
this, and removes INTR and the 'buffer full” signal on B8, informing the
peripheral that the latch is available for new data.

36

Fig. 10.6 Signal Timing Relationship —Handshake I/P Mode

Peripheral data valid A
)\
o “ 7
AO-A7 X ! QLY Signals
! generated
by peripheral
B7 J‘% Y perip
Datastrobe ’__,:_ﬁ— Load data to RAM /0 latch)
from peripheral N 2
‘Data ack ledge’ —— u Data request)
8o (o;earlag;:wer::lwe = __[Y to peripheral Signals
2 generated
s
INTR ‘Data ready’ to CPU ..—/ _ j by RAM /O
u \ F Signal
NRDS ‘Data acknowledge’ } gegnerated
from CPU by CPU
Strobed OQutput Mode
The CPU performs a byte write to Port A, and the RAM |/O generates a
‘data ready’ signal by making B6 low. The peripheral responds to ‘data
ready’ by accepting the Port A data, and acknowledges by making B7
low. When B7 goes low the RAM 1/0O makes INTR high (if enabled)
informing the CPU that the data transaction is complete.
DO-D7 o Y Signal
generated
o s by CPU
NWDS —y e ¥
Load data to RAM 1/O
4 'Data acknowledge’ Signals
INTR D i nm AR
313 reques rom from RAM 1/O generated
B6 ‘Data ready’ to penphe-ral_-———'_\H by RAM 10
ey
B7 ‘Data acknowledge’
T from peripheral
AO-AT7 ; X P
Pre s data ew data .
non tri-state G il Signals
\

AO-A7

generated

High impedance condition High impedance by RAM /O
tri-state mode ----------\\---

Fig. 10.7 Signal Timing Relationship—Handshake O/P Mode

Strobed Output with Tri-State Control

This made employs the same signalling and data sequence as does
Output Mode above. However the difference lies in that Port A will, in

this mode, normally be in Tri-state condition (i.e. no load on peripheral
bus), and will only apply data to the bus when demanded by the peripheral
by a low acknowledge signal to B7

37

38

Applications for Handshake Mode

Handshake facilities afford the greatest advantages when the MK14 is
interfaced to an external system which is independent to a greater or
lesser degree. Another MK 14 would be an example of an completely
independent system.

In comparison the simple read or write, bit or byte, modes are useful when
the inputs and outputs are direct connections with elements that are
subservient to the MK14.

However whenever the external system is independently generating and
processing data the basic ‘data request’, ‘data ready’, ‘data
acknowledge’, sequence becomes valuable. The RAM 1/0 first of all
relieves the MK 14 software of the task of creating the handshake.
Secondly itis likely in this kind of situation that the MK 14 and external
system are operating asynchronously i.e. are not synchronised to a
common time source or system protocol. This implies that when one
element is ready for a data transfer, the other may be busy with some
other task.

Here the buffering ability of the Port A latch eases these time constraints
by holding data transmitted by one element until the other is ready to
receive.

Therefore, for example, if the CPU, in the position of a receiver, is unable,
due to the requirements of the controlling software, in the worst case, to
pay attention for 2 millisecs the transmitter would be allowed to send data
once every millisecond.

Monitor program liStingciseaiiiun dhevve bave s oo 40
At mat Cal s O B s U e 49
Multiply

Divide

Square Root

Greatest Common Divisor

I el A ot L . LA e CB S R L R RLEE o S 54
Puise Delay

Digital Alarm Clock

Random Noise

SYSHOIN ootz S o S et o e RGa b St R b R i 58
Single Step

Decimal to Hex

Relocator

Serial data input®

Serial data output*®

RIS i o e T T e e s i S e e T 68
Moon Landing

Duck Shoot

Mastermind

Silver Dollar Game

MSIC s e e R s v e s e 79
Function Generator

Music Box

Organ

MISCellaniBoUS 1 i S0 s e S A e S R s i e 84
Message

Self-Replicating Program

Reaction Timer

Devised and written by:
David Johnson— Davies
except programmes marked thus *

40

Monitor program listing

SCMPKB

SCIMP ASSEMBLER REV —C 02/06/76
SCMPKB POO5236A 7/14/76

1 TITLE SCMPKB, ‘PO05235A 7/14/76"
2 T S S O S B s - e P = R A P P S S Iy i
3 R
4 =2 BOARD
5 R PROM# ADDRESS COORDINATE BOARD#
6 .
7 460305235-001 0000 5A 9804879
8 2
9 i

10 ededaasiusaeseas et
11

12

13 OF00 RAM = OF00

14 0DO0O DISP = 0ODQO

15

16 SEGMENT ASSIGNMENTS

174

18 0001 SA =

19 0002 SB =

18 0001 SA = 1

19 0002 sB = 2

20 0004 SC = 4

21 0008 SD = 8

22 0010 SE = 16

23 0020 SF = 32

24 0040 SG = 64

25

26 7 SEGMENT CONVERSION

27

28 O03F NO = SA+SB+SC+ 8D+ SE+SF

29 0006 N1 = SB+SC

30 0058 N2 = SA+SB+SD+SE+SG

31 004F N3 = SA+SB+SC+SD+SG

32 0086 N4 = SB+SC +SF +8G

33 006D N5 = SA+SC+8D+SF+5G

34 007D N6 = SA+SC+SD+SE+SF+SG

35 0007 N7 = SA +SB+SC

38 007F N8 = SA+SB+SC +SD+SE+SF+SG

37 0067 N9 = SA+8B+SC+SF+SG

38 0077 NA - SA+SB+SC+SE+SF+SG

39 007C NB - SC+SD+SE+SF+SG

40 00389 NC = SA+SD+SE+SF

41 005E ND = SB+SC+SD+SE+SG

42 0079 NE = SA+SD + SE +SF+SG

43 0071 NF = SA+SE+SF+5G

44 0040 DASH - SG

45 00798 KE = NE

46 0050 KR = SE+SG

47 005C KO = SC+SD+SE+SG

48

49

g? PAGE ‘HARDWARE FOR KEYBOARD'

52

53 2 FUNCTION DATA KYBFUNCTION

54

65 4 0 080 0

56 2 1 081 1

57 ; 2 082 2

0000
0001
0001

0003
0003
0005
0006
0008
0009
000B
000D
00O0E
0010
0011
0013
0014
0016
0017
0019
001A

OFF9
OFFA
OFF8
OFFC
OFFD
OFFE
OFFF

08

801D

P1H
P1L
P2H
P2L

E
S

;ABORT:

JMEM:

;GO:

INIT:

GOOUT:

083

084

085

086

087
040 8
041 9
010 +
011 —
012 MUL
013 DIV
016 SQUARE
017 SQRT
GO 022 %
MEM 023 =
ABORT 024 CEIC
TERM 027

NO O W
~Noo s W

TMTOW> 00

RAM POINTERS USED BY KITBUG, P3 IS SAVED ELSEWHERE

OFFS
OFFA
OFFB
OFFC
OFFD
OFFE
OFFF
COMMANDS

THIS ABORTS THE PRESENT OPERATION. DISPLAYS—,

ALLOWS USER TO READ/MODIFY MEMORY.

ADDRESS IS ENTERED UNTIL TERM THEN DATA IS ENTERED.
TO WRITE DATA IN MEMORY TERM IS PUSHED.

DATA IS READ TO CHECK IF IT GOT WRITTEN IN RAM.

ADDRESS IS ENTERED UNTIL TERM.

THE REGISTERS ARE LOADED FROM RAM AND PROGRAM
IS TRANSFERRED USING XPPC P3.

TO GET BACK DO A XPPC P3.

PAGE ‘INITIALIZE'

NOP

JMP START
DEBUG EXIT

RESTORE ENVIRONMENT

LD ADH(2) ;GET GO ADDRESS.

XPAH 3

LD ADL(2)

XPAL 3

LD @-1(3) ;FIX GO ADDRESS.
LD E ;RESTORE REGISTERS.
XAE

LD P1L

XPAL 1

LD P1H

XPAH 1

LD P2L

XPAL 2

LD P2H

XPAH 2

LD S

41

42

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
1568
1569
160
161
162
163
164
165
166
167
168
168
170
171
172
173
174

175
176
177
178
179
180
181
182

183
184
188
186
187
188
189
180
191
192
183
194

001iC
001D
001F

0020
0020
0022
0023
0025
0026
0028
0029
0028
0o2C
002E
0030
0031
0033
0035
00386
0038
003A
0038
003D
O03E

0040
0040
0042
0044
0046
0048
004A
004C
004E
0050
0052
0054
0066
Q0056
0058
005A
005C
005D
005F

0061
00861
00863
0065
00867

0089
0069
0068
006D
006F

0071

0073
0073

07
CODF
3F

C400
CAQ2
CAO3
CAG8
C440
CAQO
CAOQ1
CA04
CAQ5
CAO6
CAO7

C401
37C4
8433
3F

9002
90DF

E4Q7
9856
E401

9CcD7

C4FF
CAOF
C440
CAQO
CAO1

C459

START:

ABORT:

WAIT:

WCK:

GO:

GOL:

CAS
LD
XPPC

A
3
,TO BET BACK

ENTRY POINT FOR DEBUG

ST A :SAVE STATUS.

LDE

Shias e

CSA

ST -8

XPAH 1

ST PIH

XPAL 1

ST PiL

LDl H(BRAM) :SET P2 TO POINT TO RAM.

XPAH 2

ST P2H

LDl L(RAM)

XPAL 2 "
ST Pl

LD @1(3) ;BUMP P3 FOR RETURN

XPAL 3 :SAVEDS.

ST ADL(2)

XPAH 3 i
ST ADH(2)

PAGE

ABORT SEQUENCE

LB~

ST D3(2)

ST D4(2)

ST D9(2)

LDl DASH ;SET SEGMENTS TO—

ST DL(2)

ST DHI2)

ST ADDLL(2)

ST ADLH(2)

ST ADHL(2)

ST ADHHIZ)

JS 3,KYBD ;DISPLAY AND READ KEYBOAF H
JMP WCK ;COMMAND RETURN. ,
JMP ABORT ;RETURN FOR NUMBER. %
XRl 07 {CHECK IF MEM.

JZ MEM

XRl 01 :CHECK IF GO.

INZ ABORT

.PAGE ‘GO TO’

GO WAS PUSHED

GO TO USER PROGRAM

ceK =1 .SET FIRST FLAG.

ST DDTA(2)

LDI DASH :SET DATA TO DASH

ST DL(2)

ST DHI(2)

LDl L(DISPA)-1 :FIX ADDRESS SEG.

AY

195
196
187
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221

222
223
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2486
247
248
249
250
251
252
253
254
255
256
2857,
258
259
260
261
262
263
264

0Q75
0076
0077
0079
0078
0Q7C
007D
007F
007F
0081

0083
0083
0085
0087
00889
008B
008D
008F

0091

0093
0095
0097
0088
oogs

008D
008D
QOS8F

00A1
00A1
00A3
00A4
00AB
00A7
00A9
00AB

Q0AD
00AD
Q0AF
00B1

00B3
00BS
00B7
00B9

00BB
008B
008D
00BF
00C1
00C1
00C3
00c4
00C8
00C7
00C9
00cB
00CD
00CE

33
3F
9006
C41A
33

90F4

E403
9880

C479
CAQ7
C450
CAO6
CAOb
CAOZ3
C45C
CAQ4
C400
CAOD2
CAO1
CAQO
9089

C211
9C36

C20E

c20C
31

C20D
Cs800
S00E

E406
9802
E405
98E8
AAQC
9C02
AAQOE

CA4FF
CA11
CAOF

C20E
35
C20C
31
ci00
CAOD
C43F
33
3F

GOCK:

ERROR:

DTACK:

MEMDN:

MEMCK:

i\AEM:

MEML:

XPAL 3

XPPC 3 ;DO DISPLAY AND KEYBRD
JMP GOCK ;COMMAND RETURN.

LDI L(ADR)-1 ;SET ADDRESS.

XPAL 3

XPPC 3

JMP GOL ;NOT DONE.

XRl 03 ;CHECK FOR TERM.

Jz GOOoUT ;ERROR IF NO TERM.
INCORRECT SEQUENCE

DISPLAY ERROR WAIT FOR NEW INPUT

LDI KE ;FILL WITH ERROR.
ST ADHH(2)
LDI KR
ST ADHL(2)
ST ADLH(2)
ST D4{2)
LDI KO
ST ADLL(2)
LDI 0
ST D3(2)
ST DH(2)
ST DL(2)
JMP - WAIT
PAGE 'MEMORY TRANSACTIONS'
LD NEXT({2) CHECKIFDATAFIELD
JNZ DATA ;ADDRESS DONE.
LD ACHI(2) ;PUT WORD IN MEM.
XPAH 1
LD ADL(2)
XPAL 1
LD WORD(2}
ST (1)
JMP MEM
XRi 06 ;CHECK FOR GO.
Jz ERROR ;CAN NOT GO NOW.
XRl 05 ;CHECK FOR TERM.
JZ DTACK ;CHECK IF DONE,
ILD ADL{2) ;UPDATE ADDRESS LOW.
JNZ MEM ;CHECK IF UPDATE HI.
ILD ADHI(2)
MEM KEY PUSHED
LDI -1 ;SET FIRST FLAG.
ST NEXT(2) ;SET FLAG FOR ADDRESS NOW.
ST DDTA(2)
LD ADH(2)
XPAH 1 ;SET P1 FOR MEM ADDRESS.
LD ADL(2)
XPAL 1
LD (1)
ST WORD(2) ;SAVE MEM DATA
LDI L(DISPD)-1 ;FIX DATA SEG
XPAL 3
XPPC 3 ;GO TO DISPD SET SEG FOR DATA,

43

44

265
266
267
268
269
270
271
272
273
274
275
276
277
278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
299
299
300
301
302
302

303
305
306
307
308
309
310
311
312
313
314
315
3186
317

316
317
318
319
320
321
322
323
324
325

326
327

OOCF 80DC
00D1 C41A
00D3 33
00D4 3F
00D5 S0EA
00D7

00D7 CA4FF
00D9 CAOF
00DB C20E
00DD 35
00DE C20C
QOEQ 31
Q0E1 C10Q
00E3 CACD

OOEES
0OE5 CA43F
OOE7 33
OOE8 3F
O0ES 90C2
00EB C404
00ED CA0S
OOEF AAOF
OOF1 9CO06
O0F3 C400
00F5 CalD
O0F) CA11
OOF9

00Fg 02
O0FA C20D
O0FC F20D
OOFE CAQD
0100 BAOS
0102 9CF5

DATA:

DATAL:

DNFST:

0104 C20D

0104 C296
0104 C2086
0106 58

0107 680D 1O

0108 S0DA
0109 96DA

0108

0108 3F
010C 06
010D 5B
010E 4F
010F 66
0110 6D
0111 7D
0112

0111 7A
0112 07
0113 7F
0114 67
0115 77
0116 7C
0117 38
0118 5E
0119 79
011A 71

0118

CROM:

ADR:

JMP
LDI
XPAL
XPPC
JMP

LDI
ST
LD
XPAH

XPAL

CCL

ADD
ST
DLD
JINZ
LD

LD
ORE

) ST

JMP
JMP

.PAGE

MEMCK ;COMMAND RETURN.
L(ADR)-1 ;MAKE ADDRESS.

3

3

MEML ;GET NEXT CHAR.
-1 ;SET FIRST FLAG.
DDTA(2)

ADH(2) ;SET P1 TO MEMORY ADDRESS.
1 275

ADL(2)

1

(1) :READ DATA WORD.

WORD({2) ;SAVE FOR DISPLAY.

L(DISPD)-1 ;FIX DATA SEG.

3

3 :FIX DATA SEG-GO TO DISPD.

MEMCK ;CHAR RETURN.

4 ;SET COUNTER FOR NUMBER OF SHIFTS.
CNT(2)

DDTA{2) ;CHECKIFFIRST.

DNFST

0 ;ZERO WORD IF FIRST.

WORDI(2)

NEXT(2) ;SET FLAG FOR ADDRESS DONE.

WORD(2) SHIFT LEFT.
WORD{2}

WORD(2})

CNT(2) ;CHECK FOR 4 SHIFTS.
DNFST

WORD({2) ;ADD NEW DATA.

WORD(2) ;ADD NEW DATA.
WORD({2}

DATAL

DATAL

'"HEXNUMBBER TO SEGMENT TABLE’

‘HEX NUMBER TO SEVEN SEGMENT TABLE’

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

-BYTE
-BYTE

BYTE
.BYTE
.BYTE
.BYTE
.BYTE
BYTE
BYTE
BYTE

.PAGE

NO
N1
N2
N3
N4
NS
N6

N6
N7
N8
NQ
NA
NB
NC
ND
NE
NF

‘MAKE 4 DIGIT ADDRESS’

328
329
330
331

330

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
348
350
351
362
3563
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
3756
376
377
378
379
380
381
382
383
384
385
386

387
388
389
380
391
392

0118
011D
011F
0121
0128
0125
0127
0129
0129
012A
012C
012E
0130
0132
0134
0136
0138
013A
013C
013D
013F

0140
0140
0142
0143
0145
0146
0148
014A
0148
014D
014F
0151
0152
0153
0154
0155
0156
0158

C404
CAO09
AAQF
9C0o6
C400
CAQE
CAOC

02
c20C
F20C
CAQC
C20E
F20E
CAOQE
BAOS
9CEF
c20C

CAQC
3F

C401

c408B
31
C20D
D40F
01
C180
CAQO
C20D
1€
1C
1C
17
01
C180
CAO1

NOTFST:

DISPD:

PAGE

SHIFT ADDRESS LEFT ONE DIGIT THEN

SHIFT ADDRESS LEFT ONE DIGIT THEN
ADD NEW LOW HEX DIGIT.

HEX DIGIT IN E REGISTER.

P2 POINTS TO RAM

LDt
ST
ILD
JNZ
LDI
ST
ST

CCL
LD
ADD
ST
LD
ADD
ST
DLD
JINZ
LD
ORE
ST
XPPC

4
CNT(2)
DDTA(2)
NOTFST
0
ADHI{2)
ADL(2)

ADL(2)
ADL{(2}
ADL(2}
ADHI(Z)
ADH(2)
ADHI(2)
CNT{2)
NOTFST
ADL(2)

ADL(2)
3

;SET NUMBER OF SHIFTS.

;CHECK IF FIRST.
;JMP IF NO.
;ZERO ADDRESS.

;CLEAR LINK
;SHIFT ADDRESS LEFT 4 TIMES.

JSAVEIT.
;NOW SHIFT HIGH.

;CHECK IF SHIFTED 4 TIMES.
;JMP IF NOT DONE.
;NOW ADD NEW NUMBER.

;NUMBER IS NOW UP DATED.

PAGE ‘DATA TO SEGMENTS'

CONVERT HEX DATA TO SEGMENTS.
P2 POINTS TO RAM.
DROPS THRU TO HEX ADDRESS CONVERSION.

LDI
XPAH
LDI
XPAL
Id
ANI
XAE
LD
ST
LD
SR
SR
SR
SR
XAE
LD
ST

H(CROM)
1
LICROM)
1
wordB62)
OF

-128(1)
DL(2)
WORD(2)

-128(1)
DH(2)

;SET ADDRESS OF TABLE.

;GET MEMORY WORD.

/GET SEGMENT DISP.
;SAVE AT DATA LOW.
JFIXHI

;SHIFT HI TO LOW.

;GET SEGMENTS.
;SAVE IN DATA HI.

ADDRESS TO SEGMENTS

CONVERT HEX ADDRESS TO SEGMENTS.
P2 POINTS TO RAM.

————

45

46

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

428
429
430
431
432
433
434
435
436
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
4586
457
458
459
460
461
462
463

015A

015A 03

0158
015D
O15E
0160
01861
0161
0163
01865
0166
0168
016A
016C

016D ..

016E
016F
0170
0171
0173
01756
0176
0178
017A
0178
017D
017F
0181
0183
0183

0185
0185
0187
0189
0188
018C
018C
018E
0190
0192
0194
0186
0198
0198
0198
01898
019C
018E
01A0

C400
CAOB
C40D
35

C4FF
CA10
C40A
CA09
C400
CAOA
31

AA10
01

C280
C980
8F00

SR

DONE:

DROPS THRU TO KEYBOARD AND DISPLAY.

SCL
LDI H(CROM) ;SET ADDRESS OF TABLE.
XPAH 1

LDI L(CROM)

XPAL 1

LD ADL(2) ;GET ADDRESS.

ANl OF

XAE

LD ;GET SEGMENTS

ST ADLL{2) ;SAVESEGOFADRLL
LD ADL(2)

SR ;SHIFT HI DIGIT TO LOW.
SR

SR

XAE

LD -128(1) ;GET SEGMENTS

ST ADLH{2)

CSA ;CHECK IF DONE.

AN! 080

JZ DONE

CcCL ;CLEAR FLAG.

Lbi 0

ST D4(2) ,ZERO DIGIT 4

LD @21(2) ;FIX P2 FOR NEXT LOOP.
JMP LOOPD

LD @-2(2) FIXP2.

.PAGE 'DISPLAY AND KEYBOARD INPUT"

KYBD:

OFF:

LOOP:

CALL XPPC 3

JMP COMMAND IN A GO =6 ,MEM=7 TERM=3
INEGO=22 MEM =23, TERM=27.
NUMBER RETURN HEX NUMBER IN E REG.

ABORT KEY GOES TO ABORT.
ALL REGISTERS ARE USED.

P2 MUST POINT TO RAM. ADDRESS MUST BE XXXO.

TO RE-EXECUTE ROUTINE DO XPPC P3.

Lol 0 ,ZERO CHAR.

ST CHAR(2)

LDl H(DISP} ;SET DISPLAY ADDRESS.
XPAH 1

ol -1 ;SET ROW/DIGIT ADDRESS.
Sl ROW(2) ;SAVE ROW COUNTER.

LDI 10 ,SET ROW COUNT.

ST CNT(2)

LDI 0

ST PUSHED(2) ;ZERO KEYBOARD INPUT.
XPAL 1 ;SET DISP ADDRESS LOW.

ILD. ROWI(2) ;UP DATE ROW ADDRESS.
XAE

LD -128(2) ;GET SEGMENT.

ST -128(1) ;SENDIT.

DLY O :DELAY FOR DISPLAY.

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

480
481
482
483
484
485
4886
487
488
488
490
491
492
493
494
495
4886
487
498
499
500
501
502
503
504
505
506

507
508
509
510
511
512
513

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
6529

01A2
01A4
O1A6
01A8
01A8
O1AA
O1AC
O1AE
0180
0182
01B4
0. B8
0188
01BA
01BA
01BC

01BE
018E
018BF
Q1C0o
01C2
01C4
01C6
01C7
01C9
Q1CB
01CC
01CE
01D0
0101
01D3
0104
01D6
0106
01D7
0109
O1DA

01DC
071DE
01EQ
O1E2
O1E4
O1E4
01E6
01E7
01E7
01E8
G1EA

01EC
O1EC
01ED
O1EF
01F1

01F2
01F4
01F4
01F5
01F7

01F9

c180
E4FF
scac

BAOSG
9CED
C20A
980A
C208
9CD8
C20A
CACB
90D2

C208B
98CE

o1
40
D420
9Cc28
€480
508K
9C1B
C440
50
9C19
C40F
50
Fa0/

CoBO

01
C702

90A8

0AO8
0coD
0000
OEQF

60
90EF

60
F408
SOEA

60
E404
9808
3F

9091

58
CAQA
90AF

LD
XR1
JNZ
BACK:
DLD
JNZ
LD
JZ
LD
JNZ
LD
ST
JMP
CKMORE:
LD
JZ

-PAGE

-128{1) ;GET KEYBOARD INPUT.

OFF ;CHECK IF PUSHED.
KEY ;JUMP IF PUSHED.
CNT(2) ;CHECK IF DONE.
LOOoP :NO IF JUMP.
PUSHED{2) ;CHECK IF KEY.
CKMORE

CHAR(2) ;WAS THERE A CHAR?
OFF ;YES WAIT FOR RELEASE.
PUSHED(2) ;NO SET CHAR.
CHAR(2)

OFF

CHAR{2) ;CHECK IF THERE WAS A CHAR.
OFF ;NO KEEP LOOKING.

COMMAND KEY PROCESSING

COMMAND:
XAE
LDE
AN
JINZ
LDI
ANE
JNZ
LDI
ANE
JINZ
LDI
ANE
ADI
XAE
LD

KEYRTN:

XAE
LD
XPPC
JMP

.BYTE

XRE

JMP
N88:

XRE

AD!

JMP

.PAGE
CMND:

XRE

XRI

JZ

XPPC

JMP
KEY:

ORE

JmP

ABRT:

;SAVE CHAR.
:GET CHAR
020 ;CHECK FOR COMMAND.
CMND ;JUMP iF COMMAND
080 ;FIND NUMBER.
LT7 ;0TQ7
040
N89 ,80RS
OF
7 ;MAKE OFF SET TO TABLE.
;PUT OFF SET AWAY,
-128(0) GET NUMBER.
JSAVEIN E.
@2(3) JFIXRETURN.
3 JBRETURN.
KYBD JALLOWS XPPC P3 TO RETURN.

0OA,0B,0C, 0D,0,0E, OF

,KEEP LOW DIGIT

KEYRTN

JGET LOW.

08 JMAKE DIGIT 8 OR 9.

KEYRTN

04 ;CHECK IF ABORT.

ABRT ;ABORT.

3 INE 23=MEM,22=G0,27 = TERM
INA7=MEM,6=00,3=TERM.

KYBD ;ALLOWS JUST A XPPCP3 TQ
JRETURN
:MAKE CHAR

PUSHEDI(2) JSAVE CHAR.

BACK

47

48

H{ABORT)

3

L(ABORTI}-1

3

3 ;GO TO ABORT

‘RAM SEOFF-

0 ;SEGMENT FOR DIGIT 1
1 :SEGMENT FOR DIGIT 2
2 ;SEGMENT FOR DIGIT 3
3 ;SEGMENT FOR DIGIT 4
4 ;SEGMENT FOR DIGIT 5
5 ;SEGMENT FOR DIGIT &
6 ;SEGMENT FOR DIGIT 7
7 ;SEGMENT FOR DIGIT 8
8 ;SEGMENT FOR DIGIT 9
9 ;COUNTER.

10 KEY PUSHED,

11 ;CHAR READ.

12 ;MEMORY ADDRESS LOW.
13 ;MEMORY WORD.

14 ;MEMORY ADDRESS HI.
15 ;FIRST FLAG.

16 ;ROW COUNTER.

17 ,FLAG FOR NOW DATA.

*****"* QOERRORS INASSEMBLY ***°"*

530 01F8 C400 LDI
531 01FB 37 XPAH
532 O1FC C43F LDI
533 01FE 33 XPAL
534 O1FF 3F XPPC
535 .PAGE
536

537

538 0000 DL =
539 0001 DH =
540 0002 D3 =
541 0003 D4 =
542 0004 ADLL =
543 0005 ADLH -
544 0006 ADHL =
545 0007 ADHH =
546 0008 D9 =
547 0008 CNT -
548 O0OA PUSHED =
548 0008 GHAR 11
549 000B CHAR =
550 000C ADL =
551 000D WORD =
552 O00E ADH =
553 Q00F = =
554 0010 ROW =
555 0011 NEXT =
556

557

558 0000 -END
A ABORT ABRT ADH
OFFD 0040 O01Fg 0QO0OE
BACK CHAR CKMORE CMND
0O1A8 000B 01BA OQI1EC
DASH DATA DATAL DDTA
0040 00D7 OOE5 OOOF
DONE DTACK E ERROR
0183 009D OFFE 0083
KEY KEYRTN KO KR
O1F4 01D6 005C 0050
MEMDN MEML NO N1
00A1 00C1 003F 0006
N8 N89 NG NA
007F O1E7 0067 0077
NOTFST OFF P1H PI1L
0128 018C OFFS OFFA
SA SB SC SD
0001 0002 Q004 0008
WORD

000D

A799 0BAB

ADHH
0007

CNT
0008

DH
0001

GO
0069

KYBD
0185

N2
005B

NB
007¢C

P2H
OFFB

SE
0010

ADHL ADL ADLH ADLL
0008 000C 0005 0004
COMMANCROM D3 D4
018E 0108 0002 0003
DISP DISPA DISPD DL
0DCO ©O15A 0140 0000
GOCK GOL GOOUT INIT
007F 0073 0003 0001
LOOP LOOPD LT7 MEM
0188 0161 014 00B8
N3 N4 N5 N6
004F 0066 006D 007D
NC NC NE NEXT
0038 005E 0079 0011
R2L PUSHED RAM ROW
OFFC 000A OFO0 001710
SF SG START WAIT
0020 0040 0020 0056

ADR
0118

D¢
0008

DNFST
00F9

KE
0079

MEMCK
00AD

N7
0007

NF
0071
OFFF

WCK
0061

Mathematical

The mathematical subroutines all take their arguments relative to
the pointer register P2. Pointer P3 is the subroutine calling register. All
of these routines may be repeated without reloading P3 after the
first call.

‘Multiply’ gives the 1 6-bit unsigned product of two 8-bit unsigned
numbers,

e.g. A=X'FF(255)

B=X'FF(255)

RESULT =X'FEO1 (65025).
‘Divide’ gives the 16-bit unsigned quotient and 8-bit remainder of a
16-bit unsigned dividend divided by an 8-bit unsigned divisor.

e.g. DIVISOR=X"05 (5)

DIVISOR=X'6768 (22376)
QUOTIENT=X'117B (4475)
REMAINDER=X'01 (1).
"Square Root’ gives the 8-bit integer part of the square root of a
16-bit unsigned number. It uses the relation:
(n+1)2—n2=2n+1,
and subtracts as many successive values of 2n+ 1 as possible from the
number, thus obtaining n.
e.g. NUMBER = X'D5F6 (54774)
ROOT =X'EA (234).
‘Greatest Common Divisor’ uses Euclid’s algorithm to find the GCD of
two 16-bit unsigned numbers; i.e. the largest number which will
exactly divide them both. If they are coprime the resultis 1.
e.g. A=X'FFCE (65486 =478 x137)
B=X'569C5(23701=173%x137)
GCD=X'89(137).

Multiply

; Multiplies two unsigned 8-bit numbers
; (Relocatable)

; Stack usage:

P REL: ENTRY: USE: RETURN:
% —1 Temp
(P2)-> 0 A A A
: 1 B B B
2 Result (H) Result (H)
3 Result (L) Result (L)
0000 A = 0
0001 B = 1
FFFF Temp = —1
0002 RH = 2
= 3

0003 RL

49

50

0000
OF50
OF52
OF54
OF56
OF 58
OF5A
OF5C
OF5D
OF5E
OF 60
OF62
OF 64
OF66
OF67
OF69
OF6B
OF6C
OF6E
OF70
OF72
OF73
OF75
OF77

0000
OF80
OF 82
OF83
OF85

FFFF
0000
0001
0002

€200

C400
CA00

Mult:

Nbit: LD

Shift: RRL

Clear: LD

.END

e L]
Divide
; Divides an unsigned 1 6-bit number by

; an unsigned 8-bit number giving
: 16-bit quotient and 8-bit remainder.

; (Relocata

: Stack usa

[(P2)>
Quot
DSOR

DNDH
DNDL

Div:

ble)

ge:
REL:
-1
0
+1
52

.=0F80
LD

LDI
ST

Temp (2)
0

RH(2)
RL(2)
B(2)

B(2)
Clear
RH(2)
A(2)

RH(2)
RL(2)

RL(2)
Temp(2)
Nbit

3

Mult
RH(2)
Shift

ENTRY: USE: RETURN:
Quotient(l)

Divisor Quotient(H)

Dividend(H) Quotient(L)

Dividend(L) Remainder

—1

0

1

2

DSOR(2)

0

DSOR(2) ;Now Quotient(H)

OF87
OF89
OF 8B
OF8C
OF8D
OF 8F
OF90
OF92
OF94
OF96
OF98
OF99
OF98B
OFSD
OF SE
OFAO
OF A2
OFA4
OFA6
OF A8
OFA9
OFAB
OFAD
OFAF
OFB1
OFB2
OFB4
OFB6
OFB8
OFB9Y

OF20
OF 22

0000
0001
FFFF

0000
C400
CAFF

Subh: LD

Stoph: LD

Subl: LD

Stopl: LD

Quot(2)
DNDH(2)

:Quotient(L)

DNDH(2)

Stoph
DSOR(2)
Subh
DNDH(2)

;Carry is clear
DNDH(2) ;Undo damage
DNDL(2)

DNDL(2)
DNDH(2)
0

DNDH({2)

Stopl
Quot(2)
Subl
DNDL(2)

DNDL(2) ;Remainder
Quot(2)

DNDH(2)

3 ;Return
Div

Square Root

; Gives square root of 16-bit unsigned number
; Integer part only. (Relocatable).

;Stackusage:

7 REL:
: —1
(P2)-> 0
; +1
HI =
LO =
Temp =
=0F20
SQRT: LDI
ST

ENTRY: USE: RETURN:
Temp

Number(H) Root(H)

Number(L) RootiL)

0

1

—1

X'00

Temp(2)

51

52

OF 24
OF 25
OF 27
OF 29
OF 2A
OF 2C
OF 2E
OF 2F
OF31
OF33
OF 34
OF 36
OF38
OF39
OF 3B
OF3D
OF 3F
OF 41
OF43
OF45
0F46

OF48

OFFB

03
BAFF
F2FF

C4FE
F400

F201
CAO1

F200
CAQ0

9402
90E7
C400
CA0O
FAFF

CAO1

90D8

OF80
0000

Loop:

Exit:

Temp(2)
Temp(2)

X'FE
X'00

LO(2)
LO(2)

HI(2)
HI(2)

EXIT

LOOP

X'00

HI(2)

Temp(2)

LO(2)

3 ;Return
SQRT ;For Repeat

OF80 ;P2-> Number

Greatest Common Divisor

; Finds Greatest Common Divisor of two
; 16-bit unsigned numbers
; uses Euclid’s Algorithm. (Relocatable).

0000
OF20
OF 21
OF 23
OF 25
OF27

0000
0001
0002
0003

03
C203
FAO1
CAO03
01

; Stack usage:

(P2)>
AH
AL

BH
BL

GCD:

REL:

WN -0

ENTRY: USE: RETURN:
A(H) A(H) 0

A(L) A(L) 0

B(H) B(H) GCD(H)
B(L) B(L) GCD(L)
0

1

2

3

BL(2)

AL(2)

BL(2)

OF 28
OF 2A
OF2C
OF 2E
OF 2F
OF 31
OF33
OF34
OF36
OF37
OF38
OF 3A
OF38B
OF3D
OF3F
OF40
OF42
OF43
OF45
OF 46
OF 48
OF49
OF 4B
OF4D
OF4E

Swap:

BH(2)
AH(2)
BH(2)

Swap'

GCD
AL(2)

AL(2)

BL(2)
AH(2)

BH(2)
AH(2)
BH(2)

AL(2)
GCD

GCD

; Put carry in top bit

;Subtract again

;Get new AH(2)
:OR with new AL(2)
:Not finished yet
;Return

;For repeat run

53

54

Electronic

‘Pulse Delay’ uses a block of memory locations as a long shift-register,
shifting bits in at the serial input SIN and out from the serial output SOUT
By varying the delay constants the input waveform can be delayed by up
to several seconds, though for a fixed block of memory the resolution
of the delay chain obviously decreases with increased delay

With the program as shown the shift-register uses the 128 locations
OF80 to OFFF, thus providing a delay of 1024 bits.
The ‘Digital Alarm Clock’ gives a continuously changing display of the
time in hours, minutes and seconds. In addition, when the alarm time
stored in memory tallies with the actual time the flag outputs are taken
high. The time can be set in locations OF16, OF17, and OF18, and the
alarm time is stored in locations OF12, OF13, and OF14

The program depends for its timing on the execution time of the
main loop of the program, which is executed 80 times a second, so this
is padded out to exactly 1/80th of a second with a delay instruction. The
delay constants at OF7F and OF8 1 should be adjusted to give the
correct timing.
‘Random Noise’ generates a pseudo-random sequence of 2 15 1 or
65535 bits at the flag outputs. If one flag output is connected to an
amplifier the sequence sounds like random noise. Alternatively, by
converting the program to a subroutine to return one bit it could be used
to generate random coin-tosses for games and simulations. Note that
the locations OF1E and OF 1 F must not contain 00 for the sequence
to start

Pulse Delay

; Pulse delayed by 1024 bit-times.
, (Relocatable). Uses serial in/out.

0000 =0FI1F

OF1F Bits: =41 ;bit counter
OF20 C40F Enter: LDI H{Scrat)

OF22 35 XPAH 1

QF23 (480 LDIL (Scrat)

OF25 3 Next: XPAL 1

OF 26 C408 LDI 8

OF28 C8F6 ST Bits

OF2A C100 LD (1) ;Get old byte
OF2C 1 01 XAE ;Exchange
OF2D CDO1 ST @+ 1(1) ;Putback new byte
OF2F 19 QOutput: SIO :Serial 110

OF30 C400 LDI TC1

OF32 8F04 DLY TC2 :Delay bits
OF34 B8EA DLD Bits

OF36 9CF7 JNZ Output

OF38 31 XPAL 1 ;P1=0D00 Yet?

OF 39
OF3B

0000
OF12
OF13
OF14
OF15
OF16
OF1A
OF1B
OF1C
OF1D
OF1E
OF20
0F22
OF23
OF25
OF 26
0F28
OF 29
OF 2B
OF2C
OF 2E
OF 2F
OF31
0F32
OF 33
OF35
0OF37
OF 39
OF3B
OF3D
OF3F
OF41
OF43
OF45

9CEA
90E3

0000
0004

OF80
0000

TC1
TC2

Scrat

JMP

.END

Next

Enter

0 ;Bit-time

4 .Delay constants
OF80 .Start of scratch area

Digital Alarm Clock

;Outputs are held on when alarm
;time = Actual time, i.e. for one sec.

0108B
0D0O
OF00
OF10

Crom
Disp
Ram
Row

Time:

Speed:

Clock:

New:

Again:

Cs:

0108B .Segment table
0DO0O0 ;Display address
OFQ0

Ram+010
;Alarm time:hours
:Minutes
,Seconds
;Not used
;Actual time

076 ;Excess: Hours

040 :Minutes

040 ;seconds

020 ;Speed

HtCrom)

3

L(Crom)

3

H(Disp)

2

L (Disp) +0OD

2

H(Time)

1

L(Time) + 4

1

5 ,Loop count

Row

@—1(1)

0

(1)

+4(1)

Csi

Cs ;Equalize paths

Cont

(1)

55

56

OF47
OF49
OF 4B
OF4C
OF 4E
OF50
OF52
OF54
OF56
OF57
OF 58
OF59
OF BA
OF5B
OF5D
OF 5F
OF61
OF 63
OF 65
OF67
OF 69
OF 6A
OF6C
OF 6E
OF 6F
OF70
0OF72
OF74
OF75
OF77
OF78
OF7A
OF7C
OF7D
OF7E
OF80
OF82

OF1E

OF 20
OF22
OF 23
OF 25

COFD

C8FA
COF9

Cont: LD

Loop: LD

Alarm: LDl

(;Q[\tin: CAS
~ LDI

IS DLY

.END

(1)
OF

—128(3)
@+1(2)
040

00

(1)

—128(3)
@+ 2(2)
Row
Again

3

Row

0

@—1(1)
+4(1)

Row
Loop
Alarm
Contin

07

OFD
06
New

,Get segments
;Write to display

;Equalize display

;Leave a gap

;Digit count

;Same time?

;Times tally

;All flags on

;Pad out path
:Output to flags

;Pad out loop to
;1/(100-speed) secs.

Random Noise

; Relocatable

. Generates sequence 2115 bits long

.=0F1E
Line: =41
Noise: LD

RRL

ST

LD

Line

Line
Line + 1

:For random number
:Must not be zero

OF 27
OF 28
OF 2A
OF 2B
OF 2D
OF 2E
OF 2F
OF 30
OF 32
OF 33

RRL

CCL
AD
RR
RR

ANI
CAS
JMP

.END

Line+1
;Ex-or of bits 1 and 2
02 JInbit 3
;Rotate bit 3 to
:Bit 7
087 :Putitin carry and
;Update flags
Noise

57

58

System

‘Single Step’, or SS, add the facility of being able to step through a
program being debugged, executing it an instruction at a time, the next
address and op-code being displayed after each step. SSis set up by
storing the start address of the user program at OFF7 and OFF8. Then
‘GO’ing to SS will cause the user program'’s start address and first
instruction to be displayed.

Pressing ‘MEM' then executes that instruction and displays the next one.
Thus one can step through checking that jumps lead to the correct
address and that the expected flow of control is achieved. If, in between
steps,’ABORT' is pressed, control is returned to the monitor and the
contents of the registers from that point in the execution of the user
program may be examined in memory where they are stored between
steps:

OFF7 |PEH

Program Counter
OFE8 PEL
OFFS. P1H

} Pointer 1

OFFA PI1L
OFFB P2H

Pointer 2
QEFC ' TR2ZL
OFFD A Accumulator
OFFE E Extension Register
OFEEE. 7§ Status Register

‘GO'ing to the start of SS again will take up execution where it was left
off. The values of the registers are taken from these locations so itis
possible to alter them between steps.

The additional circuitry needed to implement the single step facility
is shown in Fig. 1. A CMOS counter, clocked by the NADS signal from
SC/MP, is reset from the SS program by a pulse at FLAG-0. After
8 NADS pulses it puts SENSE—A high; this will be the instruction fetch of
the next instruction in the user’s program, and an interrupt will be
caused after that instruction has been executed. The interrupt returns
control to SS ready for the next step. A TTL binary counter could be used
in this circuit instead.

The ‘Decimal to Hex' conversion program displays in hex the decimal
number entered in at the keyboard as it is being entered. Negative
numbers can be entered too, prefixed by ‘MEM’.

e.g. 'MEM' “1"'6’ '7’ displays 'FF63’

‘'TERM’ clears the display ready for a new number entry.

Any of the programs marked relocatable can be moved, without
alteration, to a different start address and they will execute in exactly

the same manner. The program ‘Relocator’ will move up to 256 bytes
at a time from any start address to any destination address.

These two addresses and the number of bytes to be moved are

specified in the b locations before the program. Since the source
program and destination area may overlap, the order in which bytes are
transferred is critical to avoid overwriting data not yet transferred, and so
the program tests for this.

Fig. 1

A 39
o MC14024
1
Clock
19 2
FLAG-0 Reset
6 Q4 VbD 14
+5V
7
Vss
17 l
SENSE-A
—— a4
SC/MP =
L
Single Step
; Adds a facility for executing programs a
; Single instruction at a time, displaying
; The program counter and op-code
. After each step.
: To examine registers, abort and
; use the monitor in the usual way.
; To continue, go to OF90.
OFF7 P3H = OFF7 ;For program to be
OFF8 P3L = OFF8 ;Single-stepped
OFF9 P1H = OFF9 ;Save user's registers:
OFFA P1L = OFFA ;(can be examined or
OFFB P2H = OFFB ;altered between
OFFC P2L = OFFC ;steps from monitor)
OFFD A = OFFD
OFFE E = OFFE
OFFF S = OFFF
000C ADL = 1:2
000E ADH = 14
000D Word = 13
OF00 Ram = 0F00
0140 Dispd = 0140
;Program enter here
0000 .=0F90
OF90 (C86C S5z ST A
0OF82 CO065 LD P3L ;Pick up user's program
OF94 33 XPAL 3 ;Address
OF95 CO61 LD P3H
OF97 37 XPAH 3
0OF98 C7FF LD @—1(3) ;Ready forjump
OF9A

9025 JMP Ret
¢ 59

60

OFSC
OF9E
OF9F
OFA1
OFA2
OFA4
OFAB
OFA7
OFA9
OFAA
OFAC
OFAD
OFAF
OFBO
0FB2
OFB3
OFB5
OFB6
OFB8
OFBA
OFBB
OFBD
OFBE
OFBF
OFCO

OFC1
OFC3
OFC4
OFC6
OFC7
OFC9
OFCA
OFCC
OFCD
OFCF
OFD1
OFD2
OFD4
OFD6
OFD7
OFD9
OFDB
OFDD
OFDF
OFE1
OFE2
OFE4
OFE6
OFE8
OFES
OFEB
OFED

Step:

Ret:

LD ADH(2)

XPAH 3

LD ADL(2)

XPAL 3

LD @—1(3)

LD E ;Restore user's context:

XAE

LD PiL

XPAL 1

LD P1H

XPAH 1

LD P2L

XPAL 2

LD P2H

XPAH 2

LDI 01 ;Flag O Resets counter

CAS ;Putithigh

LD S

ANI X'FE ;Put flag O low

CAS ;Start counting nads

LD A

IEN

NOP ;Pad outto 8

NOP

XPPC 3 ;Go to user’s program
;Here on interrupt after one instruction

ST A ;Save user'’s context

LDE

ST E

CSA

ST S

XPAH 1

ST P1H

XPAL 1

ST P1L

LDI H(Ram) ;SetP2->Ram

XPAH 2

ST P2H

LDI L(Ram)

XPAL 2

S P2L

LD @1(3)

LD (3) :Get op-code

ST Word(2)

LDI H(Dispd)

XPAH 3

ST ADH(2)

ST P3H ;So can enter via ‘SS’

LDI L(Dispd)—1

XPAL 3

ST ADL(2)

ST P3L

XPPC 3 :Go to display routine

No:

OFEE 90AC
OFFO 90FB
0000
000C
O0O0E
OF0O0
015A
0011
0012
0013
0000
OF50 C400
OF52 CA12
OF54 CAOCE
OF56 CAOC
OF58 C401
OF5A 37
OF5B (€459
OF5D 33
OFBE © 3F
OF5F 9028
OF61 C40A
OF63 CA11
OF6b 03
OF66 C212
OF68 01"
OF69 60
OF6A 78
OF6B 01
OF6C . 40
OF6D 78
OF6E 01
OF6F 9002
OFR71 | \C218
OF73 02
OF74 F20C
OF76 CA13
OF78 40
0F79 E20E
OF78 01
OF7C BA11
OF7E 9CF

JMP Step
JMP No
.END

Decimal to Hex

: Converts decimal number entered at
: keyboard to hex and displays result

" 'MEM' = minus, ‘TERM' clears display
; (Relocatable)

ADL = (o]}
ADH = OE
Ram = OF00
Dispa = 015A
Count = 011
Minus = 012
Ltemp = 013
.=0F50
Dhex: LDI 0
ST Minus(2)
ST ADH(2)
ST ADL(2)
Disp: LDI H(Dispa)
XPAH 3
LDI L(Dispa)-1
XPAL 3
XPPC 3
JMP Comd ;Command key
LDI 10
Sil Count(2) ;Multiply by 10
SCL
LD Minus(2)
XAE
XRE
CAE
XAE
LDE :Same as:
CAE ;
XAE
JMP Digit
Addd: LD Ltemp(2)
Digit: CCL
ADD ADL(2)
ST Ltemp(2)
LDE
ADD ADH(2)
XAE ;Put back
DLD Count(2)
JNZ Addd

;Command return so step
;Number return illegal

;Number in extension

;Low byte of product

;High byte of product

62

OF80
OF81

OF83
OF85
OF87
OF89
OF88
OF8D
OF8F
OF81

OF93
OFFB

0000

OF1B
OF1D
OF1F

OF20
0OF22
OF23
0F24
OF26
OF28
OF2A
OF2C
OF2D
OF2F
OF31

OF32
OF33
OF35%
OF36
0F27
OF39
OF3B
OF3C
OF3D
OF3F

40
CAOE
€213
CAOC
90CF
E403
98C3
C4FF
CA12
90CH

OF00
0000

FF80

LDE

ST Adh(2)
LD Ltemp(2)
ST Adl(2)
JMP Disp ;Display result
Comd: XRlI 3 J'TERM'?
Jz Dhex ;Restart if so
LDI X'FF ;Must be ‘MEM’
ST Minus(2)
JMP Disp
.=0FFB
.DBYTE Ram ;Set P2-> Ram
.END
Relocator

;Moves block of memory
;'From’ = source start address
:'To’ =destination start address
;‘Length” = No of bytes

:(Relocatable)
E = —128 :Extension as offset
=0F1B
From =.+2
To: =.+2
Length =.+1
Entry LDI (6]
XAE
SCL
LD To+1
CAD From + 1
LD To
CAD From
SRL
JP Fgt ;'From’ greater than ‘To’
LD Length ;Startfromend
XAE
Fgt: CCL
LD From+ 1
ADE
XPAL 1
LD From
ADI 0
XPAH q
CCL
LD To+ 1
ADE

0F40
OF41

OF43
OF45
OF46
OF47
OF48
OF4A
OF4C
OF4D
OF4E
OF50
OFb2
OF54
OF56

Up:

Move:

XPAL
LD
ADI
XPAH
CCL
LDE
JNZ
LDI
CAE
XAE
LD
ST
DLD
JNZ
XPPC

-END

2

N -
OO

E(1)
@E(2)
Length
Move
3

;i.e. subtract 1
;Putitin ext.

;Move byte

;Return

63

64

Serial Data Transfers with SC/MP-ii

This application note describes a method of serial data input/output (1/O)
data transfer using the SC/MP-II (ISP-8A/600) Extension Register. All
data I/O is under direct software control with data transfer rates between
110 baud and 9600 baud selectable via software maodification.

Data Output

Data to be output by SC/MP-Il is placed in the Extension Register and
shifted out through the SOUT Port using the Serial Input/Output
Instruction (SI0). The Delay Instruction (DLY), in turn, creates the
necessary delay to achieve the proper output baud rate. This produces a
TTL-level data stream which can be used as is or can be level-shifted to an
RS-232C level. Numerous circuits are available for level shifting. As an
example, either a DS 1488 or an operational amplifier can be used.
Inversion of the data stream, if needed, can be done either before the
signal is converted or by the level shifter itself.

Data Input

Data input is received in much the same way as data is output. The Start
Bit is sensed at the SIN Port and then received using the SIO Instruction
and the DLY Instruction. After the Start Bit is received, a delay into the
middle of the bit-time is executed. the data is then sensed at each full bit-
time (the middle of the bit) until all data bits are received. If the data is at
an RS-232C level, it must be shifted to a TTL level which SC/MP-Il can
utilize. This can be done with either a DS 1489 or an operational
amplifier. If inversion if the data is necessary, it should be done before it is
presented to the SIN Port.

Timing Considerations

Using the |/O routines presented in this application note, the user will be
able to vary serial data transmission rates by simply changing the delay
constants in each of the programs. Table 1 contains the delay constants
needed for the various input baud rates. Table 2 contains the delay
constants needed for the various output baud rates. Figure 1 is the outline
used for Serial Data Input. Figure 2 is the routine used for Serial Data

.

Output.
Baud ~ Bit
Rate Time HBTF | HBTC BTF BTC
110 9.09 ms [X'C3 [X'8 X892 | X"11
300 333 ms: |X'29 |%'8 X'BE X'6
600 1.67 ms |X'8A [|X'1 X120, | X'3
1200 0.833ms |X'BB X0 X'81 X1
2400 0.417ms |X'62 [X'0 X'B2 X0
4800 0.208ms [X“1F X'0 X'4A | X0
6400 0.156ms [X'12 [X'O X300 X0
9600 0.104ms [X'5 X'0 X6, X e
Table 1. Input Delay Constants (4 MHz SC/MP-II)

Baud Bit

Rate Time BTF2 BTC
110 9.09 ms X860
300 3133 'ms X'53 X'6
600 1.67 ms X4 | X3
1200 0.833 ms X'76 | X'1
2400 0.417 ms X'A7 X'0
4800 0.208 ms X'3E X0
6400 0.156 ms X'24 | X'0
9600 0.104 ms XA X0

Table 2. Output Delay Constants (4 MHz SC/MP-II)

NOTES:

1. The Serial Data Output routine requires that the bit-count (BITCNT)
in the program be set to the total number of data bits and stop bits to

be used per character.

2. Two stop bits are needed for the 110 baud rate; all other baud rates

need only one stop bit.

CONOOOPWN =

Serial Data Input

0001 P1=1
0002 P2=2
0003 P3=3

Title Recv, ‘SERIAL DATA INPUT'

; Routine is called with a "' XPPC P3'’ instruction

. Data is received through the serial /O Port.

; Before executing routine, Pointer 2 should point
; to one available location in R/W memory for a

; counter.

; On return from routine, data received will be in the
; Accumulator and the Extension Register.

: Delay Constants, user defined for desired Baud rate.
; The following example is for 1200 Baud:

00BB HBTF
0000 HBTC
0081 BTF
0001 BTC

Search:

26 0000 C408
27 0002 CA00

Again:

08B
0
081
01

08
(P2)

; Half Bit time, Fine

. Half Bit time, Coarse
; Full Bit Time, Fine

; Full Bit time, Coarse

; Initialize Loop Counter
; Save in memory

65

66

0004 C400 LDI 0 :Clear Accumulator

0006 01 XAE ; Clear E. Reg.
0007 19 S10 :Look for Start Bit
0008 40 LDE ; Bring into Acc.
0009 9CF9 INZ Again ; If notzero, look again
000B C4BB LDI HBTF ; Load Acc Half Bit time
000D 8FOO DLY HBTC; Delay Half Bit time
OO0F 19 SIO ; Check Input again to
0010 01 XAE : be sure of Start Bit
0011 9CF1 JNZ Again ; If not zero, was not
0013 C400 LDI 0 ; start B
0015 01 XAE
Loop:

0016 C481 LDI BTF ; Load Bit time Fine
0018 8FO01 DLY BTC ; Delay one Bit time
0001A19 SIO ; Shift in Data Bit
0018 BAOO DLD (P2) ; decrement loop counter
001D 9CF7 JNZ Loop ;Test for done
001F 40 LDE ; Done, put data in acc.
0020 3F XPRPC P3

0000 END

AGAIN 0004 BTC 0001 BTF 0081 HBTC 0000

HBTF

P3

QONDOHWN —

00BB LOOP 0016 P1 0001 P2 0002
0003 SEARCHO0000*

Serial Data Output

TITLE XMIT, 'SERIAL DATA OUTPUT'

0001 P1=1
0002 P2=2
0003 P3=3

; Routine is called with a "' XPPC P3"" instruction.
; Data is transmitted through Serial I/O Port.

; Before executing subroutine, pointer 2 should

; point to one available byte of RIW memory for a

, counter.

; Upon entry, character to be transmitted must be in
; the accumulator.

. Delay constants, user defined for desired baud rate.
; The following example is for 1200 baud:

0081 BTF1 = 081 ; Bit time Fine, first loop
0076 BTF2 = 076 ; Bit time Fine, second loop
0001 BTC = 01 : Full Bit time, Coarse

24 ; Character Bit-count. This should be set for the

25 : desired number of Data Bits and stop Bits.

26

27 0009 BITCNT = 9 ; 8 data and 1 Stop Bit
28

29 Start:

30 0000 O1 XAE ; Save data in E. Reg.
31 0001 C400 LDl 0] ; Clear acc.

32 0003 01 XAE : Putdata in acc, clear E.
33 0004 19 SIO : Send Start Bit

34 0005 01 XAE ; Putdatain E. Reg.
35 0006 C481 LDI BTF1 ; Load Bit time Fine

36 0008 8FO1 DLY BTC ; Wait one Bit time

37 O0O00A C409 LDI BITCNT ; Setloop count for data
38 000C CAO00 ST (P2) ; and Stop Bit(s). Save
39 Send: ; in count.

40 OOOE 19 SIO ; Send Bit

41 OOOF 40 LDE

42 0010 DC80 ORI 080 ; SetlastBitto 1

43 0012 01 XAE ; Put back in E. Reg.
44 0013 C476 LDI BTF2 ; Load Bit time Fine

45 0015 8F01 DLY BTC . Delay one Bit time
46 0017 BAOO DLD (P2) . decrement Bit counter
47 0019 9CF3 JNZ Send ; If not done, loop back
48 001B 3F XPPE" P3 ; otherwise, return

49

50 0000 END

BITCNT 0009 BTC 00@1 BTFT 008F BTF2 0076
P1 Q01> P2 0002 P3 0003 SEND OOOE
START 000°

67

- Games

The first two games are real-time simulations which provide a test of
skill, and they can be adjusted in difficulty to suit the player’s ability. The
last two games are both tests of clear thinking and logical reasoning, and
in the last one you are pitted against the microprocessor which tries
to win.

"Moon Landing’ simulates the landing of a spacecraft on the moon.

The displays represent the control panel and give a continuously changing
readout of altitude (3 digits), rate of descent (2 digits), and fuel remaining
(1 digit). The object of the game is to touch down gently; i.e. to reach zero
altitude with zero rate of descent. To achieve this you have control over
the thrust of the rockets: the keys 1 to 7 set the thrust to the
corresponding strength, but the greater the thrust the higher the rate of
consumption of fuel. When the fuel runs outan 'F’ is displayed in the

fuel gauge, and the spacecraft will plummet to the ground under the force
of gravity.

On reaching the moon’s surface the display will freeze showing the
velocity with which you hit the surface if you crashed, and the fuel
remaining. Pressing 'TERM’ will start a new landing.

The speed of the game is determined by the delay constants at OF38
and OF3A. The values given are suitable fora 1 MHz clock and they
should be increased in proportion for higher clock rates. The initial values
for the altitude, velocity, and fuel parameters are stored in memory at
OF14 to OF1F and these can be altered to change the game.

‘Duck Shoot' simulates ducks flying across the skyline. At first there is
one duck, and it can be shot by hitting the key corresponding to its
position: 7 = leftmost display, O =rightmost display. If you score a hit the
duck will disappear; if you miss however, another duck will appear to
add to you task.

The counter at OF 1D varies the speed of flight and can be increased
to make the game easier.

In "Mastermind’ the player tries to deduce a ‘code’ chosen by the
machine. The code consists of four decimal digits, and pressing 'TERM’
followed by'MEM’ causes the machine to choose a new code. The
player makes guesses at the code which are entered at the keyboard.
Pressing ‘GO’ then causes the machine to reveal two pieces of
information, which are displayed as two digits:

(1) The number of digits in the guess which are correct and in the

right position, (known as ‘Bulls’) and

(2] the number of digits correct but in the wrong position, (known

as 'Cows’).

For example, suppose that the machine’s code was ‘6678’. The
following guesses would then score as shown:

1234 0—-0 1278 2—-0

7812 0—2 7687 1-—2
Subsequent guesses are entered in a similar way, and the player tries
to deduce the code in as few attempts as possible.
‘Silver Dollar Game' is traditionally played with a number of coins which
are moved by the players in one direction along a line of squares. In his
turn a player must move a coin to the right across as many unoccupied

sqguares as he wishes. The player first unable to move —when all the
coins have reached the right-hand end of the line—loses, and the other
player takes the coins!

In this version of the game the coins are represented by vertical bars
moving along a dashed line. There are five coins numbered, from right
toleft, 1 to 5. The player makes his move by pressing the key
corresponding to the number of the coin he wishes to move, and each
press moves the coin one square along to the right. The machine plays
against you, and pressing ‘"MEM’ causes it to make its move. Note that
the machine will refuse to move in its turn unless you have made a legal
move in your turn. ‘'TERM’ starts a new game.

The machine allows you to take first move and it is possible to win
from the starting position given, though this is quite difficult. The five
numbers in locations OF 13 to OF 1 7 determine the starting positions of
each coin and these can be altered to any other values in the range 00 to
OF provided they are in ascending order.

Moon Landing

; Land a rocket on the moon
; Display shows altitude-velocity-fuel
; Keys 1-7 control the thrust

0005 Grav

= 5 :Force of gravity
0DO0O0 Disp = 0D00 :Display address
010B Crom = 010B ;Segment table
FF80 E = —128 ;Extension as offset
FFE3 Row = Ret-OFO3 ;Ram offsets
FFE4 Count = Ret-OF04
;Variables

0000 =0F05

OF05 Save: =.+1

OF06 H1: =.+1

QF07 e =.+1

OF08 Alt: =.+3 :Altitude

OFOB Vel: =.+3 :Velocity

OFOE Accn: =.+2 ;Acceleration

OF10 Titirs =.+2 ;Thrust

OF12 Fuel: =.+2 ;Fuel left

/ :Original values

OF14 08 Init: BYTE 08,050,0;Altitude =850
50
00

OF17 99 .BYTE 099,080,0; Velocity = — 20
80 1
00

OF1A 99 .BYTE 089,098 ;Acceleration=—2
98

OR1E 00 .BYTE 0,02 ;Thrust=2
02

OF1E 68 .BYTE 058,0 ;Fuel=5
00

69

70

OF20
OF 21
OF23
OF25
OF 26
OF28
OF 2A
OF 2B
OF2D
OF 2F
OF30
OF32
OF33
OF35
OF37
OF39
OF 3B
OF3D
OF 3E
OF 3F
0OF40
OF 41
0F42
0F43
OF44
OF46
OF48
OF 4A
0OF4C
OF4D
OF4F
OF50

OF52
OF54
OF55
OF57
OF58
OF A
OF5B
OF5D
OF 5E
OF60
OF 62
0F64
OF66
OF68

OFBA
OF6C
OF8D
OF6F
0OF70
OF72

:Subroutine to display AC as two digits

Ret: XPPC 2 ;P2 contains OF20
Disp: ST Save
LDI H(Crom)
XPAH 1
A H1 ;Run out of pointers
LDI L{Crom)
XPAL 1
ST L1
LD Save
GG
ANI OF
Loop: XAE
LD E(1)
ST @+ 1(3)
LDI 0 " :Delay point
DLY 2 ;Determines speed
LD Save
SR
SR
SR
SR
XAE
CSA
SCL
JP Loop :Do it twice
LDI 0
ST @+ 1(3) ;Blank between
LD H1 :Restores P1:
XPAH 1
LD L1
XPAL i
JMP Ret :Return
;Main moon-landing program
Start: LDI H{Init)
XPAH 1
LDI L{Init)
XPAL 1
LDI H(Ret)
XPAH 2
LDI L(Ret)
XPAL 2
LDI 12
ST Count(2)
Set: LD +11(1)
ST @—1(1)
DLD Count(2)
JNZ Set
:Main loop
Again: LDI H(Disp)—1
XPAH 3
LDl L(Disp)—1
XPAL 3
LDI 1
ST Count(2)

OF74
OF76
0F78
OF7A
OF7C
OF 7E
0F80
OF 81
OF 83
OF 85
OF87
OF8Y
OF8B
OF 8D
OF 8F
OF91
OF 93
OF 95
OF 97
OF 99
OF 98
OF 9D
OF 9E
OF AO
OF A2
OF A4
OF A5
OFA7
OFA9
OF AA
OFAC
OF AE
OFBO
OF B2
OF B4
OFB5
OF B7
OF B9
OF BB

7 OFBC

" OFBF
OFC1
OFC2
OFC4
OFC6
OFC8
OFC9
OFCB
OFCC
OF CE
OF DO
OF D2
OFD3

Twice;

Dadd:

Pos:

D sub:

Off:

Accns:

Dispy:

Posv:
Sto:

@+6(1) ;P1->Vel+2
Twice ;Altitude positive?
@+4(1) ,P1->Thr+1

Off ;Don‘t update

7 ;Update velocity anc
Row(2) ;Then altitude....

@—1(1)

+2(1)

(1)

Row(2)

Dadd

+2(1)

Pos ;Gone negative?
X'99

@—1(1)

(1)

Count(2)

Twice

@12(1) ;P1->Alt
Row(2) ;Row:=1

@—1(1) ;Fuel
—2(1) ;Subtract thrust
(1)
Row(2)
Dsub
;P1-> Fuel now
Off ;Fuel run out?
Accns
0
—1(1) .Zero thrust
—1(1)
099 —Grav
—3(1) ;Acen+ 1
X'99
0
—4(1) ;Accn
(1) ;Fuel
2 :Display it OK
=T} Vel
Posv
X'99
—6(1) ;Vel+1
0
STO
—6(1) Vel +1
2 ;Display velocity
—9(1) JAlt+1

71

72

OF D5
OFD6
OFD8
OF DA
OF DB
OF DD
OF DF
OFE1
OFE3
OFEb
OF E7
OFEQ
OFEB
OFED
OFEF
OFF1
OFF2
OFF4

0000
OFOF
OF10
OF 11

OF12
OF 14
OF 156
OF17
OF18
OF 1A
OF1C
OF1E
OF 20
OF22
OF 24
OF 26
OF27
OF 29
OF 2A
OF 2C

SE
CTEE
CbHF6

C40A
CAE4
C7FE
940A
E4DF
9A31
BAE4
9CF4
9249
C109
9803

C909
9249
0000

XPPC 2 ;Display it

LD @—1(3) ;Getrid of lank
LD @—10(1);P1-> Alt now
XPPC 2
LDI 10
ST Count(2)

Toil: LD @—1(3) ;Key pressed?
JP. Press ;Key 0-7?
XRI X'DF ;Command Key?
Jz Start(2) ;Begin again if so
DLD Count(2)
JNZ Toil
JMP Again(2) ;Another circuit
LD +9(1) :Thr+1
JZ Back :Engines stopped?
XPAL SEN ;Which row?
St +9(1) :Set thrust

Back: JMP Again(2) ;Carry on counting
END

Duck Shoot
; Shoot Ducks flying display

; By hitting key with number corresponding
; To their position: 7 = Leftmost,

; O =Rightmost.
. If you miss, another duck appears
; (Relocatable)
Duck = 061 ;Segment pattern
Disp = (0]n]0]0] :Display address
=0OFOF
Row: =.+1 ;Bits set =ducks
Count: .=.+1
Sum: = +1 :Key pressed
Shoot: LDI H(Disp)
XPAH 1
LDI L(Disp)
XPAL 1
LDI 1 ;Start with 1 duck
ST Row
React: LDI 16 ;Speed of flight,
ST Count ;Smaller = harder
LDI 0
ST Sum
Shift: LDI 8 ;Move ducks this time
Ndig: XAE
LD Row
RR
ST Row
JP No

N R T e T—

OF 2E
OF30
OF32
OF34
OF 36
OF38
OF3A
OF 3C
OF3E
OF40
OF42
OF44
OF 46
OF48
OF 4A
OF4B
OF4C
OF 4E
OF50
OF52
OF54
OF56

0000
OF1C
OF1E
OF 20
OF22
OF 23
OF 25

OF 26
OF 28

LDI Duck
JMP Go
No: LDI 0 ;No duck
Go: ST —128(1) ;E as offset
DLY 01 ;Shine digit
LD Sum
JNZ Nok ;Key already pressed
LD —128(1) ;Test for key
XRI OFF
JZ Nok :No key
ST Sum
LD Row
XRI 080
ST Row ;Change top bit
Nok: LDE
SCL
CAl 1 ;Subtract 1
JR Ndig ;Do next digit
DLD Count
Jz React :Start new position
LDI 74
JMP Ndig ;/Another sweep
.END
e
Mastermind
Ram = OF0C
Disp = 0DO0 ;Display address
Crom = 0108 ;Hex to segment table
Adr = 0118B ;'Make 4 digit address’
Dispa = 015A ;' Address to segments’
: Variables in RAM
DI = 0
D3 = 2
Adll = 4
Adl = 12
Adh = 14
Ddts = 15
Row = 16
Next = 17
Key = 20
. Begin at OFIC
.=0FIC
Start LDI 0
ST ADL
ST ADH
XPAL 2
LDI OF
XPAH 2
Choose random number
LDl H(Crom)
XPAH 3

73

74

OF 29
OF 2B
OF2C
OF 2E
OF 30
OF 32
OF 33
OF35
OF 36
0F37
OF39
OF 3B
OF3D
OF 3F
OF40
OF 42
OF44
OF 46
OF 48
OF4A
OF 4B
OF 4D
OF4E
OF 50
OF52

OF54
OF56
OF58
OF 5A
OF5C
OFBE
OF bF
OF61
OF62
OF 64
OF 65
OF66
OF68
OF69
OF6B
OF6D
OF6F
OF70
OF71
OF73
OF75
OF77
OF79

0F 7B
OF7D
OF 7F
OF81

No Key:

Incr:

Clear:

Nchar:

Comd:

Go:

Bulls:

LDI L(Crom}

XPAL 3

LDI 04

ST Row(1)

LDI H(digits)

XPAH 1

LDI L(Digits)

XPAL 1

SCL

LD +4(1)

DAI 090

ST +4(1)

ANI OF

XAE

LD —128(3)

ST @+1(1)

DLD Row(2)

JNZ Incr

LDI H(Disp)

XPAH 1

LDI L(Disp)

XPAL 1

LD 3(1) ;Key pressed?
XRI OFF

JZ No key
Enter your guess

LDI OFF

ST Ddta(2)

LDI 0

ST DL(2)

S D3(2)

CEL

LDI H(Dispa)

XPAH 3

LDI L(Dispa)—1

XPAL 3

XPPC 3 ;Jump to subroutine
JMP COMD :Command key return
LDE ;Number key return
ADI OF6

JP Nchar ;Ignore digits > 9
LDI L(Adr)—1

XPAL 3

XPPC 3

JMP Blank ;Get next digit
XRI 03 ;term?

Jz Start(2) ;lf so—new game
XRI 05 ;Go?

JNZ Clear ;lgnore if not
Work out answer to guess

LDI L{Crom)

ST DL(2)

ST D3(2)

LDI H(Key)

OF83
OF84
OF86
OF87
0F89
OF 8A
OF8C
OF8E
OF 90
0F92
0F94
0F 96
0F98
OF 99
0F9B
OF9D
OF 9E
OFAO
OF A2
OF A4
OF AB
OFA8
OFAA
OFAC
OFAA
OFAC
OF AE
OFAF
OFB1
OFB2
‘OFB4
OF B6
OFB8
OFBA
OFBC
OFBE
OFCO
OFC2
OFC4
OFC6
OFC8
OFCA
OFCB
OFCD

OFCF
OFD1
OFD3
OFD5
OFD7
OFD9
OFDB

XPAH 1
LDI L(Key)
XPAL 1
LDI 080
XAE
LDI 04 :No. of digits
ST Next(2)
Bull 2: LD Adll-Key(1)
XOR @+1(1)
JNZ Nobul
ILD DH(2)
LD —1(1)
ORE ;Set negative
ST —1(1)
LD Adll-Key-1(1)
ORE
ST Adll-Key-1(1)
fBobul: DLD Next(2)
JNZ Bull 2
Cows: LDI 04
St Next(2) ;P1 pointsto Key + 4
Nerow: LDl 04
ST Row(2)
LDI 04
ST Row(2)
LDI H(AdII)
XPAH 3
LDI L(AdI) + 4
XPAL 3
LD @—1(1)
JP Try :Already counted as bull?
Nocow: DLD Next(2) ;Yes
JNZ Nerow
JMP Finito
Notry: DLD Row(2)
Jz Nocow
Try: LD (1)
XOR @—1(3) :Same?
JNZ Notry
ILD DL(2)
LD (3)
ORE
ST (3)

JMP Nocow
: Now unset top bits of Key

Finito: LDI 04
S Next(2)
Unset: LD (1)
ANI O7F
ST @+1(1)
DLD Next(2)
JNZ Unset ;All done?

75

76

OFDD
OF DF
OFEO
OFE2
OFES3
OFE5
OFE7
OFE9
OFEA
OFEC
OFEE
OFFO
OFF2

0000

OF1.2
OF13
OF14
OF 156
OF16
OF17

OF18

OF1E
OF28
OF 2A
OF 2B
OF 2D
OF 2E
OF30
OF31
OF33
OF 34
OF36
OF38
OF 3A
OF3C

;Set up segments of result

C401 LDI H(Crom)
35 XPAH 1
C200 LD DL(2) ;L{Crom) + Cows
31 XPAL 1
C100 LD (1) ;Segments
CAQO0 ST DL(2)
C202 LD D3(2) ;L(Crom) + Bulls
31 XPAL 1
C100 LD (1) ;Segments
CAD2 ST D3(2)
C4FF LDI OFF
CAOF - ST Ddta(2)
925D JMP Nchar(2) ;Display result
0000 .END
o
Silver Dollar Game

; Machine plays against you in moving five
; ‘Silver Dollars’ along a track

; Player unable to move loses
=0F12

; Starting position: Must be ascending order
FF Start: .BYTE OFF
03 BYINE 03
05 .BYTE 05
08 .BYTE 08
09 BYTE 09
OF .BYTE 0
QF00 Ram = OF00 3

Pos: =.,+6 ;Current position :
0024 Count = 024 ;Ram offsets: |
0025 Key = 025 ;For key last pressed
0026 Init = 026 ;Zero
0185 Kybd = 0185 :In monitor 3
0080 E = —128 ;Extension reg.

.=0F28

C40F Begin: LDI H(Ram) |
36 XPAH 2
C400 LDI L{Ram)
32 XPAL 2
C40F LDI H(Pos)
35 XPAH 1
C418 LDI L(Pos)
31 XPAL 1
C406 LDI 6
CA24 ST Count (2)
C1FA Setup: LD —6(1) ;Transfer start to pos
CDO1 ST @+1(1)
BA24 DLD Count(2)

OF 3E
OF40
OF42

OF 44
OF 46
OF47
OF 49
OF 4A
OF 4C
OF 4D
OF 4F
OF 51
OF 52
OF54
OF56
OF58
OF 5A
OF5C
OF6D
OF 5F
OF61
OF 62
OF 64
OF 66
OF 68
OF 6A
OF 6B
OF 6D
OF 6F
OF 71
OF 73

OF75
OF77
OF78
OF 7A
OF7B
OF7C
OF 7E
OF 7F
OF 81
OF82
OF84
OF 86
OF 88
OF89
OF 8B
OF8C
OF 8D
OF 8E
OF90
OF 91

Ymove:

Disp:

Clear:

Npos:

QOdd:

Even:

Cont:

:Display current position

Show:

JNZ Count(2)

LDI 0

ST Key(2)
:Generate display from Pos

LDI H(Pos)

XPAH 1

LDI L(Pos)+ 1

XPAL 1

LDI 9

XAE

LDI 08

ST E(2)

LDE

CAl 1

JP Clear

LDI 5

ST Count(2)

LD @+ 1(1)

RR

JP Even

ANI 07F

XAE

LD E(2)

ORI 030

ST E(2)

JMP Cont

XAE

LD E(2)

ORI 06

ST E(2)

DLD Count(2)

JNZ Npos

LDI H(Kybd)

XPAH 3

LDI L(Kybd)-1,

XPAL 3

XPPC 3

JMP Coma

LDE

Jz Show

SCL

CAl 6

JP Show

LDI H(Pos)

XPAH 1

LDI L(Pos)

CCL

ADE

XPAL 1

LD (1)

CCL

ADI —1

:You go first!
;Clear key store

:Clear Display buffer

;Underline

;SegmentsE& F

:SegmentsB&C

:Command key

;1-5 allowed

77

78

OF93
OF 94
OF 96
OF 98
OF 9A
OF9C
OF QE
OF9F
OF A1
OFA2
OFA4
OF A6
OFA8
OF AA
OFAC
OFAE
OFBO
OFB2
OFB3
OFB5
OFB6
OFB8
OFB9
OFBB
OFBc
OFBE
OFCO
OFC1
OFC2
OFC4
OFC4
OFC6
OFC7
OFC9
OFCB
OFCC
OFCE
OFDO
OFD1
OFD3
OFD5
OFD7
OFD9
OFDB
OFDD
OFDE
OFEOQ
OFE1
OFE3
OFEb
OFE7
OFES
OFEB
QFED

Fine 2:

Firstn:

Coma:

Go:

Try:

Solve:

Nogo:

No:

Fine:

CCL

DLD

JNZ
LDE

XOR
SCL
CAD

CEL
ADD

JMP
LDI
ST
LD
CCL
ADI
€eL
CAD

DLD
JINZ
JMP
DLD
JMP
.END

—(1)

Fine 2 ;Valid move
Show

Key(2)

Firstn

Key(2) ;First key press
;Not first press

Disp(2) ;notallowed

(1) .Make move

Disp(2) ;Display result

Key(2) ;Mem pressed

Disp(2) ;You haven’t moved!

3

Count(2)

H(Pos)

1

L(Pos)

1

0

= 6)

@+2(1)
4(1)
;Keep nim sum

Count(2)
Try

Nogo :Safe position
(1)

@+2(1)
Solve

—7(1) :Make my move
—7(1)

Ymove(2) ;Now you, good luck!
05

Count(2) ;Make first move

@—1(1)
—

=)

Fine

Count(2)

No

+7(3) ;i.e. Abort—I lose
(1) ;Make my move

Ymove(2) ;now you chum.

Music

The ‘Function Generator’ produces a periodic waveform by outputting
values from memory cyclically to a D/A converter. It uses the 8-bit port
B of the RAM /O chip to interface with the D/A, and Fig. 1 shows the
wiring connections. The D/A chosen is the Ferranti ZN4 25E, a low-cost
device with a direct voltage output.

Any waveform can be generated by storing the appropriate values in
memory. The example given was calculated as an approximation to a
typical musical waveform.

‘Music Box' plays tunes stored in memory in coded form. The output can
be taken from one of the flag outputs. Each note to be played is encoded
as one byte. The lower 5 bits determine the frequency of the note, as
follows:

Rest A A%# B C CH# D D E F F# G G¥

00 01 02 03 04 05 06 07 08 09 OA 0B OC

0D «OE QFE 1030 120 13014 15 1.6 17 218

There are two octaves altogether.

The top three bits of the byte give the duration of the note, as

follows:
Relative Duration: 1 2 3 4 5 6 7 8

00 20 40 60 80 AO CO EO
Thus for any specific note required the duration parameter and
frequency parameter should be added together. A zero byte is reserved
to specify the end of the tune.
To slow down the tempo locations OF58 and OF59 should be altered to
D4FC (ANI X"FC).

The program uses two look-up tables, one giving the time-constant
for a delay instruction determining the period of each note and the other
giving the number of cycles required for the basic note duration.

‘Organ’ generates a different note for each key of the keyboard by using
the key value as the delay parameter in a timing loop. Great skill is
needed to produce tunes on this organ.

PBO Slait 8 vegle - B
P18 61git 7 ot [
5 |
9
pe3 [2 Bit 5 Mt =
PB4 3 10) git 4 14 == 0.22uF
2 1001 7= 1
PB5 —{ Bit 3 ANALOGUE
1 12] GROUND SR
PB6 % Bit 2 >
pa7 |22 Bit 1 SELECT
RAM 1/0 ZN425E =
D/A CONVERTER v
4
i 79

80

0000
0E80
OE82
QOE83
OE85
OE86
OE88
OE89
OE8B
OE8C
OES8E
OESO
OE92
OE93
OE94
OEQ6
OE98
OEQA
OESC
OEQE
OEQF

OEA1

OF20
OF286
OF2C
OF32
OF38
OF3E
OF44

Function Generator

; Generates arbitrary waveform by outputting
; values to D/A Converter.
; uses Ram |/O chip. (Relocatable).

OF48
0028
0000

'Portb
Ext

Start:

Reset:

Next:

; Sample waveform of 40 points

; Fundamental amplitude 1

; 2nd Harmonic amplitude 0.5 zero phase
; 3rd Harmonic amplitude 0.5 90 deg. lag.

DINT
JMP

; Equation is:

; Sin(X) +0.5*Sin(2.0*X)40.5°Sin(3.0*X—0.5*Pl)

0E21
—128 ;Extension as offset

;Start of Ram in Ram/I0
H(Endw)
2
L(Endw)
2 ;P2-> End of waveform
H(Portb)
1
L(Portb)
1
X'FF ;All bits as outputs
+2(1) ;Output definition B
—Npts.
E(2) ;Get next value
(1) ;Send to D/A
1 :Point to next value
Reset ;New sweep
;:Equalize paths
Next ;Next point

;. With appropriate normalization

'

Wave:

Endw
NPTS

.=0F20

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

END

077,092,0B0,0CB,0E1,0ED
OEF,0E6,0D5,0BE,0A5, 08E
07F,077,076,07D,087,092
098 09E,09A,090,080,06F
05C, 04D,042,03D,03D,040
046,048, 04D 04D, 04A,046
044,047,050,060

Endw—Wave ;No. of points

0000

OF12
OF13
OF19
OF1F
OF25

OF28
OF31

OF37
OF3D

OF43
OF44

OF45

OF46
OF48
OF49
OF4B
OF4C
OF4E
OF4F
OF51

OF52
OF53
OF556
OF56
OF57
OF58
OF59
OFBA
OF5C
OFBE
OF5F
OF61

OF62
OF63
OF64
OF66
OF67
OF69
OF68B

Music Box

; Plays a tune stored in memory
; 1 Byte per note
; top 3 bits =duration (00-EQ) =1 to 8 units
: bottom 5 bits=note {01-18) = 2 octaves

'

.=0F12

;Table of notes

Scale:

.BYTE
BYTE
BYITE
.BYTE

BYTE

0 ;Silence

OFF,0EC,0DB,0CA,0BB,0AC
09E,091,085,079,06E,063
059,050,047,03F,037,030
029,022,01C,016,011,00C

; Table of cycles per unit time

BYTE
BYTE
.BYTE
.BYTE

;Program now:

Cycles:
Count:

Stop:

iBegin:

Play:

Hold:

Peal:

=.+1
=.+1

XPPC

044,048,04C,051,055,058B
060,066,06C,072,079,080
088,090,098,0A1,0AB,0B5
0C0,0CB,0D7,0E4,0F2,0FF

3 ;'Go, ‘term’, to play again

H{Scale)

1

H{Tune)

2

L(Tune)

2 ;P2 points to tune

@+ 1(2) ;Get nextnote code
;Save in ext.

Stop :Zero =terminator

;Shift duration down

Count
L(Scale)
X“1F .Get note part
;No carry out
1 ;Point P1 to note
(1) :Note
;Putitin ext.
+24(1) ;Cycle count
Cycles

81

82

OF6C
OF6E
OF70
0F72
OF74
OF75
OF77
OF7B
OF7A
OF7C
OF7D
OF7F
OF81

OF83
OF85
OF87
OF889

OF8B
0F90
OF96
OF9C
OFA2
OFA8
OFAE
OFB4
OFBA

OF1F

OF20
OF22
OF23:
OF25
OF26
OF28
OF2A
OF2C
OF2E
OF30
0F32
OF33

0000

0D0OO

€40D
35
C400

€408
C8F6
C501
E4FF

9808
8F0O0

E407

Sound:

More:

Tune:

'

Count:
Disp:

Enter:

New:

Again:

JNZ
DLY
JMP
DLY
CSA
XRI
CAS
DLD
JZ
NOP
LDI
DLY
JMP
DLD
JP
DLY
JMP

.=0F90
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
BYTE
.BYTE

.END

Sound ,Zero=silence
X'80 ;Unit gap
More

X'00

X'07 .Change flags

Cycles
More

;Equalize paths to
X'10 ;Prevent clicks in
X'00 ;Sustained notes
Peal
Count
Hold
X'20 ;Gap between notes
Play :Get next note

02D,02D,02F,04C,00D,02F
031,031,032,051,00F,02D,
02F,02D,02C,02D,00D,00F
011,012,034,034,034,054,
012,081,032,0832,032,052,
011,02F,031,012,011,00F
00D,051,012,034,016,032
071,06F,08D,0

Organ

; Each key on the keyboard generates a
; Different note (though the scale is
; Somewhat unconventional!)Relocatable,

OF1F
41

LDI
XPAH

XPAL
LDI

LD
XRI

DLY
CSA
XRlI

(0]810]0) ;Display & keyboard

H(Disp)

1

L(Disp)

1

08

Count ;Key row

@+1(1)

OFF :Key pressed?

No

00 :Delay with AC =key

07 :Change flags

OF35
OF36
OF38
OF3A
OF3C

07

90EB
B8E6
9CEE
90E5

0000

No:

CAS
JMP
DLD
JNZ
JMP

.END

New
Count
Again
New

83

Miscellaneous

‘Message’ gives a moving display of segment arrangements according
to the contents of memory locations from 'Text' downwards until an
‘end-of-text’ character with the top bit set (e.g. 080). Each of the bits
0-6 of the word in memory corresponds, respectively, to the seven
display segments a-g; if the bitis set, the display segment will be lit.
Most of the letters of the alphabet can be formed from combinations of the
seven segments: e.g. 076 correspondsto ‘H’, 038 to 'L’, etc. The speed
with which the message moves along the display depends on the counter
at OF2D. If the first and last 7 characters are the same, as in the sample
message given, the text will appear continuous rather than jumping from
the end back to the start.
The 'Reaction Timer’ gives a readout, in milliseconds, of the time taken
to respond to an unpredictable event. To reset the timer the 'O’ key
should be pressed. After a random time a display will flash on. The
program then counts in milliseconds until the "MEM’ key is pressed,
when the time will be shown on the display.

The execution time of the main loop of the program should be
exactly one millisecond, and for different clock rates the delay constants
will have to be altered:

Rate Location: OF2A OF37 OF39

1MHz 07D 0A8 00
2 MHz OFA 0A1 01
4 MHz OFF 093 03

The 'Self-Replicating Program’ makes a copy of itself at the next free
memory location. Then, after a delay, the copy springs to life, and itself
makes a copy. Finally the whole of memory will be filled by copies of the
program, and from the time taken to return to the monitor one can
estimate the number of generations that lived.

Message

; Displays a moving message on the
; 7-segment displays

: (Relocatable)
0000 .=0F1F
OF1F Speed: =.+1
OF20 C40D Tape: LDI H(Disp)
OF22 35 XPAH 1
OF23 C400 LDI L(Disp)
OF25° 31 XPAL 1
OF26 C40F LDI H(Text)
OF28 36 XPAH 2
OF29 C4CA LDI L(Text)-8
OF2B 32 ' XPAL 2
QF2€: €460 Move: LDI X'CO ;Determines sweep speed

i
#

OF2E C8FO ST Speed

OF30 C407 Again: LDI 7/
0F32 01 Loop: XAE
0OF33: €280 LD -128(2)
OF35 (€980 ST -128(1)
OF37 C4FF LDI X'FF
OF39 02 CEL
OF3A 70 ADE ;i.e. decrement ext.
OF3B 94F5 JP Loop
OF3D B8E1 DLD Speed
OF3F 9CEF JNZ Again
OF41 CG6FF LD @-1(2) ;Move letters
OF43 94E7 JP Move :X"'80 =end of text
OF45 90DF JMP Go
0D0O Disp = 0D00

; A sample message

; Message is stored backwards in memory
: first character is ‘end of text’, X'80.

; For a continuous message, first and

; Last seven characters must be the

; same (as in this case).

‘

OF47 .=0FAO
OFAO .BYTE 080,072,079,06D,040,037 e~
OFAB .BYTE 077,039,040,03E,08F,06E 31
OFAC .BYTE 040,06D,077,040,06E,03E
OFB2 .BYTE 07F,040,079,037,030,071
OFB8 .BYTE 040,06E,038,038,03F,01F
OFBE .BYTE 040,077,040,06D,030,040
OFC4 .BYTE 039,040,071,03F,040,06D
OFCA BYTE 040,079,079,06D,040,037
OFDO .BYTE 077,039

OFD2 Text = . ;start of message

.END

Self-Replicating Program

: Makes a copy of itself and then

; executes the copy.

; Only possible in a processor which permits
; one to write relocatable code, like SC/MP

FFFC LDX = Loop-Head-1 ;offset for load
000D STX = Last-Store-1 ;offset for store
0000 —=0F12
OF12 C4FC Head: LDI LDX
OF14 01 XAE
OF15 CO80 Loop: LD -128(0) ;PC-relative-ext = offset

85

86

OF17
OF18
OF19
OF1B
OF1C
OF1E
OF1F
OF20
OF22
OF23
OF24
OF26
OF28
OF2A

0000
OF20
OF22
OF23
OF25
OF26
OF28
OF29
OF2B
OF2C
OF2D
OF2F

OF31

OF32
OF34

OF36
OF38
OF3A
OF3B

O1E4
OF00
0D0OO
0005
000C

. O00E

015A

XAE

CCL
ADI STX-LDX
XAE
Store: ST -128(0) -ditto
LDE
SCL
CAl STX-LDX-1 ;i.e.increment ext.
XAE
LDE
XRI Last-Loop-1 ;finished?
JNZ Loop
DLY X'FF :shows how many copies
Last = ;were executed.
.END
Reaction Time
ion Timer

: Gives readout of reaction time in milliseconds
; display lights up after a random delay

; Press’MEM' as quickly as possible.

; Press 'O’ to play again. (Relocatable)

; 150 =excellent, 250 = average, 350 = poor

Cycles
Ram.
Disp
Adlh
Adl
Adh
Dispa

v

Begin:

Wait:

L | S [I S

500 :SCIMP cycles per msec
OF00

0D0OO

5

12

14

015A ;' Address to segments'’

H{Dispa)

3

L(Dispa)

3

AdIh(2) ;'Random’ number

Cycles/4

;Count down

Wait

+3(1) ;Light’8" on display
:Now zero

Adl(2)

Adh(2)

:Main loop ; length without DLY =151 ucycles

Time:

LDI
DLY
SCL
LD

(Cycles-151—13)/2
0

Adl{2)

Boainda &

i il il 1y

OF3D
OF3E
0OF40
OF42
OF43
OF45
OF46
OF47
OF49
OF4B
OF4C
OF4E

OF50

OFF9
OFFB

Stop:

DAE
ST
LD
DAE
ST
LDE
CCL
CAD
Jz
XPPC
JMP
JMP

.=0FF9
.DBYTE

.DBYTE
.END

Adl(2)

Adh(2)

Adh(2)

+3(1) ‘Test for key

Time

3 ;Go display time

Stop ;lllegal return

Begin :Number key
;Pointers restored
;Fromram

Disp :P1-> Display

Ram ;P2->Ram

87

Science ot Cambridge Limited
6 King's Parade

Cambridge CB2 1SN

Telephone Cambridge (0223) 311488

Remove from Book

A0 L —CQ} RST INTR —y,
Ic2 Q] wos PAD e
0o J ros 1 v
D1 Do 2 —
D2 D1 3 —
03 D2 2 m—
EN 0-4—“ D3 i
+5V A1l D4 6 —
D5 ic8 7 —
R11 0 P80 —
b7 1 s—
ic3 AD AQ 2 —
D4
Ic18 8 —-’ = WIRING OF IC 4,5, 6 & 7 MAY 2 =
£ = NOT FOLLOW CONVENTIONAL ¢ ,_
- S PINNING AS IN DATA BOOKS 5
D7 A8 &
R1 Ril 14 EN D&ﬁ Al o 7 —
A7 L — w10 hicl
00 3 {
BREQ 1 4 R6
+5v 7 A0 = [
3 ic4 D1 : v ic14
52 4 = 02 Ao ¥ -
L___RsT 5 D1 8 v =
N g . AB A9 A1t 03 [- g A b
L Holo 7 23 -y] — A STROBE ol.
XOuT CE T SELECT B'S| -9 Ic14
AD aM 0e O :
3 Tl DISPLAY
X1 w— R3 Icy 1 ic4 d
Rt 2 AB.AT D
XIN s — A0
4 1c5 o 1C15
c1 D4 _—
5 = 8 A
o . 05 05 A v
P 8 IC15 i
ENIN 7 =] & 06 3 V 8
8 g 1c10: |
— sA 9 ce T o7 : s 15
. S8 0 RW e 73 —— A STROBE D.l o g
2 I BN a] | i o— SELECTB'S| & =
¥
XY D
Lk o f 6 8101214 16 18
— FO A0 = g 4 8 10 12 14 176
= F1 wos O e 1ICg + 5v 1 3 4
-—— F2 ROS O— __I ‘————
D1 - R7-10
< Da
02 = o Lt
54 A7 :V D5 5 : .
cef g 2 06 = o o A rCAP AP CArCAPTAPTAPT S
o o7 == 1| P o 18218318 aissis i 7
R/W ot O - 0 | —
1 8 8 |
¢ AEAD DATA ENABLE [A o] 17 it) NS SR S |
o Bv A5 L GO [mem| ae TERM
c5 ¢ = PRI [T ko) (e, -—
5 = c7 Alle e | B £ F
c4 Oov i} o il
c2 DS A0 .
[2] 11O
c3 06 —p 0 ,
D7 A7 =1 Qs P A 2[0—— —
o A3 a P & 3jo0— —
CcE A10 ey f012 ol2 < L =
+5v TO VCC OF ALL IC'S = 3 T
Ov TO GND OF ALL IC'S RAW o E S cx a B D 50— s
READ OR WAITE DATA CLR 60— s—
+5v oc e
e p—
WRITE DATA o —
o Ov
READ DATA =0 <
> .

b

Edge connector details

Top connector—from left

CoONOOOBEWN =

Positive supply 8V

ov

e

OV onissue 11. NADS onissue 111.
iloPort B6
B5
B7
B4
B3
82 —— - B
B1
BO
ifoport A7
Interrupt
ifo A6

SCMP Sense A
Serial IN
Sense B
Serial OUT
Flag 0
A 2

g 1

‘ui}-01e Aem 9L

=== [

<
=

G) e

ORGRORO S
GAGROROEC

HEEEER @ O OO ®

oooooooooooo

COMPONENT LIST

Semiconductors

No Type

IC1 1SP-8A/600(8060)
IC2 DM 74S571
IC3 DM 74S571
IC4 MM 2111-1N
IC5 MM 2111-1N
IC6 MM2111-1N
IC7 MM 2111-1N
IC8 INS 8154N
IC9 DM 74 LS157
IC10 DM 74 LS157
IC11 DM 80L95
IC12 DM 74 LLS173
(B33, DM 7445
IC14 DM 7408
IC15 Dm 7408
IC16 DM 741508
IC17 DM 74LS00
IC18 DM 741L.S04
IC19 LM 340T-5.0
RESISTORS

R1 4.7 ka -~
R2 2.4k

R3 100k

R4 1.2k

R5 2.4k

R6 1.2k

RZ=10 - F w2k

R11 ATk
RiE2=1:531:.2:k
CAPACITORS

C1 27pfor33p
C2 1000uF 40V
C3 0.01uF

C4 0.01uF

(6f5) 22 uF 16V

MISCELLANEQUS
iz Printed circuit board

Reset switch
Crystal 4.433619 MH2

Keyboard separator
Keyboard contact sheet
Keyboard legend sheet
Keyboard panel

‘W' buttons x 4
Display connector strip

—-(C(IJ\JO)OTb@!\)

0.

RECOMMENDED EXTRAS

IC Sockets: 5x 14 pin, 7% 16 pin, 4 x 18 pin, 2 x 40 pin
Radiospares 12.5mm

stick on feet x 6

Display NSA1198/1188

Description

SC MP-11 Microprocessor
512 x 4 ROM (Whitespot)
512 x4 ROM

256 x 4 RAM

256 x 4 RAM)

256 x 4 RAM) optional extra
256 x 4 RAM)

128 x 8 RAM |/O

Quad 2 to 1 line selector
Quad 2 to 1 line selector
Hex tri-state buffer

Quad tri-state latch

BCD to decimal decoder
Quad two input and

Quad two input and

Quad two input and

Quad two input and

Hex inverter

5 volt regulator

may be any value between Tk and 15k
may be any value between 1k and 15k
ceramic

not supplied—only needed with
unsmoothed supply marked 10 nf

double sided fibreglass through hole
plated and annotated

eight or nine digit magnified 7 segment LED
self adhesive clear PVC

conductive silicon rubber

reverse printed PVC

dark grey stoved steel plate

