

Contents
Part 1 Construction. Basic Principles Operating Instructions
Part 2 Application Programmes

Part 1
Section 1 Introduction to the kit 2
Section 2 The Manual-its objectives and usage 3
Section 3 Construction procedure. Notes on soldering 4
Section 4 Power Connect and Switch On 10
Section 5 Usage Familiarisation 11
Section 6 Basic Principles of the MK1 4 14
Section 7 MK1 4 Language-Binary and Hexadecimal data .. 18
Section 8 Programming Notes . . . 21
Section 9 Architecture and Instruction Set 24
Section 10 RAM I/O 33

1

Introduction to the kit IThe MK1 4 comprises a full set of components to build up a
completely functional computer.

When the unit has been correctly assembled only the connection of a
suitable power source is needed for the display to light up and the user
then finds that command and control of the unit is literally at his fingertips
via the keyboard.
Having mastered the simple rules for operation of the keyboard and
interpretation of the display, it is immediately possible to study the
workings of the system and the computer's instructions, and experiment
with elementary programming.
From this point the user can progress to the library of ready-written
programmes available in Part II of this manual, and to programmes of his
own invention. Because of the inherently enormous versatility of the
digital computer it is hard to suggest any particular direction which the
independent programmer may take. Arithmetic, logic, time measurement,
complex decision making, learning ability, storage of data, receiving
signals from other equipment and generating responses and stimuli can
all be called upon.
Thus calculators, games, timers, controllers (domestic, laboratory,
industrial), or combinations of these are all within the scope of the
machine.

Components of the kit include central processor, pre-programmed control
memory, read-write memory, input/output circuits, the terminal section
i.e. the keyboard and display, and interfacing to the terminal.
This line-up corresponds to the basic elements present in even the most
sophisticated multi-million pound computer. Indeed the fundamental
principles are identical. However, the user of the MK1 4 who wishes to
understand and utilise these principles has the advantage of being able to
follow in detail the action and inter-action of the constituent parts,
which are normally inaccessible and invisible to the big computer operator.
Do not regard the MK1 4 as an electronics construction project. The
MK1 4 is a computer, and computers are about software. It is the
programme which brings the computer to life, and it is the programme
which is capable of virtually infinite variation, adjustment and expansion.
Of course an understanding of the architecture of the machine and the
functions of the separate integrated circuits is valuable to the user. But
these aspects conform to a fairly standard pattern and the same
straightforward set of interconnection rules regardless of the task or
function the computer is performing.

2The Manual
-its objectives and uses
The MK1 4 is intended to bring practical computing to the widest

possible range of users by achieving an absolute minimum cost. The wider the
user spectrum, the wider, to be expected will be the variation of expertise
the manual has to cater for; from the total novice, who wishes to learn the
basic principles and requires thorough explanation of every aspect, to the
experienced engineer who has immediate practical applications in view.
Additionally, the needs of the beginner can be sub-divided into three parts:-
1. An informal step by step procedure to familiarise with the operation

of the MK1 4. If this is arranged as an inter-active 'do' and 'observe'
sequence, it becomes a comparatively painless method of getting a
practical 'feel' for the computing process. Section 5.

2. A formal definition/description of the significant details of the
microprocessor itself, i.e. its architecture and instruction set. Users
of all levels are strongly recommended to study this section, (Section
0) at an early stage. It is supported by a programme of practical
exercises aimed to precisely demonstrate the elemental functions of
the device, and the framework inside which they operate. It is
emphasised that to gain the most complete fluency in what are the
basics of the whole subject is not merely well worth the effort but is
essential to the user's convenience?

3. An explanation of the general principles of the digital processor,
along with the associated notation and conventions. Section 0 this
also breaks down into the joint aspects of hardware and software.

Clearly parts of the above will also prove useful to the knowledgable user
who, however, will probably be able to skip the advice in section 3 on
basic electronic assembly technique. The control part of this section
contains information specifically pertinent to the MK1 4 and should be
read by all.
Further sections to be referenced when the MK1 4 has been assembled,
and the user has built up a working understanding, are those discussing
programming techniques and methodology. From that point the
applications examples of varying degrees of complexity and function, in
Part II, should be possible for the reader to tackle.

3Construction procedure
Notes on soldering

The construction of the unit is a straightforward procedure consisting of
inserting the components in the correct positions and soldering them in
place. If this is done without error the system should become functional as
soon as power is applied. To ensure that this happens without any hitches
some recommendations and advice are offered. A step-by-step
construction procedure with a diagram is laid down. An appendix to this
section contains notes on soldering techniques.
Plug in socket option for integrated circuits
The I.C. components utilised in the MK1 4 are both robust and reliable.
But accidents are possible—and should an I.C. be damaged either during
construction or later, it's identification and replacement is made many
orders easier if devices are mounted in sockets. Socket usage is therefore
most strongly recommended, particularly where the user is concerned
with computing rather than electronics. Science of Cambridge offer a
MK1 4 rectification service specifying a component cost only replacement
charge when the system in question is socket equipped.
Integrated Circuit Device Handling
M.O.S. integrated circuits historically have gained a reputation for
extreme vulnerability to damage from static electricity. Modern devices
while not unbreakable embody a high degree of protection. This means
that high static voltages will do no harm as long as the total energy
dissipated is small and a practical rule of thumb is that if the environment
is such that you yourself don't notice static shocks, neither will the I.C.
It is essential for the soldering iron to be earthed if I.C.'s are being soldered
directly into the P.C. board. The earth must ground the soldering iron bit.
This warning applies to any work carried out which might bring the
soldering iron into contact with any I.C. pin.
Catastrophe is achievable with minimum trouble if certain components are
fitted the wrong way round.
Component Orientation and I.C. Pin Numbering
Three types belonging to the kit must be oriented correctly These are the
I.C.'s, the electrolytic capacitors and the regulator,
(i) I.C's are oriented in relation to pin 1. Pin 1 can be identified by

various means; fig. 3.1 illustrates some of these:-

Orawing Viewed F i g . 3 . 1
from Top P inn+1

Cut out

I — I I I I — i i — i i — i r » i

i f
Slight indentation Pin 1
or protuberance p i n n

Pin 1 itself may bear a faint indentation or a slight difference from other
pins. The remaining pins are numbered consecutively clockwise from Pin
1 viewing device as in Fig. 3 .1 .
Note position of type no. is not a reliable guide.
(ii) Electrolytic capacitors have a positive and a negative terminal. The

positive terminal is indicated by a' + ' sign on the printed circuit. The
capacitor may show a ' + ' sign or a bar marking by the positive
terminal. The negative is also differentiated from the positive by
being connected to the body of the device while the positive appears
to emerge from an insulator.

(iii) The regulator has a chamfered edge and is otherwise assymmetrical-
refer to assembly diagram.

Assembly Procedure
Equipment required—soldering iron, solder, side-cutters or wire snippers.
Step No. Operation

1 Identify all resistors, bend leads according to diagram and
place on layout diagram in appropriate positions.

2 Insert resistors into printed circuit and slightly bend leads at
back of board so that resistors remain in place firmly against
the P.C.

3 Solder resistors in place and cut surplus leads at back of
printed circuit.

4 Re-check soldered joints and component positioning.

5 Identify all capacitors, bend leads according to diagram and
place on layout diagram in appropriate positions.

6 Insert capacitors into printed circuit and slightly bend leads
behind board so that capacitors remain in place firmly against
the P.C.

7 Solder capacitors in place and cut surplus leads behind P C.

8 Check soldered joints, component positions and orientation.

9 (If sockets are being used skip to step 14). Identify and place
in position on diagram all I.C's with particular reference to
orientation.

10 Insert I.C's into P.C. Note:- The I.e. pins will exhibit a degree
of 'splay'. This allows the device to be retained in the P.C.
mechanically after insertion so do not attempt to straighten,
and use the following technique: place one line of pins so they
just enter the board; using a suitable straight edged implement,
press opposing row of pins until they enter the board; push
component fully home.

Re-check device positioning and orientation with EXTREME
care!

Step No.
1 2

Operation
Solder I.C's in place. It is not necessary to snip projecting pins.

1 3 Re-check all I.C. soldered joints,
(skip to step 20)

14 Place appropriate sockets in position on diagram. See Fig. 3.3

15 Insert first or next socket in P.C. board. These components are
not self retaining so invert the board and press onto a suitably
resilient surface to keep socket firmly against the board while
soldering.

16 Solder socket into position.

(repeat steps 14-16 until all sockets are fitted)

1 7 Identify and place into position on diagram all I.C's with
particular reference to orientation.

1 8 Transfer I.C's one-by-one to P.C. assembly and place in
appropriate sockets.

19 Check all socket soldered joints.

20 Insert regulator and solder into position. See Fig. 3 .4 (a).

21 Insert push button and solder into position. See Fig. 3 .4 (b).

22 Mount keyboard. See Fig. 3 .5 .

23 Mount display. See Fig. 3 .4 (c).

24 Ensure that all display interconnections are correctly aligned
and inserted.

25 Solder display into position.
26 Re-check all soldering with special reference to dry joints and

solder bridges as described in appendix on soldering technique.

27 (Optional but advisable). Forget the whole job for 24 hours.

28 Re-inspect the completed card by retracing the full assembly
procedure and re-checking each aspect (component type,
orientation and soldering) at each step.
When the final inspection is satisfactorily completed proceed to
section 4, Power Connect and Initial Operation.

6

Appendix Soldering Technique

Poor soldering in the assembly of the MK1 4 could create severe
difficulties for the constructor so here are a few notes on the essentials
of the skill.

The Soldering Iron Ideally, for this job, a 1 5 W / 2 5 W instrument should
be used, with a bit tip small enough to place against any device pin and
the printed circuit without fouling adjacent joints. IMPORTANT ensure
that the bit is earthed

Solder resin cored should be used. Approx. 1 8 S.W.G. is most
convenient.

Using the Iron The bit should be kept clean and be sufficiently hot to
form good joints.
A plated type of bit can be cleaned in use by wiping on the dampened
sponge (if available), or a damp cloth. A plain copper bit corrodes fairly
rapidly in use and a clean flat working face can be maintained using an old
file.A practical test for both cleanness and temperature is to apply a touch
of solder to the bit, and observe that the solder melts instantly and runs
freely, coating the working face.

Forming the Soldered Joint—with the bit thus 'wetted' place it into
firm contact with both the component terminal and the printed circuit
'pad', being soldered together. Both parts must be adequately heated.
Immediately apply solder to the face of the bit next to the joint. Solder
should flow freely around the terminal and over the printed circuit pad.
Withdraw the iron from the board in a perpendicular direction.
Take care not to 'swamp' the joint, a momentary touch with the solder
should be sufficient. The whole process should be complete in one or
two seconds. The freely flowing solder will distribute heat to all part of the
joint to ensure a sound amalgam between solder and pad, and solder and
terminal. Do not hold the bit against the joint for more than a few seconds
either printed circuit track or the component can be damaged by
excessive heat.

Checking the Joint A good joint will appear clean and bright, and the
solder will have spread up the terminal and over the pad to a radius of
about h inch forming a profile as in Fig. 3.2(a).

Unreliable or no contact

Fig 3.2 (b) and (c) show exaggerated profiles of unsuccessful joints.
These can be caused by inadequate heating of one part, or the other, of
the joint, due to the iron being too cool, or not having been in direct
contact with both parts; or to the process being performed too quickly. An
alternative cause might be contamination of the unsoldered surface.

Re-making the Joint Place the 'wetted' iron against the unsatisfactory
joint, the solder will then be mostly drawn off. Re-solder the joint. If
contamination is the problem it will usually be eliminated after further
applications by the flux incorporated within the solder.

Solder 'Bridges' —can be formed between adjacent tracks on the printed
circuit in various ways: —

(i) too cool an iron allowing the molten solder to be slightly tacky
(ii) excessive solder applied to the joint
(iii) bit moved away from the joint near the surface of the board instead

of directly upwards
These bridges are sometimes extremely fine and hard to detect, but are
easily removed by the tip of the cleaned soldering iron bit.

Solder Splashes—can also cause unwanted short circuits. Careless
shaking of excess solder from the bit, or allowing a globule of solder to
accumulate on the bit, must be avoided. Splashes are easily removed with
the iron.

In summary, soldering is a minor manual skill which requires a little
practise to develop. Adherence to the above notes will help a satisfactory
result to be achieved.

4 Power Connect
and Switch On

The MK1 4 operates from a 5V stabilised supply. The unit incorporates its
own regulator, so the user has to provide a power source meeting the
following requirements: —

Current Basic kit only — 400mA
consumption + RAM I/O option— + 5 0 m A

+ extra RAM option — + 30mA
Max l/P permitted voltage (including ripple) 35V
Min l/P permitted voitage (including ripple) 7 V

Batteries or a mains driven power supply may be used. When using
unregulated supplies ensure that ripple at the rated current does not
exceed the l/P voltage limits.
If a power source having a mean output voltage greater than I0V has to be
used, a heat sink must be fitted to the regulator. A piece of aluminium or
copper, approx. 1 8 s.w.g., of about two square inches in area, bolted to
the lug of the regulator should permit input voltages up to about 1 8V to
be employed.
Alternatively a suitable resistor fitted in series with the supply can be used.
To do this the value of the series resistor may be calculated as follows:-

2 x (minimum value l/P voltage -7) f
Resistor dissipation will be 0 .5W/A

Having selected a suitable power supply the most important precaution to
observe is that of correct polarity. Connect power supply positive to
regulator l/P and power supply negative to system ground.
Switch on.
Proper operation is indicated by the display showing this: —

Congratulations—now proceed to the section on usage familiarisation
and learn to drive the MK1 4.

Familiarisation

To help the user become accustomed to commanding and interrogating
the MK1 4 an exercise consisting basically of a sequence of keyboard
actions, with the expected display results, and an explanatory comment,
is provided.
Readers who are not familiar with hexadecimal notation and data
representation should refer to section 7.
It will be clear to those who have perused the section dealing with MK1 4
basic principles that to be able to utilise and understand the unit it is
necessary firstly to have the facility to look at the contents of locations in
memory I/O and registers in the CPU, and secondly to have the facility to
change that information content if desired.
The following shows how the monitor programme held in fixed memory
enables this to be done.

Operator Display
Act ion

Switch on -

C Usage

Comment

Examining M K 1 4 Memory
The left hand group of four characters is called

the address field, the right hand group is the
data field.

Dashes indicate that the MK1 4 is waiting for a
GO or a MEM command.

MEM 0 0 0 0 0 8 The contents of memory location zero is
displayed in the data field.

MEM 0 0 0 1 90 Next address in sequence is displayed, and the
data at that address.

MEM 0 0 0 2 1D Address again incremented by one, and the
data at the new address is displayed.

MEM 0 0 0 3 C2 Next address and contents are displayed

the user is actually accessing the beginning of the monitor programme
itself. The items of data 08 , 90, 1 D, C2 are the first four instructions in
the monitor programme.
It is suggested that for practise a list of twenty or thirty of these is made
out and the appropriate instruction nmemonics be filled in against them
from the list of instructions in Section 9. Additionally, this memory
scanning procedure offers an introduction to the hexadecimal numbering
method used by the addressing system, as each MEM depression adds
one to the address field display.

11

Operator
Action

Display Comment

Loading MK14 Memory

MEM x x x x XX note:—symbol X indicates when digit value is
unpredictable or un-important.

0

F

0 0 0 0

000F

XX

XX

First digit is entered to L & D address field,
higher digits become zero.

Second address digit keyed enters display from
right.

1 00F1 XX Third address digit keyed enters display from
right.

2 0F1 2 XX This is first address in RAM available to the user
(basic version of kit).

TERM 0F1 2 XX TERM enters displayed address and prepares for
operator to load data.

1 0F1 2 01 Memory data has been keyed but is not yet
placed in RAM.

TERM 0F1 2 01 Data is now placed in RAM

MEM 0F1 3 XX Address is incremented.

TERM 0F13 XX New address is entered and unit waits for
memory data input.

1 0F13 01 New data.

1 0F13 11 is keyed

TERM 0F1 3 11 and placed in memory

MEM 0F14 XX Data

TERM 0F14 XX is

22 0F14 22 loaded

TERM 0F14 22 into

MEM 0F1 5 XX successive

TERM 0F1 5 XX locations

33 0F1 5 33

TERM 0F1 5 33

MEM 0F1 6 XX

Operator Display Comment
Act ion

44 0F16 44

TERM 0F16 4 4

0F12 0F1 2 01 Enter original memory address and

MEM 0F13 1 1 check that data

MEM 0F14 22 remains as

MEM 0F1 5 33 was

MEM 0F1 6 44 loaded.

Switch power off and on again. Re-check contents of above locations.
Note that loss of power destroys read-write memory contents.
Repeat power off/on and re-check same locations several times—it is
expected that RAM contents will be predominately zero, and tend to
switch on in same condition each time. This effect is not reliable.

Operator Display
Act ion

Comment

MEM XXXX
0F1 2TERM0F1 2
9 0 0F12
TERM MEM 0F13
TERM FE
TERM
ABORT
GO

0F1 2
TERM

0F13
0F13

0F1 3

0F12
BLANK

XX
XX
90
XX
FE
FE

Enter a very small programme
It consists of one instruction JMP-2 (90FE in

machine code). 90 represents JUMP programme
counter relative. FE represents —2, the direction
of the jump.

Prepare to start user programme (TERM at
this point would start execution from
OF! 2).

Enter start address.
Commence execution. The display becomes
blank, indicating that CPU has entered user
programme, and remains blank.

We have created the most elementary possible programme—one that
loops round itself. There is only one escape—RESET which will force
the CPU to return to location 1.

RESET - - Reset does not affect memory the instruction
JMP— 2 is still lurking to trap the user.

^^Basic Principles of the MK14

Essentially the MK1 4 operates on exactly the same principles as do all
digital computers. The 'brain' of the MK1 4 is a SC/MP micro-processor,
and therefore aspects of the SC/MP will be used to illustrate the following
explanation. However the principles involved are equally valid for a huge
machine from Internationa! Computers down to pocket calculators.
Moreover, these principles can be stated quite briefly, and are essentially
very simple.
'Stored Programme' Principle
The SC/MP CPU (Central Processing Unit) tends to be regarded as the
centre-piece because it is the 'clever' component—and so it is. But by
itself it can do nothing. The CPU shows its paces when it is given
INSTRUCTIONS. It can obey a wide range of different orders and perform
many complex digital operations. This sequence of instructions is termed
thePROGRAMME, and is STORED in the MEMORY element of the system.
Since these instructions consist of manipulation and movement if data, in
addition to telling the CPU what to do, the stored programme contains
information values for the CPU to work on, and telis the CPU where to get
information, and where to put results.
Three Element System
By themselves the two fundamental elements CPU and MEMORY can"
perform wondrous things—all of which would be totally useless, since no
information can be input from the outside world and no results can be
returned to the user. Consequently a third element has to be incorporated
- t h e INPUT/OUTPUT (I/O) section.

Fig. 6 .1 The Three Element System

These three areas constitute the HARDWARE of the system, so called
because however you may use or apply the MK1 4, these basic structures
remain the same.
Independence of Software (Stored Programme) and Hardware
As with the other hardware, whatever particular instruction sequence is
present within the memory at any one time, the basic structure of the
memory element itself is unaltered.
It is this factor which gives the MK1 4 its great versatility: by connecting
up its 110 and entering an appropriate programme into its memory it can
perform any digital function that can be contained within the memory
and 110 size.
Random Access Memory (RAM)
Further, when the memory in question consists of a read and write
element (RAM), in contrast to read only memory (ROM), this flexibility
is enhanced, as programme alterations, from minor modifications, to
completely different functions, can be made with maximum convenience.

Interconnection of Basic Elements
Element inter-connection is standardised as are the elements themselves.
Three basic signal paths, ADDRESS BUS (ABUS), DATA BUS (DBUS)
and CONTROL BUS, are required.

Fig. 6 .2 Interconnections of Three Element System

Data Bus.

These buses are, of course, multi-line. In the MK1 4 the Abus= 1 2 lines,
Dbus = 8 lines and Control bus = 3lines. Expansion of memory or 110
simply requires connection of additional elements to this basic bus
structure.
M K 1 4 System Operation
Consider the MK1 4 with power on and the RESET signal applied to the
SC/MP. This forces all data inside the CPU to zero and prevents CPU
operation.
When the RESET is released the CPU will place the address of the first
instruction on the Abus and indicate that an address is present by a signal
on the ADDRESS STROBE (NADS) line which is within the control bus.
The memory will then respond by placing the first instruction on the Dbus.
The CPU accepts this information and signals a READ STROBE (NRDS) via
a line within the control bus.
The CPU now examines this instruction which we will define as a no-
operation, (instructions are normally referred to by abbreviations called
NMEMONICS, the nmemonic fof this one is NOP).
In obedience the CPU does nothing for one instruction period and then
sends out the address of the second instruction. The memory duly
responds with a Load Immediate (LDI). The CPU interprets this to mean
that the information in the next position, in sequence, in memory will not
be an instruction but an item of data which it must place into its own main
register (ACCUMULATOR), so the CPU puts out the next address in
sequence, and when the memory responds with data, then obeys the
instruction.
The CPU now addresses the next position (LOCATION) in memory and
fetches another instruction—store (ST). This will cause the CPU to place
the data in the accumulator back on the Dbus and generate a WRITE
STROBE (NWRDS) via the control bus. (The programme's intention here
is to set output lines in the 110 element to a pre-determined value).
Before executing the store instruction the CPU addresses the next
sequential location in memory, and fetches the data contained in it. The
purpose of this data word is to provide addressing information needed,
at this point, by the CPU.
So far, consecutive addresses have been generated by the CPU in order
to fetch instructions or data from memory. In order to carry out the store

instruction the CPU must generate a different address, with no particular
relationship to the instruction address itself, i.e. an address in the 110
region.
The CPU now constructs this address using the aforementioned data
word and outputs it to the Abus. The 110 element recognises the address
and accepts the data appearing on the Dbus (from the CPU accumulator),
when signalled by the write strobe (NWRDS), also from the CPU.
Now the CPU reverts to consecutive addressing and seeks the next
instruction from memory. This is an Exchange Accumulator with
Extension register (XAE) and causes the CPU to simultaneously move the
contents of the accumulator into the extension (E) register, and move
the contents of the extension register into the accumulator. The
programmer's intention in using this instruction here, could be to preserve
a temporary record of the data recently written to the 110 location.
No new data or additional address information is called for, so no second
fetch takes place. Instead the CPU proceeds to derive the next instruction
in sequence.
For the sake of this illustration we will look at a type of instruction which is
essential to the CPU's ability to exhibit intelligence.
This is the jump (JMP) instruction, and causes the CPU to depart from the
sequential mode of memory accessing and 'jump' to some other location
from which to continue programme execution.
The JMP will be back to the first location.
A JMP instruction requires a second data word, known as the
DISPLACEMENT to define the distance and direction of the jump.
Examining the memory 110 contents map, Fig 6.3, shows location 0 to
be seven places back from the JMP displacement which therefore must
have a numerical value equivalent to—7. (Detail elsewhere in this manual
will show that this value is not precisely correct, but it is valid as an
example).
The instruction fetched after executing the JMP will be the NOP again.
In fact the sequence of five instructions will now be re-iterated continually
The programme has succumbed to a common bug—an endless loop, in
which for the time being we will leave it.

MEMORY
" REGION

' 1 / 0 REGION

Fig. 6 .3 Map of Memory Location Contents.

LOCATION No. LOCATION CONTENTS

0 NOP (instruction)

1 LDI (instruction)

2 data (for use by LDI)

3 ST (instruction)

4 address information (for use by ST)

5 XAE (instruction)

6 JMP (instruction)

7 - 7 (displacement for JMP)

Formed by
CPU using
data in loc. 4

Initially undefined-after 3 becomes
same as loc. 2

This brief review of a typical sequence of MK1 4 internal operations has
emphasised several major points. All programme control and data derives
from the memory and 110. All programme execution is performed by the
CPU which can generate an address to any location in memory and 110,
and can control data movement to or from memory and 110.
Some instructions involve a single address cycle and are executed within
the CPU entirely. Other instructions involve a second address cycle to
fetch an item of data, and sometimes a third address cycle is also needed.
For the sake of simplicity this outline has deliberately avoided any detail
concerning the nature of the instruction/data, and the mechanics of the
system. These subjects are dealt with in greater depth in sections 5 and 7.

7MK14 Language-Binary
and Hexadecimal

Discussion of the MK1 4 in this handbook so far has referred to various
categories of data without specifying the physical nature of that data. This
approach avoids the necessity of introducing too many possibly unfamiliar
concepts at once while explaining other aspects of the workings of
the system.
This section, then, gives electrical reality to the abstract forms of
information such as address, data, etc., which the computer has to
understand and deal with.
Binary Digit Computers use the most fundamental unit of information
that exists—the binary digit or BIT—the bit is quite irreducible and
fundamental. It has two values only, usually referred to as ' 0 ' and ' 1 ' .
Human beings utilise a numbering system possessing ten digits and a
vocabulary containing many thousands of words, but the computer
depends on the basic bit.
However, the bit is readily convertible into an electrical signal. Five volts
is by far the most widely used supply line standard for electronic logic
systems. Thus a zero volt (ground) level represents ' 0 ' , and a positive five
volt level represents ' 1 ' . Note that the SC/MP CPU follows this convention
which is known as positive logic; negative logic convention determines
inverse conditions, i.e. 5V = ' 0 ' , OV = ' 1 ' .
Logic Signal Voltage Limits For practical purposes margins must be
provided on these signal levels to allow for logic device and system
tolerances. Fig. 7.1 shows those margins.

Fig. 7 .1

Margin for
logic '1 ' signal

Margin for X
logic '0 ' signal -L

Margin for
logic ' 1' error
Ambiguous area
Margin for
logic '0 ' error

5 VOLT LEVEL

0 VOLT
LEVEL

logic device logic device
output input

'O's and '1 's Terminology Many of the manipulation rules for 'O's and
' 1 's are rooted in philosophical logic, consequently terms like 'true' and
'false' are often used for logic signals, and a 'truth table' shows all
combinations of logic values relating to a particular configuration. The

control engineer may find 'on' and 'off ' more appropriate to his
application, while an electronic technician will speak of 'high' and ' low',
and to a mathematician they can represent literally the numerals one
and zero.
Using Bits in the MK14 The two state signal may appear far too limited
for the complex operations of a computer, but consider again the basic
three element system and it's communication bus.

Fig. 7 .2
3 lines

1 2 lines A bus

The data bus for example comprises eight lines. Using each line separately
permits eight conditions to be signalled. However, eight lines possessing
two states each, yield 256 (2M combinations, and the A bus can yield
4 0 9 6 combinations.
A group or WORD of eight bits is termed a BYTE
Decoding In order to tap the information potential implied by the use of
combinations, the elements in the MK 1 4 all possess the ability to
DECODE bit combinations. Thus when the CPU generates an address,
the memory I/O element is able to select one out of 4 0 9 6 locations.
Similarly, when the CPU fetches an instruction from memory it obeys one
out of 1 28 possible orders.
Apart from instructions, depending on context, the CPU treats information
on the data bus sometimes as a numerical value, or sometimes simply
as an arbitrary bit pattern, thereby further expanding data bus information
capacity.
Bits as Numbers When grouped into a WORD the humble bit is an
excellent medium for expressing numerical quantities. A simple set of
rules exist for basic arithmetic operations on binary numbers, which
although they lead to statements such as 1 + 1 = 1 0, or 2 , 0 and 2 , 0

make 1 0 0 2 , they can be executed easily by the ALU (Arithmetic and Logic
Unit) within the CPU. Note that the subscripts indicate the base of the
subscripted numbers.
Binary Numbers The table below compares the decimal values 0—15
with the equivalent binary notation.

Decimal Binary
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 001 1
4 0 1 0 0
5 0 1 0 1
6 01 10
7 01 1 1
8 1000
9 1001
10 1010
1 1 101 1
1 2 1 100
13 1101
14 1110
1 5 1111

Most
significant
digit (MSD)

Least
significant
digit (LSD)

8 4 2 1

1 0 0 0 s 100 s 1 Og 1s

BINARY

DECIMAL

Place values in binary and
decimal systems

Fig. 7.3

The binary pattern is self evident, and it can also be seen how place value
of a binary number compares with that in the decimal system.
Expressed in a different way, moving a binary number digit one place to
the left doubles its value, while the same operation on a decimal digit
multiplies its value by ten.
The Binary pattern is self evident, and it can also be seen how place
value of a binary number compares with that in the decimal system.
Binary Addition—requires the implementation of four rules: —

0 + 0 = 0
0 + 1 or 1 + 0 = 1

1 + 1 = 1 with carry (to next higher digit)
1 + 1 + carry (from next lower digit) = 1 with carry (to next higher digit)

Example:- 1 1 1 0 1 1 0
+ 1010101

1 1 0 0 1 0 1 1
1 11 V w 1

-carry indications

Binary Subtraction
0 - 0 = 0
1 - 1 = 0
1 - 0 = 1
0 — 1 = 1 with borrow (from next higher digit)
0— 1 —borrow (from next lower digit) = 1 with borrow (from next
higher digit)
Examples: — J 0 1

- 0 1 0
01 1

/J0O
- 0 0 1

01 1

0 IOI .
110

- 0 1 1
01 1

borrow
indications

Q Program Notes

At the point the reader is likely to be considering the application
programmes in Part II and perhaps devising some software of his own.
This section examines the manner in which a programme is written and
set out, the planning and preparation of a programme, and some basic
techniques.
When embarking on a programme two main factors should be
considered, they are: (i) hardware requirements, (ii) sequence plan.
Hardware Requirements An assessment should be made of the amount
of memory required for the instruction part of the programme, and the
amount needed for data storage. In a dedicated micro-processor system
these will occupy fixed, and read-write memory areas respectively. In the
MK1 4, of course, all parts of the programme will reside in read-write
memory, simplifying the programmers task considerably, since local pools
for data can be set up indiscriminately.
However, even in the MK1 4 more care must be given to the allocation of
memory space for common groups of data and for input/output needs.
The SC/MP C.P.U. offers a certain amount of on-chip input/output in
terms of three latched flags, two sense inputs, and the serial in/serial out
terminals. So the designer must decide if these are more appropriate to
his application than the memory mapped I/O available in the RAMIO
option.
Memory Map A useful aid in this part of the process is the memory map
diagram which gives a spatial representation to the memory and I/O
resources the programmer has at his disposal. Fig. 8.1 shows the MK1 4
memory map including both add-in options

Standard R A M -

Optional RAM-*-

256
io locations

51 2 locations -*•

Fig. 8 .1

RAM
RAMIO
DISPLAY
RAMIO
RAM
RAMIO
DISPLAY
RAMIO
MONITOR
MONITOR
MONITOR
MONITOR

The map displays the memory as a column of
4K locations, (in this case each of eight bits),
with location zero at the base and addresses
ascending upwards.
The reader may be surprised that various
sections of memory appear to reside in several
areas at once.
For example the monitor is repeated four
times in the lower 2K block. Note also that the
monitor will only operate correctly if executed
in the lowest section, as only this section has
the proper relationship to the RAM at the top.

These multiple appearances of memory blocks are due to partial address
decoding technique employed to minimise decode components.
The map readily indicates that a CPU memory pointer (which can permit
access to a block of 256 I/O locations) set to 0 9 0 0 , 6 would give the
programme a stepping stone into the display 0/P or the RAMIO facilities.

2 1

Flow Chart The flow chart provides a graphical representation of the
sequence plan. A processor is essentially a sequential machine and the
flow chart enforces this discipline. Fig. 8.2 is a very simple example of a
programme to count 1 0 0 pulses appearing at an input. Three symbols are
used (i) the circle for entry or exit points (ii) the rectangle for programme
operations (iii) the diamond for programme decisions.
A flow chart should always be prepared when constructing a programme.
Each block is a convenient summary of what may be quite a large number
of instructions. Of particular value is the overview provided of the paths
arising from various combinations of branch decisions.

The flow chart can reveal wasteful repetition or logical anomalies, and
ensures that like a good story, the programme starts at the beginning,
progresses through the middle, and comes to a satisfactory end.
Programme Notation There is a well established convention and format
for writing down a programme listing. We will examine two lines extracted
from the MK1 4 monitor programme itself in order to define the various
functions of the notation

(a) (b) (c)
11 2 0 0 0 3 GOOUT:

(d) (e) (f) (g)
113 0 0 0 3 C20E LD ADH (2) ;GETGO ADDRESS

a) Line Number All lines in the listing are consecutively numbered for
reference.

b) Location Counter. The current value of the location counter
(programme counter in the CPU) is shown wherever it is relevant
e.g. when the line contains a programme instruction or address label.

c) Symbolic Address Label. This is followed by a colon. Entry points to
sub-sections of programme can be labelled with meaningful
abbreviations making the programme easier to follow manually e.g.
at some other place in the programme a JUMP TO 'GOOUT' might
occur. Automatic assemblers create an internal list of labels and
calculate the jump distances.
However the MK1 4 user must do it the hard way.

d) Machine Code. The actual code in the memory is shown here. As it
is a two byte instruction the first two hexadecimal digits C2 are in
location 3 and OE is in location 4.

e) Nmemonic LD is the nmemonic for LOAD. This is the instruction
represented by C2 in machine code.

f) Displacement. ADH is another label, in this case for a data value. Note
that a table is provided in alpha-numeric order at the end of the listing,
of all symbols and their values.

g) Pointer Designation. Define the pointer to be referenced by this
instruction.

h) Comment. All text following the semi-colon is explanatory material to
explain the purpose of the instruction or part of programme.

9Architecture and
Instruction Set

The SC/MP microprocessor contains seven registers which are accessible
to the programmer. The 8-bit accumulator, or AC, is used in all
operations. In addition there is an 8-bit extension register, E, which can
be used as the second operand in some instructions, as a temporary
store, as the displacement for indexed addressing, or in serial input/
output. The 8-bit status register holds an assortment of single-bit flags
and inputs:

SC/MP Status Register
7 6 5 4 3 2 1 0

CY/L o v SB s A IE F 2 F 1 FO

Flags Description
f 0 - f 2

IE

SA.SB

o v
CY/L

User assigned flags 0 through 2.
Interrupt enable, cleared by interrupt.
Read-only sense inputs. If IE = 1, Sa is interrupt
input.
Overflow, set or reset by arithmetic operations.
Carry/Link, set or reset by arithmetic operations or
rotate with Link.

The program counter, or PC, is a 1 6-bit register which contains the
address of the instruction being executed. Finally there are three 1 6-bit
pointer registers, P1, P2, and P3, which are normally used to hold
addresses. P3 doubles as an interrupt vector.
Addressing Memory
All memory addressing is specified relative to the PC or one of the
pointer registers. Addressing relative to the pointer registers is called
indexed addressing. The basic op-codes given in the tables below are
for PC-relative addressing. To get the codes for indexed addressing the
number of the pointer should be added to the code. The second byte of
the instruction contains a displacement, or disp., which gets added to the
value in the PC or pointer register to give the effective address, or EA, for
the instruction. This disp. is treated as a signed twos-complement binary
number, so that displacements of from — 1 2 8 , 0 to + 1 2 7 , 0 can be
obtained. Thus PC-relative addressing provides access to locations within
about 1 2 8 bytes of the instruction; with indexed addressing any location
in memory can be addressed.

Instruction Sat

17 3 2 1 0 1
Op m ptr | disp

Memory Reference byte 1 byte 2

Mnemonic Description Operation
Op Code
Base

LD Load (AC)—(EA) COOO
ST Store (EA)—(AC) C800
AND AND (AC)-(AC) A (EA) D 0 0 0
OR OR (AC)-(AC) V (EA) D 8 0 0
XOR Exclusive-OR (AO—(AC) V (EA) E000
DAD Decimal Add (AO—(AC), 0 +- (EA), 0 + <CY/L);(CY/L) E800
ADD Add (AO—(AC) + (EA) + (CY/L);(CY/L),(0V) F000
CAD Complement and Add (AC)—(AC) + - (EA) + (CY/L);(CY/L),(OV) F800

Base Code Modifier
Op Code = Base + m + ptr + disp

Address Mode m ptr disp Effective Address
PC-relative 0 0 0 0 0 0 0 0 OOxx EA = (PC) + disp
Indexed 0 0 0 0 0 1 0 0

0 2 0 0
0 3 0 0

OOxx EA = (ptr) + disp

Auto-indexed 0 4 0 0 0 1 0 0
0 2 0 0
0 3 0 0

OOxx If disp^O, EA = (ptr)
If disp<0,EA = (ptr) + disp

xx = — 1 28 to + 1 2 7
Note: If d isp= — 1 28 , then (E) is substituted for disp in calculating EA.

The operands for the memory reference instructions are the AC and a
memory address.
With these eight instructions the auto-indexed mode of addressing is
available; the code is obtained by adding 4 to the code for indexed
addressing. If the displacement is positive it is added to the contents of
the specified pointer register after the contents of the effective address
have been fetched or stored. If the displacement is negative it is added
to the contents of the pointer register before the operation is carried out.
This asymmetry makes it possible to implement up to three stacks in
memory; values can be pushed onto the stacks or pulled from them
with single auto-indexed instructions. Auto-indexed instructions can also
be used to add constants to the pointer registers where 1 6-bit counters
are needed.
A special variant of indexed or auto-indexed addressing is provided when
the displacement is specified as X '80 . In this case it is the contents of
the extension register which are added to the specified pointer register
to give the effective address. The extension register can thus be used
simultaneously as a counter and as an offset to index a table in memory.

2 5

For binary addition the 'add' instruction should be preceded by an
instruction to clear the CY/L. For binary subtraction the 'complement'
and add' instruction is used, having first set the CY/L. Binary-coded-
decimal arithmetic is automatically handled by the 'decimal add'
instruction.

Immediate b V t e 1 b V t e 2

Mnemonic Description Operation Op Code Operation
Base

LDI Load Immediate (AC)—data C400
ANI AND Immediate (AC)*-(AC) A data D 4 0 0
ORI OR Immediate (AC)-(AC) Vdata DCOO
XRI Exclusive-OR Immediate (AC)—(AC) V data E400
DAI Decimal Add Immediate (AC)—(AC), o + data, o + (CY/L);(CY/L) ECOO
ADI Add Immediate (AC)-(AC) + data + (CY/L);(CY/L),(OV) F400
CAI Complement and Add (AC)—(AC) + ^-data + (CY/L);(CY/L),(OV) FcOO

Immediate

Base Code Modifier

Op Code = Base + data

the immediate instructions specify the actual data for the operation in
the second byte of the instruction.

Extension Register

Mnemonic Description Operation Op Code

LDE Load AC from Extension (AC)—(E) 4 0
XAE Exchange AC and Ext. (AC)~(E) 01
ANE AND Extension (AC)—(AC) A (E) 5 0
ORE OR Extension (AC)—(AC) VIE) 58
XRE Exclusive-OR Extension (AC)—(AC) V (E) 60
DAE Decimal Add Extension (AC)—(AC),0 + (E),o + (CY/L), (CY/L) 68
ADE Add Extension (AO—(AC) + (E) + (CY/L); (CY/L), (OV) 70
CAE Complement and Add (AC)—(AC) + ~ (E) + (CY/L); 78

Extension (CY/L), (OV)

2 6

The extension register can replace the memory address as one operand in
the above two-operand instructions. The extension register can be loaded
by means of the XAE instruction.

1 7 . . . 2| 1101

I Op | Ptr

Memory Increment/Decrement

diso
byte 1 byte 2

Mnemonic Description Operation Opcode
Base

ILD
DLD

Increment and Load
Decrement and Load

(AC), (EA) - (EA)+1
(AC), (EA)—(EA)—1

Note: The processor retains control
of the input/output bus between the
data read and write operations.

A 8 0 0
B800

Base Code Modifier

Op Code = Base + ptr + disp

ptr disp Effective Address

0 1 0 0 OOxx EA = (ptr) + disp
0 2 0 0
0 3 0 0

xx= - 1 28 to + 1 2 7

The 'decrement and load' instruction decrements the contents of the
memory location specified by the second byte, leaving the result in the
accumulator. This provides a neat way of performing a set of instructions
several times. For example:

LDI 9
ST COUNT

LOOP:

DLD COUNT
JNZ LOOP

will execute the instructions within the loop 9 times before continuing.
Both this and the similar 'increment and load' instruction leave the CY/L
unchanged so that multibyte arithmetic or shifts can be performed with
a single loop.

2 7

17 . . . 2 101 • 7 01
1 Op ptr | 1 disp |

Transfer byte 1 byte 2

Mnemonic Description Operation Op Code
Base

JMP Jump (PC)-EA 9 0 0 0
JP Jump if Positive If (AC)^O, (PC)-EA 9 4 0 0
JZ Jump if Zero If |AC) = 0 . (PC) -EA 9 8 0 0
JNZ Jump if Not Zero If (AC>*0 . (PC)-EA 9C00

Base Code Modifier

Op Code = Base + ptr + disp
Address Mode ptr disp Effective Address

PC-relative 0 0 0 0 OOxx EA = (PC) + disp

Indexed 0 1 0 0 OOxx EA = (ptr) + disp
0 2 0 0
0 3 0 0

xx = — 1 28 to + 1 27

Transfer of control is provided by the jump instructions which, as with
memory addressing, are either PC-relative or relative to one of the pointer
registers. Three conditional jumps provide a way of testing the value of
the accumulator. 'Jump if positive' gives a jump if the top bit of the AC is
zero. The CY/L can be tested with:
CSA ;Copy status to AC
JP NOCYL ;CY/L is top of bit status
which gives a jump if the CY/L bit is clear.

Pointer Register Move
17 . . . 2 101
1 Op ptr j

Mnemonic Descripton operation
Op Code
Base

XPAL Exchange Pointer Low (AC)- (PTR, :o) 3 0
XPAH Exchange Pointer High (A C l - I P T R , , : ,) 34
XPPC Exchange Pointer with PC (PC)—(PTR) 3C

Base Code Modifier

Op Code = Base + ptr

The XPAL and XPAH instructions are used to set up the pointer registers,
or to test their contents. For example, to set up P3 to contain X' 1 234
the following instructions are used:
LDI X ' 1 2
XPAH 3
LDI X ' 3 4
XPAL 3
The XPPC instruction is used for transfer of control when the point of
transfer must be saved, such as in a subroutine call. The instruction
exchanges the specified pointer register with the program counter,
causing a jump The value of the program counter is thus saved in the
register, and a second XPPC will return control to the calling point. For
example, if after the sequence above an XPPC 3 was executed the next
instruction executed would be the one at X'1 235 . Note that this is one
beyond the address that was in P3 since the PC is incremented before
each instruction. P3 is used by the MK1 4 monitor to transfer control to
the user's program, and an XPPC 3 in the user's program can therefore
be used to get back to the monitor provided that P3 has not been altered.

Shift Rotate Serial I/O " W z i

Mnemonic Description Operation Op Code

SIO Serial Input/Output (Ei)-(Ei- ,) , S IN - IE ,) , (E 0) -SOUT 19
SR Shift Right (A C i M A C i - ,) , 0 - (A C ,) 1C
SRL Shift Right with Link <ACi) - (ACi - ,) ,CY/L) - (ACj) 1 D
RR Rotate Right (ACi)-(ACi-,) , (AC0) - (AC,> IE
RRL Rotate Right with Link (ACi)-IACi-,), (AC0)-(CY/L)-(AC,> 1 F

The SIO instruction simultaneously shifts the SIN input into the top bit of
the extension register, the bottom bit of the extension register going to the
SOUT output; it can therefore form the basis of a simple program to
transfer data along a two-way serial line. The shift tfnd rotate with link
make possible multibyte shifts or rotates.

17 01 17 01
I Op ~1 | Disp ~|

Double Byte Miscellaneous byte byte 2

Mnemonic Description Operation
Op Code
Base

DLY Delay count AC to — 1,
delay = 1 3 + 2(AC) + 2 disp + 2'

disp microcycles

8F00

Base Code Modifier

Op Code = Base + disp

2 9

The delay instruction gives a delay of from 1 3 to 1 31 593 microcycles
which can be specified in steps of 2 microcycles by the contents of the
AC and the second byte of the instruction.
Note that the AC will contain X'FF after the instruction.

0

Single-Byte Miscellaneous
Op

Mnemonic Description Operation Op Code

HALT Halt Pulse H-flag 0 0
CCL Clear Carry/Link (C Y / L l - 0 02
SCL Set Carry/Link (CY/L) -1 03
DINT Disabled Interrupt (I E) - 0 0 4
IEN Enable Interrupt (IE)—1 05
CSA Copy Status to AC (AC)—(SR) 0 6
CAS Copy AC to Status (SR)-(AC) 07 ,
NOP No Operation (PC)—(PC) + 1 0 8

The remaining instructions provide access to the status register, and to
the IE and CY/L bits therein. The HALT instruction will act as a NOP in the
MK 1 4 kit unless extra logic is added to detect the H-flag at NADS time,
in which case it could be used as an extra output.

Mnemonic Index of Instructions

| Read Write Total
Mnemonic Opcode Cycles Cycles Microcycles

ADD FO 3 0 1 9
ADE 70 1 0 7
ADI F4 2 0 1 1
AND DO 3 0 18
ANE 50 1 0 6
ANI D4 2 0 10
CAD F8 3 0 2 0
CAE 78 1 0 8
CAI FC 2 0 12
CAS 07 1 0 6
CCI 02 1 0 5
CSA 0 6 1 0 5
DAD E8 3 0 23
DAE 68 1 0 1 1
DAI EC 2 0 1 5
DINT 04 1 0 6
DLD B8 3 1 22
DLY 8F 2 0 1 3 - 1 3 1 5 9 3

3 0

Read Write Total
Mnemonic Opcode Cycles Cycles Microcycles

HALT 0 0 2 0 8
IEN 05 1 0 6
ILD A8 3 1 22
JMP 9 0 2 0 1 1
JNZ 9C 2 0 9, 1 1 for Jump
JP 94 2 0 9, 1 1 for Jump
JZ 98 2 0 9, 1 1 for Jump
LD CO 3 0 1 8
LDE 4 0 1 0 6
LDI C4 2 0 10
NOP 0 8 1 0 5
OR D8 3 0 1 8
ORE 58 1 0 6
ORI DC 2 0 10
RR 1 E 1 0 5
RRL 1 F 1 0 5
SCL 03 1 0 5
SIO 19 1 0 5
SR 1C 1 0 5
SRL 1 D 1 0 5
ST C8 2 1 18
XAE 01 1 0 7
XOR EO 3 0 18
XPAH 34 1 0 8
XPAL 3 0 1 0 8
XPPC 3C 1 0 7
XRE 60 1 0 6
XRI E4 2 0 10

Program Listings
The application program listings at the end of this manual are given in a
symbolic form known as 'assembler listings'. The op codes are
represented by mnemonic names of from 2 to 4 letters, with the operands
specified as shown:
LD disp ;PC-relative addressing
LD disp (ptr) ;lndexed addressing
LD @disp (ptr) ;Auto-indexed addressing
Constants and addresses are also sometimes represented by names of up
to six letters; these names stand for the same value throughout the
program, and are given that value either in an assignment statement, or
by virtue of their appearing as a label to a line in the program. Some
conventions used in these listings are shown below:

Statements Directive

Assembler Format Function

.END (address)

.BYTE exp (,exp...)

DBYTE exp (,exp,...)

Signifies physical end of
source pprogram.

Generates 8-bit (single-byte)
data in successive memory
locations.

Generates 1 6-bit (double-
byte) data in successive
memory locations.

Statements Assignment

LABEL: SYMBOL= EXPRESSION ;Symbol is assigned
;value of expression

. = 2 0 ;Set location counter
;to 20

TABLE: . = . + 1 0 ; Reserve 10 locations
for table

RAM I/O

A socket is provided on the MK1 4 to accept the 4 0 pin RAM I/O device
(manufacturers part no. INS81 54). This device can be added without
any additional modification, and provides the kit user with a further 1 28
words of RAM and a set of 1 6 lines which can be utilised as logic inputs in
any combination.
These 1 6 lines are designated Port A (8 lines) and Port B (8 lines) and
are available at the edge connector as shown in Fig. 10 .1 .

3 3

The RAM I/O can be regarded as two completely separate functional
entities, one being the memory element and the other the input/output
section. The only association between the two is that they share the same
package and occupy adjacent areas in the memory I/O space. Fig. 1 0.2
shows the blocks in the memory map occupied by the RAM I/O, and it
can be seen that the one piece of hardware is present in four separate
blocks of memory.

800

8FF
9 0 0
,9FF
A 0 0
AFF
BOO
BFF

COO
CFF
DOO
OFF
EOO
EFF

FOO

FFF

RAM I/O

DISFH.AY

RAM I/O

RAM
(optional)

RAM I/O

DISPLAY

RAM I/O

RAM
(standard)

Note: —Memory area is shown divided
into 256 byte blocks. The lowest
and highest location address is
shown in hex' at left.

Fig. 10 .2 Memory I/O Map Showing RAM I/O Areas
The primary advantage for the user, in this, is that programme located in
basic RAM, or in the extra RAM option, has the same address relationship
to the RAM I/O.
Fig. 1 0 .3 shows how memory I/O space within the RAM I/O block is
allocated.

00
07
0 8 J
OF
10,
1 7
18
1 F

20

21

22

23

24

25

7F
80

< > CLEAR BIT PORTA 4

o CLEAR BIT PORT B

FF

SET BIT PORTA

SET BIT PORT B

READ/WRITE PORT A

READ/WRITE PORT B

D BUS (ACC)toODA

D BUS (ACC) to ODB

D BUS (ACC) to MDR

•*• 128 BYTES RAM

Selected bit out
of 8 determined by
low 3 bits of address
e.g. Addr. = 0, b i t = 0 (Port A)

Addr. = IF, bit = 7 (Port B)

Fig. 10.3 RAM I/O Locations and Related Functions

RAM Section
This is utilised in precisely the same manner as any other area of RAM.
Input/Output Section
The device incorporates circuitry which affords the user a great deal of
flexibility in usage of the 1 6 input/output lines. Each line can be
separately defined as either an input or an output under programme
control. Each line can be independently either read as an input, or set to
logic 'I' or ' 0 ' as an output. These functions are determined by the
address value employed.
A further group of usage modes permit handshake logic i.e. a 'data
request', 'data ready', 'data receieved', signalling sequence to take place
in conjunction with 8 bit parallel data transfers in or out through Port A.
Reset Control
This input from the RAM I/O is connected in parallel with the CPU power-
on and manual reset. When reset is present all port lines are high
impedance and the device is inhibited from all operations.
Following reset all port lines are set to input mode, handshake facilities
are deselected and all port output latches are set to zero.
Input/Output Definition Control
At start-up all 1 6 lines will be in input mode. To convert a line or lines to
the output condition a write operation must be performed by programme
into the ODA (output definition port A) or ODB locations e.g. writing the
value 80 (Hex.) into ODB will cause bit 7 port B to become an output.
Single Bit Read
The logic value at an input pin is transferred to the high order bit (bit 7)
by performing a read instruction. The remaining bits in the accumulator
become zero.
The required bit is selected by addressing the appropriate location (see
Figs 3 & 4).
By executing JP (Jump if Positive) instruction the programme can respond
to the input signal i.e. the jump does not occur if the l/P is a logic ' i ' .
If a bit designated as an output is read the current value of that 0/P is
detected.
Single Bit Load
This is achieved by addressing a write operation to a selected location
(see Figs. 10.1 & 1 0.4). Note that it is not necessary to preset the
accumulator to define the written bit value because it is determined by bit
4 of the address.
Eight Bit Parallel Read or Write
An eight bit value can be read from Port A or B to the accumulator, or the
accumulator value can be output to Port A or B. See Figs. 10.3 & 1 0.4
for the appropriate address locations. Input/output lines must be pre-
defined for the required mode.
Port A Handshake Operations
To achieve eight bit data transfers with accompanying handshake via Port
A, two lines (6 and 7) from Port B are allocate special functions and must
be pre-defined by programme as follows:- bit 7-input, bit 6-output.
Additionally the INTR signal line is utilised.
Three modes of handshake function are available to be selected under
programme control. Fig. 10.4 shows values to be written into the three
higher order bits of the Mode Definition Register (see Fig. 1 0.1 for
location) for the various modes.

Bit Position & value in MDR
this condition

BASIC l/U s e , e c t e d b y r e s e t X X 0 |
STROBED INPUT X 0 I |

STROBED OUTPUT 0 I I \
STROBED OUTPUT

WITH TRI-STATE I I I /

Note:-
i) X = don'tcare
ii) Lower order

bits are don't
care also.

7 6 5
Fig. 10 .4 Mode Definition Register (MDR) Values and Operation Modes

'Data Ready', l /PMode
'Data Acknowledge', O/P Mode

i INTR to CPU

Six lines (bits 0-5) PortB

PERIPHERAL Eight lines Port A (handshake port) J > RAMI/O

. / / /
B6 'Data Present', l/P Mode
'Data Request/Acknowledge', O/P Mode

B7 'Data Request/Acknowledge', l/P Mode
'Data Ready', O/P Mode

Fig. 10 .5 Handshake Interconnections and Function

INTR Signal
In order to inform the CPU of the state of the data transfer in handshake
mode the RAM I/O generates the INTR SIGNAL: This signal will usually be
connected to the CPU interrupt input SA.
The INTR signal is activated by writing a logic 'I' into B7 and is inhibited
by a logic ' 0 ' . Note that although B7 must be defined as an input, in
handshake mode the B7 output latch remains available to perform this
special function.
Strobed Input Mode
A peripheral circuit applies a byte of information to Port A and a low pulse
to B7. The pulse causes the data to be latched into the RAM I/O Port A
register, and B6 is made high as a signal to the peripheral indicating that
the latch is now occupied. At the s,ame time INTR (if enabled) goes high
indicating 'data ready' to the CPU.
The CPU responds with a byte read from Port A. The RAM I/O recognises
this, and removes INTR and the 'buffer full' signal on B6, informing the
peripheral that the latch is available for new data.

3 6

Fig. 10 .6 Signal Timing Relationship —Handshake l/P Mode

A0-A7

B7

B6

INTR

NRDS

IX
Peripheral data valid

— I — (h
Y
• -

Data strobe
from peripheral

'Data acknowledge'
to peripheral

'Data ready ' to CPU

•ih
Load data to RAM I/O latch

V^—— Data request
to peripheral

-II-

-II-

\C"
" " V

Data acknowledge'
from CPU

Signals
" generated

by peripheral

}
Signals
generated
by RAM I/O

Signal
generated
by CPU

Strobed Output Mode
The CPU performs a byte write to Port A, and the RAM I/O generates a
'data ready' signal by making B6 low. The peripheral responds to 'data
ready' by accepting the Port A data, and acknowledges by making B7
low. When B7 goes low the RAM I/O makes INTR high (if enabled)
informing the CPU that the data transaction is complete.

D0-D7

NWDS

INTR

B6

B7

A0-A7
non tri-state

A0-A7
tri-state mode

Load data to RAM I/O

'Data request' from RAM I/O

'Data ready' to peripheral

Previous data

Data acknowledge'
from RAM I/O

Signal
' generated

by CPU

Signals
' generated

by RAM I/O

Data acknowledge'
f rom peripheral

High impedance condition High impedance dance condition i y
4V--C Va l , d >•

\ data /

Fig. 10 .7 Signal Timing Relationship —Handshake O/P Mode

Strobed Output w i th Tri-State Control
This mode employs the same signalling and data sequence as does
Output Mode above. However the difference lies in that Port A will, in
this mode, normally be in Tri-state condition (i.e. no load on peripheral
bus), and will only apply data to the bus when demanded by the peripheral
by a low acknowledge signal to B7

Signals
generated
by RAM I/O

3 7

Applications for Handshake Mode
Handshake facilities afford the greatest advantages when the MK1 4 is
interfaced to an external system which is independent to a greater or
lesser degree. Another MK1 4 would be an example of an completely
independent system.
In comparison the simple read or write, bit or byte, modes are useful when
the inputs and outputs are direct connections with elements that are
subservient to the MK1 4.
However whenever the external system is independently generating and
processing data the basic 'data request', 'data ready', 'data
acknowledge', sequence becomes valuable. The RAM I/O first of all
relieves the MK1 4 software of the task of creating the handshake.
Secondly it is likely in this kind of situation that the MK1 4 and external
system are operating asynchronously i.e. are not synchronised to a
common time source or system protocol. This implies that when one
element is ready for a data transfer, the other may be busy with some
other task.
Here the buffering ability of the Port A latch eases these time constraints
by holding data transmitted by one element until the other is ready to
receive
Therefore, for example, if the CPU, in the position of a receiver, is unable,
due to the requirements of the controlling software, in the worst case, to
pay attention for 2 millisecs the transmitter would be allowed to send data
once every millisecond.

Part 2
Monitor program listing 4 0

Mathematical 49
Multiply
Divide
Square Root
Greatest Common Divisor
Electronic 54
Pulse Delay
Digital Alarm Clock
Random Noise
System 58
Single Step
Decimal to Hex
Relocator
Serial data input*
Serial data output"
Games 6 8

Moon Landing
Duck Shoot
Mastermind
Silver Dollar Game
Music 7 9
Function Generator
Music Box
Organ
Miscellaneous 84
Message
Self-Replicating Program
Reaction Timer

Devised and written by:
David Johnson — Da vies
except programmes marked thus *

3 9

Monitor program listing

SCMPKB

PROM*

4 6 0 3 0 5 2 3 5 0 0 1

SC/MP ASSEMBLER REV - C 0 2 / 0 6 / 7 6
SCMPKB P 0 0 5 2 3 5 A 7 / 1 4 / 7 6

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
1 5
16
17
18
1 9

TITLE SCMPKB, ' P 0 0 5 2 3 5 A 7 / 1 4 / 7 6 '

BOARD
ADDRESS COORDINATE B O A R D *

0000 5A 9 8 0 4 8 7 9

0F00 RAM
0 D 0 0 DISP

0 0 0 1 SA
0 0 0 2 SB

OFOO
ODOO

SEGMENT ASSIGNMENTS

18
19
20
21
22
23
24
25
26
27
28
29
3 0
31
32
33
34
3 5
36
37
3 8
3 9
40
41
42
43
44
45
46
47
4 8
49

0 0 0 1 SA
0 0 0 2 SB
0 0 0 4 SC
0 0 0 8 SD
0 0 1 0 SE
0 0 2 0 SF
0 0 4 0 SG

0 0 3 F
0006
0 0 5 8
0 0 4 F
0066
0 0 6 D
0 0 7 D
0 0 0 7
007F
0 0 6 7
0 0 7 7
007C
0 0 3 9
005E
0 0 7 9
0 0 7 1
0 0 4 0
0 0 7 9
0 0 5 0
0 0 5C

NO
N1
N2
N3
N4
N5
N6
N7
N8
N9
NA
NB
NC
ND
NE
NF
DASH
KE
KR
KO

1
2
4
8
16
32
64

7 SEGMENT CONVERSION

SA +
SB +
SA +
SA +
SB
SA +
SA +
SA +
SA +
SA +
SA +
SC +
SA +
SB +
SA +
SA +
SG
NE
SE +
SC +

S B + S C + S D + SE + SF
SC
S B + S D - S E + S G
S8 + SC-1-SD + SG
SC + SF + SG
S C + S D + S F + S G
SC + SD + SE+SF + SG
SB + SC
SB + SC + SD + SE + SF + SG
SB -r SC + SF + SG
S B + S C + S E + S F + S G
SD + SE + SF + SG
SD + SE + SF
S C + S D + S E + S G
S D + S E + S F + S G
SE + SF + SG

SG
S D + S E + S G

4 0

5 0
51
52
53
54
55
56
57

PAGE 'HARDWARE FOR KEYBOARD'

FUNCTION DATA KYB FUNCTION

0 080
1 0 8 1
2 082

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104
105
106
107
108
109
110
111
11 2
113
1 1 4
115
116
117
118
119
1 20
1 21
1 22
1 23
124
1 25
1 26
127
1 28

3 0 8 3 3
4 0 8 4 4
5 0 8 5 5
6 0 8 6 6
7 0 8 7 7

8 0 4 0 8
9 0 4 1 9
A 0 1 0 +
B 01 1 —

C 0 1 2 MUL
D 0 1 3 DIV
E 0 1 6 SQUARE
F 0 1 7 SORT
GO 0 2 2 %
MEM 0 2 3 =

ABORT 0 2 4 CBIC
TERM 0 2 7

RAM POINTERS USED BY KITBUG, P3 IS SAVED ELSEWHERE

0FF9 P1H
0FFA P1L
0FFB P2H
OFFC P2L
0FFD A
0FFE E
0FFF S

0FF9
0FFA
0FFB
OFFC
0FFD
0FFE
OFFF

COMMANDS

;ABORT:

; THIS ABORTS THE PRESENT OPERATION. DISPLAYS —

;MEM.
; ALLOWS USER TO READ/MODIFY MEMORY.
; ADDRESS IS ENTERED UNTIL TERM THEN DATA IS ENTERED.
; TO WRITE DATA IN MEMORY TERM IS PUSHED

DATA IS READ TO CHECK IF IT GOT WRITTEN IN RAM.

ADDRESS IS ENTERED UNTIL TERM.
THE REGISTERS ARE LOADED FROM RAM AND PROGRAM
IS TRANSFERRED USING XPPC P3.
TO GET BACK DO A XPPC P3.

0000 08
0 0 0 1 INIT:
0 0 0 1 9 0 1 D

PAGE 'INITIALIZE'
NOP

JMP START

DEBUG EXIT
RESTORE ENVIRONMENT

0 0 0 3 GOOUT:
C20E LD ADHI2)
37 XPAH 3
C20C LD ADL(2)
33 XPAL 3
C7FF LD @ - U 3)
C0F2 LD E
01 XAE
C0E8 LD P1L
31 XPAL 1
C0E7 LD P1H
3 5 XPAH 1
C0E7 LD P2L
32 XPAL 2
C0E3 LD P2H
3 6 XPAH 2
C0E4 LD S

;GET GO ADDRESS.

;FIX GO ADDRESS.
RESTORE REGISTERS

41

129 0 0 1 C 07 CAS
1 3 0 0 0 1 D CODF LD A
131 0 0 1 F 3F XPPC 3
132 ,T0 BET BACK.
133 ENTRY POINT FOR DEBUG
134
135 0 0 2 0 START
136 0 0 2 0 C8DC ST A ;SAVE STATUS.
137 0 0 2 2 4 0 LDE
138 0 0 2 3 C8DA ST E
139 0 0 2 5 0 6 CSA
140 0 0 2 6 C8D8 ST S
141 0 0 2 8 3 5 XPAH 1
142 0 0 2 9 C8CF ST P1H
143 0 0 2 8 31 XPAL 1
144 002C C8CD ST PI L
145 002E C40F LDI HIRAMI ;SETP2 TO POINT TO RAM.
146 0 0 3 0 36 XPAH 2
147 0 0 3 1 C8C9 ST P2H
148 0 0 3 3 C 4 0 0 LDI L(RAM)
149 0 0 3 5 32 XPAL 2
1 50 0 0 3 6 C8C5 ST P2L
1 51 0 0 3 8 C701 LD @1I3) .BUMPP3 FOR RETURN
152 0 0 3 A 33 XPAL 3 ,SAVEp3
153 0 0 3 B CAOC ST ADLI2)
1 5 4 0 0 3 D 37 XPAH 3
155 0 0 3 E CAOE ST ADHI2)

156 .PAGE
157
158
159 ; ABORT SEQUENCE
160
161 0 0 4 0 ABORT
162 0 0 4 0 C 4 0 0 LDI 0
1 63 0 0 4 2 CA02 ST 03 (2)
1 64 0 0 4 4 CA03 ST 04(21
1 65 0 0 4 6 CA08 ST 09(21
166 0 0 4 8 C 4 4 0 LDI DASH ;SET SEGMENTS T O -
167 0 0 4 A CAOO ST 0L(2)
168 004C CA01 ST DHI2)
169 004E CA04 ST ADDLLI2)
1 7 0 0 0 5 0 CA05 ST ADLHI2)
171 0 0 5 2 CA06 ST ADHLI2I
172 0 0 5 4 CA07 ST ADHH12)
173 0 0 5 6 WAIT:
1 7 4 0 0 5 6 C401 JS 3.KYBD ,DISPLAY AND READ KEYBOAf

0 0 5 8 37C4
0 0 5 A 8 4 3 3
0 0 5 C 3F

175 0 0 5 D 9 0 0 2 JMP WCK ;COMMAND RETURN.
176 005F 90DF JMP ABORT ;RETURN FOR NUMBER.
177
1 78 0 0 6 1 WCK:
1 79 0 0 6 1 E407 XRI 07 :CHECKIF MEM.
1 80 0 0 6 3 9 8 5 6 JZ MEM
181 0 0 6 5 E401 XRI 01 ;CHECK IFGO.
182 0 0 6 7 9CD7 JNZ ABORT

183 PAGE 'GO TO'
184
185 J GO WAS PUSHED
186 GO TO USER PROGRAM
187 0 0 6 9 GO:
188 0 0 6 9 C4FF LDI - 1 .SET FIRST FLAG
1 89 0 0 6 8 CAOF ST DDTAI2I
190 0 0 6 D C 4 4 0 LDI DASH ;SET DATA TO DASH.
191 006F CAOO ST DLI2I
1 92 0 0 7 1 CA01 ST DHI2)
1 93 0 0 7 3 GOL.
194 0 0 7 3 C 4 5 9 LDI L(DISPA)-1 .FIX ADDRESS SEG

1 95 0 0 7 5 33 XPAL 3
196 0 0 7 6 3F XPPC 3 ,DO DISPLAY AND KEYBRD
197 0 0 7 7 9 0 0 6 JMP GOCK .COMMAND RETURN.
198 0 0 7 9 C41A LDI UADRI-1 ;SET ADDRESS.
199 0 0 7 B 33 XPAL 3
2 0 0 0 0 7 C 3F XPPC 3
201 0 0 7 D 90F4 JMP GOL ;NOT DONE.
2 0 2 007F GOCK:
2 0 3 007F E403 XRI 03 :CHECK FOR TERM.
2 0 4 0 0 8 1 9 8 8 0 JZ GOOUT ;ERROR IF NO TERM.
205
206
207 ; INCORRECT SEQUENCE
208 DISPLAY ERROR WAIT FOR NEW INPUT
2 0 9
2 1 0
211 0 0 8 3 ERROR:
212 0 0 8 3 C479 LDI KE ;FILL WITH ERROR.
213 0 0 8 5 CA07 ST ADHHI2I
2 1 4 0 0 8 7 C 4 5 0 LDI KR
2 1 5 0 0 8 9 CA06 ST ADHLI2)
216 0 0 8 8 CA05 ST ADLHI2)
217 0 0 8 D CA03 ST D4(2>
21 8 0 0 8 F C45C LDI KO
219 0 0 9 1 CA04 ST ADLLI2)
2 2 0 0 0 9 3 C 4 0 0 LDI 0
221 0 0 9 5 CA02 ST D3I2)
2 2 2 0 0 9 7 CA01 ST DH<2)
223 0 0 9 9 CAOO ST DLI2)
2 2 4 0 0 9 8 90B9 JMP WAIT

2 2 5 PAGE •MEMORYTRANSACTIONS'
2 2 6
227 0 0 9 D DTACK:
2 2 8 0 0 9 D C211 LD NEXT(2> ;CHECK IF DATA FIELD
229 009F 9C36 JNZ DATA ;ADDRESS DONE
2 3 0
231
2 3 2 0 0 A1 MEMDN:
233 00A1 C20E LD ADH12I ;PUT WORDIN MEM
2 3 4 00A3 3 5 XPAH 1
2 3 5 00A4 C20C LD ADLI2)
2 3 6 OOA6 31 XPAL 1
237 00A7 C20D LD WORD! 21
238 00A9 C 9 0 0 ST I D
239 O0AB 900E JMP MEM
2 4 0
241 OOAD MEMCK:
242 OOAD E406 XRI 0 6 jCHECK FOR GO
243 OOAF 98D2 JZ ERROR ;CAN NOT GO NOW
2 4 4 00B1 E405 XRI 0 5 :CHECK FOR TERM
2 4 5 00B3 98E8 JZ DTACK :CHECK IF DONE.
246 00B5 AAOC ILD ADLI2) iUPDATE ADDRESS LOW.
247 OOB7 9C02 JNZ MEM .CHECK IF UPDATE HI.
248 OOB9 AAOE ILD ADHI2I
249
2 5 0 MEM KEY PUSHED
251 OOBB MEM:
2 5 2 OOBB C4FF LDI -1 ;SET FIRST FLAG.
253 OOBD CA1 1 ST NEXTI2I :SET FLAG FOR ADDRESS NOW.
254 OOBF CAOF ST DDTA12)
2 5 5 00C1 MEML:
256 00C1 C20E LD ADHI2)
257 00C3 3 5 XPAH 1 ;SET P1 FOR MEM ADDRESS
258 OOC4 C20C LD A D U 2 I
259 00C6 31 XPAL 1
2 6 0 00C7 C100 LD (11
261 00C9 CAOD ST W0RDI2 I ;SAVE MEM DATA
262 OOCB C43F LDI LIDISPDI-1 ;FIX DATA SEG
263 OOCD 33 XPAL 3
2 6 4 OOCE 3F XPPC 3 ;G0 TO DISPD SET SEG FOR DATA.

2 6 5 00CF 90DC JMP MEMCK ^COMMAND RETURN.
2 6 6 00D1 C41A LDI LIADRI-l ;MAKE ADDRESS.
267 0 0 D 3 33 XPAL 3
2 6 8 00D4 3F XPPC 3
2 6 9 0 0 D 5 90EA JMP MEML ;GET NEXT CHAR.
2 7 0 0 0 D 7 DATA:
271 00D7 C4FF LDI -1 ;SET FIRST FLAG
2 7 2 0 0 D 9 CAOF ST DDTAI2I
273 OODB C20E LD ADHI2) ;SETP1 TO MEMORY ADDRESS
2 7 4 OODD 3 5 XPAH 1 275
2 7 5 OODE C20C LD ADLI2I
2 7 6 OOEO 31 XPAL 1
2 7 7 00E1 C 1 0 0 LD (11 ;READ DATA WORD.
2 7 8 00E3 CAOD ST WORD! 2) ;SAVE FOR DISPLAY.

2 7 9 PAGE
2 8 0 00EE5 DATAL.
281 00E5 C43F LDI LIDISPDI-1 ;FIX DATA SEG.
2 8 2 00E7 33 XPAL 3
283 00E8 3F XPPC 3 ;FIX DATA SEG-GO TO DISPD.
2 8 4 00E9 90C2 JMP MEMCK ;CHAR RETURN.
2 8 5 OOEB C 4 0 4 LDI 4 ;SET COUNTER FOR NUMBER OF SHIFTS.
286 OOED CA09 ST CNTI2I
2 87 OOEF AAOF ILD DDTAI2) ;CHECK IF FIRST.
2 8 8 00F1 9C06 JNZ DNFST
2 8 9 00F3 C 4 0 0 LDI 0 ;ZERO WORD IF FIRST
2 9 0 00F5 CaOD ST W0RDI2 I
291 OOF) CA1 1 ST NEXTI2) ;SET FLAG FOR ADDRESS DONE.
2 9 2 00F9 DNFST:
2 9 3 00F9 0 2 CCL
2 9 4 OOFA C20D LD W0RDI2) ;SHIFT LEFT.
2 9 5 OOFC F20D ADD WORD! 2)
2 9 6 OOFE CAOD ST W0RDI2)
2 97 0 1 0 0 BA09 DLD CNTI2) ;CHECK FOR 4 SHIFTS.
2 9 8 0 1 0 2 9CF5 JNZ DNFST
2 9 9 0 1 0 4 C20D LD W0RDI2 I ;ADD NEW DATA.
2 9 9 0 1 0 4 C296
2 9 9 0 1 0 4 C206 LD W0RDI2) ;ADD NEW DATA.
3 0 0 0 1 0 6 58 ORE
301 0 1 0 7 6 6 0 D ST W0RDI2)
3 0 2 0 1 0 9 90DA JMP DATAL
3 0 2 0 1 0 9 96DA JMP DATAL

3 0 3 PAGE 'HEXNUMBBER TO SEGMENT TABLE'
3 0 5
3 0 6 ; 'HEX NUMBER TO SEVEN SEGMENT TABLE'
3 0 7
3 0 8
3 0 9 01 OB CROM:
3 1 0 0 1 0 B 3F BYTE NO
3 1 1 01OC 06 BYTE N1
3 1 2 01 0 0 5B BYTE N2
3 1 3 01OE 4F BYTE N3
3 1 4 01 OF 66 BYTE N4
3 1 5 01 10 6 0 BYTE N5
3 1 6 01 11 7D BYTE N6
3 1 7 0 1 1 2

3 1 6 0 1 1 1 7A BYTE N6
3 1 7 01 12 0 7 BYTE N7
3 1 8 0 1 1 3 7F BYTE N8
3 1 9 01 14 67 BYTE N9
3 2 0 01 15 77 BYTE NA
3 2 1 0 1 1 6 7C BYTE NB
3 2 2 01 17 39 .BYTE NC
3 2 3 01 18 5E BYTE NO
3 2 4 0 1 1 9 79 BYTE NE
3 2 5 01 1A 71 BYTE NF

3 2 6 PAGE 'MAKE 4 DIGIT ADDRESS'
3 2 7 01 I B ADR:

328
3 2 9
3 3 0
331

SHIFT ADDRESS LEFT ONE DIGIT THEN

3 3 0

3 3 0
3 3 1
3 3 2
3 3 3
3 3 4
3 3 5 0 1 1 B
3 3 6 0 1 1 D
337 0 1 1 F
3 3 8 0 1 2 1
3 3 9 0 1 2 3
3 4 0 0 1 2 5
3 4 1 0 1 2 7
3 4 2 0 1 2 9
3 4 3 0 1 2 9
3 4 4 0 1 2 A
345 0 1 2 C
3 4 6 012E
3 4 7 0 1 3 0
3 4 8 0 1 3 2
3 4 9 0 1 3 4
3 5 0 0 1 3 6
351 0 1 3 8
3 5 2 0 1 3 A
353 01 3C
3 5 4 01 3D
3 5 5 0 1 3 F
3 5 6
3 5 7
3 5 8
3 5 9
3 6 0
3 6 1
3 6 2
3 6 3
3 6 4
3 6 5
3 6 6 0 1 4 0

C404
CA09
AAOF
9C06
C 4 0 0
CAOE
CAOC

02
C20C
F20C
CAOC
C20E
F20E
CAOE
BA09
9CEF
C20C
58
CAOC
3F

SHIFT ADDRESS LEFT ONE DIGIT THEN
ADD NEW LOW HEX DIGIT.
HEX DIGIT IN E REGISTER.
P2 POINTS TO RAM

NOTFST

LDI
ST
ILD
JNZ
LDI
ST
ST

CCL
LD
ADD
ST
LD
ADD
ST
DLD
JNZ
LD
ORE
ST
XPPC

4
CNTI2)
DDTAI2I
NOTFST
0
ADHI2I
ADLI2I

A D U 2 I
ADU2)
ADLI2I
ADH(2)
ADHI2I
ADHI2I
CNTI2I
NOTFST
ADL12)

ADLI2)
3

;SET NUMBER OF SHIFTS

CHECK IF FIRST.
JMP IF NO.
ZERO ADDRESS.

;CLEAR LINK

;SHIFT ADDRESS LEFT 4 TIMES.

;SAVE IT.
;NOW SHIFT HIGH.

CHECK IF SHIFTED 4 TIMES
JMP IF NOT DONE
NOW ADD NEW NUMBER.

;NUMBER IS NOW UP DATED.

PAGE 'DATA TO SEGMENTS'

CONVERT HEX DATA TO SEGMENTS.
P2 POINTS TO RAM.
DROPS THRU TO HEX ADDRESS CONVERSION.

DISPD:
367 0 1 4 0 C401 LDI H(CROM) ;SET ADDRESS OF TABLE
3 6 8 0 1 4 2 3 5 XPAH 1
3 6 9 01 43 C40B LDI LICROMI
3 7 0 0 1 4 5 31 XPAL 1
371 0 1 4 6 C20D Id word62) ;GET MEMORY WORD.
3 7 2 0 1 4 8 D40F ANI OF
3 7 3 0 1 4 A 01 XAE
3 7 4 0 1 4 B CI 80 LD -128(11 ;GET SEGMENT DISP.
3 7 5 01 4D CAOO ST DL<2) ;SAVEATDATALOW.
3 7 6 01 4F C20D LD W0RDI2) ;FlX HI.
3 7 7 0 1 5 1 1C SR ;SHIFT HI TO LOW.
3 7 8 0 1 5 2 1C SR
3 7 9 01 53 1C SR
3 8 0 01 54 1C SR
381 01 55 01 XAE
3 8 2 0 1 5 6 C 1 8 0 LD -128 (1) ;GET SEGMENTS.
3 8 3 0 1 5 8 CA01 ST DH(2) ;SAVE IN DATA HI.
3 8 4
3 8 5
3 8 6

3 8 7
3 8 8
3 8 9
3 9 0
3 9 1
3 9 2

PAGE ADDRESS TO SEGMENTS

CONVERT HEX ADDRESS TO SEGMENTS.
P2 POINTS TO RAM.

3 9 3 DROPS THRU TO KEYBOARD AND DISPLAY.
3 9 4
3 9 6
396 01 5A DISPA
397 01 5A 0 3 SCL
3 9 8 0 1 5 8 C401 LDI H(CROMI ;SET ADDRESS OF TABLE.
3 9 9 01 5 0 35 XPAH 1
4 0 0 01 5E C408 LDI LICROMI
4 0 1 0 1 6 0 31 XPAL 1
4 0 2 0 1 6 1 LOOPD:
4 0 3 01 61 C20C LD ADU2) ;GET ADDRESS.
4 0 4 01 63 D40F ANI OF
4 0 5 0 1 6 5 01 XAE
4 0 6 0 1 6 6 CI 8 0 LD ;GET SEGMENTS
407 0 1 6 8 CA04 ST ADLLI2) :SAVE SEG OF ADR LL
4 0 8 01 6A C20C LD ADLI2)
4 0 9 0 1 6 C 1C SR ;SHIFT HI DIGIT TO LOW.
4 1 0 0 1 6 D .. c SR
4 1 1 016E 1 c SR
4 1 2 01 6F 1 SR
4 1 3 0 1 7 0 01 XAE
4 1 4 01 71 C 1 8 0 LD -128(11 ;GET SEGMENTS
4 1 5 0 1 7 3 CA05 ST ADLH12)
4 1 6 0 1 7 5 0 6 CSA ;CHECK IF DONE.
41 7 0 1 7 6 D 4 8 0 ANI 0 8 0
4 1 8 0 1 7 8 9 8 0 9 JZ DONE
4 1 9 01 7A 02 CCL ;CLEAR FLAG.
4 2 0 01 78 C 4 0 0 LDI 0
421 0 1 7 D CA03 ST D4(2) ;ZERO DIGIT 4
4 2 2 017F C602 LD @ 2(2) ;FIX P2 FOR NEXT LOOP.
4 2 3 0 1 8 1 90DE JMP LOOPD
4 2 4 0 1 8 3 DONE
4 2 5 0 1 8 3 C6FE LD @-212) ;FIX P2.
4 2 6
427

4 2 8 PAGE 'DISPLAY AND KEYBOARD INPUT'
4 2 9
4 3 0 CALL XPPC 3
431
4 3 2 JMP COMMAND IN A GO = 6,MEM - 7.TERM = 3
4 3 3 I N E G O - 22.MEM - 23,TERM = 27
4 3 4 NUMBER RETURN HEX NUMBER IN E REG.
4 3 5
4 3 6 ABORT KEY GOES TO ABORT.
4 3 8 ALL REGISTERS ARE USED.
4 3 9
4 4 0 P2 MUST POINT TO RAM. ADDRESS MUST BE XXXO
441
4 4 2 TO RE-EXECUTE ROUTINE DO XPPC P3.
4 4 3
4 4 4
4 4 5 0 1 8 5 KYBD
446 0 1 8 5 C400 LDI 0 ;ZERO CHAR.
447 0 1 8 7 CA08 ST CHAR(2)
4 4 8 0 1 8 9 C40D LDI H(DISP) ;SET DISPLAY ADDRESS.
4 4 9 01 8B 3 5 XPAH 1
4 5 0 01 8C OFF:
4 5 1 01 8C C4FF LDI -1 ;SET ROW/DIGIT ADDRESS.
4 5 2 01 8E CA10 ST R0W12) .SAVE ROW COUNTER.
453 0 1 9 0 C40A LDI 10 ;SET ROW COUNT.
4 5 4 0 1 9 2 CA09 ST CNT(2)
4 5 5 0 1 9 4 C 4 0 0 LDI 0
4 5 6 0 1 9 6 CAOA ST PUSHEDI21 ;ZER0 KEYBOARD INPUT.
4 5 7 0 1 9 8 31 XPAL 1 ;SET DISP ADDRESS LOW
4 5 8 0 1 9 9 LOOP:
4 5 9 0 1 9 9 AA10 ILD R0WI2) ;UP DATE ROW ADDR ESS
4 6 0 01 9B 01 XAE
4 6 1 01 9C C280 LD -128(21 ;GET SEGMENT
4 6 2 019E C 9 8 0 ST -128(1) ;SEND IT,
463 01 AO 8F00 DLY 0 ;DELAY FOR DISPLAY.

464 01A2 C 1 8 0 LD -128111 ;GET KEYBOARD INPUT
4 6 5 01 A4 E4FF XRI OFF ;CHECK IF PUSHED
4 6 6 0 1 A 6 9C4C JNZ KEY J U M P IF PUSHED.
4 6 7 01 A8 BACK
4 6 8 01 A8 BA09 DLD CNTI2I ;CHECK IF DONE.
4 6 9 01 AA 9CED JNZ LOOP ;N0 IF JUMP.
4 7 0 01 AC C20A LD PUSHEDI2) ;CHECK IF KEY.
471 01 AE 9 8 0 A JZ CKMORE
4 7 2 01 BO C20B LD CHARI2) ; WAS THERE A CHAR?
473 01 B2 9CD8 JNZ OFF ;YES WAIT FOR RELEASE.
4 7 4 01B4 C20A LD PUSHEDI2) ,N0 SET CHAR.
4 7 5 0. B6 CA08 ST CHARI2)
4 7 6 01 B8 90D2 JMP OFF
4 7 7 01 BA CKMORE:
4 7 8 01 BA C20B LD CHARI2I ;CHECK IF THERE WAS A CHAR.
4 7 9 01 BC 98CE JZ OFF ;N0 KEEP LOOKING.

4 8 0 PAGE
481
4 8 2 COMMAND KEY PROCESSING
483
4 8 4 01 BE COMMAND:
48b 01 8E 01 XAE :SAVE CHAR
486 01 3F 4 0 LDE ;GET CHAR
487 01 CO D 4 2 0 ANI 0 2 0 .CHECK TOR COMMAND.
488 01C2 9C28 JNZ CMND ;JUMP IF COMMAND
489 01C4 C 4 8 0 LDI 0 8 0 ;FIND NUMBER
4 9 0 01C6 5 0 9 k ANE
491 01C7 9C1B JNZ LT7 ;0 TO 7
4 9 2 01C9 C 4 4 0 LDI 0 4 0
4 9 3 01CB 5 0 ANE
494 01CC 9C1 9 JNZ N89 ,8 OR 9
495 01CE C40F LDI OF
496 0 1 0 0 5 0 ANE
497 O l D l F40/ ADI 7 ;MAKEOFFSET TO 1 ABLE.
498 01 0 3 01 XAE .PUT OFF SET AWAY
499 01 D4 C080 LD -12810) ;GET NUMBER.
5 0 0 0 1 0 6 KEYR 1"N:
501 0 1 0 6 01 XAE .SAVE IN E
502 01D7 C70? LD @2(3> .FIX RETURN.
503 01 D9 3F XPPC 3 .RETURN
504 01 DA 90A9 JMP KYBD .ALLOWS XPPC P3 TO RETURN
505
5 0 6 01 DC OAOB .BYTE OA.OB.OC, OD.O.OE.OF

01DE OCOD
01E0 0 0 0 0
01E2 OEOF

507 01E4 LT7:
508 01 E4 6 0 XRE .KEEP LOW DIGIT
509 01 E5 90EF JMP KEYRTN
5 1 0 01E7 N89:
51 1 01E7 6 0 XRE .GET LOW.
5 1 2 01E8 F408 ADI 0 8 .MAKE DIGIT 8 OR 9.
513 01 EA 90EA JMP KEYRTN

5 1 4 .PAGE
51 5 01 EC CMND
516 01 EC 6 0 XRE
517 01 ED E404 XRI 0 4 ;CHECK IF ABORT.
518 01 EF 9 8 0 8 JZ ABRT ;ABORT.
5 1 9 01F1 3F XPPC 3 ;INE 2 3 - M E M . 2 2 = G0,27 = TERM
5 2 0 :IN A 7 = MEM.6 = GO,3 = TERM.
521 01 F2 9 0 9 1 JMP KYBD : ALLOWS JUST A XPPC P3 TO
522 ;RETURN
523
5 2 4 01 F4 KEY:
5 2 5 01 F4 58 ORE ; MAKE CHAR
5 2 6 01 F5 CAOA ST PUSHEDI2) .SAVE CHAR
527 01F7 9 OAF JMP BACK
5 2 8
5 2 9 01F9 ABRT

5 3 0 01 F9 C400 LDI
531 01 FB 3 7 XPAH
5 3 2 01 FC C43F LDI
533 01 FE 33 XPAL
5 3 4 01 FF 3F XPPC

535 PAGE
536
537
538 0 0 0 0 DL =

539 0 0 0 1 DH =

5 4 0 0 0 0 2 D3 =

541 0 0 0 3 D4 =

5 4 2 0 0 0 4 ADLL =

543 0 0 0 5 ADLH =

5 4 4 0 0 0 6 ADHL =

545 0 0 0 7 ADHH =

5 4 6 0 0 0 8 D9 =

547 0 0 0 9 CNT =

548 OOOA PUSHED =

549 OOOB g+HAR 11

H(ABORT)
3
LIABORT1-1
3

3 .GOTO ABORT

'RAM SEOFF-

0 ;SEGMENT FOR DIGIT 1
1 :SEGMENT FOR DIGIT 2
2 iSEGMENT FOR DIGIT 3
3 ;SEGMENT FOR DIGIT 4
4 .SEGMENT FOR DIGIT 5
5 ;SEGMENT FOR DIGIT 6
6 .SEGMENT FOR DIGIT 7
7 ;SEGMENT FOR DIGIT 8
8 ;SEGMENT FOR DIGIT 9
9 ;COUNTER.
1 0 KEY PUSHED.

549
5 5 0
551
5 5 2
553
5 5 4
5 5 5
5 5 6
557
558

OOOB CHAR
OOOC ADL
OOOD WORD
OOOE ADH
OOOF =
0 0 1 0 ROW
0 0 1 1 NEXT

1 1
12
13
14
15
16
17

CHAR READ.
MEMORY ADDRESS LOW.
MEMORY WORD.
MEMORY ADDRESS HI.
FIRST FLAG.
ROW COUNTER.
FLAG FOR NOW DATA

0000 .END

0 ERRORS IN ASSEMBLY '
A
OFFD

ABORT
0 0 4 0

ABRT
01F9

ADH
OOOE

ADHH
0 0 0 7

ADHL
0 0 0 6

ADL
OOOC

ADLH
0 0 0 5

ADLL
0 0 0 4

ADR
01 I B

BACK
0 1 A 8

CHAR
OOOB

CKMORE CMND
01BA 01 EC

CNT
0 0 0 9

COMMANCROM
01 BE 01 OB

D3
0 0 0 2

D4
0 0 0 3

D9
0 0 0 8

DASH
0 0 4 0

DATA
OOD7

DATAL
00E5

DDTA
OOOF

DH
0 0 0 1

DISP
ODOO

DISPA
01 5A

DISPD
0 1 4 0

DL
0 0 0 0

DNFST
00F9

DONE
0 1 8 3

DTACK
0 0 9 D

E
OFFE

ERROR
0 0 8 3

GO
0 0 6 9

GOCK
0 0 7 F

GOL
0 0 7 3

GOOUT
0 0 0 3

I NIT
0 0 0 1

KE
0 0 7 9

KEY
01 F4

KEYRTN
0 1 D 6

KO
0 0 5 C

KR
0 0 5 0

KYBD
0 1 8 5

LOOP
0 1 9 9

LOOPD
0 1 6 1

LT7
01 E4

MEM
OOBB

MEMCK
OOAD

MEMDN
0 0 A1

MEML
00C1

NO
0 0 3 F

N1
0 0 0 6

N2
0 0 5 B

N3
0 0 4 F

N4
0 0 6 6

N5
0 0 6 D

N6
0 0 7 D

N7
0 0 0 7

N8
0 0 7 F

N89
01E7

N9
0 0 6 7

NA
0 0 7 7

NB
0 0 7 C

NC
0 0 3 9

NC
0 0 5 E

NE
0 0 7 9

NEXT
0 0 1 1

NF
0 0 7 1

NOTFST
0 1 2 9

OFF
01 8C

PI H
0FF9

PI L
OFFA

P2H
OFFB

P2L
OFFC

PUSHED
OOOA

RAM
OFOO

ROW
0 0 1 0

S
OFFF

SA
0 0 0 1

SB
0 0 0 2

SC
0 0 0 4

SD
0 0 0 8

SE
0 0 1 0

SF
0 0 2 0

SG
0 0 4 0

START
0 0 2 0

WAIT
0 0 5 6

WCK
0 0 6 1

WORD
OOOD

A 7 9 9 08AB

4 8

Mathematical
The mathematical subroutines all take their arguments relative to

the pointer register P2. Pointer P3 is the subroutine calling register. All
of these routines may be repeated without reloading P3 after the
first call.
'Multiply' gives the 1 6-bit unsigned product of two 8-bit unsigned
numbers.

e.g. A = X'FF (255)
B = X'FF (255)
RESULT = X'FEOI (65025) .

'Divide' gives the 1 6-bit unsigned quotient and 8-bit remainder of a
1 6-bit unsigned dividend divided by an 8-bit unsigned divisor,

e.g. DIVISOR = X '05 (5)
DIVISOR = X ' 5 7 6 8 (22376)
QUOTIENT = X'1 1 7B (4475)
REMAINDER = X '01 (1).

'Square Root' gives the 8-bit integer part of the square root of a
1 6-bit unsigned number. It uses the relation:

(n + 1)2—n2 = 2n + 1,
and subtracts as many successive values of 2n + 1 as possible from the
number, thus obtaining n.

e.g. NUMBER = X'D5F6 (54774)
R00T = X'EA (234) .

'Greatest Common Divisor' uses Euclid's algorithm to find the GCD of
two 1 6-bit unsigned numbers; i.e. the largest number which will
exactly divide them both. If they are coprime the result is 1.

e.g. A = X'FFCE (6 5 4 8 6 = 4 7 8 x 1 37)
B = X '59C5 (23701 = 1 73 x 137)
GCD = X '89 (137) .

Multiply
Multiplies two unsigned 8-bit numbers
(Relocatable)

Stack usage:
REL: ENTRY:
- 1

(P2)-> 0 A
1 B

A A
B B

USE: RETURN:
Temp

2
3

Result (H) Result (H)
Result (L) Result (L)

0 0 0 0 A
0 0 0 1 B

0

FFFF Temp
0 0 0 2 RH
0 0 0 3 RL

2
3

4 9

0 0 0 0 . = 0F50
OF 50 C408 Mult: LDI 8
OF 52 CAFF ST Temp (21
OF 54 C400 LDI 0
OF 56 CA02 ST RH(2)
OF 58 CA03 ST RL(2)
OF 5A C201 Nbit: LD B(2)
OF 5C 02 CCL
OF 5D 1 E RR
OF 5E CA01 ST B(2)
OF 60 9 4 1 3 JP Clear
0 F 6 2 C202 LD RH(2)
OF 64 F200 ADD A(2)
0 F 6 6 IF Shift: RRL
0F67 CA02 ST RH(2)
OF 69 C203 LD RL(2)
0F6B IF RRL
OF 6C CA03 ST RU2)
0F6E BAFF DLD Temp(2)
OF 70 9CE8 JNZ Nbit
OF 72 3F XPPC 3
OF 73 90DB JMP Mult
OF 75 C202 Clear: LD RH(2)
OF77 90ED JMP Shift

0 0 0 0 .END

Divide
Divides an unsigned 1 6-bit number by
an unsigned 8-bit number giving
1 6-bit quotient and 8-bit remainder.
(Relocatable)

Stack usage:
REL: ENTRY: USE: RETURN:
- 1 Quotient(l)

(P2)-> 0 Divisor Quotient(H)
+ 1 Dividend(H) Quotient! L)
+ 2 Dividend(L) Remainder

FFFF
0 0 0 0
0001
0002

Quot
DSOR
DNDH
DNDL

- 1

0
1
2

0 0 0 0 . = 0F80
0 F 8 0 C200 Div: LD DS0R(2)
OF 82 0 1 ' XAE
OF 83 C400 LDI 0
0 F 8 5 CAOO ST DSOR12) ;NowQuotient(H)

5 0

0F87 CAFF ST Quot(2)
OF 89 C201 Subh: LD DNDH(2)
0F8B 0 3 SCL
OF 8C 78 CAE
0F8D CA01 ST DNDHI2)
OF 8F 1 D SRL
OF 90 9 4 0 4 JP Stoph
0 F 9 2 AAOO ILD DS0R12)
0F94 90F3 JMP Subh
0F96 C201 Stoph: LD DNDHI2)
0F98 70 ADE
0F99 CA01 ST DNDH(2)
0F9B C202 Subl: LD DNDLI2)
OF 9D 03 CCL
OF 9E 78 CAE
OF AO CA02 ST DNDU2)
OF A2 C201 LD DNDHI2)
OF A4 FCOO CAI 0
OF A6 CA01 ST DNDH(2)
OF A8 1 D SRL
OF A9 9 4 0 4 JP Stopl
OFAB AAFF ILD Quot (2)
OFAD 90ED JMP Subl
OF AF C202 Stopl: LD DNDL(2)
0FB1 7 0 ADE
OF B2 CA02 ST DNDL(2)
OF B4 C2FF LD Quot(2)
OF B6 CA01 ST DNDHI2)
OF B8 3F XPPC 3
0FB9 90C6 JMP Div

0 0 0 0 .END

;Carry is clear
;Undo damage

; Return

0 F 2 0
OF 22

Square Root
Gives square root of 1 6-bit unsigned number
Integer part only. (Relocatable).

Stack usage:
REL: ENTRY: USE: RETURN
- 1 Temp

(P2)-> 0 Number(H) Root(H)
+ 1 Number! L) Root(L)

0 0 0 0 HI - 0
0 0 0 1 LO = 1
FFFF Temp = - 1

0 0 0 0 . = OF20
C 4 0 0 SORT: LDI X'OO
CAFF ST Temp(2)

OF 24 03 Loop: SCL
OF 25 BAFF DLD Temp(2)
OF 27 F2FF ADD Temp(2)
OF 29 01 XAE
0F2A C4FE LDI X'FE
0F2C F400 ADI X'OO
0F2E 01 XAE
0F2F F201 ADD L0<2)
OF 31 CA01 ST L0(2)
OF 33 4 0 LDE
OF 34 F200 ADD Hl(2)
0 F 3 6 CAOO ST Hl(2)
OF 38 ID SRL
OF39 9 4 0 2 JP EXIT
OF 3B 90E7 JMP LOOP
0F3D C400 Exit: LDI X'OO
0F3F CAOO ST Hl(2)
0F41 FAFF CAD Temp(2)
0F43 CA01 ST L0(2)
0F45 3F XPPC 3
0F46 90D8 JMP SORT

OF48
!

. =OFFB

OFFB 0F80
1

.DBYTE 0F80

0 0 0 0 .END

;Return
;For Repeat

Greatest Common Divisor
; Finds Greatest Common Divisor of two
; 1 6-bit unsigned numbers
; uses Euclid's Algorithm. (Relocatable).

; Stack usage:
REL: ENTRY: USE: RETURN
0 A(H) A(H) 0
1 AIL) A(L) 0
2 B(H) B(H) GCD(H)
3 B(L) B(L) GCD(L)

0 0 0 0
0001
0002
0 0 0 3

AH
AL
BH
BL

0
1
2
3

0 0 0 0
0 F 2 0
OF 21
OF 23
OF 25
OF 27

03
C203
FA01
CA03
01

GCD:
. = 0F20
SCL
LD
CAD
ST
XAE

BL(2)
AL(2)
BL(2)

OF 28 C202 LD BH(2)
OF 2A FAOO CAD AH(2)
OF 2C CA02 ST BH(2)
OF2E 1 D SRL ; Put carry in top bit
OF 2F 9 4 0 2 JP Swap 1

OF 31 90ED JMP GCD ;Subtract again
OF33 02 Swap: CCL
OF 34 C201 LD AL(2)
OF36 01 XAE
OF37 7 0 ADE
OF38 CA01 ST AL<2)
OF3A 4 0 LDE
0F3B CA03 ST BL(2)
OF3D C 2 0 0 LD AH(2)
OF3F 01 XAE
0 F 4 0 C202 LD BH(2)
0 F 4 2 7 0 ADE
OF 43 CAOO ST AH(2)
0 F 4 5 01 XAE
OF 46 CA02 ST BH (2)
OF 48 4 0 LDE ;Get new AH(2)
0F49 DA01 OR AL(2) ;0R with new AL(2)
OF 4B 9CD3 JNZ GCD ;Not finished yet
0F4D 3F XPPC 3 ;Return
0F4E 9 0 D 0 JMP GCD ;For repeat run

0 0 0 0 .END

Electronic
'Pulse Delay' uses a block of memory locations as a long shift-register,
shifting bits in at the serial input SIN and out from the serial output SOUT
By varying the delay constants the input waveform can be delayed by up
to several seconds, though for a fixed block of memory the resolution
of the delay chain obviously decreases with increased delay

With the program as shown the shift-register uses the 128 locations
0F80 to OFFF, thus providing a delay of 1 0 2 4 bits
The 'Digital Alarm Clock' gives a continuously changing display of the
time in hours, minutes and seconds. In addition, when the alarm time
stored in memory tallies with the actual time the flag outputs are taken
high. The time can be set in locations 0F1 6, 0F1 7, and 0F1 8, and the
alarm time is stored in locations 0 F 1 2 , 0 F l 3 , a n d 0 F 1 4

The program depends for its timing on the execution time of the
main loop of the program, which is executed 8 0 times a second, so this
is padded out to exactly 1 /80th of a second with a delay instruction. The
delay constants at 0F7F and 0F81 should be adjusted to give the
correct timing
'Random Noise' generates a pseudo-random sequence of 21 5 -1 or
6 5 5 3 5 bits at the flag outputs. If one flag output is connected to an
amplifier the sequence sounds like random noise Alternatively, by
converting the program to a subroutine to return one bit it could be used
to generate random coin-tosses for games and simulations. Note that
the locations 0F1 E and 0F1 F must not contain 0 0 for the sequence
to start

Pulse Delay
Pulse delayed by 1024 bit-times.
(Relocatable). Uses serial in/out

0 0 0 0 . = 0F1 F
0F1F Bits: . = . + 1 ;bit counter

0F20 C40F
1
Enter: LDI H(Scrat)

OF 22 35 XPAH 1
OF 23 C480 LDIL (Scrat)
OF 25 31 Next: XPAL 1
OF 26 C408 LDI 8
OF 28 C8F6 ST Bits
OF 2A C100 LD (1) ;Get old byte
0F2C 01 XAE ;Exchange
OF 2D CD01 ST @ + 1(1) ;Put back new byte
0F2F 19 Output: SIO ;Serial I/O
0 F 3 0 C400 LDI TC1
OF 32 8F04 DLY TC2 ; Delay bits
OF 34 B8 EA DLD Bits
OF 36 9CF7 JNZ Output
OF 38 31 XPAL 1 ;P1 = 0 D 0 0 Yet?

5 4

OF 39 9CEA JNZ Next
0F3B 90E3 JMP Enter

0 0 0 0 TC1 — 0 , Bit-time
0 0 0 4 TC2 = 4 ;Delay constants

0F80 Scrat 0F80 ;Start of scratch area
0 0 0 0 .END

Digital Alarm Clock
Outputs are held on when alarm
time = Actual time, i.e. for one sec.

01 OB
0 D 0 0
0F00
0F10

0 0 0 0
OF 12
OF 13
0F14
OF 1 5
OF 16
OF 1A
OF 1 B
0F1C
0F1D
OF 1 E
0F20
OF 22
OF 23
0F25
OF 26
0F28
OF 29
OF 2B
0F2C
OF 2E
0F2F
OF 31
0 F 3 2
OF 33
0 F 3 5
0F37
OF 39
0F3B
0F3D
0F3F
0F41
0F43
0F45

76
4 0
4 0
20

C401
37
C40B
33
C40D
36
C40D
32
C40F
35
C41A
31
0 3
C405
C8DA
C5FF
ECOO
C 9 0 0
E904
9 8 0 4
9 8 0 2
9 0 0 2
C900

Crom
Disp
Ram
Row

Time:

Speed:

Clock:

New

Again:

01 OB
0 D 0 0
0F00
Ram+ 010

Cs:

. = 0 F 1 2
= . + 1
= . + 1
= . + 1
= . + 1
= . + 4
BYTE
BYTE
BYTE
BYTE
= 0F20

LDI
XPAH
LDI
XPAL
LDI
XPAH
LDI
XPAL
LDI
XPAH
LDI
XPAL
SCL
LDI
ST
LD
DAI
ST
DAD
JZ
JZ
JMP
ST

0 7 6
0 4 0
0 4 0
020

;Segment table
; Display address

Alarm time:hours
Minutes
Seconds
Not used
Actual time
Excess: Hours
Minutes
seconds
Speed

HtCrom)
3
L(Crom)
3
H(Disp)
2
L (Disp) + 0 D
2
H(Time)
1
LITime) + 4
1

5
Row
(3 - 1 (1)
0
(1)
+ 4(1)
Csi
Cs
Cont
(1)

;Loop count

;Equalize paths

5 5

0F47 C100 Cont: LD (1)
0F49 D40F ANI OF
OF 4B 01 XAE
OF 4C C380 LD — 1 28(3) ;Getsegments
0F4E CE01 ST @+1(2> ;Write to display
OF 50 C440 LDI 0 4 0
OF 52 8F00 DLY 0 0 ;Equalize display
OF 54 C100 LD (1)
OF 56 1C SR
OF 57 1C SR
OF 58 1C SR
OF59 1C SR
OF 5A 01 XAE
OF 5B C380 LD - 1 28(3)
OF 5D CE02 ST @ + 2(2) ;Leave a gap
OF 5F B8B0 DLD Row
OF 61 9CD4 JNZ Again
OF 63 C403 LDI 3
0 F 6 5 C8AA ST Row ;Digit count
OF 67 C400 LDI 0
OF 69 01 XAE
OF 6A C5FF Loop: LD @ - 1 (1)
OF 6C E104 XOR + 4(1) ;Same time?
OF 6E 58 ORE
0F6F 01 XAE
OF 70 B89F DLD Row
0F72 9CF6 JNZ Loop
OF 74 01 XAE
0F75 9 8 0 3 JZ Alarm ;Times tally
OF 77 40 LDE
OF 78 9 0 0 3 JMP Contin
0F7A C407 Alarm: LDI 07 ;AII flags on
0F7C 08 NOP ;Pad out path
0F7D 07 Contin: CAS :Output to flags
OF 7E C4Ft>J'5 LDI OFD ;Pad out loop to
0 F 8 0 8F0£- 6 1 S DLY 0 6 ,1/(100-speed)secs
0 F 8 2 90A2 JMP New

0 0 0 0 .END

Random Noise
; Relocatable

; Generates sequence 211 5 bits long

. = 0F1 E
0F1E Line: . = . + 1 ;For random number

; ;Mustnotbezero OF 20 COFD Noise: LD Line
OF 22 1 F RRL
OF 23 C8FA ST Line
OF 25 C0F9 LD Line + 1

OF 27 1 F RRL
OF 28 C8F6 ST Line+ 1
OF2A 0 2 CCL ;Ex-or of bits 1 and
OF 2B F402 ADI 02 ;ln bit 3
OF 2D 1 E RR ; Rotate bit 3 to
OF2E 1 E RR ; Bit 7
OF2F 1 E RR
OF 3 0 D487 ANI 0 8 7 ;Put it in carry and
OF 32 07 CAS ; Update flags
OF 33 90EB JMP Noise

0 0 0 0 .END

System
'Single Step', or SS, add the facility of being able to step through a
program being debugged, executing it an instruction at a time, the next
address and op-code being displayed after each step. SS is set up by
storing the start address of the user program at 0FF7 and 0FF8. Then
'GO'ing to SS will cause the user program's start address and first
instruction to be displayed.
Pressing 'MEM' then executes that instruction and displays the next one.
Thus one can step through checking that jumps lead to the correct
address and that the expected flow of control is achieved. If, in between
steps,'ABORT' is pressed, control is returned to the monitor and the
contents of the registers from that point in the execution of the user
program may be examined in memory where they are stored between
steps:

0FF7 PCH "

Program Counter

• Pointer 1

0FF7 PCH

0FF8 PCL
0FF9 P1H

OFFA PI L
OFFB P2H

OFFC P2L
OFFD A
OFFE E
OFFF S

• Pointer 2

Accumulator
Extension Register
Status Register

'GO'ing to the start of SS again will take up execution where it was left
off. The values of the registers are taken from these locations so it is
possible to alter them between steps.

The additional circuitry needed to implement the single step facility
is shown in Fig. 1. A CMOS counter, clocked by the NADS signal from
SC/MP, is reset from the SS program by a pulse at FLAG-O. After
8 NADS pulses it puts SENSE —A high; this will be the instruction fetch of
the next instruction in the user's program, and an interrupt will be
caused after that instruction has been executed. The interrupt returns
control to SS ready for the next step. A TTL binary counter could be used
in this circuit instead.
The 'Decimal to Hex' conversion program displays in hex the decimal
number entered in at the keyboard as it is being entered. Negative
numbers can be entered too, prefixed by 'MEM'.

e.g. 'MEM' '1 " 5 " 7 ' displays 'FF63'
'TERM' clears the display ready for a new number entry.
Any of the programs marked relocatable can be moved, without
alteration, to a different start address and they will execute in exactly
the same manner. The program 'Relocator' will move up to 2 5 6 bytes
at a time from any start address to any destination address.
These two addresses and the number of bytes to be moved are
specified in the 5 locations before the program. Since the source
program and destination area may overlap, the order in which bytes are
transferred is critical to avoid overwriting data not yet transferred, and so
the program tests for this.

5 8

SC/MP

Fig. 1

M C 1 4 0 2 4

+ 5V

Single Step
Adds a facility for executing programs a
Single instruction at a time, displaying
The program counter and op-code
After each step.

To examine registers, abort and
use the monitor in the usual way.
To continue, go to 0F90.

0FF7 P3H = 0FF7 ;For program to be
0FF8 P3L = 0FF8 ;Single-stepped
0FF9 P1H - 0FF9 ;Save user's registers:
OFFA P1L = OFFA ;(can be examined or
OFFB P2H = OFFB ;altered between
OFFC P2L OFFC ;steps from monitor)
OFFD A OFFD
OFFE E - OFFE
OFFF S - OFFF

000C ADL = 1 2
000E ADH = 14
0 0 0 D Word = 13
0F00 Ram = OFOO
0 1 4 0 Dispd = 0 1 4 0

; Program enter here
0 0 0 0 . = 0F90
0F90 C86C SS: ST A
0F92 C065 LD P3L ;Pick up user's program
0F94 33 XPAL 3 Address
0F95 C061 LD P3H
0F97 37 XPAH 3
0F98 C7FF LD 1(3) ;Ready for jump
0F9A 9025 JMP Ret

0F9C C20E Step: LD ADH(2)
0F9E 37 XPAH 3
0F9F C20C LD ADU2)
0FA1 33 XPAL 3
0FA2 C7FF LD @—1 (3)
0FA4 C059 LD E ;Restore user's context:
0FA6 01 XAE
0FA7 C052 LD P1L
0FA9 31 XPAL 1
OFAA C04E LD P1H
OF AC 35 XPAH 1
OFAD C04E LD P2L
OFAF 32 XPAL 2
OFBO C04A LD P2H
OFB2 36 XPAH 2
0FB3 C401 LDI 01 ;Flag 0 Resets counter
OFB5 07 CAS ;Put it high
OFB6 C048 LD S

;Put it high

OFB8 D4FE ANI X'FE ;Put flag 0 low
OFBA 07 CAS ;Start counting nads
OFBB C041 LD A
OFBD 05 IEN
OFBE 08 NOP ;Pad out to 8
OFBF 08 NOP
OFCO 3F XPPC 3 ;Go to user's program

;Here on interrupt after one instruction
OFC1 C83B ST A ;Save user's context
0FC3 4 0 Ret: LDE
0FC4 C839 ST E
OFC6 06 CSA
OFC7 C837 ST S
OFC9 35 XPAH 1
OFCA C82E ST P1H
OFCC 31 XPAL 1
OFCD C82C ST P1L
OFCF C40F LDI H(Ram) ;Set P2-> Ram
OFD1 36 XPAH 2
OFD2 C828 ST P2H
0FD4 C400 LDI L(Ram)
OFD6 32 XPAL 2
OFD7 C824 ST P2L
OFD9 C701 LD @ 1 (3)
OFDB C300 LD (3) ;Get op-code
OFDD CAOD ST Word! 2)
OFDF C401 LDI H(Dispd)
OFE1 37 XPAH 3
OFE2 CAOE ST ADH(2)
0FE4 C81 2 ST P3H ;So can enter via 'SS'
OFE6 C43F LDI UDispd)- 1
OFE8 33 XPAL 3
OFE9 CAOC ST ADU2)
OFEB C80C ST P3L
OFED 3F No: XPPC 3 ;Go to display routine

OFEE
OFFO

90AC
90FB

JMP Step ;Command return so step
JMP No ;Number return illegal

OOOO .END

Decimal to Hex
Converts decimal number entered at
keyboard to hex and displays result

; 'MEM' = minus, 'TERM' clears display
; (Relocatable)

OOOC ADL - OC
000E ADH = OE
0F00 Ram = OFOO
01 5A Dispa = 01 5A
001 1 Count = 01 1
001 2 Minus = 0 1 2
0 0 1 3 Ltemp = 0 1 3

0 0 0 0 . = 0 F 5 0
0F50 C 4 0 0 Dhex: LDI 0
0F52 CA1 2 ST Minus(2)
0F54 CAOE ST ADHI2)
0F56 CAOC ST ADLI2)
0F58 C401 Disp: LDI H(Dispa)
0F5A 37 XPAH 3
0F5B C459 LDI L(Dispa)-1
0F5D 33 XPAL 3
0F5E 3F XPPC 3
0F5F 9 0 2 8 JMP Comd ;Command key
0F61 C40A LDI 10 ;Number in extension
0F63 CA1 1 ST Count(2) ;Multiply by 10
OF65 0 3 SCL
0F66 C212 LD Minus(2)
0F68 01 • XAE
0F69 60 XRE
0F6A 78 CAE
0F6B 01 XAE
0F6C 4 0 LDE ;Same as: LDI 0
0F6D 78 CAE ; CADO
0F6E 01 XAE
0F6F 9 0 0 2 JMP Digit
0F71 C213 Addd: LD Ltemp(2) ;Low byte of product
0F73 0 2 Digit: CCL
0F74 F20C ADD ADLI2)
0F76 CA13 ST Ltemp(2)
0F78 4 0 LDE ;High byte of product
0F79 F20E ADD ADH(2)
0F7B 01 XAE ;Put back
0F7C BA1 1 DLD Count(2)
0F7E 9CF1 JNZ Addd

6 1

0F80 4 0 LDE
0F81 CAOE ST Adh(2)
0F83 C213 LD Ltemp(2)
0F85 CAOC ST Adl(2)
0F87 90CF JMP Disp ; Display result
0F89 E403 Comd: XRI 3 ;'TERM'?
0F8B 98C3 JZ Dhex ;Restart if so
0F8D C4FF LDI X'FF ;Must be 'MEM'
0F8F CA1 2 ST Minus(2)
0F91 90C5 JMP Disp

0F93
1

. = OFFB
OFFB 0F00 .DBYTE Ram ;SetP2-> Ram

0 0 0 0 .END

Relocator

FF80

Moves block of memory
'From' = source start address
'To' = destination start address
'Length' = No of bytes
(Relocatable)

•128 ; Extension as offset
0 0 0 0 . = 0F1 B

0F1B From: . = . + 2
0F1 D To: . = . + 2
0F1F Length: . = . + 1

0F20 C400 Entry: LDI 0
0F22 01 XAE
OF23 03 SCL
0F24 C0F9 LD T o + 1
0F26 F8F5 CAD From + 1
0F28 C0F4 LD To
0F2A F8F0 CAD From
0F2C 1 D SRL
0F2D 9 4 0 3 JP Fgt
0F2F COEF LD Length
0F31 01 XAE
0F32 02 Fgt: CCL
0F33 C0E8 LD From + 1
OF35 7 0 ADE
OF36 31 XPAL 1
0F27 C0E3 LD From
0F39 F400 ADI 0
0F3B 35 XPAH 1
0F3C 02 CCL
0F3D COEO LD To + 1
0F3F 70 ADE

;'From' greater than 'To'
;Start from end

0F40 32 XPAL 2
0F41 CODB LD To
0F43 F400 ADI 0
0F45 36 XPAH 2
0F46 02 CCL
0F47 4 0 LDE
0F48 9C02 JNZ Up
0F4A C402 LDI 2
0F4C 78 Up: CAE ;i.e. subtract 1
0F4D 01 XAE ;Put it in ext.
0F4E C580 Move: LD E(1)
0F50 CE80 ST @E(2> ;Move byte
0F52 B8CC DLD Length
0F54 9CF8 JNZ Move
0F56 3F XPPC 3 ;Return

0 0 0 0 .END

Serial Data Transfers w i th SC/MP-ii
This application note describes a method of serial data input/output (I/O)
data transfer using the SC/MP-II (ISP-8A/600) Extension Register. All
data I/O is under direct software control with data transfer rates between
110 baud and 9 6 0 0 baud selectable via software modification.
Data Output
Data to be output by SC/MP-II is placed in the Extension Register and
shifted out through the SOUT Port using the Serial Input/Output
Instruction (SIO). The Delay Instruction (DLY), in turn, creates the
necessary delay to achieve the proper output baud rate. This produces a
TTL-level data stream which can be used as is or can be level-shifted to an
RS-232C level. Numerous circuits are available for level shifting. As an
example, either a DS 1488 or an operational amplifier can be used.
Inversion of the data stream, if needed, can be done either before the
signal is converted or by the level shifter itself.
Data Input
Data input is received in much the same way as data is output. The Start
Bit is sensed at the SIN Port and then received using the SIO Instruction
and the DLY Instruction. After the Start Bit is received, a delay into the
middle of the bit-time is executed, the data is then sensed at each full bit-
time (the middle of the bit) until all data bits are received. If the data is at
an RS-232C level, it must be shifted to a TTL level which SC/MP-II can
utilize. This can be done with either a DS 1 4 8 9 or an operational
amplifier. If inversion if the data is necessary, it should be done before it is
presented to the SIN Port.
Timing Considerations
Using the I/O routines presented in this application note, the user will be
able to vary serial data transmission rates by simply changing the delay
constants in each of the programs. Table 1 contains the delay constants
needed for the various input baud rates. Table 2 contains the delay
constants needed for the various output baud rates. Figure 1 is the outline
used for Serial Data Input. Figure 2 is the routine used for Serial Data
Output.

Baud
Rate

Bit
Time HBTF HBTC BTF BTC

1 10 9 .09 ms X'C3 X '8 X '92 X'1 1
3 0 0 3 .33 ms X '29 X'3 X'5E X '6
6 0 0 1.67 ms X '8A X'1 X ' 2 0 X'3

1200 0 . 8 3 3 m s X'BB X'O X '81 X'1
2 4 0 0 0 .41 7ms X '52 X'O X'B2 X'O
4 8 0 0 0 . 2 0 8 m s X'1 F X'O X '4A X'O
6 4 0 0 0.1 56ms X'1 2 X'O X ' 3 0 X'O
9 6 0 0 0 . 1 0 4 m s X '5 X'O X' 1 6 X'O

Table 1. Input Delay Constants (4 MHz SC/MP-II)

Baud Bit
Rate Time BTF1 BTF2 BTC
1 10 9 .09 ms X '91 X '86 X'1 1
3 0 0 3 .33 ms X'5E X '53 X'6
6 0 0 1 .67 ms X'1F X' 1 4 X '3

1 200 0 . 8 3 3 ms X '81 X ' 7 6 X'1
2 4 0 0 0 .41 7 ms X'B2 X'A7 X'O
4 8 0 0 0 . 2 0 8 ms X '49 X'3E X'O
6 4 0 0 0.1 56 ms X'2F X ' 2 4 X'O
9 6 0 0 0 . 1 0 4 ms X'1 5 X'A X'O

Table 2. Output Delay Constants (4 MHz SC/MP-II)

NOTES:
1. The Serial Data Output routine requires that the bit-count (BITCNT)

in the program be set to the total number of data bits and stop bits to
be used per character.

2 Two stop bits are needed for the 11 0 baud rate; all other baud rates
need only one stop bit.

Serial Data Input
1
2
3
4
5
6
7
8
9

10
1 1
1 2
13
14
1 5
1 6
1 7
18
1 9
20
21
22
23
24
25
26
27
28

Title Recv, 'SERIAL DATA INPUT'

0 0 0 1 P I = 1
0 0 0 2 P2 = 2
0 0 0 3 P3 = 3

; Routine is called with a "XPPC P3 " instruction

; Data is received through the serial I/O Port.

; Before executing routine, Pointer 2 should point
; to one available location in R/W memory for a
; counter.
; On return from routine, data received will be in the
; Accumulator and the Extension Register.

; Delay Constants, user defined for desired Baud rate.
; The following example is for 1 2 0 0 Baud:

OOBB HBTF
0 0 0 0 HBTC
0 0 8 1 BTF
0 0 0 1 BTC

Search:
0 0 0 0 C408
0 0 0 2 CAOO

LDI
ST

Again:

OBB ; Half Bit time, Fine
0 ; Half Bit time, Coarse
081 ; Full Bit Time, Fine
01 ; Full Bit time, Coarse

08 ; Initialize Loop Counter
(P2) ; Save in memory

29 0 0 0 4 C400 LDI
3 0 0 0 0 6 01 XAE
31 0 0 0 7 1 9 S10
32 0 0 0 8 4 0 LDE
33 0 0 0 9 9CF9 JNZ
34 000B C4BB LDI
35 0 0 0 D 8F00 DLY
36 000F 1 9 SIO
37 0 0 1 0 01 XAE
38 0 0 1 1 9CF1 JNZ
39 0 0 1 3 C 4 0 0 LDI
4 0 0 0 1 5 01 XAE
41 Loop:
42 001 6 C481 LDI
43 001 8 8F01 DLY
44 0 0 0 1 A 1 9 SIO
45 001 B BAOO DLD
46 001 D 9CF7 JNZ
47 001 F 4 0 LDE
48 0 0 2 0 3F XPPC
49
50 0 0 0 0 END

AGAIN
HBTF
P3

1
2
3
4
5
6
7
8
9

10
1 1
1 2
13
14
1 5
16
1 7
18
19
20 0081
21 0 0 7 6
22 0 0 0 1

0 ;Clear Accumulator
; Clear E. Reg.
;Look for Start Bit
; Bring into Acc.

Again ; If not zero, look again
HBTF ; Load Acc Half Bit time
HBTC; Delay Half Bit time

; Check Input again to
be sure of Start Bit

Again If not zero, was not
0 start B

BTF Load Bit time Fine
BTC Delay one Bit time

Shift in Data Bit
(P2) decrement loop counter
Loop Test fordone

Done, put data in acc.
P3

081 ; Bit time Fine, first loop
076 ; Bit time Fine, second loop
01 ; Full Bit time, Coarse

0 0 0 4 BTC 0 0 0 1 BTF 0 0 8 1 HBTC 0 0 0 0
OOBB LOOP 0 0 1 6 P1 0 0 0 1 P2 0 0 0 2
0 0 0 3 SEARCH 0 0 0 0 *

Serial Data Output
TITLE XMIT, 'SERIAL DATA OUTPUT'

0 0 0 1 P 1 = 1
0 0 0 2 P2 = 2
0 0 0 3 P3 = 3

; Routine is called with a "XPPC P3" instruction.

; Data is transmitted through Serial I/O Port.

; Before executing subroutine, pointer 2 should
, point to one available byte of R/W memory for a
; counter.
; Upon entry, character to be transmitted must be in
; the accumulator.

, Delay constants, user defined for desired baud rate.
; The following example is for 1 200 baud:

BTF1
BTF 2 =
BTC

23
24 ; Character Bit-count. This should be set for the
25 ; desired number of Data Bits and stop Bits.
26
27 0 0 0 9 BITCNT = 9 8 data and 1 Stop Bit
28
29 Start:
3 0 0 0 0 0 01 XAE Save data in E. Reg.
31 0 0 0 1 C400 LDI 0 Clear acc.
32 0 0 0 3 01 XAE Put data in acc, clear E
33 0 0 0 4 1 9 SIO Send Start Bit
34 0 0 0 5 01 XAE Put data in E. Reg.
35 0 0 0 6 C481 LDI BTF1 Load Bit time Fine
36 0 0 0 8 8F01 DLY BTC Wait one Bit time
37 OOOA C409 LDI BITCNT Set loop count for data
38 OOOC CAOO ST (P2) and Stop Bitls). Save
39 Send: in count.
4 0 OOOE 19 SIO Send Bit
41 OOOF 4 0 LDE
42 0 0 1 0 DC80 ORI 0 8 0 Set last Bit to 1
43 001 2 01 XAE Put back in E. Reg.
44 0 0 1 3 C476 LDI BTF2 Load Bit time Fine
45 001 5 8F01 DLY BTC Delay one Bit time
46 0 0 1 7 BAOO DLD (P2> decrement Bit counter
47 001 9 9CF3 JNZ Send If not done, loop back
48 001 B 3F XPPC P3 otherwise, return
49
50 0 0 0 0 END

BITCNT 0 0 0 9 BTC 0 0 0 1 BTF1 0 0 8 1 BTF2 0 0 7 6
P1 0 0 0 1 * P2 0 0 0 2 P3 0 0 0 3 SEND OOOE
START 0 0 0 *

Games
The first two games are real-time simulations which provide a test of

skill, and they can be adjusted in difficulty to suit the player's ability. The
last two games are both tests of clear thinking and logical reasoning, and
in the last one you are pitted against the microprocessor which tries
to win.
'Moon Landing' simulates the landing of a spacecraft on the moon.
The displays represent the control panel and give a continuously changing
readout of altitude (3 digits), rate of descent (2 digits), and fuel remaining
(1 digit). The object of the game is to touch down gently; i.e. to reach zero
altitude with zero rate of descent. To achieve this you have control over
the thrust of the rockets: the keys 1 to 7 set the thrust to the
corresponding strength, but the greater the thrust the higher the rate of
consumption of fuel. When the fuel runs out an 'F' is displayed in the
fuel gauge, and the spacecraft will plummet to the ground under the force
of gravity.

On reaching the moon's surface the display will freeze showing the
velocity with which you hit the surface if you crashed, and the fuel
remaining. Pressing 'TERM' will start a new landing.

The speed of the game is determined by the delay constants at OF38
and OF3A. The values given are suitable for a 1 MHz clock and they
should be increased in proportion for higher clock rates. The initial values
for the altitude, velocity, and fuel parameters are stored in memory at
OF1 4 to OF1 F and these can be altered to change the game.
'Duck Shoot' simulates ducks flying across the skyline. At first there is
one duck, and it can be shot by hitting the key corresponding to its
position: 7 = leftmost display, 0 = rightmost display. If you score a hit the
duck will disappear; if you miss however, another duck will appear to
add to you task.

The counter at 0F1 D varies the speed of flight and can be increased
to make the game easier.
In 'Mastermind' the player tries to deduce a 'code' chosen by the
machine. The code consists of four decimal digits, and pressing 'TERM'
followed by'MEM' causes the machine to choose a new code. The
player makes guesses at the code which are entered at the keyboard.
Pressing 'GO' then causes the machine to reveal two pieces of
information, which are displayed as two digits:

(1) The number of digits in the guess which are correct and in the
right position, (known as 'Bulls') and

(2) the number of digits correct but in the wrong position, (known
as 'Cows').

For example, suppose that the machine's code was ' 6 6 7 8 ' . The
following guesses would then score as shown:

1234 0 - 0 1278 2 - 0
7 8 1 2 0 - 2 7 6 8 7 1 - 2

Subsequent guesses are entered in a similar way, and the player tries
to deduce the code in as few attempts as possible.
'Silver Dollar Game' is traditionally played with a number of coins which
are moved by the players in one direction along a line of squares. In his
turn a player must move a coin to the right across as many unoccupied

6 8

squares as he wishes. The player first unable to move—when all the
coins have reached the right-hand end of the line — loses, and the other
player takes the coins!

In this version of the game the coins are represented by vertical bars
moving along a dashed line. There are five coins numbered, from right
to left, 1 to 5. The player makes his move by pressing the key
corresponding to the number of the coin he wishes to move, and each
press moves the coin one square along to the right. The machine plays
against you, and pressing 'MEM' causes it to make its move. Note that
the machine will refuse to move in its turn unless you have made a legal
move in your turn. 'TERM' starts a new game.

The machine allows you to take first move and it is possible to win
from the starting position given, though this is quite difficult. The five
numbers in locations 0F1 3 to 0F1 7 determine the starting positions of
each coin and these can be altered to any other values in the range 0 0 to
OF provided they are in ascending order.

Moon Landing
; Land a rocket on the moon
; Display shows altitude-velocity-fuel
; Keys 1-7 control the thrust

0 0 0 5 Grav = 5 ;Force of gravity
0 D 0 0 Disp - 0D00 ; Display address
01 OB Crom — 01 OB ;Segment table
FF80 E = - 1 2 8 ;Extension as offset
FFE3 Row = Ret-0F03 ;Ram offsets
FFE4 Count

;Variables
= Ret-0F04

0 0 0 0 . = 0 F 0 5
0F05 Save: . = . + 1
0F06 H1: . = . + 1
0F07 L1: . = . + 1
0F08 Alt: . = . + 3 ; Altitude
OFOB Vel: . = . + 3 ; Velocity
OFOE Accn: . = . + 2 Acceleration
0F10 Thr: . = . + 2 ;Thrust
0F1 2 Fuel: . = . + 2 ;Fuel left

• ;Original values
0F14 0 8 Init: BYTE 0 8 , 0 5 0 , 0 ; Altitude = 850

50
0 0

0F17 99 BYTE 099,080,0;Velocity = - 20
8 0
0 0

0F1 A 99
98

.BYTE 0 9 9 , 0 9 8 ; Acceleration = —2

0F1C 0 0
02

BYTE 0 ,02 ;Thrust= 2

0F1E 68
0 0

BYTE 0 5 8 . 0 ,Fuel= 5

;Subroutme to display AC as two digits
;P2 contains 0F20

;Run out of pointers

OF 20 3E Ret: XPPC 2
OF 21 C8E3 Disp: ST Save
0F23 C401 LDI H(Crom)
OF25 35 XPAH 1
OF 26 C8DF ST H I
0F28 C40B LDI L(Crom)
0 F 2 A 31 XPAL 1
OF 2B C8DB ST L i
0F2D C0D7 LD Save
OF 2F 0 2 CCL
0 F 3 0 D40F ANI OF
0 F 3 2 01 Loop: XA t
0F33 C180 LD E(1)
0 F 3 5 CF01 ST @ + 1 (3)
OF 37 C400 LDI 0
0F39 8F02 DLY 2
OF 3B C0C9 LD Save
0F3D 1C SR
0F3E 1C SR
OF 3F 1C SR
0 F 4 0 1C SR
OF 41 01 XAE
0 F 4 2 06 CSA
OF 43 03 SCL
0 F 4 4 94ED JP Loop
0F46 C400 LDI 0
0 F 4 8 CF01 ST @ + 1 (3)
OF 4A COBB LD H1
OF 4C 35 XPAH 1
0F4D C0B9 LD L1
0F4F 31 XPAL 1'
OF 50 90CE JMP Ret

;Main moon-landing program
OF 52 C40F Start: LDI Hllnit)
OF 54 35 XPAH 1
OF 55 C414 LDI L(lnit)
OF 57 31 XPAL 1
0F58 C40F LDI H(Ret)
OF 5A 36 XPAH 2
OF 5B C420 LDI L(Ret)
OF 5D 32 XPAL 2
OF 5E C40C LDI 1 2
0 F 6 0 CAE4 ST Count(2>
OF 62 C10B Set: LD + 1 1(1)
OF 6 4 CDFF ST @ - 1 (1)
OF 66 BAE4 DLD Count(2)
OF 68 9CF8 JNZ Set

;Main loop
0F6A C40C Again: LDI H(Disp) —1
OF 6C 37 XPAH 3
0F6D C4FF LDI L(Disp)—1
OF 6F 33 XPAL 3
0 F 70 C401 LDI 1
0F72 CAE4 ST Count! 2)

; Delay point
; Determines speed

;Do it twice

; Blank between
; Restores P1:

;Return

OF 74 C506 LD @ + 6<1) P1 -> Vel+ 2
OF76 9 4 0 4 JP Twice Altitude positive?
OF 78 C504 LD @ + 411) P1 -> Thr+ 1
OF 7A 9 0 3 2 JMP Off Don't update
OF7C C402 Twice: LDI 2 Update velocity anc
0F7E CAE3 ST Row(2) Then altitude. ..
0 F 8 0 02 CCL
0F81 C5FF Dadd: LD (3 - 1 (1)
OF 83 E902 DAD + 2(1)
OF 85 C900 ST (1)
OF 87 BAE3 DLD Row(2)
0 F 8 9 9CF6 JNZ Dadd
OF 8B C102 LD + 2(1)
OF 8D 9 4 0 2 JP Pos ;Gone negative?
OF 8F C499 LDI X '99
OF 91 EDFF Pos: DAD @ - 1 (1)
OF 93 C 9 0 0 ST (1)
OF 95 BAE4 DLD Count(2)
OF 97 94E3 JP Twice
OF 99 C50C LD @1 2(1) ;P1 -> Alt
OF 9B AAE3 ILD Row(2) ;Row: = 1
OF 9D 03 SCL
OF 9E C5FF D sub: LD @ - 1 (1) ;Fuel
OF AO F9FE CAD - 2 (1) Subtract thrust
OF A2 C900 ST (1)
OF A4 0 8 NOP
OF A5 BAE3 DLD Row(2)
0FA7 94F3 JP Dsub
OF A9 06 ' CSA ;P1 -> Fuel now
OF AA 9 4 0 2 JP Off Fuel run out?
OFAC 9 0 0 4 JMP Accns
OF AE C400 Off: LDI 0
OF BO C9FF ST - 1 (1) Zero thrust
OF B2 C1FF Accns: LD - 1 (1)
OF B4 03 SCL
OF B5 EC94 DAI 0 9 9 - G r a v
OF B7 C9FD ST - 3 (1) Accn + 1
OF B9 C499 LDI X '99
OF BB ECOO DAI 0
OF BC C9FC ST - 4 (1) Accn
OF BF C100 Dispy: LD (1) Fuel
OFC1 3E XPPC 2 Display it OK
OFC2 C1F9 LD - 7 (1) Vel
OF C4 940A JP Posv
0FC6 C499 LDI X '99
0FC8 03 SCL
OFC9 F9FA CAD - 6 (1) Vel + 1
OFCB 03 SCL
OF CC ECOO DAI 0
OFCE 9 0 0 2 JMP STO
OF DO C1FA Posv: LD - 6 (1) Ve l+ 1
OFD2 3E Sto: XPPC 2 Display velocity
OFD3 C1F7 LD - 9 (1) Alt +-1

OF D5 3E XPPC 2 ;Displayit
OF D6 C7FF LD 1(3) ;Get rid of lank
OF D8 C5F6 LD @ — 1 0(1);P1 -> Alt now
OF DA 3E XPPC 2
OF DB C40A LDI 10
OF DD CAE4 ST Count! 2)
OF DF C7FF Toil: LD 1 (3) Key pressed?
OF E1 940A JP Press Key 0-7?
OF E3 E4DF XRI X'DF Command Key?
OF E5 9A31 JZ Start! 2) Begin again if so
OF E7 BAE4 DLD Count(2)
OFE9 9CF4 JNZ Toil
OF EB 9 2 4 9 JMP Again(2) Another circuit
OF ED C109 LD + 9(1) Thr + 1
OFEF 9 8 0 3 JZ Back Engines stopped?
OF F1 33 XPAL 3 Which row?
OF F2 C909 St + 9(1) Set thrust
0FF4 9 2 4 9 Back: JMP Again(2) Carry on counting

0 0 0 0 END

Duck Shoot
; Shoot Ducks flying display
; By hitting key with number corresponding
: To their position: 7 = Leftmost,
; 0 = Rightmost.
; If you miss, another duck appears
; (Relocatable)
Duck = 061 ;Segment pattern
Disp = ODOO ; Display address

OOOO . = 0 F 0 F
OFOF Row: . = . + 1 ;Bits set = ducks
OF 10 Count: . = . + 1
OF 1 1 Sum: . = . + 1 ;Key pressed

OF 1 2 C40D Shoot: LDI H(Disp)
OF 14 35 XPAH 1
OF 1 5 C4 0 0 LDI L(Disp)
OF 17 31 XPAL 1
OF 1 8 C401 LDI 1 iStartwith 1 duck
OF 1 A C8F4 ST Row
OF 1 C C410 React: LDI 1 6 ;Speed of flight.
OF 1 E C8F1 ST Count ;Smaller= harder
OF 20 C400 LDI 0
OF 22 C8EE ST Sum
OF 24 C408 Shift: LDI 8 ;Move ducks this ti
OF 26 01 Ndig: XAE
0F27 C0E7 LD Row
OF 29 1 E RR
0F2A C8E4 ST Row
0F2C 9 4 0 4 JP No

0F2E C461 LDI Duck
0F30 9 0 0 2 JMP Go
0 F 3 2 C400 No: LDI 0 ;Noduck
0 F 3 4 C 9 8 0 Go: ST - 1 28(1) ;E as offset
0F36 8F01 DLY 01 ;Shine digit
OF 38 C0D8 LD Sum
OF3A 9C0E JNZ Nok ;Key already pressed
OF 3C C180 LD - 1 2 8 (1) ;Test for key
OF3E E4FF XRI OFF
OF 40 9 8 0 8 JZ Nok ;No key
0F42 C8CE ST Sum
OF 44 COCA LD Row
OF 46 E480 XRI 0 8 0
0F48 C8C6 ST Row ;Change top bit
OF 4A 4 0 Nok: LDE
0F4B 03 SCL
0F4C FC01 CAI 1 ;Subtract 1
0F4E 94D6 JP Ndig ;Do next digit
OF 50 B8BF DLD Count
OF 52 98C8 JZ React ;Start new position
0F54 C407 LDI 7
OF 56 90CE JMP Ndig ;Another sweep

0 0 0 0 .END

Mastermind
OFOO Ram = OFOO
ODOO Disp - ODOO , Display address
01 OB Crom 01 OB ;Hex to segment tablf
01 1B Adr - 011B /Make 4 digit address
01 5A Dispa = 01 5A ;' Address to segments

J Variables in RAM
0 0 0 0 Dl = 0
0 0 0 2 D3 = 2
0 0 0 4 Adll = 4
OOOC Adl 12
OOOE Adh = 14
OOOF Ddta = 1 5
0 0 1 0 Row - 1 6
001 1 Next = 1 7
0 0 1 4 Key - 20

\ Begin at OFIC
0 0 0 0 . = OFIC
OF 1C C400 Start: LDI 0
OF 1 E C8ED ST ADL
OF 20 C8ED ST ADH
0F22 32 XPAL 2
OF 23 C40F LDI OF
OF 25 36 XPAH 2

J Choose random number
OF 26 C401 LDI H(Crom)
OF 28 37 XPAH 3

OF 29 C40B LDI L(Crom)
OF 2B 33 XPAL 3
OF 2C C404 No Key: LDI 0 4
OF 2E CA10 ST Row(1)
OF 30 C40F LDI H(digits)
OF 32 35 XPAH 1
OF 33 C414 LDI L(Digits)
0F35 31 XPAL 1
OF 36 03 SCL
0 F 37 C104 Incr: LD + 4(1)
OF 39 EC90 DAI 0 9 0
0F3B C904 ST + 4(1)
OF 3D D40F ANI OF
OF 3F 01 XAE
0 F 4 0 C380 LD - 1 28(3)
OF 42 CD01 ST @ + 1(1)
0 F 4 4 BA10 DLD Row(2)
OF 46 9CEF JNZ Incr
OF 48 C40D LDI H(Disp)
0F4A 35 XPAH 1
0F4B C400 LDI L(Disp)
OF 4D 31 XPAL 1
0F4E C103 LD 3(1) ;Key pressed?
OF 50 E4FF XRI OFF
OF 52 98D8 JZ No key

Enter your guess
OF 54 C4FF Clear: LDI OFF
OF 56 CAOF • ST Ddta(2)
OF 58 C400 LDI 0
OF 5A CAOO ST DL(2)
0F5C CA02 ST D3(2)
OF 5E 02 Nchar: CCL
OF 5F C401 LDI H(Dispa)
0F61 37 XPAH 3
0 F 6 2 C459 LDI L(Dispa)—1
0 F 6 4 33 XPAL 3
0 F 6 5 3F XPPC 3 ;Jump to subroutine
0 F 6 6 900B JMP COMD ;Command key return
0F68 4 0 LDE ;Number key return
0F69 F4F6 ADI 0F6
0F6B 94F1 JP Nchar ;lgnore digits > 9
0F6D C41A LDI L(Adr)— 1
0F6F 33 XPAL 3
OF70 3F XPPC 3
OF 71 90E5 JMP Blank ;Get next digit
0F73 E403 Comd: XRI 03 ;term?
0F75 9A1B JZ Start(2) ;lf so—new game
0F77 E405 XRI 05 ;Go?
OF 79 9CD9 JNZ Clear ; Ignore if not

Work out answer to guess
OF 7B C40B Go: LDI L(Crom)
0F7D CAOO ST DL(2)
OF 7F CA02 ST D3(2)
0F81 C40F Bulls: LDI H(Key)

0F83 35 XPAH 1
OF 84 C414 LDI L(Key)
OF86 31 XPAL 1
OF87 C 4 8 0 LDI 0 8 0
OF89 01 XAE
0F8A C404 LDI 04 ;No. of digits
0F8C CA1 1 ST Next! 2)
0F8E C1F0 Bull 2: LD Adll-Key(1)
OF 90 E501 XOR @ + 1(1)
OF 92 9C0C JNZ Nobul
0F94 AA02 ILD DH(2)
OF96 C1FF LD - 1 (1)
0F98 58 ORE ;Set negative
OF 99 C9FF ST - 1 (1)
0F-9B C1EF LD Adll-Key-1 (1)
0F9D 58 ORE
0F9E C9EF ST Adll-Key-1 (1)
OFAO BA11 fBobul: DLD Next! 2)
OF A2 9CEA JNZ Bull 2
OF A4 C404 Cows: LDI 0 4
0FA6 CA1 1 St Next! 2) ;P1 points to Key + 4
OF A8 C404 Nerow: LDI 04
OFAA CA10 ST Row(2)
OF AC C40F LDI 04
OFAA CA10 ST Row(2)
OFAC C40F LDI H(Adll)
OFAE 37 XPAH 3
OFAF C408 LDI L(Adll) + 4
0FB1 33 XPAL 3
0FB2 C5FF LD @ - 1 (1)
0FB4 9 4 OA JP Try ;Already counted as bull?
0FB6 BA1 1 Nocow: DLD Next! 2) ;Yes
0FB8 9CEE JNZ Nerow
OFBA 9 0 1 3 JMP Finito
OFBC BA10 Notry: DLD Row(2)
OFBE 98F6 JZ Nocow
OFCO C 1 0 0 Try: LD (1)
0FC2 E7FF XOR @ —1 (3) :Same?
0FC4 9CF6 JNZ Notry
0FC6 AAOO ILD DL(2)
0FC8 C300 LD (3)
OFCA 58 ORE
OFCB CBOO ST (3)
OFCD 90E7 JMP Nocow

; Now unset top bits of Key
OFCF C404 Finito: LDI 04
0FD1 CA1 1 ST Next(2)
0FD3 C100 Unset: LD (1)
0FD5 D47F ANI 07F
0FD7 CD01 ST @ + 1 (1)
0FD9 BA1 1 DLD Next(2)
OFDB 9CF6 JNZ Unset ;AII done?

;Set up segments of result
OF DD C401 LDI H(Crom)
OFDF 35 XPAH 1
OF EO C200 LD DLI2) ;L(Crom) + Cows
0FE2 31 XPAL 1
0FE3 C100 LD (1) ;Segments
0FE5 CAOO ST DU2 I
0FE7 C202 LD D3(2) ;L(Crom) +Bulls
0FE9 31 XPAL 1
OFEA C100 LD (1) ;Segments
OF EC CA02 ST D3(2)
OFEE C4FF LDI OFF
OFFO CAOF ST Ddta(2)
0FF2 925D JMP Nchar(2) ;Display result

0 0 0 0 .END

Silver Dollar Game
; Machine plays against you in moving five
; 'Silver Dollars' along a track
; Player unable to move loses

0 0 0 0 = 0F12
; Starting position: Must be ascending order

OF 1 2 FF Start: .BYTE OFF
OF 1 3 03 .BYTE 03
OF 1 4 05 BYTE 05
OF 1 5 0 8 .BYTE 08
OF 1 6 0 9 .BYTE 09
OF 17 OF BYTE 0

OFOO Ram = OFOO
0F18 Pos: . = . + 6 Current position

0 0 2 4 Count = 0 2 4 Ram offsets:
0 0 2 5 Key - 0 2 5 For key last pressed
0 0 2 6 Init = 0 2 6 Zero
01 85 Kybd = 01 85 In monitor
0 0 8 0 E = - 1 28 Extension reg.

0F1E
'

. = 0F28
0F28 C40F Begin: LDI H(Ram)
OF 2A 36 XPAH 2
OF 2B C400 LDI L(Ram)
OF 2D 32 XPAL 2
0F2E C40F LDI HI Pos)
0 F 3 0 35 XPAH 1
0F31 C418 LDI L(Pos)
0 F 3 3 31 XPAL 1
OF 34 C406 LDI 6
0F36 CA24 ST Count (2)
0 F 3 8 C1FA Setup: LD - 6 (1) ;Transfer start to pos
OF 3A CD01 ST @ + 1 (1)
0F3C BA24 DLD Count(2)

OF 3E 9CF8 JNZ Count! 2)
0 F 4 0 C 4 0 0 Ymove: LDI 0 ;
OF 42 CA25 ST Key(2) ;

;Generate display from Pos
0 F 4 4 C40F Disp: LDI H(Pos)
OF 46 35 XPAH 1
OF47 C419 LDI L(Pos) + 1
OF 49 31 XPAL 1
0F4A G409 LDI 9
OF 4C 01 Clear: XAE \
OF 4D C408 LDI 08 ;
0F4F CA80 ST E(2)
OF 51 4 0 LDE
OF 52 FC01 CAI 1
OF 54 94F6 JP Clear
OF 56 C405 LDI 5
OF58 CA24 ST Count(2)
OF 5A C501 Npos: LD @ + 1(1)
OF 5C I E RR
OF 5D 940B JP Even
OF5F D47F Odd: ANI 07F
OF61 01 XAE
OF 62 C280 LD E(2)
OF 64 DC30 ORI 0 3 0 ;
OF 66 CA80 ST E<2)
OF 68 9 0 0 7 JMP Cont
OF 6A 01 Even: XAE
OF 6B C280 LD E(2)
OF 6D DC06 ORI 06 ;
OF 6F CA80 ST E(2)
OF 71 BA24 Cont: DLD Count (2)
OF 73 9CE5 JNZ Npos

; Display current position
OF 75 C401 Show: LDI H(Kybd)
OF 77 37 XPAH 3
OF 78 C484 LDI U K y b d H .
OF 7A 33 XPAL 3
OF 7B 3F XPPC 3
OF 7C 902A JMP Coma ;
OF 7E 40 LDE
OF7F 98F4 JZ Show
OF81 03 SCL
OF 82 FC06 CAI 6 ;
0 F 8 4 94EF JP Show
OF 86 C40F LDI H(Pos)
OF 88 35 XPAH 1
OF 89 C418 LDI L(Pos)
OF 8B 02 CCL
OF 8C 70 ADE
OF 8D 31 XPAL 1
OF 8E C100 LD (1)
OF 90 02 CCL
OF 91 F4FF ADI - 1

You go first!

Segments E & F

Segments B & C

Command key

1 -5 allowed

OF 93 0 2 CCL
OF 94 F9FF CAD - (1)
OF 96 9 4 0 2 JP Fine 2 ;Valid move
OF 98 90DB JMP Show
OF 9A C225 Fine 2: LD Key(2)
OF 9C 9C03 JNZ Firstn
OF 9E 4 0 LDE
OF 9F CA25 ST Key(2) ; First key press
OF A1 6 0 Firstn: XRE ;Not first press
OF A2 9E43 JNZ Disp(2) ;not allowed
OF A4 B900 DLD (1) ;Make move
0FA6 9 2 4 3 JMP Disp(2) ; Display result
OFA8 C225 Coma: LD Key(2) ;Mem pressed
OFAA 9A43 JZ Displ 2) ;You haven't moved!
OFAC C403 Go: LDI 3
OFAE CA24 ST Count(2)
OFBO C40F LDI H(Pos)
OFB2 35 XPAH 1
OFB3 C418 LDI L(Pos)
OFB5 31 XPAL 1
OF B6 C400 LDI 0
OFB8 01 XAE
OFB9 C101 Try: LD + 1(1)
OFBB 02 CCL
OF Be FD02 CAD @ + 2(1)
OFBE C904 ST 4(1)
OFCO 60 XRE ;Keep nim sum
OFC1 01 XAE
OFC2 BA24 DLD Count(2)
0FC4
0FC4 9CF3 JNZ Try.
OFC6 4 0 Solve: LDE
0FC7 980E JZ Nogo ;Safe position
OFC9 E100 XOR (1)
OFCB 03 SCL
OFCC FD02 CAD @ + 2(1)
OFCE 94F6 JP Solve
OFDO 0 2 CCL
OFD1 F1F9 ADD - 7 (1) ;Make my move
OFD3 C9F9 ST - 7 (1)
OFDB 923F JMP Ymove(2) ;Now you, good luck!
OFD7 C405 Nogo: LDI 05
OFD9 CA24 ST Count(2) ;Make first move
OFDB C5FF No: LD (3 - 1 (1)
OFDD 02 CCL
OFDE F4FF ADI - 1
OFEO 02 CCL
OFE1 F9FF CAD - 1 (1)
0FE3 9 4 0 6 JP Fine
0FE5 BA24 DLD Count! 2)
OFE7 9CF2 JNZ No
0FE9 9 3 0 7 JMP + 7(3) ;i.e. Abort—I lose
OFEB B900 Fine: DLD (1) ;Make my move
OFED 923F JMP Ymove(2) ;nowyou chum.

0 0 0 0 .END

Music
The 'Function Generator' produces a periodic waveform by outputting
values from memory cyclically to a D/A converter. It uses the 8-bit port
B of the RAM I/O chip to interface with the D/A, and Fig. 1 shows the
wiring connections. The D/A chosen is the Ferranti ZN425E, a low-cost
device with a direct voltage output.

Any waveform can be generated by storing the appropriate values in .
memory. The example given was calculated as an approximation to a
typical musical waveform.
'Music Box' plays tunes stored in memory in coded form. The output can
be taken from one of the flag outputs. Each note to be played is encoded
as one byte. The lower 5 bits determine the frequency of the note, as
follows:

Rest A Mf B C Of f D D # E F F # G Gfr
0 0 01 02 03 0 4 05 0 6 07 0 8 09 OA OB OC

OD OE OF 10 1 1 12 13 14 1 5 1 6 1 7 18
There are two octaves altogether.

The top three bits of the byte give the duration of the note, as
follows:
Relative Duration: 1 2 3 4 5 6 7 8

0 0 20 40 6 0 80 AO CO EO
Thus for any specific note required the duration parameter and
frequency parameter should be added together. A zero "byte is reserved
to specify the end of the tune
To slow down the tempo locations 0F58 and 0F59 should be altered to
D4FC (ANI X'FC).

The program uses two look-up tables, one giving the time-constant
for a delay instruction determining the period of each note and the other
giving the number of cycles required for the basic note duration.
'Organ' generates a different note for each key of the keyboard by using
the key value as the delay parameter in a timing loop. Great skill is
needed to produce tunes on this organ.

7 9

Function Generator
Generates arbitrary waveform by outputting
values to D/A Converter.
uses Ram I/O chip. (Relocatable).

Portb - 0E21
Ext = - 1 28 ;Extension as offset

0 0 0 0 . = 0E80 ;Start of Ram in Ram/IO
OE8O C40F Start: LDI H(Endw)
0E82 36 XPAH 2
0E83 C448 LDI L(Endw)
0E85 32 XPAL 2 ;P2-> End of waveform
0E86 C40E LDI H(Portb)
OE88 35 XPAH 1
0E89 C421 LDI L(Portb)
0E8B 31 XPAL 1
0E8C C4FF LDI X'FF ;All bits as outputs
0E8E C902 ST + 2(1.) ;0utput definition B
0E90 C4D8 Reset: LDI — Npts

;0utput definition B

0E92 02 CCL
0E93 01 Next: XAE
0E94 C280 LD E(2) ;Get next value
0E96 C900 ST (1) ;Send to D/A
0E98 4 0 LDE
0E9A F401 ADI 1 ;Point to next value
0E9C 98F3 JZ Reset ;New sweep
0E9E 04 DINT ;Equalize paths
0E9F 90F3 JMP Next ;Next point

0EA1 . = 0F20

0F20 Wave: BYTE
0F26 BYTE
0F2C .BYTE
0F32 .BYTE
0F38 .BYTE
0F3E .BYTE
0F44 .BYTE

0F48 Endw
0 0 2 8 NPTS
0 0 0 0 END

Sample waveform of 4 0 points
Fundamental amplitude 1
2nd Harmonic amplitude 0 .5 zero phase
3rd Harmonic amplitude 0 .5 90deg . lag.

Equation is:
Sin(X) + 0 .5 *S in (2 .0 *X)40 .5 *S in (3 .0*X—0.5 ' PI)
With appropriate normalization

0 7 7 092,0B0,0CB,0E1,0ED
0EF 0E6,0D5,0BE,0A5,08E
07F 0 7 7 , 0 7 6 , 0 7 D , 0 8 7 , 0 9 2
09B '09E ' (-) 9A,090 ,080 ,06F
05C 04D ,042 ,03D ,03D ,040
0 4 6 04B,04D,04D, 0 4 A . 0 4 6
0 4 4 ' 0 4 7 , 0 5 0 , 0 6 0

E n d w _ _ w a v e ;No. of points

8 0

Music Box
Plays a tune stored in memory
1 Byte per note
top 3 bits = duration (00-E0) = 1 to 8 units
bottom 5 bits = note (01-1 8) = 2 octaves

0 0 0 0 . = 0F1 2
;Table of notes

0F1 2 Scale: .BYTE 0 ;Silence
0F1 3 BYTE 0FF,0EC,0DB,0CA,0BB,0AC
0F1 9 BYTE 0 9 E . 0 9 1 , 0 8 5 , 0 7 9 , 0 6 E , 0 6 3
0F1F .BYTE 0 5 9 , 0 5 0 , 0 4 7 , 0 3 F , 0 3 7 , 0 3 0
0F25 BYTE 0 2 9 , 0 2 2 , 0 1 C,01 6,01 1,00C

;Table of cycles per unit time
0F2B .BYTE 0 4 4 , 0 4 8 . 0 4 C , 0 5 1 , 0 5 5 , 0 5 B
0F31 .BYTE 0 6 0 , 0 6 6 , 0 6 C , 0 7 2 , 0 7 9 , 0 8 0
0F37 .BYTE 0 8 8 , 0 9 0 , 0 9 8 , 0 A 1 ,OAB,OB5
0F3D .BYTE OCO,OCB,OD7,OE4,OF2,OFF

;Program now:
0F43 Cycles: . = . + 1
0F44 Count: . = . + 1

0F45 3F Stop: XPPC 3 ;'Go, ' term', to play again

0F46 C40F Begin: LDI H(Scale)
0F48 35 XPAH 1
0F49 C40F LDI H(Tune)
0F4B 36 XPAH 2
0F4C C 4 9 0 LDI L(Tune)
0F4E 32 XPAL 2 ;P2 points to tune
0F4F C601 Play: LD @ + 1 (2) ;Get next note code
0F51 01 XAE ;Save in ext.
0F52 4 0 LDE
0F53 98F0 JZ Stop ;Zero = terminator
OF55 1C SR
OF56 1C SR
OF57 1C SR
0F58 1C SR
0F59 1C SR .Shift duration down
0F5A C8E9 ST Count
0F5C C41 2 LDI L(Scale)
0F5E 01 XAE
0F5F D41F ANI X'1 F ;Get note part
0F61 02 CCL
0F62 7 0 ADE ;no carry out
0F63 31 XPAL 1 ;Point P1 to note
0F64 C100 LD (1) ;Note
0F66 01 XAE ;Put it in ext.
OF67 C1 1 8 Hold: LD + 24(1) ;Cycle count
0F69 C8D9 ST Cycles
0F6B 4 0 Peal: LDE

OF6C 9C04 JNZ Sound ;Zero = silence
OF6E 8F80 DLY X ' 8 0 ;Unit gap
0F70 901 1 JMP More
0F72 8F00 Sound: DLY X'OO
0F74 06 CSA
0F7 5 E407 XRI X '07 ;Change flags
OF77 07 CAS
0F7B B8CA DLD Cycles
OF7A 9 8 0 7 JZ More
0F7C 0 8 NOP ;Equalize paths to
OF7D C410 LDI X ' 1 0 ;Prevent clicks in
0F7F 8F00 DLY X'OO ;Sustained notes
0F81 90E8 JMP Peal
0F83 B8C0 More: DLD Count
0F85 94E0 JP Hold
0F87 8F20 DLY X ' 2 0 ;Gap between notes
OF89 90C4 JMP Play ;Get next note

0F8B
1

. = 0F90
0F90 Tune: .BYTE 02D,02D,02F ,04C,00D,02F
OF96 .BYTE 031 ,031 ,032 ,051 ,OOF,02D,
0F9C .BYTE 02F ,02D,02C,02D,00D,00F
0FA2 .BYTE 01 1,01 2 , 0 3 4 , 0 3 4 , 0 3 4 , 0 5 4 ,
OFA8 .BYTE 01 2 , 0 3 1 , 0 3 2 , 0 3 2 , 0 3 2 , 0 5 2 ,
OFAE .BYTE 01 1 ,02F ,031 ,01 2 ,011 .OOF
0FB4 .BYTE O O D , 0 5 1 , 0 1 2 , 0 3 4 , 0 1 6 , 0 3 2
OFBA .BYTE 071 ,06F ,08D ,0

0 0 0 0 .END

Organ
Each key on the keyboard generates a
Different note (though the scale is
Somewhat unconventional DRelocatable.

. - O F 1 F
0F1F Count: . = . + 1

ODOO Disp: = ODOO ;Display & keyboard

0F20 E40D Enter: LDI H(Disp)
0F22 35 XPAH 1
0F23 / C400 New: LDI L(Disp)
0F25 31 XPAL 1
0F26 C408 LDI 08
OF28 C8F6 ST Count ;Key row
0F2A C501 Again: LD @ - 1 (1)
0F2C E4FF XRI OFF ,Key pressed?
0F2E 9 8 0 8 JZ No
0F30 8F00 DLY 0 0 ; Delay with AC = key
0F32 0 6 CSA
0F33 E407 XRI 07 ;Change flags

0F35 07 CAS
0F36 90EB JMP New
0F38 B8E6 No: DLD Count
0F3A 9CEE JNZ Again
0F3C 90E5 JMP New

0 0 0 0 .END

Miscellaneous
'Message' gives a moving display of segment arrangements according
to the contents of memory locations from 'Text' downwards until an
'end-of-text' character with the top bit set (e.g. 080) . Each of the bits
0 -6 of the word in memory corresponds, respectively, to the seven
display segments a-g; if the bit is set, the display segment will be lit.
Most of the letters of the alphabet can be formed from combinations of the
seven segments: e.g. 0 7 6 corresponds to 'H ' , 0 3 8 to 'L ' , etc. The speed
with which the message moves along the display depends on the counter
at 0F2D. If the first and last 7 characters are the same, as in the sample
message given, the text will appear continuous rather than jumping from
the end back to the start.
The 'Reaction Timer' gives a readout, in milliseconds, of the time taken
to respond to an unpredictable event. To reset the timer the ' 0 ' key
should be pressed. After a random time a display will flash on. The
program then counts in milliseconds until the 'MEM' key is pressed,
when the time will be shown on the display.

The execution time of the main loop of the program should be
exactly one millisecond, and for different clock rates the delay constants
will have to be altered:

Rate Location: 0F2A 0F37 0F39
1 MHz 07 D 0A8 0 0
2 MHz OFA 0A1 01
4 MHz OFF 0 9 3 03

The 'Self-Replicating Program' makes a copy of itself at the next free
memory location. Then, after a delay, the copy springs to life, and itself
makes a copy. Finally the whole of memory will be filled by copies of the
program, and from the time taken to return to the monitor one can
estimate the number of generations that lived.

Message
Displays a moving message on the
7-segment displays
(Relocatable)

0 0 0 0 . = 0F1 F
0F1F Speed: . = . + 1

0F20 C40D Tape: LDI H(Disp)
0F22 35 XPAH 1
0F23 C400 LDI L(Disp)
OF25 31 XPAL 1
0F26 C40F LDI H(Text)
0F28 36 XPAH 2
0F29 C4CA LDI L(Text)-8
0F2B 32 f XPAL 2
0F2C C4C0 Move: LDI X'CO ;Determines sweep speed

8 4

0F2E C8F0 ST Speed
0F30 C407 Again: LDI 7
OF32 01 Loop: XAE
0F33 C 2 8 0 LD -128(2)
0F35 C980 ST -1 28(1)
0F37 C4FF LDI X'FF
0F39 0 2 CCL
0F3A 70 ADE
0F3B 94F5 JP Loop
0F3D B8E1 DLD Speed
0F3F 9CEF JNZ Again
0F41 C6FF LD @-1(2)
0F43 94E7 JP Move
0F45 90DF JMP Go

ODOO Disp _ ODOO

;i.e. decrement ext.

;Move letters
;X ' 80 = end of text

A sample message
Message is stored backwards in memory
first character is 'end of text', X '80 .
For a continuous message, first and
Last seven characters must be the
same (as in this case).

0F47 . = OFAO
OFAO BYTE 0 8 0 , 0 7 9 , 0 7 9 , 0 6 D , 0 4 0 , 0 3 7
0FA6 .BYTE 0 7 7 , 0 3 9 , 0 4 0 , 0 3 E , 0 £ F , 0 6 E 3 ^
OFAC .BYTE 0 4 0 , 0 6 D , 0 7 7 , 0 4 0 , 0 6 E , 0 3 E
0FB2 .BYTE 07F, 0 4 0 , 0 7 9 , 0 3 7 , 0 3 0 , 0 7 1
0FB8 BYTE 0 4 0 , 0 6 E , 0 3 8 , 0 3 8 , 0 3 F , 0 1 F
OFBE BYTE 0 4 0 , 0 7 7 , 0 4 0 , 0 6 D , 0 3 0 , 0 4 0
0FC4 BYTE 0 3 9 , 0 4 0 , 0 7 1 , 0 3 F , 0 4 0 , 0 6 D
OFCA BYTE 0 4 0 , 0 7 9 , 0 7 9 , 0 6 D , 0 4 0 , 0 3 7
OFDO .BYTE 0 7 7 , 0 3 9

0FD2 Text = . ;start of message

.END

Self-Replicating Program
; Makes a copy of itself and then
; executes the copy.
; Only possible in a processor which permits
; one to write relocatable code, like SC/MP

FFFC
0 0 0 D

0 0 0 0
0F12 C4FC
0F14 01
0F15 C080

LDX
STX

Head:

Loop:

Loop-Head-1 ;offset for load
Last-Store-1 ;offset for store

. = 0F1 2
LDI
XAE
LD

LDX

- 1 2 8 (0) ;PC-relative-ext = offset

8 5

0F17
0F18
0F1 9
0F1B
0F1C
0F1E
0F1F
0F20
OF22
0F23
0F24
OF26
OF28
0F2A

01
02
F41 1
01
C880
4 0
03
FC10
01
4 0
E41 4
9CED
8FFF

0 0 0 0

Store:

Last

XAE
CCL
ADI
XAE
ST
LDE
SCL
CAI
XAE
LDE
XRI
JNZ
DLY

.END

STX-LDX

-128(0) ;ditto

STX-LDX-1 ;i.e. increment ext

Last-Loop-1 ;finished?
Loop
X'FF ;shows how many copies

;were executed.

Reaction Timer
; Gives readout of reaction time in milliseconds
; display lights up after a random delay
; Press'MEM' as quickly as possible.
; Press ' 0 ' to play again. (Relocatable)
; 1 50 = excellent, 2 5 0 = average, 3 5 0 = poor

01E4 Cycles 500 ;SC/ MP cycles per mse<
OFOO Ram. - OFOO
ODOO Disp = ODOO
0 0 0 5 Adlh = 5
OOOC Adl = 12
OOOE Adh - 14
01 5A Dispa = 01 5A /Address to segments

0 0 0 0 . = 0F20
0F20 C401 Begin: LDI H(Dispa)
0F22 37 XPAH 3
OF23 C459 LDI L(Dispa)
0F25 33 XPAL 3
0F26 C205 LD Adlh(2) ; 'Random' number
0F28 01 Wait: XAE
0F29 8F7D DLY Cycles/4
0F2B 0 2 CCL
0F2C 70 ADE ;Count down
0F2D 94F9 JP Wait
0F2F C903 ST + 3(1) ;Light'8' on display
0F31 4 0 LDE ;Now zero
0F32 CAOC ST Adl(2)
0F34 CAOE ST Adh(2)

.Main loop ; length without DLY = 151 ^cycles
0F36 C4A8 Time: LDI (Cycles-1 5 1 - 1 3 1 / 2
0F38 8F00 DLY 0
0F3A 03 SCL
0F3B C20C LD Adl(2)

0F3D 68 DAE
0F3E CAOC ST Adl<2)
0F40 C20E LD Adh(2)
0F42 68 DAE
0F43 CAOE ST Adh(2)
0F45 4 0 LDE
0F46 02 CCL
0F47 F903 CAD + 3(1) ;Test for key
0F49 98EB JZ Time
0F4B 3F Stop: XPPC 3 ;Go display time
0F4C 90FD JMP Stop ;lllegal return
0F4E 90CF JMP Begin ;Number key

0F50 . = 0FF9 ;Pointers restored
;From ram

0FF9 ODOO .DBYTE Disp ;P1 -> Display
OFFB OFOO .DBYTE Ram ;P2-> Ram

0 0 0 0 .END

Remove f rom Book

PjCD^iU'ducis.

Edge connector details

Top connector—from left

1 Positive supply 8V
2
3
4 OV
5
6
7
8 OV on issue 1 1. NADS on issue 1
9 i/o Port B6
10 B5
1 1 B7
12 B4
13 B3

. - 1 4 B2
15 B1
16 BO
1 7 i/o port A7
18 Interrupt
19 i/o A6
20 AO
21 A5
22 A1
23 A4
24 A2
25 A3
26 SCMP Sense A
27 Serial IN
28 Sense B
29 Serial OUT
3 0 Flag 0
31 " 2
32 " 1

32 WAY at 0 1 in.

COMPONENT LIST

Semiconductors
No Type Description
IC1 1SP-8A/600I8060) SC MP-1 1 Microprocessor
IC2 DM 74S571 5 1 2 x 4 ROM (Whitespot)
IC3 DM 74S571 51 2 x 4 ROM
IC4 MM 21 1 1-1N 2 5 6 x 4 RAM
IC5 MM 211 1-1N 2 5 6 x 4 RAM)
IC6 MM 21 1 1-1N 2 5 6 x 4 RAM) optional extra
IC7 MM 21 1 1-1 N 2 5 6 x 4 RAM)
IC8 INS 81 54N 1 2 8 x 8 RAM I/O
IC9 DM 74 LS1 57 Quad 2 to 1 line selector
IC10 DM 74 LS1 57 Quad 2 to 1 line selector
IC1 1 DM 80L95 Hex tri-state buffer
IC12 DM 74 LS1 73 Quad tri-state latch
IC13 DM 7 4 4 5 BCD to decimal decoder
IC14 DM 7 4 0 8 Quad two input and
IC1 5 Dm 7 4 0 8 Quad two input and
IC1 6 DM 74LS08 Quad two input and
IC17 DM 74LSOO Quad two input and
IC 1 8 DM 74LS04 Hex inverter
IC1 9 LM 340T-5 .0 5 volt regulator

RESISTORS
R 1 4 . 7 J s » _
R2 2 . 4 k
R3 100 k
R4 1.2 k
R5 2 . 4 k
R6 1 .2k
R7-10 1 .2k
R1 1 4 . 7 k
R1 2-15 1 .2k

CAPACITORS
C1 27p fo r 33p
C2 1OOOuF 40V
C3 0.01uF
C4 0.01uF
C6 22 uF16V

MISCELLANEOUS
1. Printed circuit board

2. Reset switch
3. Crystal 4 . 4 3 3 6 1 9 MH2
4. Display NSA1 198/1 188
5. Keyboard separator
6. Keyboard contact sheet
7. Keyboard legend sheet
8. Keyboard panel
9 'W ' buttons x 4
10. Display connector strip

RECOMMENDED EXTRAS
IC Sockets: 5 x 1 4 pin, 7 x 1 6 pin, 4 x 1 8 pin, 2 x 4 0 pin
stick on feet x 6 Radiospares 1 2 .5mm

may be any value between 1 k and 1 5k

may be any value between 1 k and 1 5k

ceramic
not supplied—only needed with
unsmoothed supply marked 1 0 nf

double sided fibreglass through hole
plated and annotated

eight or nine digit magnified 7 segment LED
self adhesive clear PVC
conductive silicon rubber
reverse printed PVC
dark grey stoved steel plate

