Personal Computer

ms-/700

OWNER’'S MANUAL

SHARP

IMPORTANT

The wires in this mains lead are coloured in accordance with the
following code:

BLUE: Neutral
BROWN: Live

As the colours of the wires in the mains lead of this apparatus may not
correspond with the coloured markings identifying the terminals in
your plug proceed as follows,

The wire which is coloured BLUE must be connected to the terminal
which is marked with the letter N or coloured black.

The wire which is coloured BROWN must be connected to the ter-
minal which is marked with the letter L or coloured red.

This apparatus complies with requirements of EEC directive 76/889/EEC.

Das Gerat stimmt mit den Bedingungen der EG-Richtlinien 76/889/EWG
iberein.

Cet appareil repond aux specifications de la directive CCE 76/889/CCE.
Dit apparaat voldoet aan de vereisten van EEG-reglementen 76/889/EEG.
Apparatet opfylder kravene i EF direktivet 76/889/EF.

Quest’'apparecchio e stato prodotto in conformita alle direttive CEE
76/889/CEE.

Personal Computer

M-/ 0)0)

Owner’s
Manual

fooi ofocfocfocte v

ofoof foofocfoct ofo oo foofoot

oot

NOTICE

This manual has been written for the MZ-700 series personal computers and the
BASIC interpreter which is provided with the MZ-700.

(1) All system software for the MZ-700 series computers is supported in software
packs (cassette tape, etc.) in file form. The contents of all system software and the
material presented in this manual are subject to change without prior notice
for the purpose of product improvement and other reasons, and care should be
taken to confirm that the file version number of the system software used matches
that specified in this manual.

(2) All system software for the Sharp MZ-700 series personal computer has been
developed by the Sharp Corporation, and all rights to such software are reserved.
Reproduction of the system software or the contents of this book is prohibited.

(3) This computer and the contents of this manual have been fully checked for
completeness and correctness prior to shipment; however, if you should encoun-
ter any problems during operation or have any questions which cannot be resolv-
ed by reading this manual, please do not hesitate to contact your Sharp dealer
for assistance.

Not withstanding the foregoing, note that the Sharp Corporation and its repre-
sentatives will not assume responsibility for any losses or damages incurred as
a result of operation or use of this equipment.

Preface

Congratulations on your purchase of a Sharp MZ-700 series personal computer. Before using
your computer, please read and make sure you understand the operating procedures which
are described in this manual. The features and general operating procedures are described in
Chapters 1 and 3, so please read those chapters first.

All software for the MZ-700 series computers is distributed on cassette tape,

The cassette tape included with the computer contains BASIC 1Z-013B, a high level BASIC
interpreter which enables programming in the BASIC language and makes it possible to utilize
the full capabilities of the MZ-700. The BASIC 1Z-013B interpreter and procedures for its use
are fully described in this manual.

MZ-700 OWNER’S MANUAL

CONTENTS

Chapter 1 The world of MZ-700 Series Personal Computer

1.
1.
1.

1
2
3

Features of the MZ-700 Series00,
Using thisManual e e
An Introduction to the World of Computers

Chapter 2 BASIC

2.

NN NN NN NN

—_

1

— O W0V 00 NNV R WM

Introduction to Programmingin BASIC
An Qutline of BASIC e
Frequently Used BASIC Commands and Statements
Built-in Function e
String Function e
Colordisplay statement i e
Color Plotter-Printer Commandst iinnenn..
Machine Language Program Control Statements
I/O Statements . .o oo v e it ettt e e e
Other Statements ittt i et ettt e e e
Monitor Function it e e e

Chapter 3 Operating the MZ-700

3.

1

v AW

Appearance of the MZ-700 Series Personal Computers.
Connection to Display Unit
Data Recorder i e
Color Plotter-Printer 0ttt i e e et e e
Key Operation i e it

Chapter 4 Hardware

4.

N

1

v kAW N

MZ-700 System Diagramttt e
Memory configuration i e e
Memory Mapped I/O ($EQOO0-$EQ08) i
Signal System of Color V-RAM
MZ-700 Circuit Diagramsot ittt it e e

Chapter 5 Monitor Commands and Subroutines

5.

1

Monitor Commandsttt e e

5. 2 Functions and Use of Monitor Commandscouivn....

5. 3 Monitor SUBIOULINES . . .o vt it it e e e e e e e e

APPENDICES

>
NN R W N -

Code Tables . ..ottt e e e e e 154
MZ-700 Series Computer Specifications 157
BASIC Error Message Listottt it inieine e 159
Z8OA Instruction Setot e 160
Monitor Program Assembly Listo oo ... 164
Color Plotter-Printer Control Codes i 198

Notes Concerning Operationc. it iiinnnnenn. 201

INDEX

[BASIC COMMANDS] () is abbreviated format

(1)

ABS . o 71 HSET . oo (H.)

ASC . o 78

ATN oo 71

AUTO oo, (A) 31

AXIS © oo (AX) 89 IFERL . .o\ttt
IFERN .o ovooeee e
IF~GOSUB (IF~GOS.)

IF~GOTOo\t .. (IF~G)

BYE . .o\ (B) 35 IF~THEN ..o (IF~TH)
INP oo
11313 0 AN a
INPUT/T o oooeennn. (LT

CHRS . . o oeoeee e 78 INT © oot e

CIRCLE .. .\oooiuenn. (CL) 90

CLOSE . .o, (CLO.) 68

CLR . . 59

[0)70): SN (COL) 80

CONSOLE (CONS.) 98

[5/0)} 1 (C) 34

COS . o et 71 KEYLISTovoonn ... (K. L)

CURSOR ..o, (CU) 61

(D)

1951 30 3 A 56 LEFTS .\ o oo

1551307455 AU 57 LEN . oo

15)10.34) D (D) 31 1 U

15) 1 S 56 151714 A (LIM.)
1513)
LIST « oo L)
LIST/P . oo (L. /P)

153 N (E.) 59 IN oo

1> ¢ 71 1767 S (LO)
LOG oo

FOR~NEXT (F.~N.) 47
MERGE, (ME.)
MIDS .« ovoe e
MODEGR (M.GR)

GET ..o oo 43 MODETL M.TL)

GOSUB MODETN.............. (M.TN)

~RETURN (GOS.~RET.) 49 MODETS, (M.TS)

GOTO oo (G) 48 MOVE ..\t

GPRINT (GP.) 88 MUSIC MU) ...

NEW .o e 32 SAVE . . oo (SA.)
SET . oot
SGN .« v ot

© SIN © o

ON ERROR SIZE © oot

GOTO.......... (ONERR.G) 96 SKIP oot

ON~GOSUB (ON~GOS.) ... 55 SPC ..

ON~GOTO . ..ottt (ON~G.) ... 54 SQR . ot

OUT i 95 STOP . . oo) .
STRS . o oo

(p)

PAGE., 84

PAL . 71 TAB .

PCOLORoooivoeen (PC) ... 83 TAN oo

PEEK\ 93 TEMPO\ (TEM.)

PHOME (PH)) 87 TEST . . oo (TE.)

PLOTOFF (PL.OFF) 98 TIS © oot

PLOTON (PL.ON) 98

POKE 92

PRINTcviriinn... @ 37

PRINTUSING (?USL) 38 USR . . o u)

PRINT/P................. @p) 84

PRINT/T @/T) 68

PRINT [a,8] @?[a,B]) 81
VAL ot

Q VERIFY V)

(®] WOPEN (W)

RAD .o 71

READ~DATA (REA.~DA)) 44

REM ..o 58

RENUM (REN)) 33

RESET . . oottt 63

RESTORE (RES)) 46

RESUME (RESU) 97

RIGHTS . ..ot 77

RLINE (RL) 86

RMOVE (RM) 87

RND .ottt 72

ROPEN (RO) 68

RUN .ot (R) 34

Jvez

. AT

£on

{ A+ w49

THE WORLD OF MZ-700

SERIES PERSONAL
COMPUTER

[

I e e

10

1.1 Features of the MZ-700 Series

In the space of just a few decades, the computer has undergone a dramatic transformation, changing
from an intricate, enormously expensive monster weighing several dozen tons into a compact, inexpensive
device which can be used by almost anyone. Whereas access to computers used to be limited to a few
privileged individuals with special training, the inexpensive, user-friendly machines now available make
the world of computing open to people in all different walks of life. The Sharp MZ-700 series computers
are representative of such machines.

People use words and expressions to convey meanings.

Computers of the Sharp MZ-700 series, however, convey meaning through an ordinary television set
or special printer. Any TV set can be used, either color or black-and-white; or, you may invest in one
of the special display screens available if you want greater resolution and sharpness; you will be surprised
at the beauty which is provided by such displays.

A tape recorder can be connected to computers of the Sharp MZ-700 series to record programs, the
instructions which control the operation of the computer. When printed records of such programs or of
the results of computer processing are desired, they can be obtained on the MZ-700’s compact, elegantly
designed 4-color plotter-printer.

MZ—-731

Note: In the remainder of this manual, the term “MZ-700” will be used to indicate any of the computers
of the MZ-700 series (the MZ-711, MZ-721, and MZ-731).

12

1.2 Using this Manual

Before starting to study programming, why not try playing with the MZ-700 a bit? We’re sure you
want to do that anyway, rather than waiting until after you have read this book. First, read “Operating
the MZ-700” in Chapter 3 (you need read only those parts which apply to the model which you are us-
ing). Connect the MZ-700 to a television, read the explanation of procedures for using the keyboard, and
learn which characters are output when each key is pressed.

If you are using the MZ-700 for the first time, read Chapters 1 and 2, in that order. At first, you may
find it difficult to grasp the meanings of the various commands and statements of the BASIC programming
language; however, even if you don’t understand the explanations, be sure to key in the examples as
they are encountered. As you do so, you will gradually develop a concept of what BASIC is all about.

You may skip over those portions of Chapter 2 which start with 2. 8 “Machine Language Program
Control Statements”; however, these sections will prove useful when you have completely mastered
programming in BASIC, or wish to become more familiar with the computer’s internal operation.

If you have used the MZ-80K, you will find that the commands and statements of BASIC for the
MZ-700 are used in the same manner as those of the SP-5025 family, so that the MZ-700 can be used
in almost exactly the same manner as the MZ-80K. The major difference between the two is in the color
statements (applicable to both the television screen and the color plotter-printer) which have been added;
however, you should find it easy to become familiar with these by reading sections 2. 6 “Color display
statement’ and 2. 7 “Color Plotter-printer Commands.” Having done this, you will quickly be captivated
by the power of expanded BASIC.

This manual also includes a discussion of “Operating the MZ-700"" (Chapter 3), a reference section
entitled “Hardware” (Chapter 4), a discussion of the “Monitor Commands and Subroutines’ (Chapter 5),
and appendices of other information.

Now go ahead and learn everything you can about the MZ-700. We hope that you will find this manual
helpful.

1.3 Anintroduction to the World of Computers
1.3.1 What is BASIC?

People use language to communicate with each other, and specially designed languages are also used for
communication with computers. BASIC is one such language.

Beginner’s All-purpose Symbolic Instruction Code

Just as human beings use languages such as English, French, German, and Japanese for communication,
there are also many different languages which are used for communication with computers. Among these
are BASIC, FORTRAN, COBOL, and PASCAL. Of these, BASIC is the computer language whose struc-
ture is closest to that of the languages used by humans, and therefore is the easiest for humans to under-
stand.

1.3.2 Loading BASIC into the MZ-700

The BASIC language must be loaded into the MZ-700 before it can be used to do any work. A cassette
tape containing this language has been included in the case containing the MZ-700. Now let’s teach the
language to the computer; procedures for doing this are described below. (The explanation assumes that
you are using an MZ-731; however, the procedures are basically the same for all computers of the MZ-
700 series.)

(1) Connect the display as described on page 106.

(2) Turn on the power switch located on the back of the computer.

(3) The following characters are displayed on the screen and a square, blinking pattern appears. This
pattern is referred to as the cursor.

X X MON I TOR 1Z2—01 3A XX
X5

—— Cursor

(4) Set the cassette tape containing the BASIC 1a121guage in the computer’s data recorder.

(5) Type in the word [L|[OJA]D| and press the |CR| key. After doing this, the message & PLAY appears
on the screen.

(6) Press the data recorder’s [PLAY | button; the cassette tape starts moving and loading of the BASIC
language begins.

(7) After loading has been completed, the message READY is displayed and the cursor starts to
blink again.

Notes:
%1 [LJOJAID]. .. This is the instruction for loading programs or data from cassette tape.
ICR|....... This is referred to as the carriage return key, and is mainly used to indicate comple-

tion of entry of an instruction.

13

XX MONITOR 12-013AXX
LOAD

1 PLAY

LOADING \BASIC

BASIC INTERPRETER 1Z-0138 VX.XX
COPYRIGHT 1483 BY SHARP CORP
XXXXX BYTES

READY
-

This completes loading of the BASIC program. You can talk to the computer using BASIC, and the
computer will respond.

1.3.3 Try Executing a Program

Loading BASIC into the computer doesn’t cause it to do anything; first, it must be given instructions

in BASIC as to what it is to do. Although we will not explain the instructions of BASIC until later, let’s
go ahead and try executing a BASIC program right now.

Remove the cassette tape from the recorder and turn it over so that the “B’’ side is up. A sample

program is recorded on this side of the cassette tape. Using the following procedures, load this program
into the computer and execute it.

14

(1) After turning the tape over and reloading it into the recorder, press the REWIND button to
rewind it. Next, type in [LJO|A]D] and press the |CR| key; when the message £ PLAY is display-
ed, press the [PLAY | button on the data recorder. This begins loading of the sample program.

(2) When loading is completed, the cassette tape stops, READY is displayed on the screen, and the
cursor starts to blink again.

(3) Now that the program has been loaded into the computer’s memory, try executing it. This is done
by typing in [R|U[N] and pressing the |CR| key.

(4) Now let’s take a peck at the program. Hold down the [SHIFT | key and press the [BREAK |
key. This stops program execution and displays the words BREAK and READY, then the cursor
starts to blink again.

(5) Type in [L]T][S|T] and press the |CR| key. This lists the lines of the program on the screen one
after another. (Output of the list can be temporarily stopped at any time by pressing the space
bar.)

(6) If you wish to resume program execution, type in [R[U[N] again and hit the |CR| key.

(7) If you want to run a different program, set the cassette tape containing that program in the
recorder, LOAD the program, then RUN it. The previous program is automatically erased from
memory when the new one is loaded, so the computer contains only the BASIC language and
the last program loaded.

BASIC

BASIC

Programming

16

2.1 Introduction to Programming in BASIC
2.1.1 Direct Mode

Now that you have made some key entries on the MZ-700, you have reached the point where you
are ready to start learning how to program. Before you start, however, try using the MZ-700 as you
would an ordinary pocket calculator. (This is called operating the MZ-700 in the “direct mode’.) Key
in the following, just as you would on a pocket calculator.

@HEIEICR

As you can see, the computer doesn’t do anything when it is presented with a problem in this form;
your computer and an ordinary calculator are completely different in this respect, and instructions must
be entered in a form which can be understood by the computer (i.e, in the form prescribed by the BASIC
language). Now try typing in the following.

PIRINT [4EE)

If you have done this correctly, the number “13”’ will be displayed and the screen will appear as shown

below.
READY PRINT is an instruction which tells the computer to display
PRINT 4+9 . ..
13 something on the screen. Here, the computer is instructed to
display th of4+9.
READY isplay the sum

Now let’s try doing a somewhat more complex calculation.
With BASIC for the MZ-700, the operators (symbols) for the basic arithmetic operations are as follows.

Addition: +

Subtraction: —

Multiplication: X (the asterisk)
Division: /S (the slash)

Exponentiation: 1

When symbols such a “ X *°, “ + , and “ 1 * are mixed together in a single arithmetic expression,
the order in which calculations indicated by the symbols are performed is referred to as their priority.
Just as with ordinary algebra, operations can be included in parentheses, so operations within the inner-
most set of parentheses are performed first. Within a set of parentheses, exponentiation is performed
first, followed by multiplication and division (which have equal priority, and therefore are performed
as they are encountered in the expression, from left to right), and then by addition and subtraction.

For example, to obtain the answer to the expression 3 x 6 x (6 +3 x {19~ 2 x (4 - 2)+ 1}). enter the
following.

PIROINT BXEXCEHBIXLERIXAEERDIFIEIR]

Now try using the computer to do a variety of other problems in arithmetic.

[EXERCISE] [ANSWER]

. %% PRINT (6+4)/(6—4)
5
2. 3x IB+OX (9—2) — | 45 PRINT 3X(B+OX(9—-2)—6,/(4—2) +5
200
3. (344 X (B5+6) PRINT (3+4)%(5+6)
77
a. %x (2+3) PRINT (104+20) /BX(2+3)
10420 25
5. =S F’T INT (10+20) /(BX2+3)

After going through the exercises, try typing in [?][5]X][8] and pressing the |CR| key; the answer “40 is
displayed. The reason for this is that BASIC interprets the question mark in the same manner as the
instruction PRINT. Remember this as a convenient, abbreviated form of the PRINT instruction.

Now try entering the following. (The quotation marks are entered by holding down | SHIFT | and
pressing the [2] key.)
PRONTMZELIECR

As you can see, the characters within quotation marks are displayed on the screen, but the answer is not.
Now try entering the following.

PIRIONMMAIBICIDEIEIGTT

This causes ABCDEFG to be displayed on the screen.

In other words, using the PRINT instruction together with quotation marks tells the MZ-700 to display
characters on the screen exactly as they are specified between quotation marks. The characters within
any set of quotation marks are referred to as a “character string” or ““string”.

Now go on to enter the following.
PRUONDOOE@EEHSIETEEFHSIICR

This causes the following to be displayed on the screen.

4+09=_13............... (The “_” symbol indicates a space. Actually, nothing is display-

ed on the TV screen in the position indicated by this symbol.)

In other words, the instruction above tells the computer to display both the character string “4 + 9 =”
and the result of the arithmetic expression "4 + 9 =", Now try entering the following.

PIRONTH@EHEIELEIEEICR]
After typing in this entry, the following should be displayed on the screen.
4+90=__.....13

The reason the screen appears different this time is because the PRINT instruction displays items of
information (character strings or the results of arithmetic expressions) differently depending on whether
they are separated from each other by semicolons or commas.
Semicolon (;) Instructs the computer to display items immediately adjacent to each other.
Comma(,) Instructs the computer to display the item at the position which is 10
spaces (columns) from the beginning of the display line.

If you have the MZ-731 (or a separate plotter-printer), now try appending the characters [/ P, to the
end of the word PRINT.

PIRONDAPIEHEIEMCE@EHEICH

This time nothing appears on the display screen, but the same result is printed out on the plotter-printer.
In other words, the /P, symbols switch output from the display to the plotter-printer.

This completes our explanation of procedures for using the MZ-700 as you would a pocket calculator.

Note: PRINT "5 + 8 ="; 5 + 8 displays 5 + 8 = 13, while PRINT " 5 - 8 ="; 5 - 8 displays 5 - 8 =-3.
The reason for this is that one space is always reserved for a symbol indicating whether the result is
positive or negative, but the symbol is only displayed in that space when the result is negative.

2.1.2 Programming

Let’s try making a simple program. However, first let’s make sure that the area in the computer’s
memory which is used for storing programs is completely empty. Do this by typing in NEW and pressing
the|CR|key. (This instruction will be explained in more detail later; see page 32.)

Type in the following program exactly as shown.

19 A=3CH . ..o Assigns the value 3 to A.

20 B=6ICRl............. Assigns the value 6 to B.

30 C=A+BECH.................. Assigns the result of A+ B to C.

4T P CICRI. ..o Displays the value assigned to C.

50 ENDICRI. ... i Instruction indicating the end of the program.

The numbers 10, 20, 30, and so forth at the left end of each line are referred to as program line numbers,
or simply line numbers; these numbers indicate the order in which instructions are to be executed by the
computer. Instructions on the lowest numbered line are executed first, followed by those on the next
lowest numbered line, and so forth. Line numbers must be integers in the range from 1 to 65535.

The line numbers 1, 2, 3, and so forth could have been used in this program instead of 10, 20, 30.
However, it is common practice to assign line numbers in increments of 10 to provide room for later
insertion of other lines.

Now let’s check whether the lines have been correctly entered. Type in LIST and press the |CR| key;
this causes a list of the program lines to be displayed. Notice that the question mark entered at the beginn-
ing of line 40 has been converted to PRINT, the full form of the command for displaying data on the
display screen.

Now-let’s try executing the program.
RIVINICR]

Enter RUN and press the | CR| key; the result is displayed on line 9 of the screen.

Now we will explain procedures for making changes in programs. First, let’s change the instruction on
line 20 from B = 6 to B = 8. Type in LIST 20 and press the [CR| key; this displays just line 20 of the
program on the screen. Next, use the cursor control keys (the keys at the right side of the keyboard which
are marked with arrows) to move the cursor to the number " 6, then press the (8] key and the |CR| key in
succession to make the change. Note that the change is not completed until the| CR|key is pressed.

Now type in LIST and press the | CR| key again to confirm that the change has been made.

Next, let’s change line 30 of the program to C=30 X A + B.
Using the cursor control keys, move the cursor so that it is positioned on top of the “A’ in line 30,
then press the | INST | key three times in succession. This moves “A + B” three spaces to the right.

Cursor position

Now type in [3][0]*]and press the|CR| key to complete the insertion. LIST the program to confirm that
the change has been made correctly.

Now change line 30 again so that it reads “C = 30 X A” instead of “C =30 X A + B”. Do this by
moving the cursor to the position immediately to the right of B and pressing the | DEL| key two times;
this deletes “+B”. Press the |CR| key to complete the change.

Now LIST the program and confirm that it appears as shown below.

19 A=3

20 B=8

30 C=3ITXA
40 PRINT C
50 END

To delete an entire line from a program, simply enter the line number of that line and press the |CR| key;
delete line 20 in this manner, then LIST the program to confirm that the line has been deleted.

We could insert the instruction “?A” between lines 30 and 40, by typing in 35 ?A and pressing the
|CR| key. Try this, then LIST the program to confirm that the line has been added. Now delete line 35 by
entering 35 and pressing the | CR| key.

The process of changing or inserting lines in a program in this manner is referred to as editing, and the
program which results from this process is referred to as the BASIC text. Each line of the program can
include a maximum of 255 characters, including the line number, but the maximum length is reduced
by four characters if the question mark is used to represent the PRINT instruction.

At this point, the program contained in the computer’s memory should be as follows.

109 A=3

3 C=3IXA
40 PRINT C
50 END

Now we will use this program to explain the procedures for recording programs on cassette tape.
Prepare a blank cassette tape (one on which nothing has been recorded) and set it in the data recorder,

19

20

then type in the following from the keyboard.
SAVE "CALCULATION" J

Here, “CALCULATION” is the name which is to be recorded on the cassette tape to identify the
program. Any name may be assigned, but the name connot be longer than 16 characters.

Note: The J symbol in the example above represents the |CR| key.

When the[CR]key is pressed, “ £ RECORD. PLAY” is displayed on the screen. Pressing the| RECORD |
button on the data recorder at this time records the program on cassette tape.

The name which is assigned to the program is referred to as its file name. Specification of a file name is
not absolutely necessary, but from the point of view of file management it is a good idea to assign one.
Of course, the file name is recorded on the tape together with the program.

When recording is completed, READY is displayed to indicate that the computer is finished. Now press
the STOP button on the data recorder and rewind the tape.

The program is still present in the computer’s memory after recording is completed, so type in NEW J
to delete it (enter LIST J to confirm that the program has been deleted). Now let’s try using the LOAD
instruction to load the program back into memory from the cassette tape as described on page 14.

When a cassette tape contains many programs, that which is to be loaded can be identified by specifying
the program’s file name together with the LOAD instruction as follows.

LOAD "CALCULATION" J

Specifying the file name in this manner tells the computer to ignore all programs on the tape other than
that with the specified name. If the file name is not specified (if only LOADJ is entered), the computer
loads the first program encountered.

Note: When using cassette recorder other than the data recorder built into the MZ-731, and MZ-721 read
the instructions on page 109 before attempting to record or load programs.

The LIST command shown above can be used in a variety of different ways. For example, during
editing LIST 20 J can be used to display just line 20 of a program. The entire program can be listed
by entering LIST J . Other uses of the instruction are as follows.

LOEm EBEIYICH Lists all lines of the program to line 30.

Uem BIOECH Lists all lines from line 30 to the end of the program.
UOSm RBOESEGICRI Lists all lines from line 30 to line 50.

UOEm BIOIC=R Lists line 30.

When editing programs by listing individual lines with the LIST instruction, press the [CLR] key (the
[(INST |key) together with the [SHIFT | key when the screen becomes distractingly crowded. This
clears the entire screen and moves the cursor to its upper left corner. (This does not affect the program
in memory). Afterwards, enter LIST < line number > J again to list the line which is to be edited.

2.2 An Outline of BASIC
2.2.1 Constants

A constant is a number or string of characters which is written into a program, and which is used by
that program as it is executed. Types of constants include numeric constants, string (character) constants,
and system constants. These are explained below.

Numeric constants

A numeric constant is a number which has a maximum of 8 significant digits. The exponent of such
constants must be in the range from 10738 to 1038 (the maximum range is 1.548437E—38 to 1.7014118E
+38).

(Examples:)

—123. 4

g. 789

3748. g

A = [JOPIROR 3. 7X107)

7. BDE—Q s 7. 65X107°} E indicates the exponent.
’]4 8E9 ’I 4 8)(/'09

Hexadecimal numbers: Numbers can be specified in hexadecimal format only for direct memory
addressing with the LIMIT, POKE, PEEK, and USR instructions (see pages 92 and 93), and are repre-
sented as four digits preceded by a dollar sign (3).

(Examples:)
LIMIT $BFFF
USR ($CQOIT, X X$ represents a string variable.

String constants

String constants are letters and symbols between quotation marks which are included in programs to
allow titles or messages to be output to the display screen or printer. The characters "4+9" appearing on
page 17 are a character constant, and not a numeric constant. With BASIC, a string constant may consist
of a maximum of 255 characters. (Not including quotation marks which cannot be included in a string
constant.)

. (Examples:)

"ABCDEFG!

"12345678914"

DATA ABCDEFG........... Quotation marks are not needed when string constants are
specified in a DATA statement; however, they may be used
if desired.

21

22

2.2.2 Variables

The word ““variable” has a different meaning with BASIC than it does when used with regard to alge-
braic expressions. To put it in very simple terms, the variables of BASIC are “boxes” in memory for

the storage of numbers and characters (character strings). The types of variables used in BASIC include

numeric variables, string variables, and system variables.

Numeric variables String variables System variables

= —
= = &=
— |

|

|

Numeric variables

Only numeric data can be stored in numeric variables.

Names must be assigned to these variables in accordance with the following rules.

i)

ii)

A variable name may consist of any number of characters, but only the first two characters are
actually used by the BASIC interpreter to identify the variable. Further, the first character of the
variable name must be a letter (A to Z), either letters or numerals may be used for subsequent
characters.

It is not possible to use the names of BASIC commands and statements as variable names.

Correct variable names: ABC, XY, ABCD, A12345
(ABC and ABCD are regarded as the same variable.)

Incorrect variable names: PRINT (PRINT is a BASIC statement)
C@ (Variable names may not include special charac-
ters.)
(Example:)
T A=D e Stores 5 in variable A.
20 PRINT Aceeeeeene Displays the value stored in variable A.

String variables
String variables are variables which are used for storing character strings. Names assigned to string
variables must conform to the same rules as those assigned to numeric variables; however a dollar sign
() is appended to the end of string variable names to differentiate them from other types of variables.
String variables may be used to store a maximum of 255 characters. Such variables are blank until
string data is assigned to them.

The only operator which can be used in expressions including more than one string variable is the
“+” Sign.

(Example:)

10 AF="ABCD "-reeeeee Substitutes the character string ABCD into string variable AS.

20 BE="XYZ " Substitutes the character string XYZ' into string variable BS.

30 CHE=AE+BH-eeeeee Substitutes the sum of string variables A$ and B$ (ABCDXYZ)
into string variable CS§.

40 PRINT C$-eeeeeeeee Displays the contents of string variable C$.

System Variables
System variables contain values which are automatically changed by the BASIC interpreter. The system

variables are size (the variable which indicates the amount of BASIC free area) and TI$ (a 6-digit variable
which contains the value of the system’s 24-hour clock).

(Examples:)

19 TI$S="J01350D " - This statement assigns the value corresponding to 1:35:00 A.M.
to system variable TI$ and sets the system clock to that time.

20 PRINT T $Heeeeee Executing this statement displays the current time of the system
clock (24-hour time).

Display format:
132819 Indicates that the time is 13:28:19.

PRINT SIZE e This displays the current amount of free space in the computer’s
memory (in other words, the amount of space which is available
for additional program lines). The value indicated by this variable
is reduced each time a program line is entered.

23

2.2.3 Arrays

Arrays can be thought of as shelves within the computer’s memory which contain rows of boxes, each
of which represents a variable. The boxes on these shelves are arranged in an orderly sequence, and are
identified by means of numbers; these numbers are referred to as subscripts, because they are subscripted
to the name which identifies the entire group of boxes.

Such shelves of boxes are set up simply by executing an instruction which declares that they exist;
this is referred to as making an array declaration. The array declaration specifies the number of boxes
which are to be included in each set of shelves (i.e., the size of the shelves) and the manner in which
they are to be arranged.

The boxes in each unit of shelves may be arranged in sequences which have any number of dimensions.
Thus, a one-dimensional array can be thought of as a single shelf which holds, one row of boxes; a two-
dimensional array can be thought of as a stack of shelves, each of which holds one row of boxes; and
so forth. These boxes, or variables, are referred to as the array’s elements.

The number of subscripts used to identify each of the array elements of a corresponds to the number
of dimensions in that array. For example, each of the elements in a one-dimensional array is identified by
a single subscript which indicates the box’s position in the row; each of the elements in a two dimensional
array is identified by two subscripts, one which identifies the box’s row, and one which indicates the box’s
position within that row; and so forth. The numbers which are used as the subscripts start with zero, and
have a maximum value which is determined by the size of each of the array’s dimensions (i.e., the number
of boxes in each row, etc.).

The maximum size of an array is limited by the amount of free space which is available in the com-
puter’s memory (i.e., by the size of the program, the number of items of data which are to be stored
in the array, and so forth). The syntax of BASIC places no restrictions on the number of dimensions
which can be used for any array, but in practice the number of dimensions is limited by the amount of
free memory space which is available for storage of array variables.

An array must be declared before values can be stored in any of its elements.

Note:

(Example 1)

10 DIM ACD) s Declares 1-dimensional numeric array A with 6 elements,
20 DIM XEB)rrrremenaenens Declares 1-dimensional string array X$ with 9 elements.
19 DIM A, XBE)-weeee Performs the same function as lines 10 and 20 above.
(Example 2)

10 DIM BB, D)o Declares 2-dimensional numeric array B with 6 x 6

elements.
20 DIM Y5,)rrrerenenes Declares 2-dimensional string array Y$ with 6 x 9 elements.
19 DIM BB, B), YF(B, 8), AB), XB(B)-wovvemm Declares two numeric arrays
and two string arrays.

(Example 3)

19 DIM C(3, 3, 3)eemeeees Declares 3-dimensional array C with 4 x 4 x 4 elements.

Different names must be used for each array which is declared; for example, the instruction DIM
A(5), A(6) is not a legal array declaration.

Try executing the program shown below and check the results which are obtained.

Note:

19 DIM A, BS@
20 ADH=26

30 A>=9

40 AR)=—10J

50 B$SUWH="ABC"

6 BSUHI)="XYZ"

7 B®2)="MZ=7J"
8J PRINT AC)D

90 PRINT B$E
100 PRINT AM@
11 PRINT BSUWH+BS(1)D
120 PRINT AUD

Individual variables within an array, such as A(5) and X$(8), are referred to as an array’s elements.
Numeric constants, numeric variables, and numeric arrays are collectively referred to as numeric

expressions, and string constants, string variables, and string arrays are collectively referred to as
string expressions.

25

2.2.4 BASIC Operations

In BASIC, arithmetic operations take a slightly different form than is the case with ordinary arithmetic.
The various arithmetic operators used in BASIC are shown in the table below. The priority of these
operators when they are used together within a single expression (the sequence in which the different
arithmetic operations are performed) is as indicated by the numbers in the left column of the table;
however, operators within parentheses always have the highest priority.

Arithmetic operations

Operator Operation Format
t Exponentiation | X 1Y (Indicates XY;i.e., X to the Yth power.)
2 — Negation -X
3 M“‘({?P.ﬁ?aﬁon’ X X Y (X times Y), X/Y €2:1ie., X divided by Y)
ivision
4 Plus, minus X+Y XplusY), X — Y (X minus Y)

(Example 1)

10 A=3XKB G e When a series of operators with the same priority are used in
an arithmetic expression, calculations are carried out from left
to right; thus, the result of the expression at left is 6.

(Example 2)
10 A=60—6X8+2- Result is 14.
20 B= (B0—6) X8+2-- Result is 434.

(Example 3)
19 A=213 Assigns 2 to the 3rd power to A;result is 8.

String operations
String operations are used to create new strings of character data by concatenating (linking) two or
more shorter strings. The only operator which can be used in string operations is the ‘“+” sign.

(Example)
PRINT "ABC"+"DEF"J

Displays the character string “ABCDEF”.

26

2.2.5 Initial settings

Initial settings made when BASIC 1Z—013B is started are as described below.

Keyboard
1) Operation mode: Normal (alphanumeric)
2) Definable function keys

Do "RUN"+CHRS$ (13> [SHIET]+ Do 'CHRS$ ("
IRUTORR LI STY [SHIET I+ EPOTT 'DEEF KEY (
ST CAUTO! [SHIFT |+ D 'CONT"
e TRENUM" [SHIFT I+ O 'SAVE"
e "COLOR" [SHIET I+ eevereeeenes "LOAD"

Note A carriage return code is included in the definition of function key F1 .

® Built-in clock
The initial value set to system variable TI$ is "000000" .

® Music function
1) Musical performance tempo: 4 (moderato, approximately medium speed)
2) Note duration: 5 (quarter note J)

® Control keys and control characters
The control keys are keys which perform special functions when pressed together with the [CTRL | key.

Functions of these keys and their corresponding ASCII codes are as shown in the table below.

|Control codes]

CTRL+ | ASCIIcode Function
(decimal)

E 5 Selects the lowercase letter input mode for alphanumeric
characters.

F 6 Selects the uppercase letter input mode for alphanumeric
characters.

M 13 Carriage return (|CR]).

P 16 Same as the| DEL | key.

Q 17 Moves the cursor down one line ().

R 18 Moves the cursor up one line (&).

S 19 Moves the cursor one column (character) to the right (&).

T 20 Moves the cursor one column (character) to the left (&@&).

U 21 Moves the cursor to the home position (| HOME |).

\% 22 Clears the screen to the background color ([CLR]).

W 73 i Places the computer in the graphic character input mode
(| GRAPH).

X 24 Inserts one space (| INST |).

Y 25 Places the computer in the alphanumeric input mode.

m Other
The lower limit of the BASIC text area is set to address $SFEFF; this is the same as LIMIT MAX is
executed).

For initial printer settings, see the discussion of the printer.

28

2.3 Frequently Used BASIC Commands and
Statements
2.3.1 Program file input/output instructions

2.3.1.1 LOAD

(abbreviated format: LO.)

LOAD or LOAD ' filename"
This command loads the specified BASIC text file or a machine language file to be

linked with a BASIC program from cassette tape.
(See pages 14 and 20.)

Only BASIC text files and machine language programs can be loaded with this
command. When the file to be loaded is a BASIC text file, the current program is
cleared from the BASIC text area when the new program is loaded.

When loading a machine language routine to be linked with a BASIC program, the
LIMIT statement must be executed to reserve a machine language progam area
in memory. Further, the applicable machine language program file is executed as
soon as loading is completed if the loading address is inside that area. (In this case,
the BASIC text is not erased.)

The LOAD command can be used within a program to load a machine language
program file.

0000
Monitor

$1200
BASIC interpreter
BASIC text area
LIMIT ($9FFF)

($A000)

Machine language
area

$FEFF

Note: The lower limit of the BASIC text area shifts according to the size the program text loaded.

2.3. 1. VE .

............................... (abbreviated format: .)

This command assigns a file name to the BASIC program in the computer’s memory
and saves it on cassette tape.

Type in
SAVE “NAME" [CR].

Assign any name of
up to 16 characters.

Screen display (: RECORD . PLAY) Ready for recording!!
O

Isgfa:?gr?rder fPress the ‘RECORD] button.) Recording start!!

O

Screen display (WRITING NAME‘J Recording in progress.

G NAME is not displayed if no pro-

gram file name has been specified.

Screen display l READY ‘ Recording completed!!

This command saves only the BASIC program text (i.e., the program text displayed
by executing the LIST command); it does not save any machine language program in
the machine language area.

The file name specified is recorded on tape together with the BASIC text file;
specify any name desired using up to 16 characters. If no file name is specified,
the program is recorded without a file name; however note that this can make file
management difficult if more than one program is recorded on a single tape.

29

2.3. 1.3 VERIFY ... i it e (abbreviated format: V.)

VERIFY or VERIFY ' filename"

This command is used to confirm that programs have been properly recorded on
tape by the SAVE command. This is done by playing the tape and comparing the

program read with the program contained in memory. If both programs are the
same, “OK” is displayed;if they are different, "READ error" is displayed.

In the latter case, save the program again.

—_——— e —

VER' FY | want to check whether my program has

been properly recorded. . . P

Then use the VERIFY comand!

L (1) Rewind the tape.
{2) Typein VERIFY “NAME’
.. (“NAME"’ is not necessary if no
((3) L PLAY is displayed on z:fe:-ry file name has been assigned).

(4) Press the]PLAY! button on the data recorder

(’(ET)-FOUND E S This is displayed if the program finds another program
- before that which is to be verified. If that program has

\\a name, it is displayed where indicated by ‘“x x ¥ X
A\ b

Displayed when the program to be verified is found.

(6) FOUND “NAME”
(8) READ error, \ Zﬁ VERIFYING “NAME

READY Indicates that the tape file is being I
Indicates that the program wasq compared with the program in

not correctly recorded; re-record\memory.

it with the SAVE command.
R -

30

2.3.2 Text editing commands

2.3.2.1 AUTO ..

2.3.2.2 DELETE

Example

.............................. (abbreviated format: A.)

AUTO or AUTO Ls, n
Ls - Starting line number
n-------- Line number increment

This command automatically generates program line numbers during entry of
BASIC program statements.
(Example 1)

AUTO/

A Qfevvrrererneenneninnne J
(217, TET T T RO J
17 [T U TN J

(Example 2)
AUTO 3Jd, 5J

8@’@ J
3@’5
81@’ J

Automatically generates program line numbers with an increment of 5, starting with
line 300.

(Example 3)
AUTO 103J

(%1% LR R T TR PP PR PR J . . .

AP S PR Generates program line numbers with an increment

Y S J of 10, starting with line 100.

(Example 4)

AUTO, 20J

7 R TP TP OOR J . . .
Generates program line numbers with an increment

8@ J of 20 Startin WIth line 10

)% R LRI TTTPPPvpy J ’ g)

Note: The AUTO command is terminated by pressing | SHIFT |and| BREAK |.

.............................. (abbreviated format: D.)

DELETE Ls—Le-- Deletes program lines from Ls to Le.

DELETE —L - Deletes all program lines from the beginning of the
program to line Le.

DELETE Ls- -oreeeeeeeeees Deletes all program lines from line Ls to the end of
the program.

DELETE Ls «ooreeeereeeeees Deletes line Ls.

(Example 1)
DELETE 150-350J--- Deletes all program lines from 150 to 350.
(Example 2)

DELETE —1Q00J e Deletes all program lines up to line 100.
(Example 3)
DELETE 490—J-eeeeee Deletes all program lines from 400 to the end

of the program.

31

70 T T Pt (abbreviated format: .)

Ls indicates the starting line number and Le indicates
LIST Ls— ‘ the ending line number.
LIST —Le |
This command lists all or part of the program lines contained in the BASIC text
area on the display screen.

LI ST s Lists the entire program.

LIST —30J e Lists all lines of the program to line 30.

LIST 33— Lists all lines of the program from line 30 to the end.
LIST 30—5dJ---Lists all lines of the program from line 30 to line 50.
LIST 3 Lists line 30 of the program.

Output of the program list to the display screen can be temporarily interrupted by
pressing the space bar; listing is then resumed when the space bar is released. To
terminate list output, press the | BREAK | key together with the | SHIFT | key.

2.3.2.4 LIST/P ..o e (abbreviated format: L./P)
LIST/P <Ls—Le>
Ls - Starting line number
Le - Ending line number

This command lists all or part of the program in the BASIC text area on the printer.
The range of program lines to be listed is specified in the same manner as with the
LIST command described above.
Note: The angle brackets <. ..>>in the above indicate that the enclosed item is optional.

2.3.2.5 MERGE0 i (abbreviated format: ME.)

[] MERGE or MERGE "filename"

|: The MERGE command is used to read a program from cassette tape. When a pro-
gram is read using this command, it is appended to the program in memory. If
“filename’’ is omitted, the computer reads the first file encountered on the cassette
tape.

If any line numbers in the program read are the same as those of the program in
memory, corresponding lines of the program in memory are replaced with lines
of the program read.

2.3.2.6 NEW

NEW

The NEW command erases the BASIC text area and clears all variables. Execute
this command when you wish to clear the program in memory prior to entering
another program. This command does not erase the machine language area reserved
by the LIMIT statement.

Since the BASIC text area is automatically cleared by the LOAD command, it is
not necessary to execute this command before loading a BASIC program from
cassette tape.

2.3.2.7 RENUM

[Format]

Function

[Note |

............................ (abbreviated format: REN.)

RENUM Ln New line number
RENUM Ln eeeeeens Lo Old line number
RENUM Ln Lo, n n...... Increment

This command renumbers the lines of a BASIC program., When this command is
executed, line numbers referenced in branch statements such as GOTO, GOSUB,
ON ~ GOTO, and ON ~ GOSUB are also reassigned.

RENUM ..o Renumbers the lines of the current
program in memory so that they start
with 10 and are incremented in units
of 10.

................. Renumbers the lines of the current
program in memory so that they start
with 100 and incremented in units of 10.

RENUM 109, 50, 20 Renumbers lines of the current program

in memory starting with line number
50; line number 50 is renumbered to

RENUM 100

100, and subsequent line numbers are
incremented in units of 20.

The example below shows the result of executing RENUM 100, 50, 20 for a sample
program.

(Before renumbering) (After renumbering)
50 A=1 \ 199 A=1
60 A=A+1 120 A=A+
70 PRINT A \ 140 PRINT A
1090 GOTO 69! 160 GOTO 129

When specifying the new and old line numbers, the new line number specified must
be larger than the old line number. Note that an error will result if execution of this
command results in generation of a line number which is greater than 65535.

34

2.3.3 Control commands

2.3.. R ...

2.3 32 CONT

..

............................... (abbreviated format: .)

RUN or RUN Ls

Ls Starting line number

This command executes the current program in the BASIC text area.

If the program is to be executed starting with the first program line, just enter
RUN and press the |CR| key. If execution is to begin with a line other than that
the lowest line number, type in RUN Ls (where Ls is the line number at which
execution is to start) and press the[CR]key.

When this command is executed, the BASIC interpreter clears all variables and
arrays before passing control to the BASIC program.

............................... (abbreviated format: C.)

CONT

The CONT command is used to resume execution of a program which has been
interrupted by pressing [SHIFT]| + | BREAK | or by a STOP statement in the
program. This command can also be used to continue execution of a program which
has been interrupted by an END statement; however, in this case care must be taken
to ensure that lines following the END statement are not the lines of a subroutine.
Examples of situations in which the CONT command can and cannot be used are
shown in the table below.

Program continuation possible Program continuation not possible

® Program execution stopped by ® Before a RUN command has been

pressing [SHIFT |+[BREAK]. executed.

® Program execution stopped by a ® “READY” displayed due to an
STOP command. error occurring during program

execution.

® Program execution stopped by ® Cassette tape operation interrupted
pressing [SHIFT |+| BREAK | by pressing | SHIFT |+|[BREAK |.
while the program was a waiting
input for an INPUT statement. ® Program execution stopped during

execution of a MUSIC statement.

® Program execution stopped and
"READY" displayed after
execution of an END statement.

2.3. 3.3 BYE e (abbreviated format: B.)

2.3.3.4 KEY LIST

L]
I

BYE

This command returns control of the computer from BASIC interpreter 1Z-013B
to the monitor program in RAM. (The monitor commands are explained starting
on page 99.)

........................... (abbreviated format: K. L.)

KEY LIST
This command displays a list of the character strings assigned to the definable

functions keys.

KEY
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

LIST

KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY

READY

1O
2
3
s
(Y
()]
7
€S))
€D

"RUN"+CHRS$ (13)
LisT

"AUTO"

"RENUM"
'COLOR"
"CHRS$ ('

"DEF KEY ('
"CONT "

"SAVE'"

1@ ="LOAD"

35

2.3.4 Assignment statement

LET

Format

Function

LETv=e¢ or v=¢e
v ... Numeric variable or array element, or string variable or array element.

e ... Numeric expression (consisting of one or more constants, variables, or array
elements) or string expression (consisting of one or more constants, variables,
or array elements).

This statement assigns the value (numeric or string) specified by e to the variable

or array element specified by v. As shown in the examples below, LET may be

omitted.

T
19 A=19 19 LET
20 B=29 20 LET
30 A=A+B 30 LET
40 PRINT A 49 PRIN
50 END 50 END
RUN Y
S e The two programs above produce exactly

the same result.

The following are examples of incorrect use of the LET statement.

20 AE=A+B-- Invalid because different types of variables (string and
numeric) are specified on either sides of the “="" sign.

20 LOG (LK) =LK+ Invalid because the left side of the statement

is not an numeric variable or array element.

2.3.5 Input/output statements
Input/output statements are the means by which data is submitted to the computer for processing,
and by which the results of processing are output to the TV screen or printer.

2.3.5.1 PRINT

PRINT ’ ‘ variable l < ‘variable y >
constant sconstant | ---eee--
\ ? \ ‘ expressionl ‘\expression J

This statement outputs the values of variables, constants, character strings, or
expressions to the display screen. Values are displayed starting at the cursor’s
current location on the screen. (To move the cursor down one line on the screen,
execute the PRINT statement without specifying any variables, constants, or ex-
pressions.)

To simplify key input when entering this statement, a question mark (?) may
be typed instead of the word PRINT.

Numeric data is displayed by this statement in one of two formats: real number
format or exponential format.

Real number format
Numeric values in the range from 1 x 1078 to 1 x 10® are displayed in real
number format.

-1. 99909

63598/57

1o 101010101010, L 1x10-8
ejeleleieleiele

Exponential format
Numbers which cannot be displayed in real number format are displayed in
exponential format.

_3"415E+9 .. _031415)(109
5 BOTBE =D rrrererrrreareret e 0.513606 x 10-2°

A plus (+) or minus (-) sign is always displayed ahead of the exponent (the number
following “E””) of a number displayed in exponential format.

Some special methods of using the PRINT statement are shown below.

PRINT Clears the entire screen and moves the cursor to the home
position (the upper left corner of the screen).

PRINT Moves the cursor to the home position without clearing the
screen.

PRINT Moves the cursor one column to the right.
PRINT Moves the cursor one column to the left.
PRINT Moves the cursor up one line.

PRINT Moves the cursor down one line.

37

38

PRINT "eaO@AOA@A" - Clears the screen, then displays the character ‘A’ at the begin-
ning of the sixth line from the top.

Note: The vertical bars {...! in the format description indicate that any one of the enclosed items may
be selected.

To enter the special characters for cursor control, press the GRAPH | key; this places BASIC in the
graphic character input mode and changes the form of the cursor to ““‘E8”. Next, enter the characters
as follows.

............... Press the _CLR key.

............... Press the HOME key.
B Press the key.

............... Press the key
............... PreSS the key
............... Press the H key

After entering a special character, press the] ALPHA |key to return from the graphic character input
mode to the alphanumeric input mode.

2.3.5.2 PRINTUSING (abbreviated format: 7USIL.)

Format PRINT USING "format string" ; variable < variable . ..)

This statement displays data on the screen in a specific format. The format specifi-
cation consists of a character or string of characters in quotation marks, and is
specified immediately after the word USING as follows.

(1) Format specification strings for numeric values
(@) #
The number sign is used to specify the maximum number of digits to be
displayed. If the number of digits in the number displayed is smaller than
the number of # signs specified in “format string”, numbers are right-
justified in the field defined by that string.
(Example:)
10 A=123
20 PRINT USING “####” ; A
RUNJ
123

()

A period may be included in a format string consisting of # signs to specify
the position in which the decimal point is to be displayed. The number of
signs to the right of the decimal point specifies the number of decimal
places to be displayed.

(Example:)

10A=12.345 :B=6.789

20 PRINT USING "###.##" ;A

30 PRINT USING "###.##" ;B

RUNJ

. 12.34

= w6.79

3

Commas may also be included in “format string” to indicate positions in
which commas are to be displayed. Numbers are right-justified in the same
manner as when # signs are used alone.

(Example:)

10 A=6345123 : B=987324

20 PRINT USING "#, ###, ###" ; A

30 PRINT USING ' #, ###, ###" ;B

RUN J

6,345,123

987,324

(d) +and —

A plus (+) or minus (—) sign may be included at the end of ‘‘format string”
to specify that the sign of the number is to be displayed in that position
instead of a space. For instance, PRINT USING " ####+" will cause the sign
to be displayed immediately after the number. (PRINT USING "####—"
causes a minus sign to be displayed following the number if the number is
negative; if the number is positive, only a space is displayed in that position.)
Further, a plus sign may be specified at the beginning of a format string to
indicate that the number’s sign is to be displayed in that position regardless
of whether it is positive or negative.

(Examples)

PRINT USING “####+" ;—13

13—

PRINT USING " +###4#" ;25

(Note:)
Although a minus sign will be displayed if one is specified at the beginning
of the format string, it will have no relationship to the sign of the number.

39

(e) Xx
Specifying a pair of asterisks at the beginning of the format string indicates
that asterisks are to be displayed in the positions of leading zeros.
(Example:)
10 A=1234
20 PRINT USING " X X#### ; A
RUNJ
X X1234

() ££
Specifying a pair of pound signs at the beginning of the format string indi-
cates that a pound sign is to be displayed in the position immediately to the
left of the number.
(Example:)
10A=123
20 PRINT USING "£L£####" ; A
RUNJ
e £123

(8) 33
Specifying a pair of dollar signs at the beginning of the format string indi-
cates that a dollar sign is to be displayed in the position immediately to the
left of the number.

(h)y t1+1+1
Four exponential operators may be included at the end of a format string
to control display of numbers in exponential format.
(Example:)
I10A=51123
20 PRINT USING "##.### 11 11" ;A
RUNJ
w 5.112E+04
In this case, the first number sign is reserved for display of the sign of the
number.

(i) Extended list of operands
A list of variables may be specified following a single PRINT USING state-
ment by separating them from each others with commas or semicolons.
When this is done, the format specified in "format string" is used for display
of all resulting values.
(Example:)
I0A=53:B=6.9:C=7.123
20 PRINT USING "##.###" ;A,B,C
RUNJ
. 5.300..6.900 . 7.123

(2) Format specification for string values

@a) !
When the values being displayed are character strings, specifying an excla-
mation mark in ‘““format string” causes just the first character of the string
specified to be displayed.
(Example:)
10 A$ = "CDE"
20 PRINT USING "!" ; A$
RUNJ
C

& &
Specifying & ... &" in the format string causes the first 2 + n charac-
ters of specified string expressions to be displayed (where n is the number
of spaces between the two ampersands). If fewer than 2 + n characters
are specified in a string expression, characters displayed are left-justified
in the field defined by "& . &".
(Examples:)
10 A$ = "ABCDEFGH"
20 PRINT USING "& ..o &" 5 AS
RUNJ
ABCDEF
10 A$ = "XY"
20PRINTUSING "& .. &" ;A$
RUN J
XY

(3) String constant output function
When any character other than those described above is included in the format
string of a PRINT USING statement, that character is displayed together with
the value specified following the semicolon.
(Example:)
10 A=123
20 PRINT USING "DATA####" ; A
RUN J
DATA..123

(4) Separation of USING
Usually, PRINT and USING are specified adjacent to each other; however,
it is possible to use them separately within the same statement.
(Example:)
I0A=—-12:B=14:C=12
20 PRINT A; B; USING "####" ;C
Normal PRINT function USING function

RUNJ
—-12.14 .12

41

42

2. 3.

31

................................ (abbreviated format: .)

numeric variable numeric variable
INPUT ' string variable .or INPUT "character string" ; 1 string variable
| array element { array element
INPUT A INPUT "DATA A-:" ;A
INPUT BS$ INPUT "YES OR NO'" . B$
INPUT X INPUT"KEY IN ;X (5

INPUT is one of the statements which is used for entering values for assignment to
variables during program execution. Program execution pauses when an INPUT
statement is encountered to allow values to be typed in from the keyboard. After
input has been completed, the values are substituted into specified variables by
pressing the |CR| key, then program execution resumes.

(Example:)

1 INPUT A, B
20 C=A+B

3 PRINT C
4 END

When the program above is executed, a question mark is displayed and the cursor
blinks to indicate that the computer is waiting for data input; enter any arbitrary
number, then press the| CR|key. This assigns the value entered to variable A.

After doing this, the question mark will be displayed again. The reason for this
is that two variables (A and B) are specified in the INPUT statement on line 10,
but only one value has been entered (that which is substituted into variable A).
Enter another arbitrary number and press the |CR| key again; this substitutes the
second value entered into variable B and causes execution to go on to the next
line of the program. In the example above, subsequent lines add the values of A
and B, substitute the result into C, then display the contents of C.

Since the variables used in this example are numeric variables, the computer will
display the message ILLEGAL DATA ERROR if an attempt is made to enter any
characters other than numerics. The question mark is then redisplayed to prompt
the user to reenter a legal value (a value whose type is the same as that of the varia-
ble or array element into which it is to be substituted). Be sure to enter data whose
type matches that of the variable(s) specified in the INPUT statement.

During program execution, it may be difficult to remember what data is to be
entered when the question mark is displayed; therefore, prompt strings are usually
included in INPUT statements for display on the screen as a reminder. This is done
as shown in the program example below.

10 INPUT"A=" A
20 INPUT "'B=":B

SO PRINT"A+B=",A+B
40 PRINT"A—B=",A—B
B PRINT"AXB=",AXB
60 PRINT"A/B=",A/B
7 END

2.3.5.4 GET

Try running the program shown above. Inclusion of character strings in the PRINT
and INPUT statements provides a clear indication of the program’s operation.
Practical computer programs consist of combinations of sequences similar to the
one shown here. By combining commands, statements, and sequences in different
manners, you will soon find that there are many different methods of achieving
a desired result.

Voo, Numeric variable or array element, or string variable or array element.
When this statement is encountered during program execution, the BASIC inter-
preter checks whether any key on the keyboard is being pressed and, if so, assigns
the corresponding value to the variable specified in v. Whereas the INPUT statement
prompts for entry of data and waits until that data has been entered before resuming
execution, the GET statement continues execution regardless of whether any key
is being pressed.

Although data is substituted into variable v by the GET statement if any keys are
pressed when the statement is executed, the variable will be left empty (O for a
numeric variable or null for a string variable) if no keys are pressed.

With numeric variables, this statement allows a single digit (from 0 to 9) to be
entered; with string variables, it allows a single character to be entered.

This statement can be extremely useful when you want to enter data without
pressing the |CR| key, as is often the case with game programs.

(Example:)

10 PRINT "NEXT GO% ¢y OR N

20 GET AS$

3 |IF AS="Y" THEN bBd--- In the example above, execution
jumps from line 30 to line 50 if the
value of variable AS$ is "Y".

4@ GOTO 2@ Line 40 unconditionally transfers exe-
5 PRINT "PROGRAM END "cution to line 20.
60 END

This program displays the prompt "NEXT GO? (Y OR N)' and waits for input.
When the Y key is pressed, execution moves to line 50 and the program ends.
Until that time, however, execution loops repeatedly between lines 20 and 40.
Now delete lines 30 and 40 and try executing the program again. As you can see,
execution is completed immediately regardless of whether any keys have been
pressed.

Note: When GET statements are executed in succession, a routine should be includ-
ed between them to ensure that each is completed before going on to the
next. The reason for this is that key chatter (vibration of the contacts of
the key switches) may result in two GET statements being executed simul-
taneously.

43

44

2.3.5.5 READ DATA i i (abbreviated format: REA. ~ DA))

Function

READ numeric variable numeric variable | >
: string variable string variable E R ATILIILE
array element array element |
DATA [numeric constant (| numeric constant | >
‘ string Constant { String Constant |

Like the INPUT and GET statements, the READ statement is used to submit data to
the computer for processing. However, unlike the INPUT and GET statements,
data is not entered from the keyboard, but is stored in the program itself in DATA
statements. More specifically, the function of the READ statement is to read succes-
sive items of data into variables from a list of values which follows a DATA state-
ment. When doing this, there must be a one-to-one correspondence between the
variables of the READ statements and the data items specified in the DATA state-
ments.

(Example 1)
19 READ A, B,C. D
20 PRINT A;B;C:D

3 END

40 DATA 10, 100, BYJ, 69

RUN J

10 190 20 6Q o In this example, values specified in the

DATA statement are read into variables
A, B, C, and D by the READ statement,
then the values of those variable are
displayed.

(Example 2)

109 READ X$. A1, Z3$

20 PRINT X$:A1.2Z3$

3 END

40 DATA A, 1, C e As shown by the example below, string
data included in DATA statements does
not need to be enclosed in quotation
marks.

RUN J

ALTC The READ statement in this example

picks successive data items from the list
specified in the DATA statement, then
substitutes each item into the correspond-
ing variable in the list following the
READ statement.

(Example 3)

1 DIM A (2
20
3 PRINT A (@)
4 END

50 DATA 3,4, 5
RUNVJ

3 4

A Y A

(Example 4)

10 READ A
20 READ B
30 DATA X

READ AW . AU, A

2>

The READ statement in this program
substitutes the numeric values following
the DATA statement into array elements
A(0), A(1), and A(2), then the PRINT
statement on line 30 displays the values
of those array elements.

The example above is incorrect because
(1) a numeric variable is specified by the
READ statement on line 10, but the value
specified following the DATA statement
is a string value, and (2) there is no data
which can be read by the READ statement
on line 20.

45

46

2.3.5.6 RESTORE

[]
1

RESTORE or RESTORE Ln

is incremented to keep track of the next item of data to be read from DATA state-
ments. The RESTORE statement resets this pointer to (1) the beginning of the
first DATA statement in the program or (2) the beginning of the DATA statement

on a specified line.

109 DATA 1,2, 3
20 DATA "AA",
30 READ X,Y
40 READ Z.V$
RESTORE

READ A, B.C. D$. ES®
READ I,
RESTORE
READ M, N

RESTORE 269

READ O. P

DATA 1,2, 3, 4
DATA —1, —2, =3, —4

n BB n

An error will result if the number specified in Ln is the number of non-existent line.

(abbreviated format: ... RES.)

When READ statements are executed, a pointer managed by the BASIC interpreter

This function creates random

10
2J

X=33XRND (1>
FOR A=1 TO !

numbers (see page 72).

39
49
b5g
6J
7
84
1%
109
119
120
130
149

READ M$
PRINT TAB &) ;"
PRINT TAB (37) ;
NEXT A
Y=10XRND (1)
FOR A=1 TO Y
PRINT TAB (&) ; 'e";
PRINT TAB 37> '&"
RESTORE :GOTO 19
DATA" 4LN"
DATA" ZB&
DATA" NEF"

Ko "

Note: See page 62 for the TAB function and page 47 for the FOR

"L TAB XD

s MS$

NEXT

. NEXT statement.

2.3.6 Loop and branch instructions
2.3.6.1 FOR~NEXT (abbreviated format: F. ~ N.)

Function

FOR cv =iv TO fv < STEP sv >

NEXT <cv >

cv Control variable; a numeric variable or array element.

iv Initial value; a numeric expression.

fv Final value; a numeric expression.

sv Increment, or step value; a numeric expression (if omitted, 1 is assumed).
ThlS statement repeats the instructions between FOR and NEXT a certain number
of times.

19 A=Q

20 FOR N=g TO 10 STEP 2

30 A=A+1

49 PRINT "N=" N,

50 PRINT "A=" A

60 NEXT N

(1) In the program above, O is assigned to N as the initial value.

(2) Next, lines 20 through 50 are executed and the values of variables A and N
displayed.

(3) In line 60, the value of N is increased by 2, after which the BASIC interpreter
checks to see whether N is greater than 10, the final value. If not, lines following
line 20 are repeated.

When the value of N exceeds 10, execution leaves the loop and subsequent instruc-

tions (on lines following line 60) are executed. The program above repeats the loop

6 times.

If < STEP sv > is omitted from the statement specification, the value of N is increas-

ed by 1 each time the loop is repeated. In the case of the program above, omitting

< STEP sv > in this manner would result in 11 repetitions of the loop.

47

Example |

[Note |

2.3.6.2 GOTO

48

[Format]
[Function]

Example |

FOR . . . NEXT loops may be nested within other FOR . . . NEXT loops. When
doing this, inner loops must be completely included within outer ones. Further,
separate control variables must be used for each loop.

19 FOR X=1 TO 9—— FOR A=1 TO o

20 FOR Y=1 TO 98 s FOR B=1 TO 5

30 PRINT XXY: & FOR C=1 TO 7

4@ NEXT Y

50 PRINT 8

60 NEXT X NEXT
7@ END C.B. A

When loops C, B, and A all end at the
same point as in the example above, one
NEXT statement may be used to indicate
the end of all the loops.

Incorrect example:

FOR J=1 TO 19 FOR 1=1 TO 19
EFOR J=K TO K+S ILFOR J=K TO K+5

NEXT J LN EXT |
NEXT J
X Different control variables X Loops may not cross one
must be used in each loop. another.

The syntax of BASIC does not limit the number of levels to which loops may be
nested; however, space is required to store return addresses for each level, so the
number of levels is limited by the amount of available free space.

The CLR statement (see page 59) cannot be used within a FOR . . . NEXT loop.

................................. (abbreviated format: ... G.)

GOTO Ln

Ln Destination line number

This statement unconditionally transfers program execution to the line number
specified in Ln. If Ln is the number of a line which contains executable statements
(statements other than REM or DATA statements), execution resumes with that
line; otherwise, execution resumes with the first executable statement following
line number Ln.

10 N=1

20 PRINT N

3 N=N-+1

40 GOTO 20 oo Transfers program execution to line 20.
50 END

2.3.6.3 GOSUB ~

Function

Since execution of the program shown above will continue indefinitely, stop it
by pressing the [SHIFT |and | BREAK | keys together (this may be done at any
time to stop execution of a BASIC program). To resume execution, execute the
CONT 2 command.

]

The line number specified in a GOTO statement may not be that of a line included
within a FOR ... NEXT loop.

RETURN (abbreviated format: GOS. ~ RET.)
GOSUB Ln

RETURN

Ln ... Destination line number

The GOSUB statement unconditionally transfers program execution to a BASIC
subroutine beginning at the line number specified in Ln; after execution of the
subroutine has been completed, execution is returned to the statement following
GOSUB when a RETURN statement is executed.

GOSUB ~ RETURN statements are frequently used when the same processing is
required at several different points in a program. In such cases, a subroutine which
performs this processing is included at some point in the program, and execution
is branched to this subroutine at appropriate points by means of the GOSUB state-
ment. After the required processing has been completed, execution is returned to
the main routine by the RETURN statement.

49

The syntax of BASIC imposes no limit on the extent to which subroutines can be
nested (that is, on the number of levels of subroutine calls which can be made from
other subroutines); however, in practice a limitation is imposed by the amount of
free space in memory which is available for storing return addresses.

- B=5
0 B=5 8232
20 C=% G
30 GOSUB 100 S VAN
40 PRINT A (GOSUBI0O ——\
So 8—2 e e - _9 IOO
60 C=I10 : P a——
70 GOSUB 100 ; A=B+C
&0 PRINT A | T
% END ; —=RETURN)
(100 A=B+C L |
{10 RETURN

2
 GOSUB[00 ?

| PRINTA | 12 displayed.
&

2.3.6.4IF THEN0 iiiiiiiian... (abbreviated format: . .. IF ~ TH.)

IF e THEN Ln

IF e THEN statement

e: A relational expression or logical expression

Ln: Destination line number

IF . .. THEN statements are used to control branching of program execution accord-
ing to the result of a logical or relational expression. When the result of such an
expression is true, statements following THEN are executed. If a line number is
specified following THEN, program execution jumps to that line of the program if
the result of the expression is true.

If the result of the logical or relational expression is false, execution continues with
the program line following that containing the IF .. . THEN statement.

| IF | I Condition ’ I THENJ I Statement or line number J

50

FTHEN 100

e THEN GOTO or |F-

FTHEN PRINT or |F

FeTHEN 1=10:J=5@
FeTHEN INPUT

FTHEN GOSUB
FeTHEN RETURN
FeTHEN STOP
F-THEN END

|
|
|
|
|
|
| e THEN READ
|
I
I
I

A=5BX7/ assignment

e

|

Examples of logical and relational expressions

Operator Sample application Explanation
|F A=X THEN: | If the value of numeric variable A equals the
value of X, execute the statements following
THEN.
IF A$S='XYyZ'" If the contents of string variable A$ equal
THEN “XYZ”, execute the statements following
g THEN.
w > | A>X THEN:-- | If the value of variable A is greater than X,
= execute the statements following THEN.
< I = A<X THEN:- | If the value of variable A is less then X, execute
. the statements following THEN.
<>or ><| | F A<>X THEN:-- | If the value of variable A is not equal to X,
execute the statements following THEN.
Mi>=or=> |F A>=X THEN:- | If the value of variable A is greater than or
equal to X, execute the statements following
THEN.
<=or =<| |F A<=X THEN:-- | If the value of variable A is less than or equal to
X, execute the statements following THEN.
g X | FCA>XOX(B>Y) If the value of variable A is greater than X and
THEN:--- the value of variable B is greater than Y, execute
& the statements following THEN.
- + | FCA>XO+(B>Y)D If the value of variable A is greater than X or
2 i THEN:-- the value of variable B is greater than Y, execute
3 the statements following THEN.

51

Precautions on comparison of numeric values with BASIC 1Z-013B, numeric values
are internally represented in binary floating point representation; since such values
must be converted to other forms for processing or external display (such as in
decimal format with the PRINT statement), a certain amount of conversion error
can occut.

For example, when an arithmetic expression is evaluated whose mathematical result
is an integer, an integer value may not be returned upon completion of the opera-
tion if values other than integers are handled while calculations are being made.
Be especially sure to take this into consideration when evaluating relational expres-
sions using ‘‘="".

This need is illustrated by the sample program below, which returns FALSE after
testing for equality between | and 1/100 X 100.

10 A=1./100%x100

2 IF A=1 THEN PRINT 'TRUE':GOTO 49
3@ PRINT "FALSE'

4@ PRINT "A=';A

50 END

RUN
FALSE
A—1

The fact that both “FALSE’ and “ A = 1" are displayed as the result of this pro-
gram showns that external representation of numbers may differ from the number’s
internal representation.

Therefore, a better method of checking for equality in the program example above
is as follows.

20 |IF ABS (A—1) < .1E—8 THEN PRINT "TRUE
GOTO 49

2.3.6.5 IF~GOTO i, (abbreviated format: IF ~ G.)

Function

Example |

IF e GOTO Lr

e: Relational expression or logical expression

Lr: Destination line number

This statement sequence evaluates the condition defined by relational or logical
expression e, then branches to the line number specified in Lr if the condition is
satisfied. As with the IF . .. THEN sequence, IF ~ GOTO is used for conditional
branching; when the specified condition is satisfied, program execution jumps to
the line number specified in Lr. If the condition is not satisfied, execution continues
with the next line of the program. (Any statements following IF ~ GOTO on the
same program line will be ignored.)

19 G=0:N=J

20 |INPUT "GRADE=" ;X

30 I F X=999 GOTO 109

a4 T=T+X : :N=N+1

50 GOTO 22U

10909 PRINT "—————m————— "

11 PRINT TOTAL: " T

120 PRINT NO. PEOPLE: " ;N

130 PRINT AVERAGE : " ; TN

140 END

2.3.6,6 IF~GOSUB i, (abbreviated format: IF ~ GOS.)

Function

Example

IF ¢ GOSUB Lr

e: Relational expression or logical expression

Lr: Destination line number

This statement evaluates the condition defined by relational or logical expression e,
then, if the condition is satisfied, branches to the subroutine beginning on the
line number specified in Lr. Upon completion of the subroutine, execution returns
to the first executable statement following the calling IF ~ GOSUB statement;
therefore, if multiple statements are included on the line with the IF ~ GOSUB
statement, execution returns to the first statement following IF ~ GOSUB.

19 |INPUT X= "3 X

20 |F X<g GOSUB 190 :PRINT"X<J

3 ITF X=g GOSUB 200 :PRINT " X=J

4 |ITF X>0 GOSUB 3JJ:PRINT"X>J

50 PRINT "——m————iiiiii i — — — — — — —

6 GOTO 19

1090 PRINT X PROGRAM L INE 1909 RETURN
200 PRINT X PROGRAM L INE 200 :RETURN
30T PRINT X PROGRAM L INE 399U : RETURN

53

54

2.3.6.7 ON~GOTO ittt (abbreviated format: ON~G.)

ONe GOTO Lry <,Lr, ,Lrs,..... , Lri >

e ... Numeric variable, array element, or expression

Lri . List of destination line numbers

This statement branches execution to one of the line numbers following GOTO,
depending on the value of e.

The value of e indicates which of the line numbers following GOTO is to be used
for making the branch; in other words, if e is 1, execution branches to the first
line number in the list; if e is 2, execution branches to the second line number
in the list; and so forth. For example:

100 ON A GOTO 200, 300, 400, HbOoo
Destination when ‘ l

Ais1
Ais?2
Ais3
Ais4

10 INPUT "NUMBER" ; A

20 ON A GOTO by, 69, 70
50 PRINT XXX":GOTO 19
6d PRINT YYY":GOTO 19
7 PRINT zzz":GOTO 19

RUN If a decimal number such as 1. 2 is
NUMBER < 1 specified, the decimal portion is truncated
X X X before evaluating the statement.
NUMBER <

YYY

NUMBER < &

When the value of e in an ON~GOTO statement is greater than the number of
line numbers specified following GOTO, execution continues with the next line
of the program.

This also applies if the value of e is less than 1 or negative.

Further, if the value of e is a non-integer, the decimal portion is truncated to obtain
an integer value before the statement is evaluated.

2.3.6.8 ON~GOSUB

! Format

Function

............................... (abbreviated format: ON~GOS.)
ON e GOSUB Lr; <,Lr,,Lrs,..... , Lri >

e ... Numeric variable, array element, or expression

Lri . Destination line numbers

This statement branches execution to the subroutine beginning on one of the
line numbers following GOSUB, depending on the value of e. Operation of this
statement is basically the same as with the ON~GOTO statement, but all branches
are made to subroutines. Upon return from the subroutine, execution resumes
with the first executable statement following the ON~GOSUB statement which
made the call.

Let’s try using the ON~GOSUB statement in a scheduling program. The most
important point to note in the following program is that, a subroutine call is made
at line 180, even though line 180 itself is part of a subroutine (from line 170 to
190) which is called by line 90. Subroutines can be nested to many levels in this
manner.

19 A$S=" ENGL ":B$=" MATH ".:C$=" FREN "
20 D$=" SC| "IES$S=" MUS "IES=" GYM

3 G$=" HIST " :HS$S=" ART "I 1$=" GEOG "
40 Js=" BUS LK=" H RM "IPRINT'@®"

5 INPUT "WHAT DAY<®?" ; X$

od FOR Z=1 TO 7:¥$=MIDS$ ("SUNMONTUEWEDTHU
FR SAT", 14+#3X(Z—1), 3> I F Y$=X$ THEN X=Z
73 NEXT Z

89 FOR Y=g TO 4:PRINT TABMmB+GXY);Y+1;
90 NEXT Y :PRINT

100 ON X GOSUB 180,120,130, 14J, 150,16, 17J
119 PRINT :GOTO b5Y

120 PRINT"MON " A$ B D G K$:RETURN
130 PRINT'"TUE ":B$ E$S H$ HS DS :RETURN
140 PRINT'"WED ":C$ C$ |I$ AS FS:RETURN
150 PRINT'"THU " .:B$ D$ F$ G ES:RETURN
160 PRINT"FRI "; A O 1$ CH CH:RETURN
170 PRINT'"SAT ":B$ G DE K$ RETURN

180 FOR Y—=1 TO 6

190 ON Y GOSUB 120, 134, 149, 150, 164, 17J
200 PRINT :NEXT Y

210 RETURN

55

56

2.3.7 Definition statements

2.3.7.1 DIM

Example

2.3.7.2 DEFFN

DIMa, (i;)<,a; (i2), -+ v vvvrrrnrnnnnnnn ai (im) >
DIM b, (i;,j1)<,by (2,32)s «vvvvveeeea ... bi (in, jn) >

al e 1-dimensional array name (list)
bi ... 2-dimensional array name (table)
im,in,jn........... Dimensions

This statement is used to declare (define) arrays with from one to four dimensions
and to reserve space in memory for the number of dimensions declared (DIM:
dimension). Up to two characters can be specified as the array name, and subscripts
of any value may be specified to define the size of dimensions; however, the number
of dimensions which can be used is limited in practice by the amount of free
memory available.

(Examples:)

19 DIM A (1D

20 FOR J=@ TO 199
30 READ A WD

4 NEXT J

50 DATA B, 39. 12, -

(Examples:)

19 DIM AS (1O ,B8 (1), C3 (1)

20 FOR J=g TO 1 : READ A$ (UL, B$ W
3 CH U =AU +" "+BS (WD

40 PRINT A (WD . B W, CH W

50 NEXT J

6d END

/72 DATA YOUNG. GIRL, WHITE, ROSE

Execution of the DIM statement sets the values of all elements of declared arrays
to O (for numeric arrays) or null (for string arrays). Therefore, this statement should
be executed before values are assigned to arrays.

Different names must be used for each array which is declared; for example, the
instruction DIM A(5), A(6) is not a legal array declaration.

All array declarations are nullified by execution of a CLR statement (see page 59)
and a NEW statement (see page 32).

DEFFNf (x)=¢

f ... Name assigned to the function being defined (one uppercase letter from A to Z)
X ... Argument (variable name)
e ... Numeric expression (constant, variable, array element, or function) or pre-

viously defined user function

The DEF FN statement is used to define user function FN f (x). Such functions
consist of combinations of functions which are intrinsic to BASIC.

2.3.7.3 DEF KEY

Function

DEF FENA (X) =2XX12+3%XX+1 - Defines 2X2 + 3X + 1 as FNA
(X).

DEF FNE (V) =1/72KMXV T 2 coeeereerneennes Defines 1/2MV? as FNE (V).

109 DEF FNB (XD =TAN (X—PAI| (1) &)

20 DEF FEND (XD =FNB (X)/ C+X--Defines function FNB using the
function defined on line 10.

(Incorrect definitions)

10 DEF FNK (X)=8IN (X/3+PAICT /4, FNL (XO=EXP(—X12/K)

. ... Only one user function can be defined by a single DEF FN statement.

Find the kinetic energy of a mass of 5.5 when it is imparted with initial accelerations
of 3.5,3.5x 2,and 3.5 x 3.

10 DEF FNE (V) =1/2XMXV 12

20 M=5. 5:Vv=3. 5

30 PRINT ENE (V) , FNE (VX2) , FNE (VX3
4 END

All user function definitions are cleared when the CLR statement and the NEW
statement is executed.

DEF KEY (k) = S$

k...... Definable function key number (1 to 10)

S§..... Character string (up to 15 characters).

Character strings can be assigned to any of the ten function keys to allow strings
to be entered at any time just by pressing a single key. This statement is used to
define such strings and assign them to the definable function keys. Function key
numbers 1 to 5 are entered just by pressing the corresponding key at the top left
corner of the keyboard; keys 6 to 10 are entered by pressing the [SHIFT | key
together with the corresponding key. The function key number (1 to 10) is specified
in k, and the string or command which is to be assigned to the key is specified
exactly as it is to be entered in S$. Execution of the DEF KEY statement cancels
the previous definition of the definable function key.

No other statement can be specified after a DEF KEY statement on the same line.

(Example:)
10 DEF KEY (M) =" | NPUT " -eeeereeemenees Defines key [F1] as INPUT
20 DEF KEY (2) ="RUN"+CHR$3):-- Defines [F2] as RUNJ

Note: CHRS$ (13) indicates the ASCII code for|CR|, and specifying it together with the string assigned to
a definable function key has the same effect as pressing the |CR| key. (See the description of the
CHRS$ function on page 78 and the ASCII code table on page 154.)

57

2.3.8 Remark statement and control commands
2.3.8.1 REM
Format REM r

r Programmer’s remark

REM is a non-executable statement which is specified in a program line to cause

the BASIC interpreter to ignore the remainder of that line. Since REM statements
are non-executable. they may be included at any point in the program without
affecting the resuits of execution. REM statements are generally used to make a
program easier to read, or to add explanatory notes to a program.

Multiple statement program lines

When more than one statement is included on a single program line, each statement must be
separated from the one preceding it by a colon (:). Operation of the BASIC interpreter is
generally the same in such cases as when the same statements are specified on different lines.
For example, the two programs below produce exactly the same result.

Note: Also note that program operation may differ when multiple statement lines are used as

58

A=5H ‘
B=8

C=AX%XB
PRINT C

10 A=5:B=8:C=AXB:PRINT C

shown below,

19 INPUT A

20 B=Y

3 IF 99<A THEN B=1
40 PRINT B

50 END

This program displays 1 if the value entered at
line 10 is greater than or equal to 100, and O
if the value entered is less than 100.

19 INPUT A:B=@:IF 99<A THEN B=1:PRINT B
20 END

This program displays 1 if the value entered.is greater than or equal to 100, but nothing
at all if the value entered is less than 100. The reason for this is that statements follow-
ing THEN on line 10 are not executed if the IF condition is not satisfied.

2.3.8.2 STOP ..

Example

2.3.8.3 END . ..

2.3.8.4 CLR

.................................. (abbreviated format: S.)

STOP

Temporarily stops program execution, displays BREAK and READY, then waits for
entry of executable commands in the direct mode.

The STOP statement is used to temporarily interrupt program execution, and
may be inserted at as many points and locations in the program as required. Since
execution of the program is only interrupted temporarily, the PRINT statement can
be used in the direct mode to check the values stored in variables, after which
execution can be resumed by entering CONT J .

19 READ A. B

20 X=AXB
3 STOP
40 Y=A/B

50 PRINT X, Y
g DATA 15. 5
79 END

RUN

BREAK IN 39

Unlike the END statement, no files are closed by the STOP statement. (See page 68
concerning procedures for opening and closing of files.)

.................................. (abbreviated format: E.)

END

The END statement terminates program execution and returns the BASIC inter-
preter to the command mode for input of direct mode commands. When this state-
ment is executed, READY is displayed to indicate that the BASIC interpreter is
ready. After the END statement has been executed, execution cannot be resumed by
executing the CONT command even if there are executable statements on program
lines following the END statement.

All open files are closed when the END statement is executed. (See page 68 concern-
ing procedures for opening and closing files.)

Differences between the STOP and END statements

Screen display Files Resumption of execution
sToP BREAK | N XXXX | Open files are | Can be resumed by
READY not closed. executing CONT.
END READY Open files are Cannot be resumed.
closed

CLR

The CLR command clears all variables and cancels all array definitions. All numeric
variables are cleared to 0, and null strings (" ") are placed in all string variables;
arrays are eliminated entirely by nullifying all previously executed DIM statements.
Therefore, DIM statements must be executed to redefine the dimensions of required
arrays before they can be used again.

60

2.3.8.5 TI$

Example

The CLR command also cancels all function definitions made with the DEF FN
statement; therefore, it is also necessary to reexecute DEF FN statements to rede-
fine such functions before they can be used again.

CLR statements cannot be included in a FOR~NEXT loop or BASIC subroutine.

TI$ "hh mm ss"

TIS is the name of the system string variable which contains the time of the com-
puter’s built-in clock.

This built-in variable is automatically incremented once each second, and the six
character string contained in this variable indicates the hour, minute, and second,
with two characters used for each. For example, if the string contained in TI$ is
"092035", the time is 9:20:35 A. M.

Variable TI$ is automatically set to 00:00:00 when BASIC is loaded into the com-
puter. To set the current time of day, use the string assignment statement. For
example, the clock can be set to 7:00:00 P. M. by executing the following.

TI$ = "190000"

The clock is set to 7:00:00 and then restarted automatically when the CR key
is pressed.

The digits specified for the hour must be in the range from 00 to 23, and those
specified for the minute and second must each be in the range from 00 to 59.
The following program displays the current local time in various cities of the world.
19 PRINT "K'

20 DIM CE U1, DD, EUD, TS 1D

30 FOR 1=1 TO 19:READ C$ (1), D Cl) :NEXT |
4 PRINT"ENTER NEW YORK TIME HOUR, MINUT
E. SECOND) "

5 INPUT BS$S:TIS=BS:PRINT"@R"

60 PRINT '"B" : TS 1> =T1%

70 FOR =1 TO 19

80 E (1) =VAL (LEFTS(TH 1>, 2> +D CI)

W IF E () =24 THEN E (1) =9

100 |TF E (1) <@ THEN E (1) =24+E& (1)

1190 TH) =STRBE D) +RIGHTS (TH (1), 4

120 IF LENTS (1)) =5 THEN TS d>="g"+T$ I
130 PRINT C$ (1) ;TAB B ;LEFTS TS 1D, 25
14 PRINT" :";MIDS(TH IO, 3, 2 ;" " RIGHTS$ (
T (1O, 25

150 NEXT | :GOTO 6U

16 DATA NEW YORK, @, MOSCOW, 8, R1O DE JANE
| RO, 2

170 DATA SYDNEY, 15, HONOLULU, —5, LONDON, b,
CAIRO, 7

180 DATA TOKYO, 14, SAN FRANC I SCO, -3, PARIS
, 6

2.3.8.6 CURSOR

Example

The TI$ variable cannot be specified in an INPUT statement. Further, after the time
changes from 23:59:59 to 00:00:00, the time ““00:00:01” is not displayed.

................................. (abbreviated format: CU.)

CURSOR X,y
X ... X coordinate (0 to 39)
y ... Y coordinate (O to 24)

This command is used to move the cursor to a specified position on the TV (display)
screen, and can be used together with the PRINT and INPUT statements to display
characters in any desired location.

In the system of screen coordinates used, the columns of the screen are numbered
from left to right, starting with O on the left side and ending with 39 on the right
side; lines of the screen are numbered from top to bottom, with O indicating the
top line of the screen and 24 indicating the bottom line. Thus, the cursor can be
moved to any desired position in the range from (0, 0), which indicates the top
left corner of the screen, to (39, 24) indicates the bottom right corner.

The following program moves an asterisk (k) about on the screen as the cursor
keys are pressed.

109 X=0:Y=0

15 PRINT"®R'

20 CURSOR X, Y:PRINT"X";

30 GET A$:IF A$="" THEN 30

4 CURSOR X, Y IPRINT" "

50 IF A$="BR THEN Y=Y—-1 :REM UP
60 |IF A$="B THEN Y=Y+1 :REM DOWN
79 1F AS="R THEN X=X—-1 :REM LEFT
8 IF As="R THEN X=X+1 :REM RIGHT
ST |IF X<UY THEN X=9

1009 | F Y<O THEN Y=

1190 |F X>38 THEN X=38

120 |F Y>24 THEN Y=24

150 GOTO 29

If the value specified for either X or Y is other than an integer, it is converted to
an integer by truncating the decimal portion before the cursor is moved.

Other methods of moving the cursor which are used together with the PRINT
statement include the TAB and SPC functions. (See page 62 for a description of

the SPC function.)
0 X

0

10

CURSOR 8.10

2. 3.
TAB (x)

X ... A numeric expression

Function The TAB function is used together with the PRINT statement to move the cursor
to the character position which is x + 1 positions from the left side of the screen.
(This is referred to as space tabulation.)

Example PRINT TAB @ ; "XYZz" TAB (1 ; "ABC"

0123456789012 @Not actually displayed. |

I I I I'_]

Note Tabulation can only be used to move the cursor to the right; therefore, nothing
happens if this function is used together with the PRINT statement when the cursor
is already to the right of the character position specified in (x).

(Example:)
PRINT TAB (b)) ; "XYZ" ; TAB (B) ; "ABC
01234567890

LouwuuXYZABC
2.3.8.8 SPC
Format SPC (n)
n... A numeric expression
Function Use together with the PRINT statement, this function outputs a string of n spaces

and thus moves the cursor n character positions to the right of its current position.

Example (Example 1)
PRINT SPC (5 ;"ABC"

01234567

(Example 2)
The following example illustrates the difference between the TAB and SPC func-
tions.

19 < TAB 2 ; "ABC" ; TAB (& ; "DEF"
20 ¢ SPC(2) ; "ABC" ;SPC (B | "DEF"
01234567890123
oABCLDEFLLL LG
LABCLLLOoLLDEF

2.3.8.9 SET, RESET

These statements are used to turn dots on or off at a specified position on the screen.

fying the Y coordinate.

(RESET)

Format Function Range of X, Y coordinates
SETX, Y<,C>
X ... Numeric expression speci- Turns on the dots at
fying the X coordinate. the screen coordinates 0<X<79
Y- ... Numeric expression speci- specified by X and Y. 0<Y <49
fying the Y coordinate. (SET)
C ... Color code (0O'to 7).
)%ESETIEI(I;;eriC expression speci- Turns off the dots at
Uk ine the X coordinate the screen coordinates 0<X<79
Y M e S+ | specified by X and Y. 0<Y<49
... Numeric expression speci-

When a color code is specified, the color of the dots displayed by the SET statement is as follows.

0 Black

(1 Blue

2) Red

3) Purple

4 Green

5) Light blue
6) Yellow
(7 White

Since four dots are turned on simultaneously by the SET statement, changing the color of any one

dot in that four dot group also causes the color of the other dots to change.

The SET and RESET statements can be use to produce a wide variety of interesting effects; some

examples are introduced below.

1. Turning on one dot on the een.

10 PRINT"@®"
20 X=79:Y=49

30 SET X, Y., 2 <—Tumsdotson.)
A0 RESET X, Y < = Turns dots off.

g GOTO 3Y
2. Coloring the entire screen white.

19 PRINT '®R"

20 FOR X=0 TO /9
3 FOR Y=g TO 49
40 SET X, Y, 7/

50 NEXT Y, X

6y GOTO 19

3. Drawing a rectangle around the edge of the screen.

19 PRINT'"®"

20 FOR X=0 TO 79
30 SET X, O

40 SET X, 49

50 NEXT X

60 FOR Y=0 TO 49
79 SET 4.Y

8J SET 79, Y

S NEXT Y

100 GOTO 109

4. A program which simulates the ripples produced by throwing a pebble into a pond.

10 X=40:Y=25

20 DEF FNY (Z) =SQR (RXR—zZXZ)
3 PRINT'"®" :SET X, Y
4 R=R+5

50 FOR Z=g TO R

60 T=FNY ()

79 SET X+Z, Y+T

80 SET X+Z.Y-T

QU SET X—-Z, Y+T

100 SET X—=Z,Y—=T

119 NEXT Z

120 1F R<>25 THEN 49
130 GOTO 139

5. A program which simulates a ball bouncing off four walls.

109 PRINT"'@®"

20 FOR X=g TO 79

30 SET X, J:SET X, 49

40 NEXT X

b FOR Y=g TO 49

6y SET 4, Y:SET 79,Y

7 NEXT Y

8 X=79XRND (1) :Y=49XRND (1>
o A=1.:8B=1

1090 SET X, Y

110 1F X<2 GOsSuUB 20d

120 1R X>78 GOSUB 200

130 1F Y<2 GOsSuUB 2by

140 1F Y>48 GOSUB 2by

190 RESET X, Y

160 X=X+A:Y=Y+B:GOTO 10U
208 A=—A MUSIC"+AJ" . RETURN
250 B=—B MUSIC"AQ": RETURN

As to JOY command, refer to the instruction manual of Joy Stick.

2.3.9 Music control statements

This section discusses the MUSIC and TEMPO statements which are used to control performance of
music by the computer. As its name implies, the TEMPO statement specifies the speed with which music is
performed. The notes (including half notes and upper and lower octaves) and duration of notes produced
are controlled by the MUSIC statement.

Tempo:

Melody:

Note specification I octaveJ | # (sharp) ’ L note name | | duration I

Specified with TEMPO as a numeric variable or constant with a value from
1 (slow) to 7 (fast).

Specified with MUSIC as a string variable consisting of a collection of
notes.

2.3.9.1 MUSIC

Discussion

(abbreviated format: MU.)

MUSIC X§
X$... String data

Automatically performs music.

This statement outputs the melody or sound effects specified by the character string
or string variable of its argument to the speaker. The speed with which this melody:-
is played is that which is specified with the TEMPO statement (see page 67).

The format for specification of each note is as follows:
< octave specification > < # (sharp) > note name < duration >

The plus or minus signs are used to specify the octave. If neither is specified, the
middle range is assumed.

The three ranges of sounds which can be output by the computer are as shown in the
figure below. For example, the C notes (“do’ on the 8-note C scale) indicated by
the black dots below are differentiated from each other by the octave specification.

Low C

HighC +C

Ll
==
]
i —

Low Middle High
range | L range | L range

-

— No specification +

65

66

Note specification
The symbols used to specify notes within each range are as follows:

CDEFGAB # R
The relationship between the 8-note scale (do, re, mi, fa, so, la, ti, do) and these
symbols are as shown below. The sharp symbol (#) is used to specify half notes.
Silent intervals are specified with ““R”’.

miffa soll ti

doj re_ Solla

| | 1]

c|D|E F|G|A|B

HC#D #FH#G#A R —Rest

Duration specification

The duration specification determines the length of the specified note. The dura-
tions from 1/32 to whole are specified as numbers from 0 to 9. (When R is specified,
this determines the length of the silent interval.)

A A A A S S S

Dotted Dott te Dotte
1/32rest 1/16 rest rest 1/8 rest est V/ATESt g4 o 1/2 rest 1/2 rest

S N A)

1/32 note 1/16 note ?/ﬂ“er?ote 1/8 note T2~ 1/4 note ?&‘fg’te 1/2 note 72"~ Whole note
O 1 2 3 4 5 6 7 8]

When sucessive notes have the same duration, the duration specification can be
omitted for the second and following notes. If no duration is specified for the first
note, 1/4 notes are assumed.

Sound volume
The volume of sound produced cannot be controlled by the program, but can be
adjusted with the computer’s external volume control.

Let’s try assigning a string to SR$ to play the theme from the beginning of
Beethoven’s Serenade in D major (Opus 25).

SRE="+A3+#F1T+A+B3A+D+#F1A+D3A+D
+#F1TA+D3+#F1A+D+E+H#F+GCHAZSRY

!
S

E ==t
S :

o
I
I

-

M
T
T
-::;:
11$
s

2.3.9.2 TEMPO

........................... (abbreviated format: TEM.)

TEMPO x

X...

Numeric expression (1 to 7)

This statement sets the tempo with which music is played by the MUSIC statement.
If this statement is not executed, TEMPO 4 is assumed for execution of MUSIC

statements.
30 TEMPO 1 Slowesttempo (Lento, adagio)
30 TEMPO 4 Medium tempo (Moderato);
four times as fast as TEMPO 1.
3 TEMPO 7 Fastesttempo..... (Motto allegro, presto);

10
2

39
49
S1%]
S1%]

V%)

seven times as fast as TEMPO 1.

REM Chopin’s mazourka

MMP="A3" :M1$="AB+H#C3+D+E+#F+C+aFO+G+ #
FA4+E3+D+#CB"
M2F="A3+D2RIZ+D1+E24+D+#CI3IB+#C/+#C3 "
M3I$="A3+#C2RI+#C1+02+#CB3A+D7+D3 "
TEMPO 3

MUSIC MM$, M1$E, M2, M1 B, M3, M1 E, M2F, M1
$, M3$

END

67

2.3.10 Data file input/output commands

Although the SAVE and LOAD commands can be used to write or read program text, other commands
are used to record or read the various types of data which is handled by programs. These commands
are described below.

Format Function
Opens a data file on cassette tape
WOPEN . prior to writing data to it. This
(abbreviated W.) WOPEN < file name > command also assigns a name to
the data file.
PRINT/T PRINT/T d, <,d,,ds ,...dn> Writes data to .cassette tapg in the
(abbreviated ?/T) dn Numeric data or string data same format as it would be displayed
; B by the PRINT statement.
Searches for the data file on cassette
ROPEN . tape with the specified name and
(abbreviated RO.) ROPEN < file name > opens that file to prepare for reading
data from it.
Used to input data from a cassette
file and pass it to the program (in a
(aberl:\E,ig’;le:éTI /T) \IIEPUT/]IR\%%;;J éézef c;r. Strl‘IIlI; iata manner similar to that in which the
’ INPUT statement is used to input
data from the keyboard).
CLOSE Statement which closes cassette data
(abbreviated CLO.) CLOSE files after writing or reading has
abbreviate : been completed.

Unlike the LOAD and SAVE commands, no messages are displayed by execution of the WOPEN and
ROPEN statements.
If display of a message is desired, use the PRINT statement to define one in the program.

Note: When an ordinary cassette recorder is used, it may not be possible to record data files even if no
problems are encountered in storing or reading programs with the SAVE and LOAD commands.

(Example 1)

The following program writes the numbers from 1 to 99 on cassette tape.
109 WOPEN "DATA'

20 FOR X=1 TO 99

30 PRINTT X

40 NEXT X

50 CLOSE

6Jd END

(Example 2)

The following program reads data from the data file prepared in Example 1 above. Before execut-
ing this program, be sure to rewind the cassette tape.

19 ROPEN "DATA'!

20 FOR X=1 TO 99

30 INPUT/T A

a4 PRINT A

50 NEXT X

60 CLOSE

79 END

(Example 3)
The following program creates a data file consisting of string data.

19
24
39
49
1%
S1%]
V%
89
o))
18%)%]
119
120

DIM N$ (5
N$ (1) ="BACH"
N (2) ="MOZART"
N$ (3) ="BEETHOVEN"
NS (4) ="CHOP IN"
NS (5 ="BRAHMS"
WOPEN"GREAT MUSICIAN?
FOR J=1 TO b
PRINT/T N$ (U
NEXT J
CLOSE
END

(Example 4)
The following program reads string data from the file created in Example 3. Before executing this
program, be sure to rewind the cassette tape.

200
2149
229
234
249
259
264
279

It is also

DIM M$ (5
ROPEN "GREAT MUSICIAN'
FOR K=1 TO 5

INPUT T M$ KD
PRINT M$ (KD
NEXT K

CLOSE

END

possible to create data files which include both numeric and string data. However, since an

error will occur if the type of data read does not match the type of variable specified in the INPUT/T
statement, it is generally best to limit files to one type of data or the other.

Note: It is possible to omit the file name when opening a sequential file with the WOPEN statement.
However, this is likely to result in errors if many files are included on the same tape; therefore,

it is

recommended that you make a habit of assigning file names to sequential data files.

70

The following program records student grades in English, French, science, and mathemetics to a

sequential data cassette file.

1<
20
3
49
50
1%
7
8J
oY
100
119
120
139
149
159
16d
179
180
190

INPUT"ENTER NO. OF STUDENTS" N
DIM N& (N, KM, EMND

DIM RN, S N

A$="GRADE IS"

FOR X=1 TO N

PRINT:PRINT "STUDENT NO. " ;X
INPUT"ENTER STUDENT NAME : NE OO
PRINT ENG ";A$S; : INPUT K OO

PRINT FREN" ;AS; : INPUT E OO

PRINT "SCIlI ", A$; : INPUT R (XD

PRINT "MATH" ; A$%; : INPUT S (XD

NEXT X

WOPEN "GRADES' <~ Opens data file “GRADES” for output on cassette tape.)
PRINTT N <)#Writes the number of students in the class to the file.]

FOR X=1 TO N

Writes grades
PRINT/T N$ (X0 K X),E O, RGO, S O <£[to ites grades|
NEXT X
CLOSE <FCloses the cassette file.)
END

The following program reads the grade data written to the cassette file by the program shown above,
then calculates displays the grade average for each student and class averages for each of the various

subjects.
19
2
3y
49
5
814
Va%)
89
o))
199
119
129
139
149
159
169
170
189
190
200
210

23J

249,

250

ROPEN"GRADES" Opens cassette file “GRADES” for input. |
INPUT T N <= Reads the number of people in the class.)
DIM NS N>, KN, E(ND

DIM RN, S (N\ND

FOR X=1 TO N Reads student names and the grades forl
INPUT /T N$ (XD, K (XD English.

INPUT T E (X), RCXD, 8 XD Reads the grades for French, science‘
NEXT X and mathematics.

CLOSE Closes the file.

PRINT TAB (1@ ; "ENG " ;

PRINT TAB (19 ; "FREN"' ;

PRINT TAB (20 ; "SCIl '

PRINT TAB (29 ; "MATH"

FOR X=1 TO N

PRINT N$ OO TAB (1D ;K OO

PRINT TAB (15 E XD ;

PRINT TAB (200 ;R OO

PRINT TAB (295 ;S XD ;

PRINT TAB (3@ ; (K XD +E (XD +R X +8 (XD) 74
K (@) =K (@ +K (XD 1 E (@) =E (@ +E (XD

R @) =R W +R (XD 18 &) =S @ +3 OO

NEXT X

PRINT TAB (1@ KW /N TAB 15 E & /N
PRINT TAB (20 R U /N TAB (25 S W@ N
END

2.4 Built-in Function

BASIC

Function symbol Example Description
Absolute | ABS (X) | A= ABS (X) Assigns the absolute value of variable | X | to vairable A.
value Example: A=ABS(2.9)-A-2.9
A=ABS (-5.5)—2A=5.5
Sign SGN (X) | A=SGN (X) Assigns the numeric sign of variable X to variable A.
If the value of X is negative, —1 is assigned to A;if X is 0,
0 is assigned to A; and if X is positive, 1 is assigned to A.
(1 (X>0) Example: 1 is assigned to variable
A= ﬁ 0 X=0) A when A = SGN (0.4)
-1 (X <0) is executed.
Integer INT (X) { A=INT (X) Assigns the greatest integer value to A which is less than
conver- or equal to the value of variable X.
sion Examples: A=INT (3.87) —»>A=3
A =INT (0. 6) -A=0
A=INT (-3.87) »A=—-4
Trigono- | SIN (X) | A=SIN(X) Assigns the sine of X (where X is in radians) to variable A.
metric If the value of X is in degrees, it must be converted to
functions radians before this function is used to obtain the sine. Since
1 degree equals 7/ 180 radians, the value in radians is
A=SIN(30 X PAI(1/180) | obtained by multiplying the number of degrees by PAI(1)/
180. For example, 30° =30 X PAI(1)/180 radians. The same
applies to the COS, TAN, and ATN functions.
COS (X) /A\;:O SOS (X) Assigns the cosine of X (where X is in radians) to variable A.
(200 X PAI(1)/180)
TAN (X) | A=TAN (X) Assigns the tangent of X (where X is in radians) to
A=TAN(YXPAI(1)/180) | variable A.
ATN (X) | A=ATN (X) Assigns the arctangent in radians of X (tan™" X) to variable
A=180/PAI(1) X ATN(X)| A. The value returned will be in the range from —PI/2 to
PI/2.
Square SOR (X) i A=SQR (X) Calculates the square root of X and assigns the result to
root variable A. X must be a positive number or 0.
Exponen- | EXP (X) | A=EXP (X) Calculates the value of ex and assigns the result to variable
tiation A.
Common | LOG (X) | A =LOG (X) Calculates the common logarithm of X (log,oX) and assigns
logarithm the result to variable A.
Natural LN (X) | A=LN(X) Calculates the natural logarithm of X (loge X) and assigns
logarithm the result to variable A.
Ratio of | PAI (X) | A=PAI X) Assigns the value to variable A which is X times the value
circum- of PI.
ference to
diameter
Radians |RAD (X) | A= RAD (X) Converts the value of X (where X is in degrees) to radians

and assigns the result to variable A.

Examples of use of the built-in funcions

(Example 1)

Let’s try solving the various elements of a triangle with a BASIC program.

Angle A of the triangle shown in the figure at right is 30°, CA=1

angle B is a right angle, and side CA has a length of 12. The
following program finds all angles of the triangle, the AB
length of its sides, and its total area.

109 A=30:B=90d:CA=12
20 AB=CAXCOS (AXPAI1U)O/18L)

30 BC=CAXSIN (AXPAI(1)/180

40 S=ABXBC,2

50 C=180—-A—8

60 PRINT "AB=':AB, "BC=';BC, CA=':CA
70 PRINT "AREAS="':S

80 PRINT "A=';A, 'B=";B, "C=" C

9g END

(Example 2)

Now let’s change line 50 of the program to use ATN, the function for finding the arctangent of a number,
to fine angle C from sides AB and BC.

72

109 A=30:B=90.CA=12

20 AB=CAXCOS (AXPA I U>/18

30 BC=CAXSIN (AXPAIU).18)

40 S=ABXBC. 2

50 C=ATN (AB/BC) X18J.PAI1(1)

60 PRINT "AB=";AB, "BC=":;BC, CA=" :CA
79 PRINT "AREAS=":S

8dJ PRINT "A=-",A, "B=",;8, "C=";C

9g END

RND function

Function

RND (X)
X .. Numeric expression

The RND function returns a pseudo-random number in the range from 0.00000001
to 0.99999999.

When X is greater than 0, the random number returned is the one which follows that
previously generated by the BASIC interpreter in a given pseudo-random number
series.

When X = 0, the BASIC Interpreter’s pseudo-random number generator is reinitia-
lized to start a new series, and the pseudo-random number returned is the first one
in that series. Reinitialization of the pseudo-random number series in this manner
can be used to allow simulations based on random numbers to be reproduced.

The RND function is often used in game programs to produce unpredicatable
numbers, as in games of chance. Let’s try using the RND function to investigate the
percentage of times each of the six sides of a die comes up by simulating the action
of throwing it a given number of times.

Since the sides of each die are numbered from 1 to 6, we must multiply the value
returned by the RND function by 6.

X6
O<RND (1) <1 ———— O<6XRND (1) <6

Then we must use the INT function to convert the value obtained to an integer.

INT (6XRND (1)) -0 1. 2. 3. 4. 0

The result will be an integer between 0 and 5; now 1 is added to obtain the numbers
which correspond to the number of dots on each of the 6 sides of a die.

INT (XRND (1)) +1 -1, 2. 3. 4. B. ©

This sequence is performed a specified number of times for each die thrown. Now
let’s incorporate the sequence into a program and check the results.

19 PRINT "ENTER NO. OF The RND ~
TIMES DIE THROWN' ; e o 000 o
2@ | N P U T N 0.99999999.

3 FOR J=1 TO N -

40 R=INT (XRND (1)) +1
50 |IF R=1 THEN N1=N1+"
60 |IF R=2 THEN N2=N2+1
70 |F R=3 THEN N3=N3+1
80 |IF R=4 THEN N4=N4+"
D) P
O |IF R=5 THEN NB=N5+1 UNT@@*IENE(ZD})}) @

100 1E R=6 THEN N6=N6+1 =5 or'l or
110 NEXT J

128 P1=N1./N:P2=N2/N:P3=N3/N

130 P4A=N4/N:P5=N5/N:P6=N6N

140 PRINT P41, P2, P3, P4, P5, P6

150 END

How about it? If the die is thrown enough times, the percentage of the time each
number appears should be about the same. Mathematically speaking, each number
should occur an average of once in six throws, or about 16.7% of the time. This
mathematical ideal is approached more closely as the number of throws is increased.

73

Now let’s try using the RND function in a program which tests your ability to solve
for the area of a triangle of random size. Here, the RND function is used to deter-
mine the length of each of the three sides of the triangle, then you compute the area
of the triangle yourself and submit your answer to the computer for checking.

109 DIM A3, LS D

20 FOR J—1 TO 4

30 READ L$ (U NEXT J

40 FOR J=1 TO 3

50 A (J) —INT (20XRND (1)) +1

60 NEXT J

O OIF AU >=A2) +A (3 GOTO 49

80 IF AM@ >=AU)+A @B GOTO 49

Y IF A >=A U +A (2 GOTO 409

100 W= (A (1) +A 2 +A (3) 2

110 T=W FOR J=1 TO 3

120 T=TX W—A (J)D> :NEXT J

130 SS=S0OR (T) :S=INT (&SS)

140 |F SS—S>J. 5 THEN S=5+71

150 PRINT 'SHAAKRAA

160 PRINT " SOLVE FOR THE AREA OF THE
FOLLOWING TRIANGLE"

170 PRINT " ROUND YOUR ANSWER TO THE
NEAREST WHOLE NUMBER"

180 PRINT

190 PRINT TAB (& Al

200 PRINT TAB (8 N TAB (15 ;LS (1)
;A (1)

219 PRINT TAB (/) U N TAB (15 ;LS (2
A (2D

220 PRINT TAB & J N s TAB (19 LS (B

;A (3D

230 PRINT TAB (@ ; U N

240 PRINT TAB (8 ; B NC

250 PRINT TAB (4 ; OO0

260 PRINT ann

2790 PRINT TAB & L$ D

2840 INPUT Y

290 |I|F Y=S THEN PRINT oK " :GOTO
4

300 |F Y<S THEN PRINT " TOO SMALL!
:GOTO 320

31 PRINT TOO LARGE!

320 PRINT aa’ ;

330 PRINT TAB (24) SPC (25) :PRINT "1

340 GOTO 27dJ

350 DATA LENGTH S DE AB=, LENGTH S DE BC:

360 DATA LENGTH S DE CA=, AREAS OF TR AN

GLE ABC IS8

Note than specifying a value for X which is less than or equal to O will always result
in the same number for a given value of X. The reason for this is that specifying O or

a negative number reinitializes the pseudo-random number generator to the beginn-
ing of the random number series.

5 String Function

».1 LEN

Format

Function

Example
[Example |

LEN (X$)

X$... String expression

This funcion returns the number of characters included in the string expression
represented by X$. This value includes spaces which are not displayed on the screen
and any control characters in the string, as well as letters, numerals, and symbols.
(Example 1)

109 A$="ABCDEFG®

20 PRINT LEN (A$>

RUN
>

(Example 2) The following program uses the LEN funcition to draw squares on the
screen.

109 '"@M" . ?2"ENTER 30R MORE ASTERISKS'

20 INPUT AS$

3 FOR |I=1 TO LEN AP —2

490 PRINT TAB @) ; "X" . SPC (LEN (A —2) ; "X

50 NEXT |

60 PRINT TAB (2) ;A$:GOTO 2U

(Example 3) The LEN function can also be used to produce a “parade” of charac-
ters as shown below.

10 S$="SHARP BASIC"

20 FOR =1 TO LENESSHS

30 ¢ RIGHTS® (S%. I

40 NEXT |

50 END

RUN

C

| C

SIC

SHARP BASIC

(Example 4)
PRINT LEN GSTR$ (PATU J
®)

PAI (1), the function which returns the value of the ratio of the circumference of a
circle to its diameter, contains the 8-digit constant 3.1415927 (approximately the
value of PI). When the length of the character string produced by converting this
constant with the STR$ function is evaluated with the LEN function, a total string
length of 9 is returned.

2.5.2 LEFTS$, MIDS$, and RIGHT$
The LEFT$, MIDS, and RIGHTS$ functions are used to extract character strings from the left end, right
end, or middle of a character expression.

Format

. . . Example
X8$: String expression Function e . Remarks
m and n: Numeric expressions (when A$ = “"ABCDEFG”)
Returns the character B$= LEFTS$ (A$, 2) 0< n§ 255

string consisting of the n
characters making up the BH—- CDEFG
left of string expression

LEFTS (X$, n) X8.
Substitutes 2 characters from
the left end of string variable
AS$ into string varible BS.
Thus, B$ = "AB".
Retumns the character B$=MIDS$ (AS, 3, 3) 1< m< 255
string consisting of the n 0< n< 255

characters making up the B$- AB|CDE|FG
n characters starting with —_—
the mth character in string| Substitutes the 3 characters
expression X§. starting at the 3rd character
in string variable A$ into
string variable B§.

MIDS$ (X$, m, n)

Returns the character B$ = RIGHTS$ (AS, 2) n< 255
string consisting of the n
characters making up the B $<—, ABCDE
right end of string ex- _—
RIGHTS (X$, n) pression X8§. Substitutes 2 characters
from the right end of string
variable A$ into string
varible B$.

Thus, B$ = "FG".

2.5.3 ASC and CHR$

Format

-

Function

Example

ASC (x$)
x$: String expression

Returns the ASCII code for the first
character in string expression x§.

X=ASC("A")
Substitutes 65 (the ASCII code for the
letter A) into variable X,

Y=ASC (' [S|HARP ")

Substitutes 83 (the ASCII code for S,
the first letter in the string “SHARP”)
into variable X.

CHRS (x)
x: Numeric expression

Returns the letter whose ASCII code
corresponds to the value of numeric
expression X. (No character is
returned if the value specified for x is
less then 33; therefore, PRINT " _ "
or PRINT SPC (1) should be used to

obtain spaces, rather than CHR$ (32)).

A$=CHRS (65)

Assigns A, the letter corresponding to
ASCII code 65, to string variable AS.
This function can be used to display
characters which cannot be entered
from the keyboard as follows.

PRINT CHRS (107) J

This displays the graphic character K.

78-

L

Note: ASCII code is a standard code system which is frequently used with computers. This code uses
8 bit numbers to represent the letters of the alphabet, numerals, and symbols such as the dollar
sign and question mark. The full code set is presented in the table on page 154.

2.5.4 VAL and STR$

Format

Function

Example

STRS (x)

x: Numeric expression

Returns a string of ASCII characters
representing the value of numeric
expression X.

A$=STRS (-12)

Substitutes the character string "—12"
into string variable AS$.

B$=STRS (70 X 33)

Substitutes the character string

' 2310 " into string variable B§.
C$=STR$ (1200000 X 5000)
Substitutes the character string '6E +
09" into string variable C$.

Note: Positive numeric values are displayed with a
leading space to indicate that the plus sign
(+) has been omitted. However, this space
is not included in the character sting re-
turned by the STR$ function.

VAL (x§)

x$: String expression

Converts an ASCII character repre-
sentation of a numeric value into a
numeric value. This is the comple-

ment of the STR$ function.

A=VAL ("123")

Converts the character string " 123 "
into the number 123 and assigns it to
numeric variable A.

The following sample program illustrates use of some of the functions discussed above to display
numeric values in tabular format (with the decimal points aligned).

1. 23456
12. 3456

19
/I

1234

If the values read from DATA statements were displayed using only the PRINT statement, the result
would appear as shown below,

10 FOR X=1 TO 5
20 READ A
30 L=5-LEN (STRS$ (I NTA))
4% PRINT TAB (L) ;A
50 NEXT:END
60 DATA 1.23456, 12. 3456
7@ DATA 123. 456, 1234. 56
80 DATA 12345. 6
1
12
123
1234
12345

a

80

2.6 Colordisplay statement

One of the greatest features of the MZ-700 is that it allows characters and graphics to be displayed using
any of up to 8 colors.

2.6.1 COLOR ..ot seessseessasenee o0 (Abbreviated format: COL.)

Format

Function

COLORXx,y,c< b>

XX coordinate (0 to 39)

y Y coordinate (0 to 24)

¢ Character color specification (0 to 7).

b Background color specification (0 to 7).

This statement is used to set the foreground and background colors for the character
at a specific position on the screen. Any of up to 8 different colors can be specified
for the character foreground (c) or background (b) as shown in the table below.

Color No. Color

0 Black
Blue
Red

Purple
Green
Light blue
Yellow
White

I N i WO

(1) Changing the background color of the entire screen
COLOR ..,.,.2 ... (Changes the background color used
for display of characters to red.)
(2) Changing the foreground color of the entire screen (the color used for display
of all characters)
coLor ,.3 L. (Changes the color used for display of
all characters to purple.)
(3) Changing both the background and foreground colors for the entire screen
cCoOLOR , . 1. & ... (Changes the color used for display of
all characters to blue and changes the
background used for display of chara-
cters to black.)
(4) Changing the background color at a specific screen location
COLOR 2,2..4 ... (Changes the background color at
coordinates 2, 2 to green.)
(5) Changing the foreground color at a specific screen location
COLOR 3, 2,7 ... (Changes the foreground color at
coordinates 3, 2 to white.)
(6) Changing both the foreground and background color at a specific screen location
COLOR 4, 2,4, 2 (Changes the foreground color at
coordinates 4, 2 to green and changes
the background color at that location
tored.)

2.6.2 Adding color specifications to the PRINT statement

Format

Function

Example

(PRINT [f, b] J variable ¢ 1 [variable)

L ? l constant « ,) { constant '
expression J { expression

or

[PRINT [f, b] USING "format string" ; variable < variable>

| 9

f Foreground (character color) specification (a number from 0 to 7)

b Background color specification (a number from 0 to 7)

Adding the color specifications to the PRINT and PRINT USING statements des-
cribed on pages 37 and 38 makes it possible to display characters in a variety of
colors. In the format above, f indicates the character foreground color, and b indi-
cates the character background color. If only the foreground color is specified, the
current background color is used for display of characters; this is done by specify-
ing the foreground color, followed by a comma.

If only the background color is specified, the current foreground color is used for
display of characters; in this case, a comma must precede the background color
specification.

(Example 1)

PRINT (6, B ABCDEDisplays the letters “ABCDE” in
yellow against a background of light
blue.

PRINT (4 "FGHIJ Displays the letters “FGHIJ” in yellow
against a background of green.

PRINT (7,) "VWXYZ Displays the letter “VWXYZ” in green

against a background of white.
(Example 2) Let’s try adding color to the automobile race program shown on page
46.
19 PRINT (1) '"@"
20 Q=INT (BXRND (1)) +2: X=33XRND (1)
30 FOR A=1 TO 5
40 READ M$
50 PRINT TAB (@) ; "', TAB (XD
60 PRINT (Q, 1) M$
7 PRINT ((7,1) TAB 37D, "e'"
8 NEXT A
Q0 Y=1JXRND (1)
1090 FOR A=1 TO Y
110 PRINT TAB @) ;| "e";
120 PRINT TAB 37) ; "€" . NEXT
130 RESTORE: GOTO 2Y
140 DATA" 40N ",
150 DATA" BER ", 'IREEe"
160 DATA" NEZ”m

With ordinary PRINT statements (those without color specifications), the fore-
ground and background colors used for character display are those which have been
specified with the latest COLOR statement.

81

82

2.7 Color Plotter-Printer Commands

The color plotter-printer commands described below can be used with the MZ-731 or, when the MZ1P01
color-plotter printer is connected, with the MZ-711, or MZ-721. The color plotter-printer can be
used in either of two modes: The text mode (for printout of program lists, results of calculations, or
other character data), or the graphic mode (for drawing figures and graphs).

Further, any of four colors (black, blue, green, or red) can be used for printout of characters and
graphics. This capability is particularly useful when using the printer in the graphic mode.

2.7.1 General information about the color plotter-printer

(1) The color plotter-printer operates in either of two modes: The text mode (for printout of the results
of calculations, program lists, and other character data) and the graphic mode (used for drawing
figures and graphs). The printer will only operate in one mode at a time. (Graphic printer commands
are ignored while the printer is in the text mode, and vice versa.)

(2) Printer parameters are reset when the printer is switched from the graphics mode to the text mode.
(In other words, the pens’ X and Y coordinate settings are reinitialized.)

(3) The printer runs on power supplied from the main unit of the MZ-700, and is not equipped with a
separate power switch.

(4) The following switches are used to control operation of the printer.

a. Feedswitch Advances the paper.
b. Resetswitch.......... Resets (reinitializes) the printer.
c. Pen change switch Used when replacing the printer’s pens.

(5) There are four pen colors: Black, blue, green, and red.

(6) When the printer is used in the text mode, any of three different sizes of characters can be printed.
The largest size permits a maximum of 26 characters to be printed on one line, medium size permits a
maximum of 40 characters to be printed on one line, and the smallest size allows up to 80 characters
to be printed on one line,

Characters which can be printed when using the printer in the text mode are as shown below. No other
letters, symbols, or graphic characters can be output while the printer is in this mode.
In most cases, hexadecimal ASCII

codes will be printed in a different U RS2 () /0123456789 : ; <=>?@ABCDEFGH
color if an attempt is made to print TJKLMNOPQRSTUUWXYZINIT¢ e ~ tgh bxdrpcq
graphic characters with the PRINT/- azwsui Okfv uBJn um’ **olAoca y{ “xXg ~QAO
P statement or LIST/P command. BEHORL L9 " #6287 () X+ /B123456789:;5<=>

BCDEFGHIJKLMNOPGBRSTUUWXY2IN1IT¢ e~ tgh
bxdrpcqazwsui Ok fu uBjn um” Y olAaca yl

To ~UOIBPEORY .0 "#$x& " (J)X+,~, /0123456783
<=0

2.7.2 Initial Printer Settings
The initial printer settings made when the BASIC interpreter 1Z-013B is started up are as follows.
(1) Pen color: Black
(2) Pen position: Left side of the carriage. (top line of 1 page.)
(3) Mode: Text mode
(4) Print size: 40 characters/line (standard size)
66 lines/page

2.7.3 Mode Specification Commands

These commands are used to place the printer in the text mode for printout of letters and numerics. This
is the mode which is effective when the power is turned on; the initial character size is 40 characters/line.
(1) MODE TN .. . e e et i (abbreviated format: M. TN)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 40 characters/line.
() MODE TL e (abbreviated format: M. TL)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 26 characters/line.
(BY MODE TS (abbreviated format: M. TS)
This command returns the printer to the text mode from the graphic mode and sets the character size
to 80 characters/line.

XXX CHARACTER MODE XXX

80 character mode
ABCDEF GHI.JKLMNOPGRS TLUUMXYZ

40 character mode
ABCDEFGHIJKLMNOPQRSTUUWXYZ

26 character mode

ABCDEFGHIJKLMNOPQRSTUUWXY 2

(A) MODE GR e e e e (abreviated format: M. GR)

The MODE GR command is used to switch the printer from the text mode to the graphics mode for
printout of charts and graphs. When switching to this mode, it is necessary for the BASIC program being
executed to make a note of the character size being used immediately before the mode change is made.
The reason for this is in order to return to the text mode when the BREAK key is pressed or a STOP
command is encountered.

Note: Executing MODE command, every state returns to initial state excluding pen color and print size.

2.7.4 Pen color selection commands

’ n :0 black
PCOLOR n n:loble oo (abbreviated format: PC.)
‘ n :2 green
n :3 red

This command specifies the color to be used for printout of characters or graphics. n is a number from
0 to 3, with O corresponding to black, 1 to blue, 2 to green, and 3 to red.
In text mode, executing PCOLOR in text mode every state is on initial state excluding pen color.
To keep current state execute PRINT/P CHRS(29) i, next color.

This command can be entered in either the text mode or graphics mode.

83

2.7.5 Text mode commands

2. 7.5 TEST .. e (abbreviated format: TE.)
TEST

This command causes the printer to print squares in each of the four different colors
to check the color specification, quantity of pen ink, and so forth. (Only usable in
the text mode.)

00 G

(Black) (Blue) (Green) (Red)

|

..... Value of nin PCOLOR n

2.7.5.2 SKIP
SKIP n
n. .. A number in the range from —20 to 20
This command is used to feed the paper. Paper is fed n lines in the forward direction

when the value for n is positive; if the value specified for n is negative, the paper is
fed n lines in the reverse direction. Note that PRINTER MODE ERROR will occur
if this command is executed while the printer is in the graphics mode.

2.7.5.3 PAGE
PAGE n
n...An integer in the range 1 > n< 72
This command specifies the number of lines per page. (Executable only in the text
mode.)
2.7.5.4 LIST/P . . (abbreviated format: L./P)
LIST/P or LIST/P <LS—Le>
Ls...... Starting line number
Le...... Ending line number
This command lists all or part of the program lines in memory on the printer. See

the explanation of the LIST command on page 32 for an explanation of procedures
for specifying the range of lines to be printed. Note that, when graphic characters
are included in the program list, most of them will be printed in a different color as
hexadecimal ASCII codes. See page 154 for the printer ASCII codes.

This command can only be executed in the text mode.

2755 PRINT/P . ..o (abbreviated format: ? /P)
PRINT/P <I,, d,, 1,, dy...... In, dn>
In Output list (numeric or string expressions)
dn...... Delimiter
This command outputs the data in the output list to the printer. For details on using

this command, see the description of the PRINT command on page 37. See pages
82 for printout of graphic characters.

2.7.5.6. PRINT/PUSING i (abbreviated format: ? /P USI.)
Except that output is directed to the printer, this is the same as the PRINT USING statement described
on page 38.

2.7.6 Graphic mode statements

The graphic mode statements become effective after the MODE GR statement has been executed. When
this statement is executed, the current pen location is set to the origin (X = 0, Y = 0). However, the origin
can be set to any location. Be careful not to specify a location which is out of the print area, as this may
damage the pen or cause other problems.

Max. Y=999 Max. Y = 999
+Y +Y
Current ©
. ° <
pen location |(0,0) (480.0) o &
b3
a
=Y
Min, Y = —999 Y
Min. Y = —999
X-=Y coordinates after MODE GR has
been executed. The allowable range of X-Y coordinates after the origin has
X is 0 to 480 and the allowable range been moved to the center of paper.
of Y is —999 to 999, (MOVE 240, —240: HSET)

Note: See page 88 for the HSET statement.

2.7.6.1 LINE

Function

Example

LINE x;, y; <, X3, Va2,..., Xi, yi> or

LINE %n, x,, v1 <, X, V2,..., Xi, yi>

n...... Integer from 1 to 16

Xi..... Number indicating the X coordinate (xi = —480 to 480; the limit varies
depending on the current pen location.)

yi.o.... Number indicating the Y coordinate (yi =-—999 to 999)

This statement draws a line from the current pen location to location (x,, y,), then
draws a line from (x;, y;) to (X,, v,), and so on. n specifies the type of line drawn
as shown below.

n = 1: solid line

n=2to 16: dotted line

If % is omitted, the previous value of n is assumed. The initial value of n is 1 (solid
line).

(Example 1) The following program draws a square with a side length of 240 units.

10 MODE GR e Switches to the graphic mode.
20 LINE 249. J oeeeeeen Draws a line from the origin to the center
of paper.

30 LINE 249, —249

40 LINE @, —249

50 LINE 9,93 s Draws a line to the origin.

80 MODE TN s Returns to the text mode.

(Example 2) The following program draws the same square as the example above.
19 MODE GR

20 LINE 249, g, 249, —249, &, —249, O, J

30 MODE TN

(Example 3) The following program draws a rectangle with a side length of 240 units.
19 MODE GR

20 SQ=INT (120XS0OR (3D)

30 LINE %2, 249, O, 12d, —SQ., g, J

4 MODE TN

The lines indicated with n are as follows.
XXX LINE 1-16 Xx%x

N=1
N-2
___ N=3
__ N=4
_____________________________________ N=5
_______________________________ N=6
__________________________ N=2
_______________________ N=38
______________________ N=9
__________________ N=18
_________________ N=11
________________ N=12
_______________ 13
______________ N=14
_____________ N=15
____________ N=16
2762 RLINE e (abbreviated format: RL.)

RLINE X1, V1 <, Xz, Va,...XL,yi...>
RLINE %n, X, Vi, <, X3, Va,...,XLyi...>
n....... Integer from 1 to 16
Xi Number indicating the X coordinate (—480 to 480)
yio.o.o... Number indicating the Y coordinate (—999 to 999)

This statement draws a line from the current pen location to the location indicated
by relative coordinates x;, y,, then draws a line from that point to the location
indicated by relative coordinates x,, y,, and so on. n is the same as for the LINE
statement.

This program draws the same rectangle as example 3 above.

19 MODE GR
20 SQO=INT (120XSQR (3) >
3 RLINE %1, 240, &, —12d, —SQ, —12J. SO
4 MODE TN
Initial pen location Initial pen location o
o 0.00 20, (240,0)
| 120/3
‘ 1
: (120.—120/3)
Figure drawn 240,0:,.120,—SQ .7 0.0 Figure drawn 240.0% <—120,—SQ . - —120,8SQ":
by LINE ~----" ""=---- by RLINE —~---~ Ceell-a- - TellllT- =

2.7.6.3 MOVE

2.7.6.4 RMOVE

2.7.6.5 PHOME ..

MOVEX,y
X.ooon.. Integer indicating the X coordinate (—480 to 480)
Vieouuro. Integer indicating the Y coordinate (—999 to 999)

This statement lifts the pen and moves it to the specified location (x, y).

The following program draws a cross with a side length of 480 units.

19 MODE GR

20 L INE 489, @

30 MOVE 249, 24--eeee Lifts the pen at (480, 0) and moves it to
240, 240).

40 L INE 249, —249

58 MODE TN

Be sure to advance the paper before executing this program.

...................... (abbreviated formed: RM.)

RMOVE x, vy
). QU Integer indicating relative X coordinate (—480 to 480)
Voeoonn. Integer indicating relative Y coordinate (—999 to 999)

This statement lifts the pen and moves it to the location indicated by relative

coordinates (A x, Avy)

The following program draws the same cross as the example for the MOVE state-

ment.

19 MODE GR

20 L INE 489, g

3 RMOVE —240, 24 Lifts the pen at (480, 0), then moves it
—240 units in the X direction and 240
units in the Y direction.

4 L INE 240, —240

5 MODE TN

Be sure to advance the paper before executing this program.

... (abbreviated format: PH.)

This statement returns the pen to the origin.

The following example draws the same cross in red as the example for the MOVE

statement.

19 MODE GR

20 LINE 489, g MOVE 249, 240

30 LINE 249, —249

4 PHOME e Returns the pen to the origin.

50 PCOLOR 3

60 LINE O, 240, 480, 240, 480, —240, O, —249, J,
%)

799 MODE TN

87

88

2.7.6.6 HSET ...

2.7.6.7 GPRINT

Function

......................... Meeieeiiiiiiiiiie. ... (abbreviated format: H.)

This statement sets the current pen location as the new origin. With this feature, the
origin can be set to the location which is most appropriate for drawing figures. A
MOVE statement is frequently executed before executing this command.

10 MODE GR

20 MOVE 240, —24Y

BO HSET croererrrrmmreer Sets the new origin.

40 FOR 1=1 TO 360 STERP 39

50 LINE 240X%XC0OS (PAIXI/N8D),240XSIN (PAICTYXI/180)
6g PHOME

7 NEXT

8 MODE TN

... (abbreviated format: GP.)

GPRINT [n, @] , x§

GPRINT x$§

n....... Integer indicating the character size (0 ~ 63)

@ Integer indicating the direction in which lines of characters are printed.
(@=0~3)

x$.... .. Character

This statement prints the specified character using the specified size and direction.

80 characters can be printed on each line when n = 0; 40 characters can be printed

on each line when n = 1; and 26 characters can be printed on each line when n= 2.

When n and @ are omitted, the previous settings are assumed. Their initial values are

n=land@=0,

19 MODE GR

20 GPRINT "A" e Prints “A” in the graphic mode.

30 GPRINT (2, 2), "A"-Prints an upside down “A” in the 26
characters/line mode.

The following figures show various examples of printout.

N=0 N=3 =0

\/ @=2

2.7.6.8 AXIS .. e, (abbreviated format: AX.)

AXIS x, p, ©

Xoueono. Integer specifying the axis drawn (0 or 1)
1o I Integer specifying the scale pitch (—999 to 999)
S Integer specifying the number of repetitions (1 to 255)

This statement draws the X-axis when x = 0 and the Y-axis when x = 1. The number
of scale marks specified in r are drawn with a pitch of p.

The following example draws the X and Y axes with scale marks from —240 to 240
at 10 unit intervals.

1 MODE GR.....oii... Switches the printer to the graphic
mode.

280 MOVE 244, b5

30 GPRINT [1, 081, "A"

49 MOVE 248. O i, Lifts the pen and moves it to position
A (240, 0).
b0 AXI1S &, —14, 48......... Draws the Y-axis from position A to

position B with scale marks included
at 10-unit interval.

60 MOVE 240, —500

78 GPRINT [1,0], "B"

80 MOVE O, —240 Lifts the pen and moves it to position
C (0, —240).

Qg GPRINT [1, 0], "C"

1808 MOVE &, —240

118 AXIS 1,10, 48......... Draws the X-axis from position C to
position D with scale marks included
at 10-unit intervals.

128 MOVE 474, —2440

130 GPRINT (1,81, "D"

148 MODE TN

The coordinates can be used in the same manner as ordinary Cartesian coordinates
after setting the point of intersection of the X and Y axes as the new origin. (X =
—240 to 240, Y = —240 to 240)

89

90

2.7.6.9 CIRCLE

Function

... (abbreviated format: CI.)

CIRCLE x, y, r, s, e, d

X, V oo Location of the center (—~999 to 999)
) S Radius (0 to 999)

S v Starting angle (in degree)

€ i Ending angle (in degree)
d.......... Step angle (in degree)

This statement draws a circle or arc with a radius of r and a step of d at location
(x, y), starting at angle S and ending at angle e. A complete circle is drawn when
s=0,e=360and d=0.2,

Actually this statement draws a polygon; therefore, d must be as small as possible in
order to draw a smooth figure.

s must be smaller than e, When d = 0, lines connecting the center and the starting
point and the center and the ending point are drawn.

10 MODE GR

20 LINE 4809, g, 480, —484, J, —480, O, &
30 MOVE 240, —240

40 HSET

bg CIRCLE O, J, 240, 4, 364, J. 2

6 CIRCLE 249, g, 249, 94, 274, J. 2

79 CIRCLE @, 249, 249, 189, 369, 0. 2
8 CIRCLE —240, O, 240, 279, 450, &. 2
9 CIRCLE @, —2409, 240, O, 184, 4. 2
100 MODE TN

2.8 Machine Language Program Control
Statements

Several machine language program control statements are suported by the MZ-700 BASIC interpreter.
With these statements, machine language programs can be linked with a BASIC program.
Computer programming languages form a hierarchical structure as shown below. High level languages such
as BASIC automatically performs work required when lower level languages such as assembly language are
used. Although high level languages are convenient and easy to use, they cannot control the CPU directly.

The lowest level language (machine language) directly controls the CPU and provides high processing
speed, but considerable skill is required for coding long programs,
Machine language program control statements enable sophisticated programming techiques which make it
possible to utilize the advantages of both BASIC and machine language.
Machine language programs can be generated and loaded into the machine language program area (reserved
with the BASIC LIMIT statement) using the monitor or assembler and loader. Such machine language
programs can be called by BASIC programs with the USR () function. Machine language programs
can also be loaded into memory using a BASIC program which uses the POKE statement to write each
step in machine code. The resultant machine language program can then be called by BASIC programs
with the USR () function.

The memory map at bottom right outlines the concept of data access with POKE and PEEK, and of
calling machine language programs with USR ().

91

92

2.8.1 LIMIT ..o ssessssssssecesans (Abbreviated format: LIM.)

Format

Function

2.8.2 POKE

Format

Function

LIMIT ad
ad Address; either a decimal number from 0 to 65279 or a 4-digit hexa-
decimal number from $0000 to $FEFF.

This statement limits the memory area which can be used by the BASIC interpreter,

ad indicates the upper limit of the BASIC area, and the area from the following

address (ad + 1) to $SFEFF (65279) can be used for machine language programs or

special data.

LIMIT S$SAFFF

Limits the BASIC program area to $AFFF.

Note The area from $FF00 to $FFFF is used by the monitor as a work area, so it
cannot be used as the user area. The LIMIT statement must be used at the
beginning of a BASIC program.

Monitor

BASIC interpreter

BASIC
program area

$BOOO LIMIT $AFFF

SFEFF

User area

Use LIMIT MAX to cancel the limit set by LIMIT ad.

POKE ad, d

POKE@ ad, d

ad Address: either a decimal number from 0 to 65535 or a hexadecimal num-

ber from $0000 to $FFFF.

d...... Data to be written: a decimal number (0 to 255) or hexadecimal number
(800 to $FF)

This statement writes data byte d to address ad.

The POKE statement can write data to any memory location, regardless of the limit

setting by the LIMIT statement. Therefore, careless use of this statement can

destroy the monitor or BASIC interpreter,

The POKE®@ format is used to write data to an address in the user RAM area follow-

ing 53248 (§D000). (See page 125.)

POKE $DQOUJJ, $5F

POKE 553248, 9b

The two statements above perform the same funcition.

Note A POKE statement specifying an address after $D000 writes data into the

video RAM area.

2.8.3 PEEK

Format

Function

PEEK (ad)

PEEK@ (ad)

ad Address in decimal or hexadecimal notation (0 to 65535 or $0000 to
$FFFF)

This function returns the contents of the specified address as a decimal number from
0 to 255. Use the PEEK®@ format to PEEK a user RAM area following 53248
($D000).

The following program displays data stored in the area from 40960 ($A000) to
40975 ($AOQQF).

10 FOR AD= 409640 TO 40975
20 ¢ PEEK (AD)
3 NEXT AD

.. (Abbreviated format: U.)
USR (ad)
USR (ad, x$)
ad Address (decimal or 4-digit hexadecimal)
x$... .. String data

This is a special function which transfers control to a machine language program
which starts at the specified address. As with CALL ad, so control is returned to the
statement following the USR function if the machine language program includes a
return instruction (RET or RET _cc).

When x$ is specified, the starting address of the memory area containing x$ is
loaded into the DE register, then the length of x$ is loaded into the B register before
the machine language program is called. This makes it possible for a BASIC program
to pass string data to a machine language program,

93

2.8.5 Preparing machine language programs
A machine language program which fills the entire display screen with the characters supported by the
MZ-700 is presented in this section as an example,
The following BASIC program loads such a machine program into memory and calls it.

10
20
30
40
515
60
/8
80
9o

e
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
2390
300

LIMIT $BF
GOSUB 58

USR[$C@88] ...
END

FOR I =48152 TO 49181 -

READ M i
POKE I,M

NEXT 1 e

RETLRN

DATA 197 :REM PUSH BC oo
DATA 213 :REM PUSH DE

DATA 229 :REN PUSH HL

DATA 22,8 :REM LD D,

DATA 33,8,208:REM LD HL, D000

DATA 1,232,3.REM LD BC, '000

DATA 243 :REM DI

DATA 211,227 :REM OUT CE3H),A -
DATA 114 :REM STO:LD CHL),D -
DATA 35:REM INC HL &
DATA 28 :REM INC D

DATA 11 :REM DEC BC

DATA 128 :REM LD 4,8

DATA 177 :REM OR C

DATA 194,14, 192.REM JP NZ,STO

DATA 211,225 :REM OUT CE1H),a
DATA 251 :REM El

DATA 225:REM POP HL

DATA 289 -REM POP DE

DATA 193 :REM POP BC

DATA 2081 :REM RET oo

Limits the BASIC area to $BFFF.

Calls the machine language program.

Reads data for the machine language program from DATA
statements and writes it into the machine language area.

Beginning of data for the machine language program.

Switches the memory block to video RAM. (See page
155).

Sets a display code to video RAM.

Switches the memory block to RAM. (See page 127.)

Returns to the BASIC program.

If the machine language program has been generated with the monitor and saved on cassette tape under
the file name DISPLAYCODE, use the following program to call the machine language program.

119 LIMIT $BFFF
110 LOAD '"DISPLAYCODE"
120 USR ($CIID)

94

2.9 /0 Statements

All external devices (including floppy disk drives) are connected to the MZ-700 through an optional
interface board. The optional universal interface board makes it possible for the user to connect external
devices such as an X-Y plotter, paper tape punch, and music synthesizer to the MZ-700.

A port address selection switch is provided on the universal interface card to allow any port address from
0 to 239 (O0H to EFH) can be assigned to any devices. Addresses 240 to 255 are reserved for optional
peripheral devices supplied by Sharp.

The INP and OUT statements allow the user to transfer data from/to external devices through the
optional universal I/O card. The format of these statements is as follows.

INP #P, D......... Reads 8-bit data from port P, converts it into a decimal number and assigns
it to variable D.

OUT #P,D Converts a decimal number in variable D to binary format and outputs it to
port D.

These statements greatly extend the range of applications of the MZ-700 series computers.

95

96

2.10 Other Statements
2.10.1 ON ERROR GOTOenee. (Abbreviated format: ON ERR. G.)

| Format |

ON ERROR GOTO Lr

Lr Destination line number (entry point of an error processing routine)
This statements causes execution to branch to line number Lr if an error occurs.
The IF ERN and IF ERL statement can be used in a trap routine starting at that line
to control subsequent processing according to the type of error and the line number
in which it occurred. Including a RESUME statement at the end of the error pro-
cessing routine makes it possible to return execution to the line at which the error
occurred. Executing an ON ERROR GOTO statement cancels the error trap line
number definied by the previous ON ERROR GOTO statement. The error trap line
number definition is also cancelled by executing a CLR statement.

2.10.2 IF ERN

Format

Function

IF relational expression using ERN THEN Lr
IF relational expression using ERN THEN statement
IF relational expression using ERN GOTO Lr

Lr Destination line number
This statement branches execution to the error processing (trap) routine starting at
line Lr or executes the statement following THEN when the result of <relational
expression using ERN> is true,
ERN is a special function which returns a number corresponding to the type of error
occurring. See page 159 for the error numbers.
The following shows an error processing routine beginning on line 1000 which causes
execution to branch to line 1200 if the error number is 5.
19 ON ERROR GOTO 1909 Declares the line number of the

error processing routine.

1000 |F ERN=bH THEN 1200 Branches to 1200 if a string
... OverﬂOW error haS Occurred.

2.10.3 IF ERL

Format

Function

IF relational expression using ERL THEN Lr
IF relational expression using ERL THEN statement
IF relational expression using ERL GOTO Lr

Lr Destination line number
This statement branches execution to the routine starting at line Lr or executes the
statement following THEN when the result of <relational expression using ERL>
is true.
ERL is a special function which returns the line number at which an error occurred.
The following statement causes execution to branch to line 1300 if an error has
occurred on line 250.
1010 IF ERL = 250 THEN 1300
The following statement returns control to line 520 in the main routine if the error
number is 43 and the error line number is other then 450.
1020 IF (ERN =43) X (ERL < > 450) THEN RESUME 520

2.10.4 RESUME ..., (Abbreviated format: RESU.)

I

I
1

2.10.5 SIZE

Format

Function

RESUME <NEXT>
RESUME Lr

Lr....Line numberor0
This statement returns control to the main routine from an error processing routine.
The system holds the number of the line on which the error occurred in memory
and returns program execution to that line or to another specified line after the
error is corrected.

The RESUME statement may be used in any of the following four forms:

RESUME - Returns to the error line.

RESUME NEXT:- Returns to the line following the error line.
RESUME L reeeee Returns to line Lr.

RESUME e Returns to the beginning of the main routine.

If the RESUME is encountered when no error has occurred, error 21 (RESUME
ERROR) occurs.
If the RESUME cannot be executed, error 20 (CAN’T RESUME ERROR) occurs.

PRINT SIZE

This is a special function which returns the number of bytes in memory which can
be used for storage of BASIC programs.

For example, PRINT SIZE displays the number of free bytes of memory area.

97

2.10.6 PLOTON ... T (Abbreviated format: PL.ON)

Format

Example
Note

i

PLOT ON

This statement makes it possible to use the color plotter-printer as a display unit.
Thus, the MZ-700 can be used without an external display screen.

This statement is effective only when the color plotter-printer is installed and the
MODE TN statement has been previously executed.

PLOT ON

A period “.” is printed to represent any characters which are not stored in the
color plotter-printer’s character generator (see page 156). The[INST |, [DEL] and
« ” keys are disabled by executing this statement. [CTRL |+|G] can be used to
change the pen.

2?9

2.10.7 PLOTOFF ... eeereeereeeeenens (Abbreviated format: PL. OFF)

| Format |

PLOT OFF
This statement cancels PLOT ON made of plotter-printer operation.
PLOT OFF

2.10.8 CONSOLE ... (Abbreviated format: CONS.)

Format |

Example

98

CONSOLE <Is, In< ,Cs, Cn>>
Is : Starting line of the scroll area

In : Number of lines within the scroll area :
Cs : Starting column of the scroll area

Cn: Number of columns in the scroll area | |- :
CONSOLE @, 2b, 9, 40
CONSOLE b, 15
CONSOLE @, 2b. b, 39
CONSOLE @, 19, d, 19
CONSOLE
This statement specifies the size of the scroll area; i. e., the area which is cleared by
PRINT "1 ",

The first example specifies the entire screen as the scroll area. The second specifies
the area between lines 5 and 15 as the scroll area. The third specifies the area bet-
ween columns 5 and 30 as the scroll area. The fourth specifies the 10 x 10 positions
at the upper left corner of the screen as the scroll area.

This statement is useful for excluding the left and/or right edges of the image from
the display area. When they are hidden behind the edges of the screen.

The last example does not specify the scroll area. When the scroll area is not speci-
fied, it is possible to scroll the screen up or down.

However, this makes it harder to perform screen editing because the values of Cn
and In become smaller.

2. 11 Monitor Function

The IOCS section of the BASIC Interpreter includes a monitor program to make it easy to enter
machine language programs. This monitor program uses the area from FFOOH to FFFFH as a stack area.

This monitor program includes the screen editor similar to that of BASIC which makes it possible to
change the contents of any address within the 64K RAM area as described below.

2.11.1 Editing format

: address = data data data
: (colon) ... Indicates that the line following can be edited.
address ... Indicates the starting address of the memory area whose contents can be changed.
(4 hexadecimal digits)
. Separates data from the address.
data ... 2-digit hexadecimal number or a semicolon “ ;” plus the character which is written in
the specified address. A blank is used to separate adjacent data items.

2.11.2 Printer switching commandeneneee. (P command)
X P

This command switches data output with the D or F command between the printer and display. If the
printer is not connected to the computer, the message “ERR? ” is displayed and the monitor stands by
for input of another command. Check the printer connection or execute the P command again to switch
the output device to the display.

2.11.3 Dump command ... (D command)
[Format | %D <startaddress < .. end address >>

This command dumps the contents of memory from the starting address to the end address. If the end
address is omitted, the contents of the 128-byte block starting at the specified address are dumped. If
both addresses are omitted, it dumps the contents of the 128-byte block following memory block previously
dumped. The format in which data is dumped is as follows.

:k{{HHH:HHuHHuHH HH HH HH HH HH /ABCDE. G.

Starting adress 8 bytes (Hexadecimal code) 8 bytes (Characters)

The contents of any location can be changed by moving the cursor to the corresponding byte, entering
the new data, and pressing the | CR| key.
Note Control codes are displayed as a period (.) in the character data field. Pressing the [BREAK | key
stops dump output, and pressing the | SHIFT | and | BREAK | keys simultaneously returns the
monitor to the command input mode.

99

00

2.11.4 Memory setcommandoneneneenmnecssesnnes (M command)
Format | X M [starting address]

This command is used to change the contents of memory. If the starting address is omitted, the address
currently indicated by the program counter is assumed. Press the| SHIFT | and|[BREAK | keys together

to terminate this command.

When this command is entered, the starting address of the memory block and its contents are dispalyed
in the editing format described previously and the cursor is moved to the data to be changed. Enter the
new data and press the |CR| key; the following address and its contents are then displayed.

2.11.5 FIincommand ... reeereasessaseses (F command)
Format | X F [starting adress] _, [end adress] , , [data] _, [data]

This command searches for the specified data string in the memory area from the starting address to
the end address. When found, the address of the string and its contents are dumped to the screen. This
command js terminated by simultaneously pressing the | SHIFT |and| BREAK | keys.

2.11.6 Subroutine call ... (G command)
Format | X G [call address]

This command calls the subroutine starting at the specified address. The stack pointer is located at
FFEEH.

2.11.7 Transfercommandooeoreeeeeeeereeeeeeneenenen. (T command)
Format X T [starting address], ,[end address] ., [destination adress]

This address transfers the contents of memory between the starting address and the end address to the
memory area starting at the destination address.

2.11.8 Save commandnernenenseeeesesssessesseeans (S command)
Format X S[starting address], _, [end adress] [execution adress] : [file name]

This command saves the contents of the memory between the. starting address and the end address to
cassette tape under the specified file name.

2.11.9 Load command ... eeeecneeesecsescssnssaessseans (L command)
| Format | XL <load address > < : file name >

This command loads the specified file into memory, starting at the load address. If the load address is
omitted, the execution address contained in the file is assumed as the load address. If the file name is
omitted, the first file encountered on the tape is loaded. The message “ERR?’’ is displayed if a check sum
error is detected or the | BREAK | key is pressed during execution, then the monitor returns to the
command wait state input mode. The command input mode wait state is entered when execution is
wait state is entered when execution is completed.

2.11.10 Verifycommandecenceeeisnesenesseesenees (V command)
| Format X V <file name >

This command reads the specified file from cassette tape and compares it with the contents of memory.
This makes it possible to confirm that a program has been properly recorded with the SAVE command.

If any difference is found between data read from the tape and that contained in memory, the message
“Err ? 7 is displayed.

2.11.11 Returncommandeeeeeeeeeeeeeeeeeeeeseseenns (R command)
Format XR

This command returns control to the system program which called the monitor program and restores
the SP (stack pointer) and HL register to the values which they contained when the monitor program was
called. Execution resumes with the command following BYE is executed.

This command cannot return control if the monitor has been called by a system program whose stack
pointer is between FFOOH to FFFFH, or if the stack pointer does not contain a return address. In such
cases, use the G command to call the warm start entry point.

101

{bnemmos i) - - —— OAGMNMo2 nsot .0
< smsn obil : > < pporbbs Beel > I X

Al o7 eouErsy TOMIQOM ST 0.7 .aciluosxs watiub beesio & vwed | AAZ R L4138 bosusnh o wono

=3 viomesas i benistnog 1sar as sost ol mon} basy sish nasw tod B o &b ooxewsid b v

25107281 Bas M., Wwieodw ofr B-ll- 3 aotfhv migIgo1g Moteva 9 OF e L IEESY Bl .

Operating the MZ-700

3.1 Appearance of the MZ-700 Series Personal
Computers

3.1.1 MZ-731

8 Front view
Color plotter-printer

Data recorder

Definable
function keys

Insert and
delete keys

Cursor
control ke
Typewrite keyboard Ys

Rear view

B/W-color switch

Channel volume| Composite signal Color plotter-printer Power cable connector
. output jack
RF sngn_al Data recorder Reset switch
output jack
RGB signal

output connector

: i Volume control i
Cassette tape recorder jacks External device connector Power switch

Joy stick connectors External printer
connector

Frame ground terminal

04

3.1.2 MZ-721

8 Front view

Definable
function keys

Keyboard

3.1.3 MZ-711

8 Front view

Definable

function keys

Keyboard

Color plotter-printer
compartment cover

Data recorder

Insert and
delete keys

Cursor
control keys

Color plotter-printer
compartment cover

Data recorder
compartment cover

Insert and
delete keys

Cursor
control keys

06

3.2 Connection to Display Unit

Be sure to turn off both the computer and display unit before connecting them.

3.2.1 Connectinga TV set to the MZ-700

Disconnect the antenna feeder from the UHF antenna terminals of the TV set. Plug the connection
cable provided into the RF signal output jack on the rear panel of the computer and connect the pin plugs
on the cable’s other end to the 75-ohm UHF antenna terminals on the TV set.

Back view of MZ-700 Back view of Home TV

Set the channel selection switch to the 36 + 3 ch position, depending on which is not used in your area.
Note the following when using an ordinary TV set as a display unit.

® Adjust controls (fine tuning, color control, etc.) of the TV set to optimum conditions before con-
necting it to the computer.

® Note that color and quality of displayed images will be poorer with a TV set than when a special
color monitor unit is used. Further, note that images may be painted with the wrong colors or may
not be colored if the TV set is not properly adjusted.

® Part of the screen may be omitted if vertical and horizontal scanning frequencies of the TV set do
not match those of the computer. This is not a problem with the computer; contact your TV dealer.

® Part of the screen may not be visible if the image is not centered.

® Be sure to remove the antenna feeder from the TV set before connecting it to the computer; other-
wise, the signal from the computer will radiate from the TV antenna, possibly interfering with other
TV sets.

® Be sure to connect the computer to the 75-ohm antenna terminals of the TV set. If the cable pro-
vided cannot be used, be sure to use a 75-ohm coaxial cable.

® Characters may be hard to read with certain combinations of foreground and background colors.
In such cases, switch the B/W-color switch to the B/W position to obtain higher contrast. The best
combination of the foreground and background colors is white for the foreground and black or
blue for the background.

® No audio signal is included in the RF signal fed to the TV set, so sound cannot be output from the
speaker of the TV set.

3.2.2 Connecting the MZ-1D04 12-inch green display
to the computer

Use the cable included with the MZ-1D04 green display to connect it to the computer. Plug the cable
into the composite signal jack on the computer’s rear panel, then set the B/W-COLOR switch to the B/W

position.
T T
Rear panel of the MZ-700 series computer Rear panel of the MZ-1D04
3.2.3 Connecting the MZ-1D05 14-inch color display
to the computer

Use the cable included with the MZ-1D05 color display to connect it to the computer. Plug the cable’s
DIN connector into the RGB signal output connector on the MZ-700.

Rear panel of the MZ-700 series computer Rear panel of the MZ-1D05
Pin assignments of the RGB signal output connector of the MZ-700 are as shown below.
GREEN BLUE

CSYNC—HZ2 Wy~ € VIDEO

VSYNC HSYNC
GND

RGB signal output DIN connector
(viewed from the rear side)

108

3.3 Data Recorder

® Data recorder built into the MZ-731 and MZ-721
The built-in data recorder can be operated in the same manner as an ordinary cassette tape recorder.

Press this key to record programs and data.

Press this key to load programs and data.

Press this key to rewind the tape.

Press this key to fast-forward the tape.

Press this key to stop the tape, to release other keys when the tape stops after

loading or recording programs or data, or to eject the tape.

= MZ-1T01

The MZ-1TO1 data recorder unit can be installed in the MZ-711 (MZ-710). Installation procedures are
as follows.

1. Turn off the computer’s power switch and unplug the power cable from the AC outlet.

2. Remove the two screws located on the left side of the rear panel to remove the data recorder com-
partment cover.

Polarity switch——

Joint connector

3. Remove the joint connector cover.

4. Plug the connector of the MZ-1T01 onto the 9-pin connector located at the left rear of the recorder
compartment of the MZ-711.

5. Position the data recorder in the recorder compartment and fasten it in place with the two screws.
When doing this, be careful to avoid catching the connector cable between the data recorder and
the computer, (otherwise, the screws cannot be tightened).

Ordinary cassette tape recorder

fTJ

MIC READ WRITE

EAR

Using commercially available audio cables with 3.5 mm mini-plugs, connect the WRITE jack of the
computer to the MIC jack of the cassette tape recorder and connect the computer’s READ jack to the
EXT SP or EAR jack of the cassette tape recorder.

Take note of the following when using an ordinary cassette tape recorder.

(1) The message "X RECORD. PLAY" does not appear when a SAVE command is entered.
Be sure to press the RECORD key on the recorder before entering this command. Press the STOP
key to stop the recorder after the message " READY " is displayed. Without depressing the STOP key,
the recorder is not stopped.

(2) The message "L PLAY ' does not appear when a LOAD command is entered. Be sure to start
playing the tape after entering the command. The message "READY" is displayed when loading is
completed.

(3) The level and tone controls of the cassette tape reocrder must be adjusted to appropriate levels. Some
cassette recorders (e.g. those with the automatic level control) may not be usable. In such cases,
please purchase the MZ-1TO1.

(4) The polarity of the head can make it impossible to load programs provided with the computer. Try
switching the head polarity if programs cannot be loaded.

(5) For any transfer or collation, use the tape recorder that was used for recording. If the tape recorder
for transfer or collation is different from that used for recording, no transfer nor collation may be
possible.

(6) Data written using an ordinary cassette recorder may not be readable with the data recorder. There-
fore, use of the MZ-1T01 is recommended.

109

3.4 Color Plotter-Printer

110

Paper holder (left) Paper shaft Paper holder (right)

. Paper gui
Printer cover s . , aper guide
Paper cutter

Reset switch Pen change switch Paper feed key

Plotter-printer (viewed from the top)

Paper inlet

Plotter-printer {viewed from the rear side)

® Loading roll paper

1. Remove the printer cover.

2. Cut the end of roll paper straight across and insert the end into the paper inlet. (Be careful to avoid
folding or wrinkling the end of the paper when doing this.)

3. Turn on MZ-731’s power switch and press the (paper feed) key to feed paper until the top of
paperis 3 to 5 cm above the outlet.

4. Insert the paper shaft into the roll and mount it to the paper holders.

5. Set the printer cover so that the end of paper comes out through the paper cutter.

® To remove the roll from the printer for replacement, cut straight across the paper at the paper
inlet and press the paper feed key.

®m Roll paper for the MZ-700 series computers is available at any Sharp dealer. Do not use paper other
than that specified.

The length of the paper is 23 to 25 meters, and the maximum roll diameter which can be loaded
is 50 mm. Paper will not feed properly if a roll with a greater diameter is used, resulting in poor
print quality.

Procedures for loading roll paper

(C) Replace the printer cover.

(A) Insert paper into the paper inlet.

(B) Press the paper feed key to feed paper.

111

Installing/replacing pens

1. Remove the printer cover and press the PEN CHANGE switch with a ball pen or the like; this causes
the pen holder to move to the right side of the printer for pen replacement.

2. Depress the pen eject lever to eject the pen which is at the top of the holder. When doing this, rest
your finger lightly on top of the pen while pushing the eject lever to prevent it from falling inside
the printer.

3. Insert a new pen.

4. Press the PEN CHANGE switch again to bring another pen to the top of the holder.

5. Replace all four pens (black, blue, green and red) in the same manner. When finished, press the
RESET switch to ready the printer for printing with the black pen.

Execute the BASIC TEST command to confirm that all colors are printed correctly.

Black

Pen position
detection magnet

Pen holder

Green

T

ll
1
]

lever

Replacements for the printer pens (ballpoint pens) can be purchased at the dealer where the printer
was purchased.

e EA-850B (black; 4 pens)
® EA-850C (black, blue, green, red ;4 pens, 1 of each color)

s MZ-1P01

Installation of the MZ-1P01 color plotter printer (for models other than the MZ-731)

1. Turn off the computer’s power switch and unplug the power cable.

2. Remove the two screws located at the center of the rear panel to remove the printer compartment

cover.

. Confirm that the printer switch on the printed circuit board is set to the INT position.

4. Plug the printer connector into the matching connector on the printed circuit board, then position
the printer in the printer compartment and fasten it in place with the two screws. When doing this,
be careful to avoid catching the connector cable between the data recorder and the computer (other-
wise, the screws cannot be tightened).

w

Printer connector
Printer switch
Power connector

Connection of color plotter-printer to the MZ-700
® Connecting an external printer (MZ-80P5(K))

The MZ-80P5(K) printer for the MZ-80K series computers can be connected to the MZ-700’s external
printer connector (see page 104) without any special interface card. Use an optional connection cable
for making the connection.

When using an external printer, the printer switch on the printed circuit board must be set to the
external printer position. Therefore, the color plotter-printer and the external printer cannot be used
simultaneously.

Note that if a program including color plotter-printer control statements is run with an external printer,
meaningless characters (control codes for the plotter-printer) will be printed.

14

3.5 Key Operation

=] PR
= JUHUUH% =

_EDEDDD B g ot [
SHlFT 2 znz .g EE S /ZI @

(SPACE) ’

3.5.1 Typewriter keyboard

Except for the special control keys, several characters are assigned to each key on the keyboard. The
character entered when a key is pressed depends on the input mode selected by the special keys.
The input modes are as follows.
(1) Normal mode This mode is automatically entered when the BASIC interpreter is loaded.
In this mode, the ASCII character (uppercase or lowercase) shown on top
of each key is entered when that key is pressed.

(2) Graphicmode This mode is entered when the | GRAPH | key is pressed. In this mode,
the graphic pattern shown on the left front of each key is entered when
that key is pressed. The graphic pattern shown on the right front of each
key is entered by pressing that key together with the shift key. Pressing the
[ALPHA |key returns input to the normal mode.

Pressing the space bar enters a space regardless of the input mode.

For example characters entered by the C key in different input modes are as follows.

Normal mode: Uppercase C

SHIFT]+([C Lowercase c

Graphic mode [
LSHIFTI+iCl D

The special keys are explained below.

~ SHIFT | Pressing this key allows shift position characters to be entered.
For alphabetic keys, the shift position characters are lowercase letters; for keys
other than alphabetic keys, the shift position characters are those shown on the
upper side of the key tops. In the GRAPH mode, the graphic pattern shown on the
right front of each key is entered.

[C R | Pressing this key enters a |CR| (carriage return) code, terminating the line and moving
the cursor to the beginning of the next line.

[BREAK | Pressing this key enters a BREAK code. Pressing it together with the|[SHIFT | key
stops execution of a program or operation of the data recorder.

[GRAPH | Pressing this key changes the input mode from normal to graphic for input of
the graphic patterns shown on the left front of keys.

~ ALPHA Pressing this key changes the input mode from graphic to normal.

The cursor symbol is 8 in the normal mode and [in the graphic mode.

115

116

(1) Normal mode (alphanumeric mode)

Character entered by each key in the normal mode are as indicated by the screened areas in the figure
below.

[/T =]\‘IPQ]\"E F3];”ffﬂ]DE] [T%-(”}?—MLE‘
5
2 2))

N
IN
]
N
]
o]
i
-]
Bl
ER
g |
THT

l (SPACE) l

When with the | SHIFT | key is pressed together with other keys, lowercase letters (or other symbols
indicated by the screen areas in the figure below) are entered.

e L e L LT T
R o) e
Eﬁg@% e R o

~—
:E
=
~—
:E
N
i
Q E
> ~—
-
E
=
n
E
=

(2) Graphic mode
Pressing the | GRAPH | key places the computer in the graphic input mode. Characters entered by

each key in the graphic mode are as indicated by the screened areas in the figure below. In this mode,

pressing any of the cursor control keys, the INST/CLR key or the DEL/HOME key enters the symbols
0,8 8, 0, 8, or @, respectively.

I —1—] PR
(S I e LE) e o =
e |6 T [s o o el 2l —

Ee e IHHMMH% @HW& |
e el @FH“T —

l (SPACE) ’

TI

When with the | SHIFT | key is pressed together with other keys, symbols indicated by the screen
areas in the figure below are entered.

= R
) e o s

e L L ey L L)) I
L I L I) [=
e L L TW\TWF’F —

The cursor symbol is [in the graphic mode. To return the mode to normal, press the] ALPHA |kev.

117

118

3.5.2 Definable function keys

BT Mg i T A e R A A AR T

Definable function keys

The five blue keys marked F1 to F5 above the typewriter keyboard are referred to as definable function

keys.

Certain character strings are automatically assigned to these keys as follows when the BASIC interpreter
is activated.

F1:
F2:
F3:
F4:
F5:

RUN" + CHRS (13)
LIST

AUTO'

RENUM"

COLOR"

SHIFT +F1: CHRS ("
SHIFT + F2: DEF KEY (
SHIFT + F3: CONT
SHIFT + F4: SAVE'
SHIFT + F5: LOAD"

When one of these keys is pressed, the character string assigned to that key is entered; thus, statements
which are frequently used can be entered just by pressing one key. The character string assigned to any
of the definable function keys can be changed by the DEF KEY statement. (See page 57, DEF KEY
statement.)

m Definable function key label

Labels indicating the character strings assigned to definable function keys can be placed under the
transparent cover located above these keys. The transparent sheet can easily be removed as shown below.

3.5.3 Cursor control keys and insert and delete keys

Cursor control keys and insert and delete keys

The cursor control keys are the four yellow keys at the right of the keyboard which are marked with

arrows.

Pressing these keys moves the cursor one position in the direction indicated by the arrow. These keys
are used when editing programs.

key have the following functions.

INST DEL
The | cLr |and | yomE
INST
CLR
DEL

HOME

—ee— [INST

__ SHIFT _ CLR

————— DEL

See pages 18 and 19.

Inserts a space at the position of the cursor and shifts all following characters
one position to the right.. INST: insert.

Erases the character to the left of the cursor and shifts all following charac-
ters one position to the left. DEL: delete.

Clears the entire screen and returns the cursor to the screen’s upper left
corner. Pressing this key does not affect the program in memory. CLR: clear.
Returns the cursor to the upper left corner of the screen (does not affect
any characters displayed).

119

-n#ab bns nga2ni

ryex arelsh brs Freem oas zysd luwnoen Wl

R:-I1 Wo™ 5 o o wmssmsmen wsesvny il 0f golizoq 900 10270 M. - rvwsr evas
sRoifonul gnrwoliol odt sved 7o

srstagann aniwoifct e otz bns 1oz1uo =i Yo noitizog 91t 18 sose & eh=enl
frseni : T2V . .1dgh =i} o1 nodwoq ano

f1sf Yo0ny zasmm o) ‘of yorum. ol amisr bos neswe siitne 9nl -2EslD)
189> (| A.10 wremsm-mnssagne 98 1osils loa 290b vod airlt gnizesy 10103

{bavslgarb envangiens vr

Hardware

|

Notice: The contents of this chapter are for reference only, and Sharp cannot
assume responsibility for answering any questions about its contents.

4.1

MZ-700 System Diagram

The figure below shows the system configuration of the MZ-700 series computers.

CRT
. Power
F.G switch 240/220v
T — X
[
5V Memory controller R.G.B. [
Power (CRTC) Video RAM Color |-—"]
unit] encoder B
y! T
Character VIDEO l
Reset . W
:‘vsistith circuit generator
Main
memory
64K bytes
MONITOR
ROM
Z80A ¢ i)
1] |
Address bus
Data || bus \
< ___Control | [bus
P2y
AV4 | —
Address decoder |
l /)
8253 8255 Tempo
co Ci c2 controller
is 12h ﬁ ﬁ
’ }——- \) JJ
. . Cassette Joystick
Audio amplifier I:crﬂmé‘:_“rsor - Keyboard | | controller cirzuit
| 7 7%
'\}
Printer
controller
i U
- Cassette Joystick
L__ Printer bus terminal __terminal __J—
Printer Cassette
tape deck

122

4.2 Memory configuration

4.2.1 Memory map at power-on (80k mode)

$0000

$1000
$1200

$D0O0OO

$0800

$EOOCO

$FOO0O

® The memory map is as shown above immediately after the power has been turned on. (The contents
of the V-RAM area from $D000 to $DFFF are not the same as those of MZ-80K.)

MON | TOR
(ROMD

MON | TOR WORK

SYSTEM
and
TEXT AREA
(D—RAM>

V-RAM(CHARACTER>
(S—RAM

V-RAM(COLOR DATA>
(S—RAM)

KEY and TIMER PORT

Enable

$0000

$1000

$D0O0OO

SYSTEM and TEXT AREA
D—-RAM

SYSTEM and
TEXT AREA
D—RAM

Disable

® The entry point of the monitor ROM is the same as that of the MZ-80K.

123

4.2.2 Memory map while loading system program (BASIC)

FOOOO0 $0000
MON | TOR (ROMD | SYSTEM
$1000
A
SYSTEM LOAD
BOOT PROGRAM

$D00O0 $D0O0OO0
V—-RAM

V—RAM
$EO00 M EY ad T IMER PORT

$FOO00

Enabte Disable

® When the monitor LOAD command is entered, the bootstrap loader is loaded into the system RAM
area from ROM and control is transferred to that program.
e BOOT COMMAND : L

124

4.2.3 Memory map after the BASIC interpreter has been loaded

(MZ-700 mode)
$O000 Kelelele]
M?gé&?R SYSTEM
$1000 B OO0 fammeeem e
BASIC
$0000 [Y 7010 1@ 1
V—RAM
V—RAM
$EOO0 =T Zd T IMER PORT
$FOO00
Disable Enable

® The memory map is as shown above after the BASIC interpreter has been loaded.
® Bank switching is performed to access V-RAM or the KEY and TIMER PORT area.

4.2.4 Memory map after manual reset

The memory map is as shown below after the reset switch on the rear panel has been pressed.

$OO0O0 $OO0O0
MON | TOR
CROM SYSTEM
$1000 $1 000
SYSTEM
FD0000 $DO0O0
V—RAM
V—RAM
$EOOO [MYEY and TIMER PORT
SYSTEM
$FOOQO
Enable Disable

After pressing the reset switch together with the | CTRL | key, the memory map is as shown below.

$OOO00
MON | TOR —
(ROMD
$1.000
SYSTEM
$DOOO
V—RAM
V—RAM
BEOOO eV and T IMER PORT
$FO0O0

Disable Enable

126

® When the reset switch is pressed together with the [CTRL] key, addresses $0000 to $OFFF and
from $D000 to $SFFFF are assigned to RAM.

® When the # command is entered after the reset switch has been pressed, the computer operates in
the same manner as after the reset switch has been pressed together with the [CTRL | key.

4.2.5 Bank switching

a) Memory blocks can be selected by outputting data to I/O ports as shown below.

SWITCHING
I/O PORT $0000~$0FFF $DO00~FFFFF
$ EO SYSTEM AREA (D-RAM)
$E1 SYSTEM AREA (D-RAM)
SE2 MONITOR (ROM)
$ E3 T V-RAM, KEY, TIMER
$ E4 MONITOR (ROM) V-RAM, KEY, TIMER
$ ES —— | Inhibit
Return to the front of
$ E6 condition, where being
inhibitted by $ ES.

Note: Outputting data to I/O port $E4 performs the same function as pressing the reset switch.

b) Examples:
OUT ($EO0), A
Assigns addresses $0000 to $OFFF to RAM, but does not change execution address. The contents
of variable A do not affect the result.
OUT ($E4), A
Initializes memory to the state immediately after the power has been turned on.

Note: Since the program counter is not moved by the OUT statement, care must be taken when switch-

ing memory blocks if the program counter is located in the area from $0000 to $OFFF or from
$D000 to$FFFF.

127

4.2.6 Memory map when V-RAM is accessed
i) V-RAM (Video RAM) memory map

$0000

CHARACTER V—RAM
(2 Pages,, 50 Lines)

$D0800

COLOR DATA V—RAM

$EOOQO
KEY and T IMER PORT

ii) Correspondence between V-RAM address
and location on the screen.
The MZ-700 has a 2K byte V-RAM area,
but only 1K byte of that area can be dis-
played on the screen at one time. The area
displayed can be changed by scrolling
the screen.
a) Area displayed immediately after reset

(or power-on): DOOO Address
1 ——— Byte No.
1 2 3 39 40
0000X [DOO1 [DOO2 D026 [D027
1 2 3 39 40
D028 |D029 | DO2A DO4E | DO4F
41 42 43 79 80
		: !
	I I !	
: '	I I	
-5 [D3CO|D3C1|D3C2 D3E6|D3E7
e61 | 962 fg63 999 1000
)
Line

128

b) Area displayed after the screen has been scrolled up one line from the end of V-RAM:

1 2 3 39 40
, [pooolooo1 oo D026 (D027
1041 1042|1043 10791080
> | D028/D029(D02A DO4E | DO4F
1087|7082|7083 7116|1120
o o
| | | |
| | | |
: | |
-4 |D398|D399|D39A [D3BE|D3BF
1967 [1062|7663 7099 | 2000
o5 |D3CO|D3CT|D3C2 D3E6 |D3E7
1 2 = 39 | 40

Note: The line consisting of bytes 1 to 40 is wrapped around to that consisting of bytes 1961 to 2000
as shown above.

iii) Scroll-up and scroll-down
a) The screen is scrolled up by pressing the | SHIFT | and keys together, and is scrolled down
by pressing the| SHIFT |and keys together.

b) Scroll-up and scroll-down

A: Area which is displayed
on the screen (1K bytes)

B: V-RAM (2K bytes)

® During scrolling, the area which is displayed on the screen moves through the 2K byte V-
RAM area as shown above.

® The end of the V-RAM area is warpped around to the beginning of V-RAM as shown above.

® The cursor does not move on the screen during scrolling.

129

30

4.3 Memory Mapped I/O ($E000-$E008)

Addresses $E000 to $E008 are assigned to the 8255 programmable peripheral interface, 8253 pro-
grammable interval timer and other I/O control ICs so that various I/O devices (including music functions
using counter #0 of the 8253) can be accessed in the same manner as memory. The memory mapped I/0
chart is shown below.

CPU memory address | Controller Operation
$E000 Pa: Output
$E001 8755 Ps: Input
$E002 Pc: Input and output control by bit setting
$E003 Mode control
$E004 Co: Mode 3 (square wave rate generator)
$E005 8253 C,: Mode 2 (rate generator)
$E006 C,: Mode O (terminal counter)
$E007 Mode control
$E008 LS367, etc. | Tempo, joystick and HBLNK input

4.3.1 Signal system of the 8255

The 8255 outputs keyboard scan signals, input key data, and controls the cassette tape deck and cursor
blink timing.

8255
Port Terminal | I/O | Active state Description of control Name of signal
PA, H
PA PA, H Keyboard scan signals

(SE000) PA, ouT H \
PA, H ‘
PA, L Resets the cursor blink timer. 556 RST
PB, L
PB, L ‘
PB, L |

PB PB; L 1 . . .

(SE001) PB, IN L | Key scanning data input signals
PB; L ‘
PB, L ‘
PB, L ‘
PC, OuT — Cassette tape write data WDATA
PC, ouT L Inhibits clock interrupts. INTMSK

pC* PC,4 ouT IL Motor drive signal M-ON

(SE002) PC, IN H Indicates that the motor is on. MOTOR
PC;, IN - Cassette tape read data RDATA
PC, IN — Cursor blink timer input signal 556 OUT
PC, IN — Vertical blanking signal l VBLK

* Each output data bit can be independently set or reset.

131

4.3.2 Signal system of the 8253

The 8253 includes three counters # 0, # | and # 2. Counter # O is used for sound generation, and
counter # 1 and # 2 are used for the built-in clock.

Counter # 0 is used as a square wave rate generator (MODE 3) and counter # 1 is used as a rate genera-
tor (MODE 2). Counter # 2 is used for the interrupt on terminal count (MODE 0).

A 895 kHz pulse signal is applied to counter # 0, which devides the frequency to the specified value
according to the note information. This divided signal is output to the sound generator.

Counter # 1 counts a 15.7 kHz pulse signal and outputs a pulse to OUT]1 every 1 second. Counter
2 counts the output signal from counter # 1 and outputs a high level pulse to OUT2 every 12 hours.
Since OUT?2 is connected to the interrupt terminal of the CPU, the CPU processes the interrupt every
12 hours.

8253
I NTMSK
ITNT
OUT2-———————>
CLK2 |—
D, OUT1|[——
Do - cLKk1 BLNK (15. 61 1KHD
OUTO | E(]
L—AMP . sp
CLKO 89O 5KH;

32

4.4 Signal System of Color V-RAM

Color information of the MZ-700 is controlled in character units; that is, a 1-byte color information

table is assigned to each character displayed on the screen.

A color information table is shown in the figure below.

D: Not used.
De

De |cHaracTeR| R
D- B
D: Not used.
D=

D- |BACK| R
D¢ B8

Color information tables are accessed as follows.

8-bit shift register

TDO

: Green
. Red
. Blue

L

]

Color

$000

$7FF

C.G
Alphanumerics

$D0O00O

$D7FF

V—RAM

Characters displayed are stored at addresses $D000 to $D7FF of V-RAM, and color information tables

Display address

$0800

SDFFF

are stored at addresses $D800 to $DFFF of V-RAM.

Sync
signal

signal

D6~D4
D2~DO

COLOR
V—RAM

Display address

matrix |

Blanking———

CHARACTER BACK

R.G.B.
o
(¢}

VIDEO
S RF

Color subcarrier (3.54MHz)

133

4.5 MZ-700 Circuit Diagrams

[CPU board circuit (1)]

| L]

134

|

T

136

[CPU board circuit ()]

LTI

[TIITIIIIT]
[T

[TIIIIIT
[TTTIITITT]
EEENEENEEN
NENNEEEEEN

it (4)]

138

[CPU board circuit (5)]

nnnnnnnn

uuuuuuuuuuu
ooooooooooooo

Ttitiing

LY

IR

2

0€

+8 O~
100n |
710V
5.6 i
~8.2K u/10V
s aToW/63V
+
%)oz +——H—wW—— VIDEO ouT
1
100710V
|
vs O—
Hs O]
QO eNp
15P
l22 |
- or = ~3.9K :5~|<
0sc
BOX .
>
! M OFRF ouT
?!vr
Fse O
| -
Ql,Q2 25CI675L or EQUIVALENT
Q3,05 25€945 or EQUIVALENT
Q4 254733 or EQUIVALENT
— DI~DE 1SS119 or EQUIVALENT
D7,D8 ISSI74 or EQUIVALENT
Icl HD7404P o EQUIVALENT
Ic2 HD7486P or EQUIVALENT
i c3 HD7474P or EQUIVALENT
I I Ica HDI4066BP
IC5,1C6 WPCIO37H

poou? 10.0)

oI I3

140

[Power unit]

S
8N
TS
xo
-
=
gn | o ©
wn
—_ ~O .
Vo :J
4 -
AW —-
‘o o on
o
vo n'&_’

é

/0.5
72

gl

mark

ARDP

ARD|

ARD2

ARD3

ARD4

|l s W(N

ARDs

ARDe

ARD7

ARDsg

olo|lo|~

AIRT

GND

N

ARDA

™

GND

Y

ASTA

L5

ALPS

mark

+5Vv

+5V

GND

dlw| N

GND

mark

1 RDP 2 GND
3 RD 4 GND
5 RD2 6 GND
7 RD3 8 GND
9 RD4 10 GND
] RDs 12 GND
13 RD6 14 GND
15 RD7 16 GND
17 RDs 18 GND
19 IRT 20 GND
21 RDA 22 GND
23 STA 24 GND
25 FG 26 FG

5v

VBLK

JA|

JA2

nd|lwn

GND

5v

VBLK

JB I

JB2

aldw|N

GND

P~Ii
49 Als NMI 50
47 Als EXINT 48
45 A3 GND 46
43 Az MREQ 44
41 Al GND 42
39 Ao IORQ 40
37 As GND 38
35 As RD 36
33 A7 GND 34
3 As WR 32
29 As EXWAIT |30
27 Aa M 28
25 A3 GND 26
23 Az HALT 24
21 A EXRESET |22
19 Ao RESET (20
17| BUS @& GND 18
15 D7 GND 16
13 De GND 14
1 Ds GND 12
9 D4 GND 10
7 D3 GND 8
5 D2 GND 6
3 DI GND 4
1 Do GND 2

h]
1
©o

Iooooooooooool

GND
CSYNC
CVIDEO
HSYNC
V SYNC
GND
+5V

COLR
GND

preoq NdO

uod eur

2

nSr

uo

[Keyboard matrix circuit]

8255 outputs keyboard scan signals from port PA to the keyboard and reads key data from port PB.
The figure below snows the key matrix.

Keyboard connector LED
0IeXCIOISICIGIICIOIDICICIOICICIDICICID)
GND

142

o

e

[Color plotter-printer circuit]

—

Monitor Commands and
Subroutines

146

5.1 Monitor Commands

The monitor program starts immediately after the power is turned on and awaits input of a monitor
command. The monitor commands are listed below. In this chapter, | CR| indicates that the carriage return
key is to be pressed.

L command Loads cassette tape files into memory.

P command Outputs the specified character string to the printer. (Print)

M command Changes the contents of memory. (Memory correction)

Jcommand...... Transfers control to the specified address. (Jump)

S command Saves the contents of the specified memory block to cassette tape. (Save)

V command Compares the contents of cassette tape with the contents of memory.

command Transfers control to the RAM area.

B command Makes the bell sound every time a key is pressed. Executing this command

again stops the bell.

m Configuration of the monitor work area

The configuration of the monitor work area from $1000 to $11FF is shown below.

$O000
Monitor
$1000
Stack area
$10FO
Cassette tape
header area
$1170
Variable area
$11A3
Key input data area
$1200
Free area

Note: The ROM monitor described in this chapter is not the same as the monitor function of the BASIC
interpreter.

5.2 Functions and Use of Monitor Commands

This section describes the functions and use of the eight monitor commands.

m Commands are executed when the |CR| key is pressed. Characters must be entered in the correct order.
If illegal characters (such as spaces) are included in a command string, the monitor rejects the command.

® All numeric data must be entered in hexadecimal form at, and all data is displayed in hexadecimal form
at. Therefore, 1-byte data is represented with two hexadecimal digits and 2-byte data is represented
with a four hexadecimal digits. For example, the decimal number 21 is displayed as 15 and the decimal
number 10 must be typed in as OA. The upper digit " 0" cannot be omitted.

m If the number of characters typed as an operand exceeds the specified number, excess characters are
discarded.

® Fach command can access any location of memory. Therefore, the monitor program may be changed
if the commands are used carelessly. Since this can result in loss of control over the system, be careful
to avoid changing the contents of the monitor program.

5.2.1 L command
| Format L

This command loads the first machine language file encountered on the cassette
tape into memory. After the L command is entered, the display changes as follows.

XL/
X PLAY

Press the | PLAY | key of the data recorder. When a machine language program is
found, the message “LOADING program-name” is displayed. For example, the
following message is displayed during loading of the BASIC interpreter.

LOADING BASIC

147

5.2.2 P command (P : Printer)
This command is used as follows to control the plotter printer:

XPABCJ

Prints the letters “ABC™.
XP&TJ

Prints the test pattern.
XP&SJ

Sets the line width (character size) to 80 characters/line.
XP&LJ

Sets the line width (character size) to 40 characters/line.
XP&GJ

Switches the printer to the graphic mode.
XP&CJ

Changes the pen color.

5.2.3 M command (M : Memory modification)
Format Mhhhh

hhhh..... starting address

This command is used to change the contents of memory a byte at a time, starting
at the specified address.

XMCIDT J

COLvy O FF

COg1 @O FF

Cuw2 OO FF

COo3 OO FF

Coga oI SHIFT 1+ BREAK]
XMC1TJ

Ca1g GO

Cu11 0o 88

Co12 I

Ca13 GO

co1a4 o [SHIFT |+ [BREAK]
X

To terminate the M command, simultaneously press the| SHIFT Jand| BREAK |keys.

148

5.2.4 Jcommand (J : Jump)

Format |

J hhhh

hhhh destination address
This command transfers control to the specified address; i.e., it sets the specified
address in the program counter.

XJ1200J) 0 e Jumps to address $1200.

5.2.5 Scommand (S : Save)

Format

Function

Shhhhh KW h h”h”h”h”

hhnhp-eee starting address

n'"h' N’ h'----end address

h"h"h” nh"-- execution address
Upon execution, this command prompts for entry of a file name, then saves the
contents of memory from hhhh to h’h’h’ h’ on cassette tape under the specified
file name. Assume that a machine language program in the area from $6000 to
$60A3 whose execution address is at $6050 is to be saved under file name "MFILE";
the command is then entered as follows.

XElsiololole(olAIB]B{al5T0] 4
FILENAMESY MEDLEJ
X RECORD.PLAY

Confirm that a blank cassette tape is loaded in the data recorder and press the
[RECORD]| key.

If the write protect tab of the cassette tape is removed, the [RECORD | key cannot
be pressed. Replace it with another cassette.

This command can only be used to save machine language programs.

WRITING MFILE
oK |

Note: To abort recording, hold down both the _ SHIFT and | BREAK | keys
until the prompt “ X * appeas.

149

5.2.6 Vcommand (V : Verify)

| Format |

Function

\%
Compares a machine language cassette file saved using the S command with the
original program in memory.

XV J
X PLAY
oK

Press the PLAY key to read the cassette tape file when the prompt “3 PLAY”
is displayed. The message 'OK" is displayed when the contents of the cassette
file matches that of the original program; otherwise, the message "CHECK SUM
ER." isdisplayed.

It is recommended to that this command be executed immediately after recording
a program with the S command.

5.2.7 # command

[]
L]

#

After pressing the RESET switch, executing this command produces the same effect
as simultaneoulsy pressing the RESET switch and the | CTRL | key.
X# J

5.2.8 B command (B : Bell)

Format

B

XBJ

Executing this command once causes the bell to ring each time a key is pressed.
Executing it again disables the bell.

50

5.3 Monitor Subroutines

The following subroutines are provided for Monitor 1Z-013A. Each subroutine name symbolically
represents the function of the corresponding subroutine. These subroutines can be called from user
programs.

Registers saved are those whose contents are restored when control is returned to the calling program.
The contents of other registers are changed by execution of the subroutine.

. . Register
Name and entry point (hex.) Function saved
CALL LETNL . . Other
(0006) Moves the cursor to the beginning of the next line. than AF
CALL PRINTS Displays a space at the cursor position Other
(000C) ’ than AF
Displays the character corresponding to the ASCII code stored
in ACC at the cursor position, See Appendix A. 1 for the
CALL PRINTS ASCII codes. No character is displayed when code OD (carriage | Other
(0012) return) or 11 to 16 (the cursor control codes) is entered, but than AF
the corresponding function is performed (a carriage return for
0D and cursor movement for 11 to 16).
Displays a message, starting at the position of the cursor. The
starting address of the area in which the message is stored must
be set in the DE register before calling this subroutine, and the
CA(‘(I)‘(%‘II\S/I)SG message must end with a carriage return code (0D). illisters
The carriage return is not executed. g
The cursor is moved if any cursor control codes (11 to 16) are
included in the message.
CALL BELL . . Other
(003E) Briefly sounds high A (about 880 Hz). AF
Plays music according to music data stored in the memory area
starting at the address indicated in the DE register. The music
data must be in the same format as that for the MUSIC state-
CALL MELDY ment of the BASIC, and must end with 0D or C8. Other
(0030) When play is completed, control is returned to the calling pro- | than AF
gram with the C flag set to 0; when play is interrupted with
the | BREAK | key. control is returned with the C flag set
to 1.
Sets the musical tempo according to the tempo data stored in
the accumulator (ACC).
ACC+« 01 Slowest speed
L E
CA (]60)3) MP ACC+04 Middle speed A e
ACC <07 Highest speed &
Note that the data in the accumulator is not the ASCII code
corresponding to 1 to 7 but the binary code.
Generates a continuous sound of the specified frequency.
CALL MSTA ’ghe fr_ecégznlg_rl is given by the following equation. BC and
(0044) req. = 895 KHz/nn’. DE
Here, nn’ is a 2-byte number stored in addresses 11A1 and
11A2 (nin 11A2 andn’in 11A1).

1561

Register

Name and entry point (hex.) Function saved
CAZ&I)., 41\7'1)STP Stops the sound generated with the CALL MSTA subroutine, gltilne;F
Sets and starts the built-in clock. Registers must be set as
CALL TIMST follows before this routine is called. Other
(0033) ACC« 0 (AM), ACC« 1 (PM) than AF
DE < 4-digit hexadecimal number representing the time in
seconds.
Reads the built-in clock and returns the time as follows. Other
CALL TIMRD ACC < 0 (AM), ACC « 1 (PM) than AF
(003B) DE <« 4-digit hexadecimal number representing the time in 4 DE
seconds, an
CALL BRKEY Checks whether the | SHIFT | and [BREAK | keys are both | ipor
(001E) b.elng pressed. The Z ﬂa.g is .se_t when they are being pressed than AF
simultaneoulsy ; otherwise, it is reset.
Reads one line of data from the keyboard and stores it in the
memory area starting at the address indicated in the DE
register. This routine stops reading data when the RETURN
key is pressed, then appends a carriage return code (0D) to
the end of the data read.
CALL GETL A finaximum of 80 ch.:aracters.(including the carriage return Al
(0003) code) can be entelred in one line. . registers
Characters keyed in are echoed back to the display, and cursor
control codes can be included in the line.
When the [SHIFT | and keys are pressed
simultaneously, BREAK code is stored in the address indicated
in the DE register and a carriage return code is stored in the
subsequent address.
Reads a character code (ASCII) from the keyboard. Other
If no key is pressed, control is returned to the calling program | than AF
with 00 set in ACC.
No provision is made to avoid data read errors due to key
CALL GETKY chattgr,land characters entered are not echoed back to
(001B) the display. . .
When any of the special keys (such as [DEL] or |CR|) are pressed, this
subroutine returns a code to ACC which is different from the correspond-
ing ASCII code as shown below. Here, display codes are used to address
characters stored in the cahracter generator, and are different from the
ASCII codes.
Special key Code set in ACC Display code
DEL 60 Cc7
INST 61 C8
ALPHA 62 C9
. BREAK 64 CB
Special key read CR 66 CD
with GETKY 11 Cl
12 C2
13 C3
14 C4
[HOME | 15 C5

o
-
ad

16 Cé6

Name and entry point (hex.)

Function

Register

saved
CALL ASC Sets the ASCII character corresponding to the hexadecimal Other
(03DA) number represented by the lower 4 bits of data in ACC. than AF
Converts the 8 data bits stored in ACC into a hexadecimal
number (assuming that the data is an ASCII character), then
CA(g)“;“FI;;E X sets the hexadecimal number in the lower 4 bits of ACC. %thei\F
The C flag is set to O when a hexadecimal number is set in an
ACC; otherwise, it is set to 1.
Converts a string of 4 ASCII characters into a hexadecimal
number and sets it in the HL register. The call and return
conditions are as follows.
DE < Starting adress of the memory area which contains Other
CALI(; 4}}16HEX the ASCII character string than AF
() (e.g' 1l 3 1l 1l 1 1l IIAII 1l 5 i) and HL
CALL HLHEX 1_ DE
CF=0 HL <« hexadecimal number (e.g., HL = 31A5+)
CF =1 The contents of HL are not assured.
Converts a string of 2 ASCII characters into a hexadecimal
number and sets it in ACC. The call and return conditions
are as follows. Oth
CALL 2HEX DE <« Starting adress of the memory area which contains th eIAF
(041F) the ASCII character string. (e.g., "3" "A") ZHDE
CALL 2HEX L DE an
CF =0 ACC <« hexadecimal number (e.g., ACC = 3An)
CF =1 The contents of the ACC are not assured.
Blinks the cursor to prompt for key input. When a key is
29
CAI(“(§‘9]'3'31§EY pressed, the corresponding display code is set in ACC and %thekF
control is returned to the calling program. an
Converts ASCII codes into display codes. The call and return
0 conditions are as follows.
CA%B']%]))CN ACC < ASCII code 81““*;1:
CALL ? ADCN an
ACC <« Display code
Converts display codes into ASCII codes. The call and return
conditions are as follows
CALL ?7DACN . ’
(OBCE) ACC <« Display code 81?;1:&13
CALL ? DACN
ACC <« ASCII code
CALL ?BLNK Detects the vertical blanking period. Control is returned to the | All
(0ODA6) calling program when the vertical blanking period is entered. registers
Controls display as follows.
CALL ?DPCT ACC Control | AcC Control All
0DDC COn Scrolling Con Same as the | CLR | key. i
() ClH Same as the [key. C7H Same as the | DEL | kev. registers
C2H Same as the @ key. C8H Same as the | INST | kev.
C3H Same as the B key. CoH Same as the [ALPHA | key.
C4H Same as the Bl key. CDH | Same as the |CR| key.
C5H Same as the [HOME| key.
Sets the current cursor location in the EIL register. The return Oth
CALL ?PONT conditions are as follows. ht el:AF
(OFB1) CALL ? PONT than
and HL

HL <« Cursor location (binary)

163

Ismi.sbexed st ot gnibsoqeomos 15iusisdo HORA s:l) 2352 %
FA asdr | D0a m sish 1o 2id b 1ewol 201 vd bainses1gs 1sdmye &

- &#ollol 28 518 cnobn
gtz 1atosmsdds 11024 st

fufAIE — 1H 2.9} 1odmun lsmissbaxsd - IH 0~ 3D
wiseRs Jou 516 IH Lo etastnos od T 1~ 3D

KXHHE 314
{ AL ~DDE _3.9) 12dmun lsmissbsxsd - D248 0=3D
baueze fon o8 DJA o) Yo etnsinoo odT =10

pas JYOA ni 1sz & shoo velgeib gnibnogesitos i bssesig
.is18032 anillso a5t o3 borriret 2i toxdneon

s bis 80 sl 250 valgxb oiry 29bon HIZ2A arreviwn «
.2wolfo1 25 g1k enomibaos
sbog [1O24 — g

2wollol 28 18 2noitibaog
sbos velaeid = D'}

shoo HD2A — 34

berstns ai bedieg geidesld s s odl gedw me-gorg vl

ptet odT 1skins IH o3 o notsao! 10zmo iasniu

(msnid) noiisool wonu¥-> JH

A.1 Code Tables

m ASCII code table

MSD is an abbreviation for most significant digit, and represents the upper 4 bits of each code; LSD
is an abbreviation for least significant digit, and represents the lower 4 bits of each code. Codes 11u to
161 are cursor control codes. For example, executing CALL PRNT (a monitor subroutine) with 15« set
in ACC returns the cursor to the home position. (" [8 "is not displayed.)

0 0000 @@@DEEQ@@EEED
oo | B Al Q) H (R R o) OO0 5 (@) @
2 0010 B[[z2]8]|R] I E]EC]e Ul | 0| S
oo | B (C]ls]] B 7wl m) O 8 S5
1000 B s4oTK=N QU080
5 0101 B sl | | A uALLD L
5 o110 @ &[e]/[F] v ¥R BX
7 oo C7lelw] e k] 3|81 B 0| 1|2][O
s 1000 [d8l/[RIX]@ | |[h]|[&][r]| | ™]|
° 1001 DI v N | [A|[k]|[A]| 7] el | W] (T
A 1010] []/[J] /]| DH| N |6 | [f]) [o] (O | [(N|[@
B 1011 EE@@EMaEE@
¢ 1100 LIILINZ =N 4| [T a8 O [
D 1101 EE@@BUWEEND}
E 1110 L D]INIEEBIZTICA PIB] ()] W™ AN
F 1111 Z @E]E]EDHD

154

s Display code table

The display codes are used to address character patterns stored in the character generator. These codes
must be transferred to video-RAM to display characters.
Monitor subroutines PRNT (00124) and MSG (0015+) convert ASCII codes into display codes and
transfer them to the V-RAM location indicated for the cursor.
Codes Cln to C6n are for controlling the cursor.

0 0000 MWOSEDEEQE@EQE
oo (A DD@ET0ECECDEDE
2 ooro |[B]|[R]/[2]|[JN[C|[*"]|O|[e)|[r | ID] KA REJED (T
s oo |[C](s] 30 M) O (el s B Y I R A
oo D TRBE0AEEdUN0RRE -
5 0101 _E—IUEIEDE[DGEBE_E
6 0110 E]V GDEEEZTW @D@
7 0111 GW7D@EIN:EQ[]_EE-_'I
: oo [[H][x)|[8] 208 OB] x| PN H @K G
9 1001 IYg[ﬂE)[DIEQEMKB
A 1010 quﬁﬂr+E]@Q@@E@
B 1011 K@DDEEEEB@EE@
¢ noo 0BG 0N 4 & 20 2o (1) 5 18
o o M) P20 W A1 X T ml P ol BB ¥ (2 &
e 1o |[NJ|[B|[L)| Q) d|H)| P |[n]| | [A] [~ @) ZJ][S]] =
oo [OEHDODE NLNBOON

155

The character patterns on the former page are contained in the 2K bytes which make up the first
half of CG-ROM. Character patterns for the second half of CG-ROM are shown on the latter page.
However, character patterns in the second 2K bytes of the CG-ROM are not supported by BASIC, and
cannot be entered directly from the keyboard. Although they can be displayed using the POKE
statement as shown in the example below, they cannot be output to any printer (either the built-in
printer or an external printer).

< Examples >
(1) The following program example displays character patterns from the second half of CG-ROM
on the CRT screen.

109 COLOR, ., 7,0
20 PRINT'®" ;

30 FOR J=b55296 TO 56296 —— 55296=3$D800

4 POKE J, 249 Specifies the second 2K-byte
50 NEXT J ' half of CG-ROM. 240 = $F0
60 A=b3248: | =0:H=0 ——— 53248 = $D000

78 POKE A, |

80 A=A+2

QU I=1+1:1F |=256 THEN GOTO 129

100 H=H+1:I|F H=20 THEN A=A+40: H=0
119 GOTO 70
120 GOTO 120

(2) The example below illustrates using machine language to display character patterns from the
second half of CG-ROM on the CRT screen.

LD HL, DOYIH DISP XOR A
CALL DISP LD B, 90H
LD HL, D2g8H DIgP2:LD ML), A
CALL DISP INC HL
LD A, F1H INC A

LD HL, DAOS8H DEC B

LD DE, DAOO9OH JP Nz,DISP2
LD BC, OOFFH RET

LD HL, A

LODIR

END

185 —1

8 MZ-700 Display code table (second 2K-byte half)

LSD

MSD

0000

0001

0010

=
S w
=

0101

2
gy
(=)

1000

1011

1100

=
o U
=

1110

1111

0000

0001

0010

0011

0100

0101

@ |

1y

e
£ A |-

> -

|

v [= (]

HEMEES

] & (N 5
AVDT 0O
<

N ia

Ml N

0110

0111

1000

1001

1010

i

HH
Y -

= OOomn ESWMCAD

= Al O

CIRRC} o NN

AN

D > N

-

ol R

1011

1100

1101

1110

1111

* A

N

=

Al

7 N

il § IR\
™

il ¥

ALd C|kd PN

AR T
W [E

1

16b

s ASCII code table for color plotter-printer

Graphic characters other than those shown above cannot be printed, but the corresponding hexadecimal
code is printed in a different pen color.

Men

O ||

()
>

0 SP@@D A N
: Y 11Aa0 a
: T 2IBIR SIP41e
: B S3I01S S wm
‘ $| D] ~| S
: X101 v
O |!
"/
e
g

C = IXO
QO DO

@}
g
AN

S
|

N

+ [
C_
N —— I]X
OO > || XD DO |t

N
/-
O

156

A.2 MZ-700 Series Computer Specifications

A.2.1 MZ-700

CPU:
Clock:
Memory:

Video output:

Screen size:
Colors:
Music function:

Clock:
Keys:

Editing function:

Temperature:
Humidity:

Dimensions:

Weight:

Accessories:

SHARP LHOO80A (Z80A)
3.5 MHz
ROM 4K bytes (ROM)

2K bytes (character generator)

64K bytes (program area)

4K bytes (video RAM)

PAL system

RGB signal

Composite signal (B/W)

RF signal (UHF 36 + 3 CH, B/W)

40 characters x 25 lines

8 x 8 dot character matrix

8 colors for characters

8 colors for background

Built in (500 mW max. output)

Built in (24 hour clock, no backup)

69 keys

ASCII standard

Definable function keys, cursor control keys

RAM

Screen editor
(cursor control, home, clear, insert, and delete)
Operating; 0 ~ 35°C

Storage; —20~ 60°C
Operating; 85% or less
Storage; 85% or less

MZ-731; 400 (W) x 305 (D) x 102 (H) mm

MZ-721; 440 (W) x 305 (D) x 86 (H) mm

MZ-711; 440 (W) x 305 (D) x 86 (H) mm

MZ-731; 4.6 kg

MZ-721; 4.0 kg

MZ-711; 3.6 kg

Cassette tape (BASIC (side A) Application programs (side B))
Owners manual, function labels, power cable, TV connection cable
Attachments for the color plotter-printer are listed later.

A.2.2 CPU board specifications

CPU: LHOO80A (Z8OA) 1
PPIL: 825 e 1
PIT: 3 3K P 1
Memory controller
(CRTC): M60719 ... e 1
ROM: Monitor 4K byte ROM......... 1
Character generator 2K byte ROM......... 1
RAM: 64Kbits D-RAM...................... 8
2Kbyte S-RAM 2
I/O bus: ExpansionI/Obus 1
PrinterI/Obus 2 (Cannot be used at the same time)
Cassette READ/WRITE terminals 2
Joystick terminal, 2

A.2.3 Color plotter-printer specifications

Printing system: 4 selectable colors using ball point pens

Colors: 1. Black, 2. Blue, 3. Green, 4. Red

Printing speed: Average 10 characters/second when printing with the smallest size characters.
Line width: 80 columns, 40 columns, or 26 columns (selected by software)

Number of

characters: 115 (including ASCII characters)

Resolution: 0.2 mm

Accessories: Roll paper (1), Ball pens (black, blue, green red) Paper holders (left and right)

Roll shaft (1), Paper guide (1)

A.2.4 Datarecorder specifications

Type: IEC standard compact cassette mechanism
Recording/

playback system: 2 track, 1 channel monophonic

Rated speed: 4.8 cm/s £3.5%

Type of control

switches: Piano type

Control switches: PLAY, FF, REW, STOP/EJECT, and REC keys and counter reset button
Data transfer

method: Sharp PWM method

Data transfer

rate: 1200 bps (typ.)

Tape: Ordinary audio cassette tape

A.2.5 Power supply specifications

(Supplies power to the color plotter-printer and data recorder, as well as to the main unit.)
Input: 240/220 V £10%, 50/60 Hz, 20 W
Output: 5V

168

A.3 BASIC Error Message List

The BASIC interpreter displays an error message in one of the following formats when an error occurs
during operation.

1. <error type > error {Direct mode error)
2. < error type > error in line number (Run mode error)

Error messages in format 1 are issued when an error is detected during execution of a direct command
or entry of a program. Error messages in format 2 are issued when an error is detected during program
execution.

Error messages which may be displayed are shown below.

SYNTAX
Error No. Message displayed Description
1 Syntax error Syntax error
2 Over flow error Numeric data used is out of the specified range, or
an overflow occurred.
3 Illegal data error Illegal constant or variable was used.
5 String length error String length exceeded 255 characters.
6 Memory capacity error Memory capacity is insufficient.
7 Array def. error An attempt was made to redefine an array to a
size greater than that defined previously.
8 Linelength error The length of a line was too long.
10 GOSUB nesting error The number of levels of GOSUB nesting exceeded
the limit determined by the usable memory space.
11 FOR~NEXT error The number of levels of FOR~NEXT loops exceed-
ed the limit determined by the usable memory area.
12 DEF FN nesting error The number of levels of DEF FN nesting exceeded
the limit.
13 NEXT error NEXT was used without a corresponding FOR.
14 RETURN error RETURN was used without a corresponding GOSUB.
15 Un def. function error An undefined function was called.
16 Un def. line num. error An unused line number was referenced.
17 Can’t continue CONT command cannot be executed.
18 Memory protection An attempt was made to write data to the BASIC
control area.
19 Instruction error Direct mode commands and statements are mixed
together.
20 Can’t RESUME error RESUME cannot be executed.
21 RESUME error An attempt was made to execute RESUME when no
error had occurred.
24 READ error READ was used without a corresponding DATA
statement.
43 Already open error An OPEN statement was issued to a file which was
already open.
63 Out of file error Out of file during file read.
65 Printer is not ready Printer is not connected.
68 Printer mode error Color plotter-printer mode error.
70 Check sum error Check sum error (during tape read).

159

A.4 Z80A Instruction Set

A summary of the Z80A instructions are given below for reference.

160

Mnemonic gggrba%liign Op-code Mnemonic Sgg‘rba%'i'gn Op-code
8-bit load group LD HL, (nn) He—Mn+1) 00 101 010
L—(nn) n >
LD rr rer’ 01 r r — n -
LD r,n ren 00 r 110 LD dd, (nn) ddu—(nn+1) 11 101 101
— n - dd_«—{(nn) 01 dd1 011
LD r, (HL) re—(HL) 01 r 110 — n -
LD r, (X+d) r—(X+d) 11 011 101 — n -
01 r 110 LD 1X, (nn) IXpe—(nn+1) 11 011 101
— d — IX —(nn) 00 101 010
LD r, dY+d) r—Y+d) 11 111 101 n
01 r 110 — n -—
— d — LD 1Y, (nn) IYnw—(nn+1) 11 111 101
LD (HL),r HL)+r 01 M0 r Y «—(nn) 00 101 010
LD (X+d),r AUX+d)«r 11 011 101 — n —
01 110 r — n
— d - LD (nn), HL (nn+1)«H 00 100 010
LD UY+ad),r AY+d)«r 11 111 101 (nn) <L n —
01 110 r «— n
— d — LD (nn).dd (nn+1)«ddy 11 101 101
LD (HL),n (HL)<n 00 110 110 (nn)«—dd, 01 ddo oM
- n —_— - n —
LD (X+d), n UX+d)«n 11 011 101 — n —
00 110 110 LD (nn), IX nn+1)«—IXy 11 011 101
— d nn)«IX, 00 100 010
«— al — «— al Ed
LD dY+d),n QY +d)en 11 111 101 — n —
00 110 110 LD (nn), IY nn+1)«I1Yy 11 111 101
d (nn)«IY, 00 100 010
«— n e -« n —_
LD A, (BC) A—(BC) 00 001 010 — n -
LD A, (DE) A—(DBED 00 011 010 LD SP,HL SP—HL 11 111 01
LD A, (nrn) A«—(nn) 00 111 010 LD SP, IX SP«—IX 11 011 101
n 11 111 001
— n — LD SP,IY SP«—IY 1 111 10
LD (BC), A (BC)—A 00 000 010 11 111 001
LD (DE), A (DE)«—A 00 010 010 PUSH aq (SP—2)«aa, 11 a0 101
LD (nm), A (nn)<«A 00 110 010 (SP—1)—qq,
— n — PUSH IX (SP—2)«IX, 11 011 101
— n — (SP—1)—IXy 11 100 101
LD A, I Al 11 101 101 PUSH IY (SP—2)«—IY, 11 111 101
01 010 1M1 (SP—1)«IYy 11 100 101
LD AR A—R 11101 101 POP aa agp—(SP+1) 11.aa0 001
01 011 1M aq < (SP)
LD ILA l—A 11 101 101 POP IX IXp—(SP+1) 11 011 101
01 000 111 IX «(SP) 11 100 001
LD R, A R—A 11 101 101 POP IY 1Y —(SP+1) 1M1 111 10
01 001 1M 1Y . «—(SP) 11 100 001
16-bit load group Exchange group and block transfer and search group
LD dd,nn dd«nn 00 dd0 001 EX DE, HL DE«—HL 11 101 011
— n - EX AF, AF AF—AF 00 001 000
— n - EXX (BCY=(BC) 11 011 001
LD IX,nn IX<—nn 11 011 101 (DBE)«(DE)
00 100 001 (HL)<=(HLD
— n — EX (SP), HL He(SP+1) 11 100 011
— n — L—(SP)
LD 1Y, nn IY<—nn 11 111 101 EX (SP), IX IXp>(SP+1) 11 011 101
00 100 001 IX > (SP) 11 100 011
— n — EX (SP), 1Y Yy (SP+1) 11 111 101
~ n - 1YL <(SP) 11 100 011

Mnemonic cs)gzri?acﬂiign Op-code Mnemonic cS)ngPaczzliign Op-code
LDI (DE)«—(HL) 11 101 101 d
DE<—DE+1 10 100 000 DEC m me—m—1 o7l
HL<—HL+1
BC«—BC—1 General purpose arithmetic and control group
LDIR (DE)«—(HL) 11 101 101
DE«DE+1 10 110 000 DAA Decimal adjustment 00 100 1M1
HL—HL+1 upon contents of A
BC—BC—-1 after add or subtract
Repeat until BC=0 CPL A—A 00 101 111
LDD (DE)+(HL) 11 101 101 NEG A—A +1 11 101 101
DE—DE—1 10 101 000 01 000 100
HL—HL —1 CCF CY<CY 00 114 111
BC—BC-1 SCF CY+1 00 110 111
LDDR (OBE)—(HL) 11 101 101 NOP No operation, but 00 000 000
DE«—DE—1 10 111 000 PC is incremented.
HL—HL—1 HALT CPU halted 01 110 110
BC—BC—1 DI IFF<—0 11 110 011
Repeat until BC=0 El IFF<1 11 111 011
CPI A—(HL 11101 101 IMO Set interrupt 11 101 101
HL—HL+1 10 100 001 mode 0 01 000 110
BC+—BC—1 1M1 Set interrupt 11 101 101
CPIR A—(HL) 11 101 101 mode 1 01 010 110
HL—HL+1 10 110 001 M2 Set Interrupt 11 101 101
BC—BC—1 mode-2 01 011 110
Repeat until A=
(HL) or BC=0 16-bit arithmetic group
CPD A—(HLD 11 101 101
HL—HL—1 10 101 001 ADD HL, ss HL<—HL+ss 00 ss1 001
BC«—BC -1 ADC HL, ss HL<—HL +s8s+CY 11 101 101
CPDR A—(HLD 11 101 001 01 ss1 010
HL—HL—1 10 111 001 SBC HL, ss HL«—HL—ss—CY 11 101 101
BC«<—BC—1 01 ss0 010
Repeat until A= ADD IX, pp IX<—IX +pp 11 011 101
(HL) or BC=0 00 pp1 001
ADD IY, rr Y—IY +rr 11 111 101
8-bit arithmetic and logical group 00 rr1 001
INC ss SS<ss+1 00 ssO 011
ADD A,r A—A+r 10000 r INC X IX—IX~+1 11 011 107
AD A,n A—A+n 11000 110 00 100 011
— n - INC 1Y 1YY +1 11 111 10
ADD A, (HL) A—A+(HL) 10{ood 110 00 100 011
ADD A, (IX+d) A<A, (IX+d) 11 011 101 DEC ss §S<—ss—1 00ss1 011
10[ooc] 110 DEC IX [X—IX—1 11 011 101
— d — 00 101 011
ADD A, (IY+d) A—A+Y +d) 11 111 101 DEC IY [Y<1Y —1 11 111 101
10004 110 00 101 011
— d
ADC A,s A—A+3+CY 001 Rotate and shift group
SUB s A—A—s 010
SBC A, s A—A—S—CY 011 RLCA 00 000 111
AND s A=AAS @ jovilz=aw
OR s A<—AVS 11 RLA 00 010 111
XOR s A—ADs [1:0(131 CvELZ=o
CP s A-s 1M1 RRCA Lem=olev] 00 001 111
INC r r<—r+1 00 r
INC (HL) (HL)<—(HL) +1 00 110 RRA 00 011 111
INC (X +d) UX+d) 11 011[101 L‘@'CV’J
—(iX+d)+1 00 110[100 RLC r 11 001 011
~ d - ’ _ 00(000] r
INC (Y +d) Ay+a) 11 111 101 RLC (HL) - 11 001 011
—(Y+d)+1 00 110] ‘ 00[ood 110

161

Mnemonic E;Zfac:;gn Op-code Mnemonic gg:ﬁa‘ﬂ;gn Op-code
RLC (X+d) 11011 101 Jump group
11 001 011
— d - JP nn PC«nn 11 000 011
00 [000] 110 ~ n -
RLC (y+d) 171 111 01 — n —
11 001 011 JP cc,nn If condition cc is 11 cc 010
— d - true, PC<—nn; — n -
00 [000] 110 otherwise, continue — n -
JR e PC—PC+e 00 011 000
e JR C.e If C=0, continue. 00 111 000
RRC m If C=1, « e-2 —
L= or) PC—PC+e
RR m 7—0 -{CY
o JR Z,e If Z=0, continue. 00 101 000
SLA m ICYRT] 700 If C=1, — e-2 —
m PC—PC+e
SRA m
JR NC, e If C=1, continue. 00 110 000
SRL m o{7=0F+-cCVY| 11 If C=0, — e-2 —
PC—PC+e
RLD A — 11 101 101
[(74[s o] 7430 01 101 111 JR NZ, e If =1, continue. 00 100 000
N CTS) If Z=0, — e-2 —
RRD A 11 101 101 PC—PC+e
748 0] [72l5 0] 01 100 111
TS JP (HL) PC«—HL 171 101 001
JP (XD PC«—IX 11 011 101
Bit set, reset and test group 11 101 001
JP (YD PCe1Y 11 111 101
BIT b, r Z<rb 11 001 011 11 101 001
01 b r DJUNZ e B—B-1 00 010 000
BIT b, (HL) Z—(HL)b 11 011 011 If B=0, continue; — e-2 —
01 b 110 otherwise,
BIT b, (X +d) Z—(X+d)b 11 011 101 PC—PC+e
11 001 0N
«— d —
01 b 110 Call and return group
BIT b, Ady+d) Z<—UY+ddb 11 111 101
11 001 011 CALL nn (SP—1)«—PCy 11 001 101
— d — (SP—-2)«—PC_ — n
01 b 110 PC«nn — n -
SET b, r ro«1 11 001 011 CALL cc, nn If condition cc is 11 cc 100
b r false, continue; — n —
SET b, (HL) (HL b1 11 001 011 otherwise same — n —
b 110 as CALL nn.
SET b, (IX+d) (X +d)b«1 11 001 101 RET PCL—(SP) 11 001 001
11 001 01 PCh—(SP+1)
d RET cc If condition cc is 11 cc 000
b 110 false, continue;
SET b, (Y+d) Y +ddb«1 11 111 101 otherwise same
11 001 011 as RET.
— d — RETI Return from 11 101 101
b 110 interrupt 01 001 101
RES b, m mb«0 RETN Return from NMI. 11101 101
01 000 101
RST p (SP—1)—PChx 1Mt 1M1
(SP—2)—PCL
PCH—0
PCL—p

162

(Note) The meanings of symbols used in the above table are as follows.

r.r|Register dd, ss |Register pair aa |Register pair pp |Register L
000 | B 00 BC 00 BC 00 BC
001 C 01 DE 01 DE 01 DE
010 D 10 HL 10 HL 10 | X
011 E 11 SP 11 AF 11 SP
100 H
101 L
111 { A
rr_ | Register pair b Bit set cc Condition t o)
00 BC 000 0 000 N Z non zero 000 00H
01 DE 001 1 001 Z zero 001 08H
10 Y 010 2 010 N C non carry 010 10H
1" | sP 011 3 011 C carry 011 | 18H
100 4 100 PO parity odd 100 20H
A . AND operation 101 5 101 PE parity even 101 28 H
v : OR operation 110 6 110 P sign positive 110 30H
@ : Exclusive OR operation 111 7 111 M sign negative 111 | 38H

s: 1, n, (HL), (IX + d), (IY + d)

CY: Carry flip-flop

(register pair)+: Upper 8 bits of register pair

m :r,(HL), X +d), 1Y +d)
mb : Bit b or location m
(register pair).: Lower 8 bits of register pair

For op-codes ADC, SUB, SBC, AND, OR, XOR and CP, the bits in |] replace | | in the ADD set.
For op-code DEC, | | replaces [__] in the INC set.
Similar operations apply to op-codes of the rotate and shift group and bit set, reset and test group.

Mnemonic gggfacﬂ:gn Op-code Mnemonic ggglpac::lllgn Op-code
input and output group fouT (M), A (N)<A 11 010 011
«— n —_
IN A, (n) A—(n) 11 011 011 ouT (C),r (C)«r 11 101 101
— n — 01 r 001
IN r, (C) r—(C) 11 101 101 ouT! (CY)—(HL) 11 101 101
01 r 000 B—B-—1 10 100 011
NI (HLY«—(CD 11 101 101 HL—HL+1
B—B—1 10 100 010 OTIR (C)—(HL 11 101 101
HL<—HL +1 B—B-1 10 110 01
INIR (HL)—(C) 11 101 101 HL<—HL +1
B—B—1 10 110 010 Repeat until B=0
HL—HL+1 ouTD (C)—(HL) 11 101 101
Repeat until 8=0 B—B—1 10 101 011
IND (HL—(C) 11 101 101 HL—HL—1
B—B—1 10 101 010 OTDR (C)«—(HL) 11 101 101
HL<—HL—1 B—B-—1 10 111 0N
INDR (HL—(C) 11 101 101 HL<—HL—1
B—B—1 10 111 010 Repeat until B=0
HL—HL—1
Repeat until B=0

163

A.5 Monitor Program Assembly List

An assembly listing of the MONITOR 1Z-013A is provided on the following pages.
This assembly list was produced with the Z80 assembler contained in the floppy DOS. The meanings of
symbols in the list are as follows.

Relative address ~ Assembler message
Mnemonic (op-code)

Relocatable
object code Label Operand Comment
[

20 024 13 ITRG LE
21 02AB 1E InNC DE

02489 13 INCG DE

02A8A C9 RET
24 0O2AR n
2% 0O2AR
24 0ZAR 5
27 0ZAR $0RG OZARH § MLDST
28 OZAER
"o O2AR i MELODY START & STOF
A0 O2AR .
A1 OZAR MLDST: ENT

0268 2448111 LD HL. {RATIO
IEO02AE TC LD AaH
4 0O2AF BT Or A
IS 02RO 280C JR Z.ML_DSF
A4 D2RE DE FLSH DE
I7 0OZRI ER EX DE. HL
79 a2B4 2104E0 L.D HL» CONTO
39 02BT7 73 LD (HLY - E
4 OZ2R9 T2 LD (HLY D
41 0O2B? ZEO1L LD Aal
42 OZBR DI FOF DE
47 QO2RC 1806 JR MLDS1
44 OZBE
4% DZ2BRE MLDSF: ENT
& OZ2RE ZEZS LD An ZHH MODE SET (823% Co)
47 0200 ZR07EO LD (CONTF) « A EOGT7H
48 O2CE AF XOR [
49 02C4 FI208E0 MLDS1: LD {SUNMDG) « A ECO8H
0 0207 C9 FRET TEHRO RESET

Since the starting address of Monitor 1Z-013A is set to $0000, relocatable addresses and object codes
in the assembly list can be assumed as absolute addresses and object code, respectively.

This assembly list is provided for reference, only and the Sharp Corporation can assume no responsi-
bility for answering any question about it.
Note that this monitor differs from the monitor program included in the BASIC interpreter.

164

%% Z80 ASSEMELER SE-7201

Q000
QOO0
a0Qo
Q000
QOO0
QOO0
QOO0
QOO0
[aalale]
[alslalv)

CE4A00

FELQT7
14 0006
15 00046 CIOEN?
146 0009
17 0009 CI1809
18 oooc
19 000C C32009
20 000F
21 000F C32409
22 0012
0012 C33509
Q015
0015 C39308

Qo018
0018 C3A108
QO1E
001E CIEDOS
QOLE
Q0O1E C3I320A
0021
2021 C33604
0024
0024 C3I7304
0027

CzD804

24
39 0024 CIF804
40 002D

CI8805

CIZC701

C30803
[aln]

47 0037 00

48 0038 CI3810
49 QOZE

S0 00FH C35803
QOZE

QOZE CI770H
0041

Q041 C3IESO2
o044

0044 CIABDZ
Q047

0047 CIRECZ
004a

&0 QQ4A

ST en cax an can en can caw an e

ONIT:

GETL:*

LETNL:

NL =

PRNTS:

PRNTT:

PRNT =

MSG:

MSGX:

GETKY:

BREEY=®

WRINF:

WRDAT:

RDINF:

RDDAT:

VERFY:

MELDY:

TIMST:

TIMRD:

BELL:®

ATEMF:

MSTA:

MSTF:

ENT

ENT
JF
ENT
JFP
ENT
JP
ENT

ENT
JP
ENT
JP
ENT
JP
ENT
JF
ENT
JE
NOF
NOF

ENT

C1Z-G1ZAx

FAGE 01

MONITOR PROGRAM 1Z-G1ZA

(MZ-70Q) FOR PAL

REV.

83.4 7

START

TGETL

PLTNL

PNL

?FRTS

?PRTT

FRRNT

TMSG

TMSGX

7GET

?HRE

PWRI

PWRD

?RDI

?RDD

VRFY

TMLDY

2THMST

10Z8H

FTHMRD

PHEL

PTEMF

MLDST

MLDSP

04.07.83

MONITOR ON
GET LINE (END‘CR")

NEW LINE

PRINT SFACE
PRINT TAER
1 CHARACTER FRINT

1 LINE FRINT (END“OI

RST =

GET EEY

GET EREAE

WRITE INFORMATION
WRITE DATA

READ INFORMATION
READ DATA
VERIFING CMT

RST &

TIME SET

INTERRUFT ROUTINE
TIME READ

BELL ON

TEMFO SET (1-3/)
MELODY START

MELODY STOF

¥ Z80 ASSEMELER SE-7201

01 QO4A
a2 044

I1FQL0
EDZ6

D3E1
11FOFF
Z14E00
QO6Z 010500
Q0&& EDEO
0068 C3IFOFF
Q0&ER
00&E
QO6E
Q06D
Q06F
Q070
Q070
Q070 0&FF
0a72 21F110
(075 CDD8OF
27 0078 IE16
28 007A CD1Z00
29 007D 3E71
30 007F 2100D8
31 0082 CDDS09
2 0085

o088
008A
a08D
aQg0
0092 3C
Q095 CDEEO2
0098 CDO00
QO%E 11E706
0O09E DF
009F CD7705
3 00AZ2
44 0QO0AZ
45 00A4
44 OQ0A7
47 O00AA
48 00AE
49 0QOAD
=0 00AD CDOR0O
Z1 OORO ZE2A
7 O0BRZ CD1Z00
53 00BRS 11A311
54 OQOR8 CDOZO0
S5 O0OBE 1A

546 OORC 13

57 OOED FEOD
58 (OEF Z8EC
59 00C1 FE4A
A0 O0C3 282E

“1Z-013Ax

START: ENT

CMYO:

SS8:

STi:

ST2:

LD
M
CALL
CALL
JR
CF
JR
ENT
ouT
LD
LD
LD
LDIR
JF

ENT

DEFW
DEFW
DEFE

FAGE 02

SF'» SF
1
TMODE
TERE
NC,STO
Z0H
NZ,STO

(E1H) . A
DE,FFFOH
HL s $MCF
EC, 03

FFFOH

EODZTH
QOCEH
QOH

EyFFH

HL s NAME
7CLER

As 16H
FRNT
A,71H

HL . DBOOH
#CLR8

HL. TIMIN
A.C3H
(1038H) . A
(1039H) JHL
A, 04
(TEMFW) . A
MLDSF

NL
DE.MSGTZ
3

THEL

AsO1H
{SWRED . A
HL, EGOOH
(HL) . A
FD2

NL
» 2AH
FRNT
DE.EBUFER
GETL
A (DE)
DE
ODH
Z,ST1
I
Z,GOTO

04,.07.83

STACK. SET ¢(10FQH)
IM 1 SET

8255.8253 MODE SET
CTRL ?

KEY IS CTRL KEY
DOQOH-FFFFH IS DRAM
TRANS. ADR.

MEMORY CHANG FROGRAM
EYTE SIZE

JUMF $FFFO
0000H-OFFFH IS DRAM

OQUT (EOH) . A
JF O000H

EUFFER CLEAR
10F1H-11F0OH CLEAR

LASTER CLR.

BACK:ERLUE CHA.:WRITE
COLOR ADDRESS

INTERRUFT JUMF ROUTINE

NORMAL TEMFO
MELODY STOF

¥¥ MONITOR 1Z-013A ¥
CALL MGX

KEY IN SILENT
UsSrR ROM 7
ROM CHECE

‘%’ FRINT

GET LINE WORE (11AZH)

JumMP

XX

0OCS
Q0c7
00Ce
0OCE
0OCD
QOCF
QOD1
QOD3
QODS
QOD7
00D9
QODE
QODE
QOEQ
QOEZ
Q0ES
QOEB
QOEA
GOED
Q0ED
QOED
QOF 1
QOF1
QOF3
QOF3
QOF3
QOF3
0OFa
DOF7
QOF7
QOF7
QOF7
QOFA
QOFE
OOFC
QOFD
QOFF
QOFF
QOFF
QOFF
0102
Q103
0104
Q104
0107
0107
0107
0107
0107
0107
0109
0108
010E
010F
o111
o111
0111
o111
o111
0114

FE4C
2848
FE46
2832
FE4Z2
282646
FE23
2886
FESO
287C
FE4D
CAABO7
FES3S
CASEQF
FESé
CACHOF
FE44
CAZ0D

18cs

CD3Do1
E?

ZAYD11
iF

3F

17
18A%

Z100FQ
7E

B7
20A7
E?

FEOZ
28AR2
114701

189C

CDD804
38F1

Z90 ASSEMBLER SHE-7201

«1Z-013A PAGE O3
CF L
JR Z,L0AD
CF Fe
JR Z,FD
CF ‘B
JR 2,56
CF
JR ZyCMYQ
CF o
JR Z,FTEST
CF
JF Z,MCOR
CF =i
JP Z» SAVE
CF Ve
JP ZsVRFY
CF “D~
JP Z, DUMF
H
H
DEFS +4
JR T2
L
H JUMP COMMAND
L)
GaTa: CALL HEXIY
JF (HL)
Ll
H KEY SOUND ON OFF
Ll
5G: LD Ay (SWRED
RRA
CCF
RLA
JR SS+2
Ll
H FLOFFY
Ll
FD: LD HL . FOOOH
FD2: LD As (HL)
ORrR A
JR NZ,ST1
FD1: JF (HL)
H
H
H ERROR (LOADING)
Ll
TER: ENT
CF 0ZH
JR Z,ST1
LD DE.MSGE1
RST 3
JR ST1
E
H LOAD COMMAND
.
LOAD* CALL TRDI

JR C. 7ER

-

04,.07.93

LOAD PROGRAM

FLOFFY ACCESS

KEY IN BELL

CHANG MEMORY

FRINTER TEST

MEMORY CORRECTION

SAVED DATA

VERIFYING DATA

DUMF DATA

NOT COMMAND

DO = SOUND WORE

CHENGE MODE

FLOFFY I/0 CHECK

A=02H : BREAK IN

CHECK SUM ERROR
CALL MSGX

Z80 ASSEMELER SB-7201 <1Z-013A:> PAGE 04 04.07.53

01 0114 CDOROO LOAO: CALL ML
02 01192 11A009 LD DE.MSG?Z 5 LOADING
03 011C DF RST = 5 CALL MSGX
04 011D 11F110 LD DE, NAME ¢ FILE NAME
05 0120 DF RST 3 3 CALL MSGX
04 0121 CDF804 CALL ?RDD
07 2124 3BE1 JR C.7ER
a8 0128 2A0611 LD HL. (EXADR) i EXECUTE ADDRESS
07 0129 7C LD AxH
10 Q12A FE12 CF 12H i EXECUTE CHECK
11 012C 3FBE1 JR C.LOAD-2
12 012E E9 JP (HL)
13 012F
14 Q12F
15 012F
16 O12F GETLIME AND BREAE IN CHECE
17 0O12F
18 O1Z2F EXIT BEREAK IN THEN JUMF (ST1)
19 0O12F ACC=TOFP OF LINE DATA
20 O12F
21 012F BGETL: ENT
?2 012F EX EX (SP).HL
27 0130 Ci FOF EBC i STACEK LOAD
24 11A311 LD DE . BUFER 5 MONITOR GETLINE
CDOZ00 CALL GETL
1A LD As (DE)
FELR cFP 1BH ;5 BREAEK CODE
28D= IR Z,LO0AD-2 s JP Z,8T1
E? JP (HL)
L
H ASCII TO HEX CONVERT
H INPUT (DE)=ASCII
i CY=1 THEN JUMP (ST1)
3 .
35 HEXIY: ENT
348 FDE= EX (SP) s 1Y
37 F1 FOFP AF
38 0140 CD1004 CALL HLHEX
39 0143 Z8CA IR C.LOAD-2 i JP C,S8T1
40 0145 FDE9 JP 1Y)
41 0147
2 0147
I 0147
44 0147 MSBE1: ENT
4% 0147 R DEFM “CHECE. SUM =R. ~
44 O14B
47 0O14F
48 Q1573
49 0154 DEFE ODH
S0 0155 H
51 0155 H
52 0155 H FLOTTER PRINTER TEST COMMAND
53 0155 H (DPGB23)
S4 0155 H %=CONTROL COMMANDS GROUF
S5 01SS H C=FEN CHENGE
T4 0155 H G=GRAFH MODE
57 01SS H S§=80 CHA. IN 1 LINE
58 0155 H L=40 CHA. IN 1 LINE
59 0155 H T=FLOTTER TEST
&0 0155 H IN (DE)=FPRINT DATA

X

01 0155
02 0155
03 0155
04 0156
05 0158
06 015A
07 015B
08 015C
09 0Q15E
10 0160
11 0162
12 0164
13 0166
14 0168
15 016A
16 014C
17 0O16E
18 0170
19 0170
20 0173
21 0176
22 0174
23 0179
24 017B
25 017B
26 Q17E
27 010
28 0180
29 0182
30 0184
31 0184
32 0186
33 0189
34 018B
35 018B
DE)

36 018D
37 0O1BF
38 Q1aF
39 018F
40 018F
41 018F
42 018F
43 Q18F
44 Q1i8F
45 0191
46 0192
47 0195
48 0196
49 0198
50 019A
51 019C
52 019E
53 0101
T4 01A2
55 01A4
56 01AS
57 01A5
58 01AS
59 01AS
&0 O1AS

iA

FE26
2016
13

1A

FEA4C
2816
FES3
2817
FE43
2823
FE47
2818
FES4
2810

CDhASO1
C3ADOO

117004
18FS

11D503
18F0

3EQ4
1802

IEQ2
CD8FO1
18CF

3E1D

18F7

OEQO
47
CDB&O1
78
D3FF
3EBO
D3FE
OEOQ1
CDB&6O1
AF
D3FE
co

Z80 ASSEMBLER SB-7201

<1Z-013A» PAGE 0S5

PTEST: ENT
LD Ay (DE)
CP
JR NZ,PTST1
FTSTQ: INC DE
LD As (DE}
CpP L’
JR Zs.LPT
CP =
JR Zs..LPT
CP ‘c”
JR Z+PEN
CP G
JR Z,PLOT
CP T
JR Z,PTRN
FTST1 CALL PMSG
JP ST1
LPT: LD DE,LLPT
JR PTST1
LPT: LD DE,SLPT
JR PTST1
PTRN: LD As Q4H
JR PLOT+2
PLOT: LD Ay O2H
cAaLL LPRNT
JR PTATO
PEN: LD Ay 1DH
JR PLOT+2
H
H
H 1CHA. PRINT TO $LPT
H IN: ACC PRINT DATA
E]
i
LPRNT: LD cC.0
LD BsA
cAaLL RDA
LD AsB
auT (FFH) A
LD Ay BOH
auT (FEH) s A
LD CyQ1H
cAaLL RDA
XOR A
ouT (FEH)s A
RET
$LPT MSG
IN: DE DATA LOW ADR.

ODH MSG. END

P~ —

04.07.83

80 IN 1 LINE

80 IN 1LINE

PEN CHENGE

GRAPH MODE

TEST

PLOT MESSAGE

01-09-09-0B-0D

01-09-09-09-0D

TEST PATTERN

GRAPH CODE

1 CHENGE CODE (TEXT

RDA TEST
PRINT DATA STORE

DATA QUT

RDP HIGH

RDA TEST

RDP LOW

01
02
03
04
05
o0}
07
o8
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
=1u]
51
52
53
54
S5
=12}
57
58
59
&0

L2

0O1AS
01R6
01A7
01A8
01A9
01AC
O1AD
O1AE
01B0O
01B2
01B3
Q1R4
Q1BS
01BS
01B&
Q1B&6
Q1B&6
01B6
01846
01B6
Q188
O1BA
Q1BB
01BC
Q1BF
01C1
aic4
01C7
01C7
o1C7
Q1C7
01C7
Q1C7
01C7
Ql1c7
01C7
Qlc7
01C7
Qi1c7
01CS
01Cce
Q1CcA
0lcc
Q1CF
01D1
a1D2
a1D4
01Dé&
a1D8
Q1DA
[e3 9]
O1DE
QlEQ
O1EZ2
O1E4
O1lE&
QlE8
O1EA
QlEC
O1EF

Z80 ASSEMBLER SB-7201

DS
CS
FS
1A
CDBFO1
iA
13
FEOD
20F6
F1
Cci
Di
ce

DEFE
E&OD
B9

cs
CD1EOO
20FS
31F010
C3ADOO

cs
DS
ES
IEO2
32A011
Q4601
1A
FEOD
283B
FECS8
2837
FECF
2827
FE2D
2823
FE2B
2827
FED7
2823
FE23
2146C02
2004

<1Z-Q13A> PAGE 06 04.07.83
FMSG* FUSH DE
PUSH BC
FUSH AF
PMSG1: LD A, {DE) i ACC=DATA
CALL LFRNT
LD A+ (DE)
INC DE
CP ODH i END ?
JR NZ,PMSG1
FOP AF
FOP BC
FOP DE
RET
3
H RDA CHECK
s
H BRKEY IN TO MONITOR RETURN
H IN: C RDA CODE
3
RDA: IN A, (FE)
AND ODH
CP c
RET z
CALL BRKEY
JR NZ,RDA
LD SF, SP
JP ST1
H
50RG 01C7H
H MELODY
L
§ DE=DATA LOW ADR.
H EXIT. CF=1 BREAK
H CF=0 0Ok
3
?MLDY: ENT
PUSH BC
PUSH DE
FUSH HL
LD A, 02H
LD (OCTV) s A
LD B,O1
MLD1: LD A, (DE)
CF ODH i CR
JR Z,MLD4
CF CBH : END MARK
IR Z,MLD4
CF CFH 3 UNDER OCTAVE
IR Z, MLDZ
CFP 2DH 5 =
JR Z,MLD2
CP 2BH P
JR Z,MLD=
CP D7H i UPFER OCTAVE
IR Z,MLD3
CP 23H 3 "#" HANON
LD HL,MTBL

JR

NZ,+&

¥% 780 ASSEMELER SE-7201 <1Z-013A: FABE 07

01 QiF1 218402 LD HL . M#TEL

02 Q1F4 13 INC DE

03 OiFS CDiCcOZ2 CALL ONPU i ONTYO SET

04 O1F8 38D7 IR C,MLD1

05 O1FA CDCBC2 CALL RYTHM

06 Q1FD 381% IR CsMLDS

07 CDAEOZ CALL MLDST MELODY START

08 2 41 LD BsC

[e14 18CC JR MLD1

10 3EOZ MLDZ: LD Ay +3

11 32A011 LD (OCTV) . A

12 13 INC DE

13 18C4 JR MLD1

14 IEOL MLD3: LD ALl

15 1BF& JR MLDZ2+2

16 €pesa2 MLD4: cALL RYTHM

17 FS MLDS: FUSH AF

18 0215 CDEREOZ CALL MLDSF

19 0218 F1 FOP AF

20 0219 CIZ9EOA JF RETS

21 021C H

22 021c H ONFU TO RATIO CONVY

23 021cC H

24 021C H EXIT (RATIO)=RATIO VALUE

2% 021C C=ONTYOXTEMFO

2& 021C H

27 0Zi1C ONFU: ENT

28 021C Cs PUSH EC

29 021D 0408 LD H,8

30 021F 1A ONF1: LD A (DE)

31 CP (HL)

32 IR Z,0NF2

33 INC HL

4 INC HL

35 INC HL

34& D.JINZ -6

37 SCF

38 INC DE

39 FOP RC

40 RET

41 ONP2: INC HL

42 PUSH DE

43 LD Es (HL)

44 INC HL

45 LD Du (HL)

44 EX DE,HL

47 LD AsH

48 or A

49 2809 JR Z.+11
3AADTL LD A, (OCTWV) 11A0H OCTAVE WORE
3D DEC A
2807 JR Z, 45
29 ADD HL.HL
18FA JR -4
22A111 LD (RATIO) 2 HL 11A1H ONFU RATIO
21A011 LD HL.OCTV
3602 LD (HL) .2
2B DEC HL
Di FOP DE

1z INC DE

¥¥ 780 ASSEMBLER SE-7201 <1Z-013Ar FAGE 08 Q04.07.83

01 024A 1A LD A (DE)
47 LD H.A
E&FO AND FOH i ONTYO 7
FEZQ CF FOH
2803 JR Za+5
7E LD AL (HL) 3 HL=ONTYO
1805 JR +7
13 INC DE
78 LD A:B
E&OF AND OFH
77 LD (HL) - A i HL=ONTYOD
219C02 LD HL.OPTEL
85 ADD AsL
&F LD LsA
4E LD C» (HL)
3A%E11 LD Ax (TEMFW)
47 LD Es:A
AF Xar A
81 ONPZ: ADD AsC
10FD DJINZ -1
Ci FOP BC
4F LD C:A
AF XOR A
€9 RET
H
H
MTBL: ENT
3 DEFE 43H 5 C
44508 DEFW 0B846H
44 DEFE 44H i D
SFO7 DEFW 075FH
45 DEFH 45H i E
T 2104 DEFW 0691H
4& DEFE 46H 5 F
I306 DEFW 0&3ITH
47 DEFE 47H i G
8605 DEFW 0S86H
41 DEFE 41H i A
ECO4 DEFW QO4ECH
42 DEFH 42H i B
6404 DEFW 0464H
52 DEFE SZ2H i R
2 0000 DEFW O
MH#TBL: ENT
43 DEFE 43H 3 #C
CFo07 DEFW O7CFH
44 DEFE 44H i #D
FS0& DEFW 04FSH
45 DEFH 45H 5 #E
3306 DEF®W 0433H
46 DEFH 46H 3 OHF
DAOS DEFW OSDAH
47 DEFE 47H 3 #6
3705 DEFW OS37H
41 DEFE 41H iO#HA
ASO4 DEFW Q4A%SH
42 DEFE 42H 5 #B
2304 DEFW 0427H

DEFE S2H i #R

69

o1
Q2
Q3
04
oS
06
o7
08
09
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

i

ONO OB h AN

A A A A A A

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
=4
55
=4
=7
=8
59
&0

XX

029A
029C
029C
029D
029E
029F
0O2A0
Q2A1
Q2A2
Q2A3
02A4
Q2A5
02A6
02Ab6
02Ab6
Q2Ab6
02Ab6
Q2A6
Q2Ab6
Q2A7
02A8
02A9
02AA
0O2AH
O2AH
O2AB
0O2AH
OZ2AH
0O2AH
[e)ea):]
Q2AF
Q2AB
0O2AE
Q2AF
OZ2HO
Q282
Q2E3
O2H4
Q2H7
O2E8
G2H9
QZ2HEH
0O2BC
Q2BE
0O2BE
QZBE
02Co
Q2C3
02C4
Q2C7
02C8
Q2C8
02Ce
02C8
ozCce
02C8
0ZC8
2C8
ozCce
02C8

Z80 ASSEMBELER SH-7201

Q000

o1
Q2
o3
4
-]
08
oc
10
ie
20

13
13
13
13
co

2AA111
7C

B7
280C
D=

EB
2104E0
73

72
FEO1L
D1
1806

JE346
I207E0
AF
J208E0
ce

2100E0

OPTHL:

4DE:

T ar en can ws e s cas

LDST: ENT
LD HL, (RATIO)
LD AyH
OR A
JR Z,MLDSP
PUSH DE
EX DE, HL
LD HL, CONTO
tb (HL) s E
LD (HL),D
LD Asl
POF DE
JR MLDS1
MLDSP: ENT
LD Ay 36H
LD (CONTF) . A
XOR A
MLDS1: LD (SUNDG) - A
RET
H
i RHYTHM
s
H E=COUNT DATA
H IN
i EXIT CF=1 HREAK
H CF=0 0Ok
RYTHM: ENT
LD HL s KEYPA

DEFW
ENT

DEFH
DEFH
DEFE
DEFH
DEFE
DEFE
DEFH
DEFH
DEFE
DEFE

<1Z-013Ax PAGE 09

INCREMENT DE REG.

ENT
INC
INC
INC
INC
RET

ORG OZ2AEH 3§

DE
DE
DE
DE

MLDST

MELODY START & STOP

04.07. 3

MODE SET (8253 COQ)
EOO7H

EQOBH
TEHRO RESET

EQQOH

Ot
2
03
a4
[e}]
()
Q7
08
a9
10
11
12
13
14
15

17
18
19
20
21
22
23
24
25
26
27
28
29
0
31
32
I3
34
35
6
37
38

40
41
42
43
44
45
46

48
49
50
51
52
S3
=]
56
s7
s8

&0

¥k

02CE
Q2CD
02CE
Q2CF
02D1
Q2D3
02D4
02D%
02D8
02D9
OZDE
0ZDE
O2ZDF
02E1
Q2E3
O2E4
Q2ETD
QZED
Q2ED
Q2ES
OZES
QZED
0O2ES
02ES
02ES6
Q2E7
Q2E9
QO2EA
Q2EC
Q2ED
02F0
02F1
Q2F2
Q2F3
O2F3
Q2F3
O2F3
02F3
O2F3
Q2F3
Q2F3
Q2F3
Q2F3
02F6
Q2F9
0ZFA
O2FE
02FC
0ZFD
O2FF
0Z00
Q302
0303
0304
0307
0308
Q308
Q308
Q308
0308

Z80 ASSEMBLER SEB-7201 <1Z-013

T6F8
23

7E
E&81
2002
37

ce
FAOBEQ
OF
3I8FA
SA08EO
OF
IOFA
10F2
AF

ce

FS
cs
E&OF

IEO8
0
329E11
Ci1

F1

ce

217311
3A7211
a5

&F

7E

23
CEls
B&
CE1E
OF

EE
2A7111
ce

LD
INC
LD
AND
JR
SCF
RET
LD
RRCA
JR
LD
RRCA
JR
DJINZ
X0OR
RET

TEMFO SE

ACC=VA

PTEMF: ENT
FUSH
FUSH
AND
LD
LD
SUB
LD
FOF
FOF
RET

EXIT

" e e we ue

.MANG: ENT
LD
LD
ADD
LD
LD
INC
RL
OR
RR
RRCA
EX
LD
RET

ORG OZ0SH

A» PAGE 10 04.07.83

{(HL)sF8H
HL
A, (HL)

81H s BREAK. IN €HECHK

NZ.+4

As (TEMF) EQO8H

TEMFO OUT

Cs—-4
A, (TEMF)

NC, -4
-12
A

T

LUE (1-7)

AF

EBC

OFH

EBsA

A, B

E
{TEMFW) - A

AF

RT MANAGMENT

i DSFXY H=Y,

${MANG ADR. (ON DSFXY)
:MANG DATA

: MANG=1

HL » MANG CRT MANG.
A {(1172H) DSPXY+1
AsL

LA

As (HL)

HL

(HL)

(HL)

(HL)

DE,HL
HL, (DSFXY)

FOINTER

¥¥ Z80 ASSEMBLER SB-7201 1Z-013A7 FAGE 11
0308 H TIME SET
Q308 H
0308 H ACC=0 : AM
Q308 H =1 : FM
0308 H DE=SEC: HEINARY
3
?TMST ENT
DI
FUSH EC
FUSH DE
FUSH HL
LD (AMFM) ~ A
3 030F FEFO LD A, FOH
0311 329C11 LD (TIMFG) A
0314 21C0A8 LD HL+ABCOH
0317 AF XOR A
0318 EDS2 SEC HL+DE
031A ES FUSH HL
Q31ER QO NOF
ER EX DE.HL
Z2107E0 LD HL . CONTF
3674 LD (HL) «74H
36B0O LD (HL) s BOH
2B DEC HL
73 LD (HL) +E
72 LD (HL).D
2B DEC HL
360A LD (HL) . CAH
I600 LD (HL) . O
2 INC HL
INC HL
LD {HL) »80H
DEC HL
FTMS1 LD Ex{HL)
LD As (HL)
CF b
JR NZ,?TMS1
LD AsC
CF E
IR NZ,s7TMS1
DEC HL
NOF
NOF
NOF
LD (HL) «FEBH
LD (HL) .« 3CH
INC HL
FOF DE
?TMS2 LD Cas{HLY
LD Ay (HL)
CF D
JR NZ,?TMS2
LD A.C
CF E
JR NZ,?TMSZ
POF HL
FOF DE
FOF EC
EI

RET

04.07.87

AMFM DATA

TIME FLAG
12H

COUNT DATA

EQO7H

CONTZ

CONT1

CONTF

CONTZ

1SEC

¥% Z80 ASSEMBLER SE—7201

Q352 D7
0353 4130
Q35S OD
0356

0356

0356

356

0358

0358

0358

a358

0358

0358

0358

0358

0358

0358 ES
Q359 2107E0
O33C 3680
O3ZSE 2B
QISF F3
0360 SE
0361 56
0362 FE
0363 7B
0364 E2

2 Q3465 280E
0367 AF
0368 21C0OA8
QOZ6E EDS2
Q346D 3810
QO36F EH
0370 FA9E11
0373 El
0374 C?
0375 11COA8
0378 ZAYE11
0F7R EEO1
Q37D E1
037E C9
X7F F3
0380 2106E0Q

18EH

<1Z-0173

A

BELL DATA

ENT

DEFH
DEFM
DEFH

DEFS

$ORG 0O358H

TIME READ

PTMRD:

FAGE 12

D7H
“AD ¢
QDH

EXIT ACC=0 :AM

ENT
FUSH

DEC

DI
LD
LD
CFL
LD
LD
CFL
LD
EI
INC
JR

=1 :PM

DE=SEC. HINARY

HL
HL, CONTF
¢(HL),80H
HL

E, (HL)
D, (HL)

AE

D
Z,?THMR1
A

HL, ASCOH
HL, DE
C,?TMRZ2
DE, HL

A CAMFM)
HL

DEs ABCOH
As CAMPM)
1

HL

HL, CONT2
Ay (HL)

E:A
Ay (HL)

D:A

DE
TTMR1+3

b TIME INTERRUFT

TIMIM:

ENT

Q04.07.83

~J

LS S

038D
038E
Q38F
0390
0391
0394
0395
0397
0398
0398
039D
039E
O39F
03A0
03A1
03A4
O3AS
03A&
Q3A7
03A8
03A9
03AA
[ta):]
03AC
0ZAD
O3AE
QO3AF
O3B0
03B1
0361
Q3B1
O3B1
03B1
O3B1
0381
0384
Q3BS
03B8
QO3B9
03BA
O3BA
03BA
03BA
O3EA
O3BA
O3BA
O3BA
OZHA
[wXx4:):]
O3BE
O3BF
03C1
03C1
Q93C3
O3CE
03C3
O3C3
Q3C3
O3C3
03C4

ASSEMBLER SB-7201

Fs
cs
DS
ES
219811

2107E0
3680
2B

CDR00%
7E
CDCFO3
7E
>

7C
€DC303
7D
1802

FS
OF

PUSH
PUSH
PUSH
PUSH
LD
LD
XOR
LD
LD
LD
DEC
PUSH
LD
LD
LD
ADD
DEC
DEC
EX
POP
LD
LD
FOP
POP
POP
POP
EI
RET

() an wr wr wn we

PHEX: ENT
CALL
LD
CALL
LD
RET

OR8 O3BAH

) es cen as ar ew car caw

RTHL: ENT
LD
CALL
LD
JR

DEFS

H
H
.
H
FRTHX: ENT

FPUSH

RRCA

<1Z-013A

PAGE 13

AF

BC

DE

HL

HL « AMFM
Ay (HL)

1

(HL) A
HL , CONTF
(HL) , 80H
HL

HL

Es (HL)
D, (HL)
HL,ABCOH
HL s DE

HL

HL

DE,HL
HL
(HL),E
(HL),D
HL

DE

BC

AF

INPUT:HL=DISP.

?PRTS
Ay (HL)
PRTHX
Ay (HL)

(ASCII PRINT) FOR HL

AsH
PRTHX
AL
PRTHX

+2

ORG O3C3H; PRTHX

(ASCII PRINT) FOR ACC

AF

SPACE PRINT AND DISFP ACC

ADR.

04.07.83

SP.PRINT

DSF OF ACC (ASCII)

o1
02
03
04
05
b6
07
o8
09

15

23

25

30

34
35
36
37
=8
39
40
41
42
43
44
a5
46
47
48
49
50
51
52
53
54
55
56
57
s8
59
60

¥

03CS
a3Cé
Q3C7
03c8
Q3CH
O3CE
QO3CF
Q3D2
03DS
03DS
03D
Q3DS
03DS
03DS
Q3DS
03DS
Q3D6
03D7
03DB
03D%?
03DA
03DA
0OZDA
03DA
O3DA
03DA
03DA
03DA
O3DA
03DC
QO3DE
QO3EO
03E2
03E2
03E4
OZES
03ES
O3ES
03ES
O3ES
03ES
O3ES
O3ES
03E7
03E8
03EA
O3EH
O3JEC
O3EE
O3FC
Q3F1
Q3F2
O3F4
O3F5
O3FS
O3FS
QO3FQ
03F9
Q3F9
O3FE

01
o4
0
o4
oD

E&60OF
FEOA
3802
Ce07

Cé30
ce

D&30
D8
FEOA
3F
DO
D&607
FE10
3F
DB
FEOA
ce

1BEA

Z80 ASSEMBLER SE-7201 <1Z-013A> FPAGE 14 04,07.83
OF RRCA
OF RRCA
OF RRCA
CDDAQ3 CALL ASC
€D1200 CALL FRNT
F1 FOF AF
CDDAO3 CALL ASC
C31200 JF FRNT
5
H
H
H
H 80 CHA. 1 LINE CODE (DATA)
H
SLPT: ENT
DEFE o1H i TEXT
DEFE 0O9H
DEFE 0O9H
DEFE 0O9H
DEFE ODH
H
$0ORG O3DAH3;ASC
H
3 HEXADECIMAL TO ASCII
H IN = ACC D3-D0Q)=HEXADECIMAL
H EXIT: ACC = ASCII
H
ASC: ENT
AND OFH
CF OAH
JR Cs NOADD
ADD A7

NOADD: ENT
ADD Ay 30H

RET
;
i ASCII TO HEXADECIMAL
§ IN ! ACC = ASCII
i EXIT * ACC = HEXADECIMAL
H CYy = 1 ERROR
;
HEX.J: ENT
SUB 30H
RET c
CcFP OAH
CCF
RET NC
SUE 7
CF 10H
CCF
RET c
CF OAH
RET
;
DEFS +4
§0RG O3F9HFHEX
HEX: ENT
JR HEXJ

X¥ Z80 ASSEMELER SE-7201 <1Z-0Q13A:> FPAGE 15 04.07.83

O3FH FRASS FLAY MESSAGE
Q3FE
O3FH MSG#1: ENT
Q3IFE 7FZ20 DEFW
Q3FD MSG#H2: ENT
Q3FD S04C41% DEFM ‘PLAY ~
0401 0D DEFEB ODH
0402 MSG#3: ENT
0402 7F20 DEFW 207FH
Q404 S245434 DEFM “RECQGRD. i PRESS RECORD
0408 S2442E
Q408 OD DEFE
Q40C
a40C
7 040C DEFS +4
Q410 50RG 0410HFHLHEX
Q410 H
@410 H
Q410 3 4 ASCII TO (HL)
Q410 H
0410 3 IN DE=DATA LOW ADR.
0410 5 EXIT CF=0 : OK
2410 H =1 : OuUT
410 H
25 0410 ENT
26 0410 DS FUSH DE
27 0411 CDIFO4 CALL 2HEX
28 0414 3807 JR Cyt9
29 0416 &7 LD HsA
IO 0417 CDIFO4 CALL Z2HEX
31 041A 3801 JR Ca+3
32 041C 6&6F LD LsA
3Z 041D D1 FOF DE
34 041E C9 RET
35 041F 3
34 041F i0RG O41FH;: 2HEX
37 Q41F H
38 Q41F H
39 Q41F H 2 ASCII TO (ACO)
40 041F H
41 Q41F H IN DE=DATA LOW ADR.
42 041F H
4Z Q41F H EXIT CF=0 @ OK
44 Q41F H =1 @ OUT
45 Q41F H
46 Q41F ENT
47 041F CS FUSH BC
48 0420 1A LD A, (DE)
49 421 13 INC DE
S0 0422 CDF03 CALL HEX
1 0425 380D JR C,+15
D52 0427 OF RRCA
53 0428 OF RRCA
54 0429 QF RRCA
55 0424 OF RRCA
56 042B 4F LD C.A
57 042C 1A LD A. (DE)
58 Q42D 13 INC DE
59 042E CDFR03 CALL HEX

&0 0431 EZ801 JR C.+3

¥¥ ZI80 ASSEMBLER SB-7201 <1Z-013A» PAGE 16 04.07.83

01 0433 Bl OR c
02 0434 C1 2HE1: FOF RC
03 0435 C9 RET
04 Q04346 [
05 0436 H
06 0436 H WRITE INFORMATION
07 0436 §
08 0436 TWRI: ENT
09 0436 F3 DI
10 0437 DS PUSH DE
11 0438 CS PUSH BC
12 0439 ES FPUSH HL
13 043A 16D7 LD D.D7H 5OWT
14 Q43C 1ECC LD E,CCH i LS
15 043E 21F010Q LD HL . IBUFE i 10FOH
16 0441 18000 LD BC,80H i WRITE BYTE
17 0444 CD1AO7 WRI1: CALL Ck.SUM 3 CHECE SuUM
18 0447 CD9FQ& CALL MOTOR 3 MOTOR ON
19 044A 3818 JR C,WRIZ
20 Q44C 7B LD AYE
21 044D FECC CF CCH s L-
22 044F 200D JR NZ,WRIZ2
23 0451 CDOQ0G CALL NL
24 0454 DS FUSH DE
25 0455 116704 LD DE,MSG#7 5 WRITING
Q458 DF RST 3 3 CALL MSGX
0459 11F110 LD DE .\ NAME s FILE NAME
Q45C DF RST 3 i CALL MSGX
Q45D D1 FOF DE
Q45E CD7AC7 WRIZ2: CALL GAF
0461 CDBAO4 CALL WTAFE
04464 C3540%5 WRIZ: JP RET2
0467 H
04467 MSG#7: ENT
0467 S7524954 DEFM “WRITING -
046B 494E4720
Q46F OD DEFB ODH
0470 H
Q470 H
0470 H
Q470 H 40 CHA. IN 1 LINE CODE (DATA)
0470 H
Q470 LLPT: ENT
0470 01 DEFE O1H 3 TEXT MODE
0471 09 DEFE Q9H
0472 09 DEFE 0O%9H
0473 QB DEFE aBH
0474 QD DEFEB QDH
0475 H
0475 i0ORG 0475H
0475 H
0475 H
0475 H WRITE DATA
0475 H
Q475 H EXIT CF=0 : Ok
0475 H =1 : BREARK
0475 H
0475 TWRD: ENT
Q475 F3 DI

0476 DS PUSH DE

¥¥ 780 ASSEMBLER SB-7201 <1Z-013A> FAGE 17 04.07.93

01 0477 CS PUSH BC

02 Q0478 ES PUSH HL

03 0479 16D7 LD Dy+D7H 5w
04 Q478 1ES3 LD E,53H i 7S

Q5 047D ED4RO211 LD BC. (SIZE) i WRITE
D4 0481 2A0411 LD HL . { DTADR) i WRITE
Q7 0484 78 LD A B

08 0485 Bl OR c

09 0486 284A JR Z,RET1

10 0488 18BA JR WRI1

11 048A H

12 048A i

13 048A H TAPE WRITE

14 Q048A H

15 04BA H BC=BYTE SIZE

16 048A H HL=DATA LOW ADR.

17 048A H

18 Q48A H CF=0 : OK

19 OG48A H =1 : BREAEK

20 048A H

21 048A DS PUSH DE

22 048F CS PUSH EC

23 048C ES PUSH HL

24 048D 14602 LD D, 2

25 04BF 3EF8B LD Ay FBH

26 G491 3200E0 LD (KEYPA),A EQOOH
27 0494 7E LD As (HL)

28 Q495 CD&707 CALL WEBYTE 1 BYTE WRITE
29 0498 IA01EQ LD As (KEYFB) EOO1H
30 0498 E&B1 AND 81H SHIFT 2 BREAL
31 Q49D C2AZ04 JP NZ,WTAP2

32 04A0 3EOZ2 LD Ay OZ2H BREAK, IN CODE
33 04A2 37 SCF

34 Q4A3 182D JR WTAPZ

35 Q4AS 23 INC HL

34 O4A6 OB DEC BC

37 04A7 78 LD A:B

38 ©4A8 Bl OR c

39 04A% C29404 IF NZ . WTAF1

40 O4AC 2A9711 LD HL, (SUMDT) i SUM DATA SET
41 O4AF 7C LD AsH

42 G4BOQ CD&707 CALL WEBYTE

43 O4B3 7D LD AsL

44 Q4B4 CD&7Q7 CALL WEBYTE

45 04B7 CDI1AGA CALL LONG

44 04BA 1S DEC D

47 0O4BH C2C204 JP NZy+7

48 O4BE B7 OR A

49 O4HF C3D204 JP WTAFPZ

S0 Q4C2 0600 LD Ha}

S1 04C4 CDO10A CALL SHORT

52 G4C7 0S5 DEC =

53 04CB CZ2C404 JP NZ.-4

=4 04CB E1 FOF HL

=5 04CC Cit FOP EBC

Sé& 04CD CS PUSH EBC

57 O4CE ES PUSH HL

S8 ©4CF C39404 JP WTAF1

59 04D2 WTAP3:

&0 04D2 E1 RET1: FOP HL

XX IS0 ASSEMEBLER SE-7201 <1Z-013A» PAGE 18 04.07.83

a1 04D3 Ct FOFP BC

02 04D4 D1 FOP DE

0F 04D5 C9 RET

04 04D6 H

Q5 Q4D6 H

06 04D6 H

Q07 04Dé6 H

08 04D6 H

09 04D8 ORG Q04D8BH

10 04D8 H

11 04D8 H

12 04D8 H READ INFORMATION (FROM
13 04D8 H

14 04D8 H EXIT ACC=0 : QK CF=0Q
15 04D8 H 1 : ER CF=1
16 04D8 H 2 ¢ BREAEK CF
17 04D8 H

18 04Dp8 ?RDI: ENT

19 04D8 F3 DI

20 04D? DS FUSH DE

21 04DA CS FUSH BC

22 0O4DE ES FPUSH HL

23X 04DC 16D2 LD D, D2H

24 Q4DE 1ECC LD E.CCH

25 04EC Q18000 LD EC, 80H

26 Q4ET 21F010 LD HLs IBUFE
27 Q4E6 RD1: ENT

28 Q4E& CD9FO& cALL MOTOR

29 04E9 DA7205 - JF C.RTP&

30 04EC CDSEO& cAaLL TMARE

31 O4EF DA720%5 JP C.RTF6

32 04F2 CDOQEOQS CALL RTAFE

JF3 04FS C3S405 JP RTF4

34 04F8 H

35 04F8 i

346 04F8 i

37 Q4F8 sORG 04F8H

38 04F8 H

39 04F8 H

40 04F8 H READ DATA (FROM $CMT)
41 04F8 H

42 04F8 H EXIT SAME UFP

43 04F8 H

44 04F8 7RDD: ENT

45 04FB F3 DI

46 Q4F? DS PUSH DE

47 0O4FA CS FPUSH EC

48 OQ4FE ES FPUSH HL

49 0O4FC 16D2 LD D.D2H

50 04FE 1ES3 LD E,S3H

51 0S00 ED4BO211 LD BC. (SIZE)
52 0504 2A0411 LD HL. (DTADR)
53 0507 78 LD AR

T4 0508 EB1 OR c

S5 0509 CAS405 JP Z.RTP4

T6 OS0C 18D8 JR RD1

57 0S0E H

58 0S0E §

59 OS0E H READ TAFE

&0 0S0E

¥k Z ASSEMELER SB-7201 «1Z-013 FAGE 19 Q04.07.83

01 0S0E IN BC=SIZE

02 0OS0E H DE=LOAD ADF.
0% OS0E H
a4 OS0E H EXIT ACC= : QF CF=0
05 OS0E H 1 ¢ ER =1
06 OS0E H 2 ¢ BREAK=1
07 OS0E H
o8 QS0E RTAFE: ENT
0% OS0E DS FUSH DE
10 OS0OF CS FUSH BC
11 0510 ES FUSH HL
12 0511 2602 LD H: 2 TWICE WRITE
17 0513 RTF1: ENT
14 0513 0101EO LD BC,KEYFH
15 0516 1102E0Q LD DE,CSTR
16 0519 RTFZ2: ENT
17 0519 CDO106 CALL EDGE 120 EDGE DETECT
18 0S1C B854 JR C«RTF&
CD4ACA CALL DLYZ CALL DLYZ%3
1A LD Ax (DE) DATA (1BIT) READ
E620 AND 20H
CA1905 JF Z,RTFZ2
=4 LD D,H
210000 LD HL.0Q
229711 LD (SUMDT) + HL
E1l FOF HL
C1 FOF BC
C3 FUSH BC
ES FUSH HL
RTF3: ENT
CD2406 CALL RBYTE s 1BYTE READ
Z83B IR CxRTF&
77 LD (HL) A
27 INC HL
OB DEC BC
78 LD AsH
Bi OR c
20F4 JR NZ.RTF3
2A9711 LD HL. (SUMDT) ;. CHECHE SUM
CD2406 CALL REYTE i CHECE SUM DATA
I82Cc JR C.RTF6
SF LD E.A
CD2404 CALL REYTE i CHECKE SUM DATA
IBR6 JR C.RTF&
BD CP L
2016 JR NZ.RTFS
47 OS4F 7H LD ALE
48 O350 BC CF H
2012 JR NZ, RTFS
RTF8: ENT
AF XOR A
RTF4: ENT
RETZ2: ENT
El FOF HL
Ci FaF BC
D1 FOF DE
7 CDOOO7 CALL MSTOF
FS FUSH AF
= FATCLL LD AL(TIMFG) INT. CHECEK

&0 OSSE FEFO CF FOH

Q1
Q2
a3
Q4
05
a6
a7
o8
Qa9
10
11
12
13
14
15
14
17
18
19
20
21
22
23
24
25
26
27
28
29
Z0
31
32
33
T4
35
36
37
38
39
40
41
42
43
44
45
44
47
48
49
50
s1
s2
53
S4
S5
S6
57
=8
59
A0

¥¥

Q560
Q3562
QS4a3
Q3564
Q565
Q5465
Q565
0566
0568
05469
054C
QS6E
0OS6E
0570
0572
0572
574
0574
Q575
Q577
0577
Q377
Q377
0577
Q577
Q578
Q57B
Q37C
Q57D
OS7E
057E
Q57E
Q57E
Q37E
Q57E
0S7E
0581
0584
0586
=87
Q=87
0587
587
0587
0587
Q588
o0s88
Q588
Q=88
Q03588
0588
0588
0588
Q588
0588
0588
0589
058A
0S8R
058C

4

ASSEMBLER SB-7201 <1Z-013A> FPAGE 20 04.07.83

2001 JR NZ,+Z=
FB EI
F1 POP AF
c? RET

RTPS: ENT
15 DEC D
2806 JR Z,RTP7
&2 LD H.D
CDE20F CALL GAFCE
18AS JR RTF1

RTF7: ENT
3EO1 LD Asl
1802 JR RTF?

RTP&: ENT
3EQ2 LD A2

RTF9: ENT
37 SCF
18DD JR RTP4

H BELL

TBEL: ENT
DS FUSH DE
115203 LD DE, TBELD
F7 RST] i CALL MELDY
D1 FOP DE
ce RET

§ FLASING AND KEYIN

H EXIT:ACC INPUT KEY DATA(DSP.CODE)

H H=FOH THEN NO KEYIN(Z FLG.)

FLEEY: ENT
CDFFG9 CALL ?FLAS
CDCA0B CALL ?EEY
FEF©Q CF FOH
c? RET

DEFS
s ORG 0588H
VERIFY (FROM $CMT)-
EXIT ACC =0 : OK CF=0
=1 : ER CF=1
=2 : BREAK CF=1
ENT

F3 DI
Do PUSH DE
Co FUSH BC
ES FUSH HL
ED4HOQZ: LD BC. (SIZE)

30
31
32
33
34
35
K1-)
37
38
39
40
41
42
43
44
45
46
47
48
49
S0
=1
52
S3
S4
S5
=1-)
o7
58
=14
&0

x Z

0590
0593
0595
0597
0598
0599
0OS9FR
QS9E
05A1
OSAS
0SA6
QSAB
OSABR
QSAD
QOSAD
0SAD
OSAD
OSAD
OSAD
OSAD
OSAD
OSAD
OSAD
OSAD
0OSAD
OSAD
0OSAD
O5SAE
OSAF
OSBO
OSB2
OSB2
OSBES
OSE8
OSE8
QOSER
OSBE
0OSC1
0SC2
OSC4
0SC7
0SCc8
0SC9
0SCA
OSCE
0SCcC
OSCC
OSCF
0SD1
0SD2
0SD4
OSDS
0SD6&6
QSD7
0sSDp8
0SDA
0SDD
OSEQ
0OSE1
OSE3

ASSEMELER SB-7201

2A0411
16D2
1ESS
78

EBi
28E9
CD1AO7
CDIF Q&
38CF
CDSEOS
38CA
CDADOS
18A7

DS
Cs
ES
2602

0101E0
1102E0

CD0O104&6
DA7205
CD4A0A
1A
E&20
CAEB0S
=4

E1

Ci

(=]

ES

CD2406
38A1
EE
209A
23

OB

78

b1
20F2
2A9911
CD2406
EC
208ER
CD240646

o r mn un we we e s Ea ar en s e

BC=SIZE

<1Z-013Ar PAGE 21

HL (DTADF)
D, D2H
Es S3H
AsE

c
Z,RTFP4
CKSUM
MOTOR
C,RTPS
TMARE,
CsRTF6
TVRFY
RTF4

DATA VERIFY

HL=DATA LOW ADR
CSMDT=CHECK SUM

EXIT ACC=0 : OK CF=0
=1 : ER =1
=2 3 BREAK-1

VRFY: ENT

PUSH DE

PUSH EC

FUSH HL

LD H, 2
TVF1: ENT

LD BC,KEYFH

LD DE.CSTR
TVF2: ENT

CALL EDGE

JP C«RTF&

CALL DLY3

LD A, (DE)

AND 20H

JP ZyTVF2

LD DasH

FOF HL

FOF BC

FUSH BC

PUSH HL
TVF3: ENT

CALL REYTE

JR CsRTFS

cp (HL)

JR NZyRTF7

INC HL

DEC EC

tD AsE

OR c

JR NZy TVF3

LD HL, {CSMDT)

CALL RBYTE

CF H

JR NZ s RTP7

CALL REYTE

s

04.07. 3

TAPE MARK DETECT

CALL DLY2%3

O5E6
0SE7
OSE?
O5SEA
OSED
OSEE
OSFO
Q5SFOQ
0SFO
05F0
O5F0
05F1
05F4
Q5F7
O5F8
OSF9
OSFA
05FA
OSFA
0OSFA
OSFA
OSFA
OSFD
0600
0601
0601
0601
0601
0601
0601
0601
0601
0601
0601
0601
0601
0601
0603
0606
0607
0607
0608
060A
Q60C
060D
0460E
Q&60F
G611
0613
0613
0614
0616
0618
0619
061A
Q&1R
061D
061F
0620
0620

z

BD
2085
15
CAS305
&2

ASSEMBLER SB-7201 <1Z-013A» PAGE 22 04.07.
cP L
JR NZ,RTF7
DEE D
JP Z,RTP8
LD H»D
JR TVF1

18C2

FS
3ABE1L1
CDB10OF
77
F1
ce

CDO?00
CDBAO3
ce

JEF8
3200E0

0A
E&81
2002
37
ce
1A
E&620
20F4

0A
E&681
2002
37
ce
1A
E&20
25F4
ce

We aE E e we we we s mm e en

FLASHING DATA LOAD

ENT

PUSH AF

LD Ay (FLASH)
CALL ?PONT

LD (HL) s A
POP AF

RET

NEW LINE AND PRINT HL REG.(ASCII)

ENT

CALL NL
CALL FRTHL
RET

ORG 0601H:EDGE

EDGE (TAPE DATA EDGE DETECT)

BC=KEYPB ($E001)
DE=CSTR (%E002)

EXIT CF=0 OK : CF=1 BREAK
ENT
LD A, FBH
LD (KEYPA) A
NOP
ENT
LD A, (BC)
AND 81H SHIFT %
JR NZ, +4
SCF
RET
LD A, (DE)
AND 20H
JR NZ,EDG1 CSTR DS
ENT
LD A, (BC) 5 8
AND B81H i 9
JR NZ, +4 i 10/14
SCF
RET
LD Ay (DE) 3 8
AND 20H 39
JR Z,EDG2 3 CSTR DS
RET i 11

a3

BREAK. KEY IN

BREAEK

[}
(]

J0

-

33
34
36
37
=8
39
40
41
42
43
44
45

47
a8
49
=0

52

4
o9
5

57
=8
=9
&0

% Z80 ASSEMBLER SE-7201 <1Z-013A* PAGE 23

0620

Q624

0624

0624

0624

Q0624

0624

0624

0624

0624

0&24

0624

0624 Co
0625 DS
0626 ES
0627 210008
062A 0O101EQ
062D 1102E0
QL3I0

0630 CDO10Q6
0633 DAS406
0636 CD4A0A
0639 1A
Q63A E&20
0&63C CA4706
Q&3F ES
0640 2A9711
0643 23
0644 229711
0647 E1
0648 37
0649

0649 7D
Q64A 17

" O64B &F

O64C 25
064D C23006
04650 CDO106
0653 7D
Q654

Q654 EL
Q65% D1
0656 C1
0657 C?
0658

0658

0658

0658

0658

0658

0658

0658

0658

0658

0&65H

Q65H

QO&65H

Q4&5SH

Q&6SH

045E CDEZOF

DEFS +4
ORG 0Q6&6Z4HiREYTE
1 BYTE READ

EXIT SUMDT=STORE
CF=1 : BREAK

CF=0 : DATA=ACC

T wn can e aw can wn an cae

HYTE: ENT
PUSH EC
PUSH DE
PUSH HL
LD HL , 0800H
LD EBEC,KEYPE
LD DE,CSTR

REY1: ENT
CALL EDGE

JP CsREY3
CALL DLYZ
LD As (DE)
AND 20H
JP ZyREYZ
FUSH HL
LD HL, (SUMDT)
INC HL
LD (SUMDT) ~ HL
FOF HL
SCF
REYZ2: ENT
LD AsL
RLA
LD L«A
DEC H
JP NZ,REY1
CALL EDGE
LD AsL
REY3: ENT
FOF HL
FOP DE
FOFP EC
RET

TAFE MARK DETECT

=259 :DATA
EXIT CF=0 :0k
=1 :BREAK

DEFS +3

TMARK: ENT

10RG OLSEH
;

CALL GAPCE

E=2L2 :INFORMATION

04,07.53

KEY DATA $EQO1
$TAFPE DATA $EOOQ

41 OR 101

13
20+18X63+33
DATA READ :8

33

35
36
37
38
39
40
41
42
43
44
45

47
48
49
50

52
53
54
ksl
j=2-}
=rd
=8
29
&L

L2

Q&65E
QLSF
0660
0b61
0664
Q665
0667
0669
0b66C
Q66F
ab72
Q&75
Q675
0678
04678
067R
a&7D
0680
0681
0683
0685
0686
0688
04688
0&8H
068D
Q690
0691
0693
0695
04696
0698
Q&69H
0&69H
04698
ab9C
049D
069E
Q0&9F
Q69F
Q69F
Q4&9F
Q&69F
Q&69F
Q69F
049F
069F
06FF
06A0
06A1
06A2
0b6A4
06A4
Q6A7
0bA7
QbAH
O6AK
06AD
Q6HD
0O6HZ

Z O ASSEMEHLER SE-7201 <1Z-013A>
cs PUSH
DS PUSH
ES PUSH
212828 LD
7B LD
FECC CP
28073 JR
211414 LD
229511 LD
Q101EC LD
1102EC LD

TM1: ENT
2A9511 LD
TMZ2: ENT
CDO106 CALL
381E JR
CD4A0A CALL
1A LD
E&20 AND
28F0 JR
DEC
20F0 JR
ENT
CDO10s CALL
380E JR
CD4ROA CALL
1A tD
E&Z0 AND
20E0 JR
2D DEC
20F0 IR
CDO10s cALL
RET3: ENT
TH4: ENT
El POP
D1 POP
c1 POP
ce RET
MOTOR ON
H IN D=32Wd
H =3RD
H EXIT CF=0
H =1
MOTOR: ENT
Cs PUSH
DS PUSH
ES PUSH
060A LD
MOT1: ENT
3A0ZEOC LD
E&610 AND
280E JR
MOTZ2: ENT
0O&FF LD
CD?609 CALL
1802 JR
18EH JR

PA E 24

BC H
DE

HL

HL, 2828H
AsE

CCH

Z,+5
HL.1414H
{TMCNT) s HL
HC.KEYPH
DE.CSTR

HL (TMCNT)

EDGE

C,TM4

DLY3 H
A, {DE)

20H

Z,TM1

H

NZ, TMZ2

EDGE
C,TM4
DLYZ
Ay (DE)
20H
NZ,TM1
L
NZ,TM3
EDGE

HL
DE
BC

fWRITE
:READ
20K

: BREAEK

EC
DE
HL
B. 10

Ax (CSTR!
104
Z.MOT4

BsFFH H
DLY12 ;
+4 H
MOTOR :

04.07.83

ORG 0Q65SEH

CALL DLY2x3

CALL DLYZX3

2 SEC DELAY
7 MSEC DELAY

sMOTOR ENTRY ADJUST

ORG ©O&6EHZH

01
0oz
03
04
(o1}
[e1°}
07
o8
09
10
11
12
13
14
15
16
17
18
19
20
21
22

23

25
26
27
28
29
30
S1
32
33
34
35
36
37
=8
39
40
41
42
43
44
45
46
47
48
49
50
s1
52

53

=4
=1=]
Sé
57
=8
=9
&0

Q4E4
QO&B4
O&E7
Q&4EB7
Q4B
Q4B
Q4BE
QO4BE
O&LEF
0&E0
06C1
06C3
06Cs
04C7
0&C?
Q&CE
0&4CE
Q&DO
0&D0
04D3
0&D4
0&D7
0&D7
04D8
0&D8
Q4DE
0&DD
Q&4DF
Q&4E2
Q&4E4
Q&ES
Q&LE7
Q&4E7
Q&4E7
Q&4E7
Q&LE7
Q&LEER
Q&EF
Q&F3
Q&F7
O&4FE
Q&4FE
Q&FF
O4FF
0&FF
0700
Q700
Q700
Q700
Q700
0700
Q700
0700
Q700
0701
Q702
0703
Q705
0705
0708

780 ASSEMELER SE-7201 <1Z-013A> FPAGE 25
10F7 DJINZ -7
AF XOR A
MOT7: ENT
18E2 JR RET3
MOT4: ENT
JEQL LD A, O&H
2103E0 LD HL,CSTFT
77 LD (HL) A
3C INC A
77 LD (HL) s A
10E1 DJINZ MOT1
CDOROO CALL NL
70 LD A.D
FED7 CF D7H
2805 JR Z,MOTS
11FBO3 LD DE, MSG#1
1807 JR MOT?
MOT8: ENT
110204 LD DE s MSG#3
DF RST 3
11FDO3 LD DE, MSG#2
MOT?: ENT
DF RST 3
MOTS: ENT
3A0Z2E0 LD A, (CSTR)
E&1Q AND 10H
20CC JR NZ,MOT2
CD320A CALL PHRK
20F4 JR NZ,MOTS
37 SCF
18D0 JR MOT7
L]
H INITIAL MESSAGE
L]
MSG?3: ENT
2A2A2020 DEFM KK
4ADAF4EA4AQ
S44F5220
315A2D30
31334120
202A2A0
oD DEFE ODH
DEFS +1
H
H
sORG O70QH;MSTOP
1
H
i MOTOR STOF
L
MSTOP: ENT
FS PUSH AF
[} PUSH EBC
D5 PUSH DE
0&60A LD B, 10
MST1: ENT
3A02E0 LD A, (CSTR)
E610 AND 10H

MONITOR 1Z-01i3A

04,07.83

W
PLAY MARK
“ RECORD. "
CALL MSGX
"PLAY"

CALL MSGX

*x

Xk Z ASSEMBLER SE-7201 <1Z-013A> PAGE 26 04.07.

01 070A 280R JR ZyMST3

a2 o70C MST2: ENT

03 070C 3E06 LD A, O6H

04 070E 3203E0 LD (CSTPT):A
05 0711 3C INC A

06 0712 3203E0 LD (CSTPT)\A
07 0715 10EE DJINZ MST1

o8 0717 MST3: ENT

09 0717 C3E&60E JP ?RSTR1

10 071A H

11 071A H

12 071A H

13 071A i

14 071A H CHECK SumM

15 071A H

16 071A 5 IN BC=SIZE

17 071A H HL=DATA ADR.
18 071A H EXIT SUMDT=STORE

19 071A H CSMDT=STORE

20 071A H

21 071A ENT

22 071A CS PUSH BC

23 071B DS PUSH DE

24 071C ES PUSH HL

25 071D 110000 LD DE, 0

26 0720 ENT

27 0720 78 LD AsB

28 0721 B1 OR c

29 0722 200B JR NZ,CKS2
30 0724 EFR EX DE, HL

31 0725 229711 LD (SUMDT) s HL
32 0728 229911 LD (CSMDT) + HL
33 072B E1 POP HL

34 072C D1 POP DE

35 072D Ci POP BC

36 072E C9 RET

37 O72F CKS2: ENT

38 072F 7E LD Ay (HL)

39 0730 CS PUSH BC

40 0731 0608 LD B, +8

41 0733 ENT

42 0733 07 RLCA

43 0734 3001 JR NC,+3

44 0736 13 INC DE

45 0737 10FA DJINZ CKS3

46 0739 C1 POP BC

47 073A 23 INC HL

48 Q73B OB DEC BC

49 073C 1BE2 JR CKS1

S0 073E H

51 073E H MODE SET OF KEYPORT
52 073E H

53 073E ?MODE: ENT

54 073E 2103E0 LD HL, KEYPF
55 0741 368A LD (HL) s BAH 10001010
56 0743 3607 LD (HL) s O7H PC3=1
57 0745 3605 LD (HL), OSH PC2=1
58 0747 ENT

59 0747

&0 0747 C9 RET

01
0z
03

Qb

33

0748
0748
0748
0759
0759
0759
0759
0759
0759
0759
075B
075C
075F
0760
0760
0760
0760
0760
0762
07463
076646
0767
0767
0767
0767
0767
0767
Q767
0767
0767
0768
076A
074D
074D
07&6E
Q771
0774
0775
0778
0779
077A
Q077A
077A
077A
077A
077A
077A
Q77A
077a
077B
077C
Q77D
0780
0783
0785
0788
078B
078E
078E
0791

ASSEMBLER SB-7201

JEIS

C25B07
co

3E13

C26207
ce

C=

DS

7B
01FQ35
112828
FECC
CABEOQ7
01F82A
111414

CDhO10A
OF

<1Z-013A> PA E 27 04.07.83
DEFS +17
H
50RE8 O759H;DLY1
H
H 107 MICRO SEC DELY
i
DLY1: ENT
LD A, 15H § 18%21+420
DEC A
JrP NZ,-1
RET
H
$ORG O7&60H;DLY2
i
DLYZ2: ENT
LD A, 13H § 18%19+420
DEC A
JP NZ, -1
RET

W s wr car e s e

ENT
PUSH
LD
cALL
ENT
RLCA
cALL
cALL
DEC
P
FOP
RET

ENT
PUSH
FUSH
LD
LD
LD
CP
JP
LD
LD
ENT
cALL
DEC

1 BYTE WRITE

BC
B, +8
LONG

Cs LONG
NC, SHORT
B
NZ,WBY1
BC

GAP + TAPEMARK

E=32L2 LONG GAP
=959 SHORT GAP

BC

DE

AE
BC,SSFOH
DE, 2828H
CCH
Z,GAP1
BC. 2AF8H
DE.1414H

SHORT
EC

L2

079278

0793
0794
0796
0796
0799
079A
079C
079C
079F
07A0
07A2
07AS
07h6
07A7
07A8
07A8
07A8
07A8
07A8
07A8
07AB
07AB
07AE
07B1
07B4
07B7
07BA
07BC
07BF
o7co
07C3
07CS
07Cs6
o7c8e
07C9
07cA
07CC
07CE
07D1
07D3
07D4
07D4
07DS
07D7
07D7
0708
07D%
07DB
07DB
07DB
07DE
07DB
07E6
07E&
07E6
07E6
07Eé
07E6
07E&

Bi
20F8

CD1A0OA
15
20FA

CDO10A
1D
20FA
CD1AOA
D1

Cc1

ce

CD3DO1

CDFAOS
CDP103
CD200%9
CD2FO1
CD1004
381p
CDALO2
13
CD1F04
3BES
BE
20E3
13

1A
FEQD
2806
CDiF04
38D8
77

23
18D4

&0

18D0

280 ASSEMBLER SB-7201

GAP2

GAP3

MCOR

MCR1

MCR2

MCR3

<1Z-013A> PAGE 28
LD Ay B
OR Cc
JR NZ,-&
H ENT
CALL LONG
DEC D
JR NZ, -4
ENT
CALL SHORT
DEC E
JR NZ, -4
CALL LONG
POP DE
POP BC
RET
MEMORY CORRECTION
COMMAND ‘M~
- ENT
CALL HEXIY
ENT
CALL NLPHL
CALL SPHEX
CALL ?PRTS
CALL BGETL
CALL HLHEX
JR Cs MCR3
CALL . 4DE
INC DE
CALL Z2HEX
JR CsMCR1
CP (HL)
JR NZ, MCR1
INC DE
LD A, (DE)
CP QDH
JR Z,MCR2
CALL Z2HEX
JR C>MCR1
LD (HL),A
H ENT
INC HL
JR MCR1
: LD HsB
LD L.C
JR MCR1
ORB Q7E&H

GET 1 LINE STATEMENT ¥

DE = DATA STORE LOW ADR.

04.07.83

CRRECTION ADR.
COR. ADR. PRINT
ACC = ASCII DISP
SPACE PRINT

GET DATA % CHECK
HL¢ASCII(DE)
(INC DE) x4

DATA CHECK

NOT CORRECTION 7
ACCEHL(ASCII)

DATA CORRECT

MEMORY ADR.

80 ASSEMBLER SB-7201 “1Z-013A} PAGE 29 04.07.83

07E& H (END =CR)
O7E& H
0O7E& H
O7E& PSETL ENT
07E&6 FS PUSH AF
O7E7 CS PUSH BC
O7EB ES PUSH HL
O7E? DS PUSH DE
O7EA GETL1 ENT
Q7EA CDB30% CALL ??KEY 3 ENTRY KEY
O7ED AUTO3 ENT
07ED FS PUSH AF 3 IN KEY DATA SAVE
07EE 47 LD E,A
07EF 3A9D1: LD A (SWRE) i BELL WORK
07F2 OF RRCA
07F3 D4770Q% CALL NC, ?BEL i ENTRY BELL
07F& 78 LD AxH
07F7 217011 LD HL , KANAF 3 KANA & GRAPH FLAG
07FA E&FO AND FOH
07FC FECO CP COH
07FE Dt POP DE 3 Ereg=FLAGreg
O7FF 78 LD A B
0800 20146 JR NZ,GETLZ2
0802 FECD CP CDH i CR
0804 2855 JR Z,GETL3
0804 FECH ceP CBH i BREAK
0808 CA2208 JP Z,BETLC
080B FECF CP CFH i NIKO MARK WH.
080D 2809 JR Z,GETLZ2
080F FEC7 CpP C7H 5 CRT EDITION
0811 300A JR NC,GETLS
0813 CB1B RR E 5 CY ?
08135 78 LD A«B
08146 3005 JR NC, GETLS
0B18 GETLZ2 ENT
0818 CDBSOD CALL ?DSP
081E 1BCD JR GETL1
081D GETLS ENT
081D CDDCOD CAaLL ?DPCT 3 CRT CONTROL
0820 18C8 JR GETL1
0822 H
0822 H BREAK IN
3 0822 H
0822 El GETLC POP HL
0823 ES PUSH HL
0824 3461B LD (HL) » 1EH 3 BREAK. CODE
0826 23 INC HL
0827 360D LD (HL) s ODH
0829 1853 JR GETLR
082B GETLA
082B
082B OF GETLA RRCA 5 CY€D7
082C 3037 JR NC, GETL&
082E 1833 JR GETLB
0B30 H
0830 H
0B30 H
083C H DELAY 7M SEC AND SWEF
0830 H
0830 CDR4609 DSWEP CALL DLY12

%k

0833
0836
0B37
0837
0B37
085H
085H
085H
0OBSH
085SH
0BSH
0BSE
0560
0862
Q863
0865
0867
0B&A
086H
0B&C
086D
0oB70
0871
oB72
0873
0875
0876
0878
0879
0B7A
087C
0g7c
087C
oB7C
oB7C
0B7E
087E
087E
0B7E
0BB1
0882
0883
0as4
0885
Q886
0886
08B6
0886
0893
0893
0893
0893
0893
0893
0893
0893
0893
0894
0895
0896

280 ASSEMBLER SH-7201

CDS00A
ce

CDF302
0628
30C9
25
Q650
2E00
CDEB4QF
D1

DS

7E
CDCEOQB
12

23

13
10F7
3:]
360D
2B

7E
FE20

28F8

CDOEQ?
D1
E1l
Ct
F1
ce

FS
CS
DS
1A

CALL
RET

DEFS

wr ae we e we

CALL
LD
JR
DEC
LD
LD
CALL
FOF
PUSH
LD
CALL
LD
INC
INC
DJINZ
EX
LD
DEC
LD
CP

JR

wr a e

POP
FOP
POF
POP
RET

DEFS
ORG 0893H

L] W e an cas an ws s

=
w
o

ENT
FUSH
FUSH
FUSH
MSG1: LD

<1Z-013A>

FPASE 30

?SWEF

36

ORB OBSEH3GETL3

. MANS

H, 40
NCyGETLA
H

H,80
L.0O
?PNT1

DE

DE

As (HL)
7DACN
(DE)\A
HL

DE

GETLZ
DEsHL
(HL) s ODH
HL

As (HL)
20H

CR AND NEW LINE

ZsGETLU

NEW LINE RETURN

DE
HL
BC
AF

+13

MESSAGE FRINT

DE PRINT DATA LOW ADR.
END=CR

AF
BC
DE
A (DE)

04.07.83

CR
1L INE

BEFORE LINE
2 LINE

STORE TOF ADR

SPACE THEN CR

o1
02
03
04
oS
06
07
o8
09
10
11
12
13
14
1s
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
S0
51
52
53
s4
55
56
s7
58
S9
60

Kk

0897
0899
0B9B
O8%E
Q89F
08A1
QBA1
o8A1
08A1
o8A1
08A1
08A1
08A1
Q8AZ2
OBA3
OBA4
OBAS
0BA7
0BAA
0BAD
08B0
08B1
0BB3
08B3
0BB3
08B3
08Bb&
08B8
(8BB
08B8
08sp8
0B8BA
08BE
08BD
Q8BD
08BD
08BD
0B8BD
08BD
08BD
OBBD
OBBD
Q8BD
0B8BD
Q8BD
08co
oBCc2
0BC3
oBacs
oBcs
Q8C8
o8cs
a8CA
08CA
Q8CA
0BCA
08CA
0O8CA
QBCA
[o]=]nfa}

780 ASSEMELER SB-7201

FEOD
280C
CD3I509
13
18FS

FS

CS

DS

1A
FEOD
CAE&LOE
CDB?0OB
CD&CO?
13
18F1

112A0C
1842

ZECB

1819

CDCAO8
D&FO
ca
C&FOQ
C3CEOH

<1Z-013A> FPAGE 31 04.07. 3
cP ODH ; CR
IR Z.MSGX2
CALL 7FRNT
INC DE
IR MSG1
;
H
3ORS 0BA1H
;
i ALL PRINT MESSABE
;
?MSGX: ENT
FUSH AF
PUSH BC
PUSH DE
MSGX1: LD A, (DE)
CcF ODH
MSGX2: JP Z,7RSTR1
CALL ?ADCN
CALL PRNT3
INC DE
IR MSGX1
3
i TOP OF KEYTBLS
3
2KYSM: LD DE; KTBLS
IR 2KYS
;
i BREAK CODE IN
:
#BRK: LD AsCBH i BREAK CODE
OR A
JR 7KY1
;
;
;ORG OBBDH
$
i GETKEY
;
; NOT ECHO BACK
;
; EXIT:ACC=ASCII CODE
;
?GET: ENT
CALL ?KEY 3 KEY IN (DISPLAY CODE)
SUB FOH i NOT KEYIN CODE
RET z
ADD AL FOH
JP 7DACN i DIAPLAY TO ASCII CODE
;
' DEFS +2

IN

WA wm an we s we an

1K

ORG OB8CAH: PKEY

EY INFPUT
B = KEY MODE(SHIFT,CTRLsBREAK)

ix Z ABSEMBLER SB-7201 <1Z-013AF» PAGE 32 04.07.83

01 08CA H C = KEY DATA (COLUMN % ROW)

02 08CA 5 EXIT ACC=DISPLAY CODE

03 08CA i IF NO KEY ACC=FOH

04 08CA H IF Cy=1 THEN ATTRIBUTE ON

05 0BCA H (SMALL s HIRAKANA)

0& 08CA H

07 08CA ?KEY: ENT

08 08CA CS PUBH BC

09 08CE DS FUSH DE

10 08cc ES PUSH HL

11 08CD CD3008 CALL DSWEP DELAY AND KEY SWEP
12 08DO 78 LD AsB

13 08D1 07 RLCA

14 08D2 3806 JR Cs?KY2

15 08D4 3EFO LD As FOH

14 08Dé6 TEYL: ENT

17 08D6 El POP HL

18 08D7 D1 POP DE

19 08D8 Cit POP BC

20 08D9 C9 RET

21 08DA 5

22 08DA PKY2: ENT

23 08DA 11EAOB LD DE, KTHL NORMAL KEY TABLE
24 08DD 78 LD A B

25 (O8DE FE88 crP 88H BREAK. IN

26 0BEO 28D6&6 JR Z, #BRK

27 08E2 2600 LD H, 0 HL=ROW % COLUMN
28 0BE4 69 LD L.C

29 0BES CB&F BIT SsA CTRL CHECK

30 0BE7 200E JR NZ, ?2KYS~-3

31 0OBE9? 3A7011 LD Ay (KANAF) 0=NR. s 1=GRAPH
32 0OBEC OF RRCA

33 O8BED DAFEOS8 JP Cs ?KYGRP GRAPH MODE

34 0OBFO 78 LD AsE CTRL KEY CHECK
35 08F1 17 RLA

36 0BF2 17 RLA

37 O8F3 38BE JR Cy?KYBM

38 0BFS 1803 JR ?EYS

39 0OBF7 11AAGC LD DE.KTELC CONTROL KEY TABLE
40 OBFA ?KYS: ENT

41 O8FA 19 ADD HL s DE TABLE

42 OBFE ?KYS5: ENT

43 O8FB 7E LD As (HL)

44 OGFC 18D8 JR ?EY1

45 OBFE PKYGRP: ENT

446 OBFE CB70 BIT & B

47 0900 2807 JR Z, ?KYGR8

48 0902 11E90C LD DE, KTBLG

49 0905 19 ADD HL,DE

S0 0906 37 SCF

S1 0907 18F2 JR PKYSS

S2 0909 H

53 0909 116A0C ?KYGRS: LD DE, KTELGS

S4 090C 18EC JR ?KYS

55 090E H

56 090E H

57 090E H

S8 090E H

59 090E H

&0 090E i0ORG O90EH

o1
a2
(a3
04
[03=]
[91)
07
o8
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
LY}
47
48
49
=1e]
o1
o2
=
S4
55
I=1-)
27
=1=]
o9
&0

rk

O0E
0O90E
090E
C090E
090CE
0O90F
0912
0914
0916
0918
0918
Q918
0918
Q?1B
o91C
Q91D
Q91F
0920
0920
Q920
0920
0920
0920
0922
0924
0924
0924
0924
0924
0927
092A
092R
092C
092E
0930
0932
Q935
Q935
Q935
Q935
0935
0935
Q935
0935
Q937
0939
Q93A
Q93B
Q93C
Q93F
o240
0941
Q942
0942
0942
0942
0945

‘09446

0946
0946

Z80 ASSEMELER SB-7201 <1Z-013A> PA E 33

AF
329411
IECD
1843

3AP411
B7

€8
18EF

JE20
1911

CDOCOO
3A9411
B7

ca
D&0A
38F4
20FA

FEOD
28ps
cs

aF

47
CD4&609
78

c1

co

4F4B21
<D

L]

8 NEWLINE

3

PLTNL: ENT
XOR A
LD (DPRNT) A
LD A, CDH
JR PRNTS
DEFS +2

$0ORG 0918aH

L]

PNL: ENT
LD A, (DFRNT)
OR A
RET z
JR ZLTNL
DEFS +1

ORG 0920H

PRINT SPACE

) ws wm an cae

?PRTS: ENT
LD A 20H
JR ?FRNT

.

H PRINT TAR

L]

?PRTT: ENT
CALL PRNTS
LD Ay (DPRNT)
OR A
RET z
SUR +10
JR €,y-10
JR NZ, -4
DEFS +3

ORG 0935H

PRINT

IN ACC = PRINT DATA

) ws ws we we e wae

?PRNT: ENT
CpP ODH
JR Z,?LTNL
PUSH BC
LD C,A
LD BsA
CALL ?PRT
LD A«B
FOP EBEC
RET

MSGOK: ENT
DEFM Okt 7
DEFEH QDH
s0ORG 0946H
H
H

PRINT ROUTINE

04.07.83

ROW POINTER
CR

o1
02
03
Q4
05
06
o7
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
3%
36
37
38
39
40
41
42
43
44
45
4a
47
48
49
50
51
52
53
54
55
56
57
58
59
60

X¥

0946
0946
0946
09446
09446
0947
094A
094B
094D
0%4E
0950
0952
0953
0955
0957
0959
0959
095C
09SE
0960
0962
0964
0966
0967
0968
096E
096C
Q96C
096F
0972
0973
Q97%
0977
Q979
0978
Q0978
0978
Q978
097Ek
0978
097k
0978
0978
Q97E
0980
o980
0980
0980
0980
Q980
Q980
0982
0984
0985
0986
Q986
0988
0989
098A
Q98H

Z80 ASSEMELER SB-7201

79
CDESOE
4F
FEFO
cs
E6FO
FECO
79
2017
FEC7
3013

CDDCOD
FEC3
280F
FECS
2803
FEC&
co

AF
329411
ce

CDESOD
3A9411
3C
FESO
38F1
D&S0
18ED

3ABE11l
186F

CB&6F
2802
B7
ce

3JE20
B7
37
ce

) we wn s

PPRT:

PRNTS

PRNT2

PRNT3

PRNT4

T] we can we we we we we

LAS1

) We e wn e am

?BRK2:

H
?BRK3:

{1Z-013A>

PAGE 34

1 CHA.

ENT
LD
CALL
LD
CP
RET
AND
CP
LD
JR
CcP
JR
ENT
CALL
CcP
JR
CP
JR
CpP
RET
XOR
LD
RET
ENT
CALL
LD
INC
CP
JR
SUB
JR

ENT
LD
JR

A,C
?ADCN
CsA

FOH

z

FOH

COH

A,C
NZ,PRNT3
C7H

NC, PRNT3

?DPCT

C3H
Z,PRNT4
CSH
Z,PRNT2
Cé6H

NZ

A
(DPRNT), A

?DSP

A, (DPRNT)
A

+B80
CsPRNT2+1
+80
PRNT2+1

FLASSING EBYPASS 1

A, (FLASH)
FLAS2

BREAK. SUBROUTINE BYPASS 1

CTRL OR WNOT KEY

‘ENT
BIT
JR
OR
RET

LD
(sl
SCF
RET

SsA
Z, ?BRES3
A

A, 20H

..

04.07.83

INPUT:C=ASCII DATA (?DSP+?DPCT)

ASCII TO DSPLAY

ZERO=ILLEGAL DATA

MSD CHECK

CRT EDITOR

HOME

CLR

TAE POINT+1

NOT OR CTRL
CTRL
NOTKEY A=7FH

CTRL DS=t
ZERO FLS. CLR

01
az
03
a4
Qs
06

08

¥

098R
Q98H
098F
0993
0995
0994
0996
09946
0994
0996
0997
0999
a99C
0O99E
O99F
O9A0
09A0
0O2A0
O9A0
09A0
O2A0

2 09A0

09A4
09AS
09A9
Q%A%
Q9A9
QA9
09A9
Q9A9
09A9
O9AF
09AC
O9AF
O9BO
OBO
OFHO
QBT
O9B=
QB3
O9BF
O9B3
09B=
O9B=
0983
O9RZ
QB3
O9BZ
0983
O9RZ
QR4
0987
Q987
Q9EBA
Q9EBC
O9BC
Q9EF
09C1
09Cc2
09CS

z

ASSEMELER SE-7201 <1Z-913A* PAGE 35 04.07. 3
MSGSY: ENT
446494C45 DEFM ‘FILENAME?T -
4E414D45
3F20
oD DEFE ODH
.
H DLY 7 MSEC
.
DLY12: ENT
cs PUSH EC
0615 LD E,15H
CD4A0A CALL DLY3
10FB DINZ -3
ct FOP EC
o] RET
H LOADING MESSAGE
.
MSG72: ENT
4C4F 4144 DEFM ‘LOADING -
494E 4720
oD DEFE ODH
H
.
H
3 DELAY FOR LONG PULSE
.
DLY4: ENT
IES9 LD A,S9H ; 18X89+20
3D DEC A
C2AR0S JP NZy—1
c9 RET
H
H
DEFS +3
H
50RG O9E3H; 77KEY
H KEY BOAD SEARCH
H % DISPLAY CODE CONV.
5 EXIT A = DISPLAY CODE
5 CY= GRAPH MODE
H WITH CURSOR DISFLAY
.
PPKEY: ENT
ES PUSH HL
CD920H CALL ?SAVE
kSL1: ENT
CD7EQS CALL FLKEY 5 KEY
20FE JR NZ,KSL1 i KEY IN THEN JUMF
KSL2: ENT
CD7EQS CALL FLKEY
2SFE JR ZyKSL2 5 NOT KEY IN THEN JUMF
&7 LD H:A
CD94609 CALL DLY12 i DELAY CHATTER
CDCAOB CALL 7KEY

o1
02
03
04
oS
06
07
o8
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
0
31
2
I3
4
35

&0

¥% 780 ASSEMBLER SB-7201 <17-013A> PAGE 36

09C8 Fo FPUSH
09C9 BC CpP
09CA E1 POF
09CB 20EF JR
09CD ES PUSH
09CE F1 POF
09CF CDFOO0S CALL
09D2 E1 FOP
09D3 C9 RET
09D4

09D4

09D4

09D4

09D4 #CLROB: ENT
09D4 AF XOR
Q9D5 #CLRB: ENT
09DsS 010008 LD
0908 CLEAR: ENT
09D8 DS PUSH
0909 57 LD
09DA CLEAR1: ENT
09DA 72 LD
09DR 23 INC
09DC OB DEC
09DD 78 LD
O9DE Bl OR
09DF 20F9 JR
QO9E1 D1 FOF
09E2 C9 RET
QO9E=

09E=

QO9E3

09E3

O9E3

0O%EZ

Q9EZ ENT
O%E3 FGS FPUSH
09E4 ES PUSH
0O9ES FA0ZEQ LD
O9E8 07 RLCA
O9E? 07 RLCA
O9EA 388F JR
09EC 3A9211 LD
O9EF ENT
O9EF CDB10OF CALL
Q9F2 77 LD
O9F3 ENT
O9F3 E1 POF
G9F4 F1 POP
09F5 C9 RET
O9F &

O9F&

O9F&

O9F& DEFS
QO9FF

O9FF

O9FF $ORG O9FF 3
O9FF

QO9FF TFLAS: ENT
O9FF 18E2 JR

AF
H

HL
NZ,KSL2
HL

AF
?LOAD
HL

a

BC, 0800H

NZ.CLEAR1
DE

AF
HL
As (KEYFC)

C.FLAS1
As (FLSDT)

?FONT
(HL) s A

HL
AF

?FLAS

04.07.83

CHATER CHECK

IN KEY DATA
FLSHING DATA LODAD
CY FLG.

BC = CLR BYTE SIZE
A = CLR DATA

DISPLAY POSITION

€8

0t
0z
04
0=
25}
07
[alz}
09
10
11
12
13
14
15
14
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3t
32
33
34
35
346
37
38
39
40
41
42
4=
44
45
446
47
48
49
S0
=31
52

=3

S4
S5
1=}
=7
=8
=4
&0

XK

0AO01
0A01
QA1
0AC1
0A01
OA01
0AOD1
0A02
0A04
0A07
0OADA
QAO0D
QAQF
0AL12
0ALS
0A18
0Al19
OALA
0OAlA
0OALlA
0AlA
OALH
0A1D
QAZO
0AZ3
0AZS
0AZB
OAZH
0A2C
QOAZD
OAZD
OAZD
0AZ2
0A3Z2
OAZ2
OA3Z2
OAZ2
0AZ2
0A32
0A3Z2
0AZ2
OAZZ2
OAZ2
0A32
OAS2
OAZ2
OAZ2
0OA32

z

ASSEMELER SE-7201

FS
3EQ03
3203EQ
CDZ907
CDS907
JEO2
3203E0
CD=707
CD=907
Fi

(34

FS
SEQOZ
Z203E0
CDAT09
3E02
F2037EQ
CDA?09
F1

co

2 TEF8

T200E0Q
<0
ZA0LEO
B7
1F
DABQO?
17
17

] AR W 8 um ws wr We W We W ar We \m we we wa wm cax

<1Z-013A>

PA E 37 04.07. 3

SHORT AND LONG PULSE FOR 1 HIT WRITE

ENT
FUSH AF i 12
LD A, O3H 4
LD (CSTFT)sA i $EQO03 PC3=1
CALL DLY1 -3 20+18%21+20
cAaLL DLY1 3 20+18%21+20
LD A 02H 5 9
LD (CSTFT)sA 3 $E003 PC3=0
CALL DLY1 1 20+18%21+20
cAaLL DLY1 5 20+18%21+20
FOF AF 5 11
RET 5 11
ENT
PUSH AF 5 11
LD A, 03H HE4
LD (CSTPT) -A i 14
CALL DLY4 3 20+18%89+20
LD A5 O2H HE
LD {CSTFTYsA 3 16
CALL DLY4 3 20+18%89+20
FOF AF s 11
RET i 11
DEFS +5
ORG 0AZZH
BREAK KEY CHECK
AND SHIFT,CTNL EEY CHECK
EXIT BREAK ON : ZERO=1
OFF: ZERO=0
NO KEY : CY =0 °
KEY 1IN : CY =1
A D&=1 i SHIFT ON
=0 : OFF
DZ=1 : CTRL ON
=0 OFF
D4=1 : SFT+CNT ON
=0 OFF
ENT
LD A.FBH 5 LINE 8SWEEFP
LD (KEYFA) . A
NOF
LD A, (KEYFE)
OR A
RRA
JP C» 7EREZ 5 SHIFT 7
RLA
RLA

01
Q2
03
Q4
oS
Qb6
Q7
08
Q9
10

12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
I1
32
Iz
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
s1
52
53
s4
i
s6
=7
=8
59
&0

K

0A42
QA44
0A44
QA47
0A4S
0A48
QA48
0A49
QA4A
0A4A
0A4A
0A4A
QA4A
0A4A
QA4C
0OA4F
QA4F
OA4F
QASO
OASO
0ASO
0ASO
QASO
OASO
QASO
0ASO
QASO
OASO
0ASO
OASO
0ASO
0ASO
QASO
OASO
QASO
0ASO
QASO
0ASO
QASO
0OASO
0AS1
0AS2
QAS3
OASS
OASSH
0AS9
OASH
OASD
OASF
OASF
OA&1
0A&L2
0AL4
0AL4
0ALS
0A&LS
0A&7
0AL8
OA&E
0OA&D

Z80 ASSEMBLER SE-7201 <1Z-013Ax
3004 JR
3E40 LD
37 SCF
ce RET
AF 7BRE1: XOR
ce RET
H
H 320 U SEC DELAY
H
DLY3: ENT
JEIF LD
C36207 JP
1
sORG OASOH 3 7SWEP
H
H
H KEY BUAD SWEEP
H
H EXIT H,D7=0
H =1
H D&=0
] =1
H DS=0
H =1
H D4-0
H =1
H c =
H 7 &
H * %
TEWEP: ENT
DS PUSH DE
ES PUSH HL
AF X0OR
Q&F8 LD
57 LD D>A
CD3IZ0A CALL
2004 JR
14688 LD
1814 JR
SWEF&: ENT
005 JR
57 LD
1802 JR
SWEPO1: ENT
CEFA SET
SWEPO: ENT
(=1 DEC
78 LD
I200E0 LD
FEEF CF
2008 JR

SHIFT+CTRL OFF
SHIFT+CTRL ON

MAF SWEEF END

X¥ 780 ASSEMELER SB-7201 <1Z-013A> PAGE 39 04.07.83

01 OAGF FEF8 CP FBH BREAK KEY ROW
02 0A71 26F3 JR 7, SWEFO

03 0A73 SWEP9: ENT

04 0A73 42 LD B,D

05 0A74 E1 FOP HL

06 OA7S D1 FOF DE

07 0A76 C9 RET

0B 0A77 :

09 0A77 SWEP3: ENT

10 0A77 3A0LEQ LD Ay (KEYPE)

11 0A7A 2F CFL

12 0A7E B7 OR A

13 0A7C 26E8 JR 75 SWEPO

14 OA7E SF LD E,sA

15 0A7F SWEP2: ENT

16 0A7F 2608 LD H, B

17 oAB1 78 LD AvE .

18 0ABZ E6OF AND OFH

19 0AB4 07 RLCA

20 0ABS 07 RLCA

21 0ABL 07 RLCA

22 0AB7 4F LD C,A

23 0AS8 7H LD ALE

24 0AB9 25 DEC H

25 0ABA OF RRCA

26 0ABB IOFC JR NC, -2

27 0ABD 7C LD AsH

28 0OABE 81 ADD A,C

29 OABF 4F LD C:A

30 0A90 18D2 IR SWEPO1

31 0A92 H

32 0A92 H

33 0A92 i ASCII TO DISPLAY CODE TABEL ;

34 0A92 ;

35 0A92 ATEL:

36 0A92 i 00 — OF 3

37 OA92 FQ DEFE FOH :

38 0A93 FO DEFE FOH Y

39 0A94 FO DEFE FOH ; 4B

40 0A95 F3 DEFE F3H 3 1C

41 0A96 FO DEFE FOH ; 4D

42 0A97 FS DEFE FSH 3 4E

43 0A98 FO DEFE FOH 3 AF

44 0A99 FO DEFE FOH i 4G

45 0A%A FO DEFE FOH : AH

46 OAYB FO DEFE FOH ;AL

47 0A9C FO DEFE FOH 3 4

48 OA9D FO DEFE FOH i K

49 OA%E FO DEFE FOH ;AL

S0 0A9F FO DEFE FOH ;oM

S1 0AAD FO DEFE FOH i AN

52 0AAL FO DEFE FOH Y-

S3 0AAZ i 10 - 1F

54 0AAZ FO DEFE FOH 3 1P

S5 0AAS Cl DEFE CiH ; 40 CUR. DOWN
56 0AA4 C2 DEFE C2H ; *R CUR. UF
57 OAAS C3 DEFE C3H i 4S CUR. RIGHT
58 0AAL C4 DEFE C4H 3 4T CUR. LEFT
59 0AA7 CS DEFE CSH i AU HOME

60 0AARB Cb DEFH C6H +V CLEAR

b 3

0AA?
0AAA
OAAB
0AAC
OAAD
OAAE
OAAF
OABO
OAB1
0AB2
OAB2
QOAB3
OAB4
0ABS
0ABG6
Q0AB7
0OABB
OAB?
OABA
OABB
OABC
0ABD
OABE
QABF
0ACO
0AC1
0AC2
0AC2
QAC3
QAC4
0ACS
0ACS
0AC7
0ACB
0AC?
0ACA
OACB
0OACC
OACD
QACE
OACF
0ADO
OAD1
0AD2
0AD2
OADZ
GAD4
OADS
0ADS6
0AD7
OADB
0AD?
OADA
OADB

« OADC

QOADD
OADE
QADF
OAEO
OAE1

FO
FO
FO
FO
FO
FO
FoO
FO
FO

(e]e]
61
62
63
b4
&%
b6
&7
&8
&9
&8
bA
2F
2A
2E
2D

20
21
22
23
24
25
26
27
28
29
aF
2C
51
2B
57
49

55
m
02
03
04
05
06
07
08
09
oA
OB
oc
oD
OE
OF

280 ASSEMBLER SB-7201

30

40

<1Z-013A>

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
2F

DEFB
DEFB
DEFB
DEFE
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

-3F 3

DEFB
DEFB
DEFEB
DEFEB
DEFB
DEFB
DEFB
DEFB
DEFEB
DEFB
DEFE
DEFEB
DEFB
DEFB
DEFB
DEFB
4F

DEFB
DEFE
DEFB
DEFB
DEFB
DEFE
DEFB
DEFB
DEFB
DEFB
DEFB
DEFE
DEFB
DEFB
DEFE
DEFEB

PAGE 40

FOH
FOH
FOH
FOH
FOH
FOH
FOH
FOH
FOH

O0H
&61H
&2H
&3H
b4H
&5H
66H
&7H
&BH
&9H
&BH
bAH
2FH
2AH
2EH
2DH

20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
4FH
2CH
SiH
2BH
S7H
49H

SEH
O1H
02H
O3H
04H
OSH
0&H
O7H
08H
O9H
0AH
OBH
OCH
ODH
OEH
OFH

av can we caw ces wa s ae we wa s

e v AR e WA es wE s s W ‘AW WA wR A cam can

SP P> > > >

- w

WA e NONCADUHN-O I

OCEIrRae=IOTNMMOOTDO

a3

X¥ Z80 ASSEMBLER SE-7201 <1Z-013Ar PASE 41 04

01 OAEZ2 3 D0 - SF 3

02 0AE2 10 DEFE 10H i P
03 0AET 11 DEFB 11H iR
Q4 0AE4 12 DEFB 12H iR
05 OAES 13 DEFB 13H i S
046 QAESL 14 DEFE 14H N
Q07 QAE7 15 DEFB 15H s U
08 OAEB 16 DEFB 16H v
09 0AE? 17 DEFB 17H H)
10 QAEA 18 DEFB 18H i X
11 OAEB 19 DEFE 19H 5 Y
12 OAEC 1A DEFB 1AH i Z
13 OAED 52 DEFB S2H s L
14 OAEE =9 DEFB S9H EREAN
15 OAEF 5S4 DEFB S4H LI
16 OAFO SO DEFB SOH H
17 OAF1 45 DEFB 45H H
18 OAF2 i &0 -~ &F 5

19 OAF2 C7 DEFB C7H i UFO
20 OAFZ C8 DEFB C8H

21 OAF4 C9 DEFB C9H

22 OAFS CA DEFB CAH

23 0AF4 CB DEFB CBH

24 OAF7 CC DEFB CCH

25 OAFB CD DEFE CDH

26 0AF9 CE DEFB CEH

27 OAFA CF DEFB CFH

28 OAFB DF DEFB DFH

29 OAFC E7 DEFB E7H

30 OAFD EB DEFB E8BH

31 OQAFE ES DEFB ESH

32 OAFF E9 DEFB E9H

33 OBOO EC DEFE ECH

34 0OBO1 ED DEFE EDH

35 0BO2 s 70 - 7F 3

34 OBO2 DO DEFB DOH

37 OBOZ D1 DEFB DiH

38 OBO4 D2 DEFB D2H

39 OBOS D3 DEFB D3H

40 OBO& D4 DEFB D4H

41 OBO7 DS DEFB DSH

42 OBO8 D& DEFB D&H

43 0OBO9 D7 DEFE D7H

44 OBOA D8 DEFB D8H

45 OBOE D9 DEFB D9H

44 OBOC DA DEFB DAH

47 OEBOD DB DEFE DEH

48 OBCE DC DEFE DCH

49 OBOF DD DEFB DDH

S0 OE10 DE DEFE DEH

51 0BE11 CO DEFE COH

352 OE12 i 80 - 8F

53 OE12 80 DEFE 80H >
34 OB13 ED DEFB BDH

55 0B14 9D DEFB 9DH

S& OB1S Bl DEFB Bi1H

57 OBl&6 BS DEFB BSH

S8 OH17 B9 DEFB B9H

59 OB1B E4 DEFE B4H

&0 0B19 9E DEFB FEH

¥¥ ZB0O ASSEMELER SB-7201 <1Z-013A: PAGE

01 OB1A B2 DEFB B2H
02 OB1B E6 DEFB B&H
03 OB1C BA DEFB BAH
G4 QB1D EE DEFB BEH
05 OR1E 9F DEFB 9FH
04 OB1F B3 DEFB B3H
07 OB20 B7 DEFB B7H
08 OB21 BB DEFB BBH

09 0OB22 5 90 - 9F
10 OB22 BF DEFB BFH
11 0OB23 A3 DEFB ATH
12 OB24 8% DEFB a5H
13 OB2S A4 DEFE A4H
14 OBZ4 AS DEFB ASH
15 OB27 A& DEFB A&H
16 OB28 %4 DEFB ?4H
17 0B29 87 DEFB 87H
18 OB2A 88 DEFB 88H
19 OB2B 9C DEFE 9CH
0OB2C 82 DEFB 82H
OB2D 98 DEFB 98H
OB2E 84 DEFB B84H
OB2F 92 DEFB 92H
OB30 90 DEFB F0H
OB31 83 DEFB 83H

0OB32 i A0 - AF &
OB32 91 DEFB 91H
ORIZ 81 DEFB 81H
OB34 9A DEFB 9AH
0B35S 97 DEFB 97H
0B3&6 93 DEFB 93H
OB37 9% DEFEH 9SH
0B38 89 DEFE 8%9H
QB39 Al DEFB AlH
OB3A AF DEFB AFH
OE3E 8B DEFB 8BH
OBEZC B6 DEFB 86H
OE3D 96 DEFB ?&H
OH3E A2 DEFB A2H
OB3F AB DEFB ABH
OE40 AA DEFE AAH
0B41 8A DEFB 8AH

I 0B4Z2 3 BO - BF
OR42 BE DEFB 8EH
S 0B43 BO DEFB HOH
OE44 AD DEFB ADH
OKR4% 8D DEFB 8DH
OB4& A7 DEFB A7H
0B47 A8 DEFB ABH
0B48B A9 DEFB AFH
OE49 BF DEFB 8FH
OE4A BC DEFE 8CH
53 OB4E AE DEFB AEH
54 0B4C AC DEFB ACH
S5 OBE4D 9H DEFE 9EH
Sé& OB4E AQ DEFB ACH
S7 OB4F 99 DEFB FFH
S8 OBTSO BC DEFB ECH
59 0BS1 B8 DEFB EBH

&0 OBS2 5 Co - CF i

98

L33

0B52
OBS3
0BZ4
0BS5S
0BS6
QES7
0BS8
QB59
0BSA
OBSB
OBSC
OBSD
OBSE
OBSF
QB&O
OB&1
QH&2
0B&2
QH&3
0B&4
0B&S
0B&S
OB&7
OB&8
OB&%?
OB&A
OB&B
OB&C
OB&D
OB&E
OB&F
QB70
0B71
QE72
OB72
QE73
OB74
QE75
QE76
QB77
0E78
QB79
0B7A
QB7B
0OB7C
OB7D
OB7E
QH7F
0E80
0B81
0B82
opaz2
OBB3
0B84
0B85
OEB&
OoEB87
OEB88
OEB89
QHBA

40
3B
3A

3C
71
A
3D
43
=1}
IF
iE
4A
ic
5D
3E

SC
1F
oF
SE
37
7B
7F
36
7A
7E
33
4B
4c
1D
&C
SB

78
41
35
34
74
30
38
75
39
4D
&F
&E
32
77
76

7L

73
47
7C
S3
31
4E
&D

46

ASSEMELER SE~-7201

DO

EO

FO

<1Z-013Ak

DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFB
DF 3
DEFEB
DEFE
DEFE
DEFE
DEFE
DEFE
DEFB
DEFEB
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
EF 3
DEFE
DEFE
DEFB
DEFE
DEFE
DEFB
DEFB
DEFB
DEFE
DEFE
DEFE
DEFE
DEFB
DEFE
DEFE
DEFE
FF 3
DEFB
DEFE
DEFE
DEFE
DEFE
DEFB
DEFB
DEFE
DEFE

PAGE 43

40H
IBH
3AH
70H
3CH
71H
SAH
3DH
43H
S6&H
3FH
1EH
4AH
1CH
SDH
SEH

SCH
1FH
SFH
SEH
37H
7EH
7FH
J6H
7AH
7EH
I3H
4BH
4CH
1DH
&CH
SBH

78H
41H
35H
34H
74H
IO0H
38H
735H
3%9H
4DH
&FH
&EH
IZ2H
77H
7&H
72H

73H
47H
7CH
S3H
31H
4EH
&DH
48H
4&H

04.07.

3

01
02
03
04
0%
0&
07
08

15

¥

OBSE
OB8C
OEBD
OESE
OB8BF
OB70
0B?1
QR?2
Op?2
oBp92
OB92
OB?2Z
OB?2
OB9S
OB?7
OB?A
OBYH
OBTD
OB%E

" OBAQ

OBAZ
OBAZ
QBAS
OBA4
OBA7
QBA8
OEAH
OBAC
OBAD
OBAE
OBE1
OBBZ2
QEB3
OBB4
OBBS
OBBT
OBR7
OBB?
OBB?
OBB?
OBB?
OBB?
OBB?
OBB?
OBR9
OBE?
OBB?
OBB?
OBEBA
OBBH
OBEBE
OBEF
OHC1
OBCZ2
OBCZ
OBCT
OHCT
OBCY9
OBCA
OBCH

Z80 ASSEMELER SB-7201

7D
44
1B
58
79
42

&0

219211
I&6EF
3A7011
OF
3803
OF
3002
I&FF

2100E0
77
2F
77
ce

3643
18E9

cs
ES
21920a
aF
0600
09

7E
181H

S6I1Z2EZOQ
41
oD

7?SAVE:

SVO:

SVi:

1) WS s an e en aw we e an

?ADCN

DEFH
DEFH
DEFH
DEFH
DEFE
DEFE
DEFH

FLASHING

ENT
LD
LD
LD
RRCA
JR
RRCA
JR
LD
ENT
LD
FUSH
CALL
LD
LD
FOP
LD
XOR
LD
LD
CPL
LD
RET
ENT
LD
JR

IN
EXIT

ENT
PUSH
FUSH
LD
LD
LD
ADD
LD
JR

DEFM

DEFH
DEFS

<1Z-013A> FPAGE 44

7DH
44H
1BH
SSH
79H
42H
&0H

DATA SAVE

HL,FLSDT
(HL) s EFH
As (KANAF)

C,svo-2

NC. SVO
(HL) . FFH

Ay (HL)

AF

?PONT

As (HL)
(FLASH) s A
AF

(HL) . A

A

HL, KEYFPA
(HL) . A

(HL) A

(HL) 43H
sVo

ORG OBE9H; ?ADCN

ASCII TO DISPLAY CODE

ACC:ASCII
ACC:DISFLAY

EC

HL

HL, ATBL
CsA

B, O

HL, BC
Ay (HL)
DACNZ

"Vi.oa"

ODH
+3

04.07. 3

NOMAL CURSOR

GRAFH MODE

NORMAL MODE
GRAFPH CURSOR

FLASING POSITION

KANA CURSOR

VERSION MANAGEMENT

¥x Z ASSEMBLER SB-7201 <1Z-013A> PAGE 4S5 04.07.

01 OBCE H

02 OBCE H

03 OBCE s ORG OBCEH; ?DACN

04 QBCE H

05 QOBCE 5 DISPLAY CODE TOQ ASCII CONV. 3

06 OBCE H

07 OBCE 5 IN ACC = DISPLAY CODE

08 OEBCE H EXIT ACC = ASCII

09 OBCE §

10 OBCE ?DACN ENT

11 OBCE CS PUSH BC

12 OBCF ES PUSH HL

13 OBDO DS PUSH DE

14 OBD1 21920A LD HL s ATBL

15 OBD4 S4 LD DsH

16 OBDS 5D LD EsL

17 OBD6 010001 LD BC,0100H

18 OBD? EDB1 CPIR

19 OBDE 2806 JR Z, DACN1

20 OBDD 3EFOQ LD A, FOH

21 OBDF DACNZ ENT

22 OBDF D1 POP DE

23 OBEO DACN3 ENT

24 OBEO E1l POP HL

25 QBEl C1! POP BC

26 OBEZ2 C9 RET

27 QBE3

28 OBE3 DACN1 ENT

29 QBE3 B7 ORrR A

30 QBE4 2B DEC HL

31 OBES EDS2 SEC HL,DE

32 OBE7 7D LD AsL

33 QBES 18FS JR DACNZ2

34 OBEA

35 OBEA

36 OBEA

37 OBEA KEY MATRIX TO DISPLAY CODE TABL
38 OBEA

39 OBEA KTBL: ENT

40 OBEA =y 00 - 07

41 OBEA BF DEFE BFH 3 SPARE
42 OBEE CA DEFE CAH i GRAPH
43 OBEC S8 DEFE S8H HI

44 OBED C9? DEFB C9H s ALPHA
45 OBEE FO DEFEB FOH s NO
46 OBEF 2C DEFB 2CH i3

47 QBFQ 4F DEFE 4FH §

48 OBF1 CD DEFE CDH 5 CR
49 OBF2 Si a8 - OF 3

50 OBF2 19 DEFE 19H i Y

51 QOBF3 1A DEFE 1AH iz

S2 OBF4 S5 DEFB SSH E

S3 OBFS 52 DEFB S2H s C

54 OBF6 S4 DEFEB S4H 501

S5 OBF7 FO DEFB FOH 3 NULL
S6 OBFB FO DEFB FOH 5 NULL
S7 OBF? FO DEFE FOH i NULL
58 OBFA S2 0o - 17

59 OBFA 11 DEFE 11H @

60 OBFB 12 DEFE 12H R

k¥

OBFC
QBFD
OBFE
OBFF
0Co0
0cCo1
ocoz2
oco2
0CO3
0CO4
QCO5
0Cosé
QCco7
ocog
oco9
OCoA
0CoA
OCOB
ococ
OCoD
OCOE
QCOF
oC10
OC11
oc12
oc12
0C13
QoC14
OCi5S
0Cté
oC17
QC18
oC1%
OC1A
OC1A
OC1B
ocic
oC1D
OC1E
OC1F
Qoc20
ocz21
ocz22
ocz22
0C23
ocz24
ocz25
0C26
acz27
oczs
ocz29
OC2A
ocz2A
ocz2A
oc2A
ocz2A
ocz2A
0C2B
ocz2c
0CZ2D

280 ASSEMBLER SEH-7201

13
14
15
16
17
18

o9
oA
OB
ocC
oD
OE
OF
10

o1
02
03
04
oS
06
07
08

21
22
23
24
25
26
27
28

a9
50
2A
00
20
29
2F

2E

ce
c7
c2
c1
C3
ca
49
2D

BF
CA
1B
ce

$53 18 - 1IF

sS85 28

$56 30

557 38

KTBLS:

<1Z-013A>

DEFE
DEFE
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFE
DEFB
DEFB
DEFB
DEFB
- 27
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
- 2F
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
- 37
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
- 3F
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

KTBL SHIFT

ENT

580 00-07

DEFB
DEFB
DEFB
DEFB

PASE 46

13H
14H
15H
16H
17H
18H

H

O9H
OAH
OBH
OCH
ODH
OEH
OFH
10H

O1H
02H
O3H
04H
05H
06H
O07H
08H

21H
22H
23H
24H
25H
26H
27H
25H

S59H
S0H
2AH
QOH
20H
29H
2FH
2EH

CBH
C7H
C2H
CiH
C3H
C4H
49H
2DH

ON

BFH
CAH
1BH
C9H

wr we e s ws es cwn e W e ws we ws as as e e ws caw wa s wn wn e we can wr w ws wn we we

w e e en we ww s wen

04.07.53

IaoaTmTmoox> TOZIM X4am xXELCH®M

OCNOCUBDUN-

PACE

-gownil >~

INST.
DEL.
CURSOR
CURSOR
CURSOR
CURSOR
?

/

SPARE
GRAFPH
FPOND

ALFHA

01

03
04
oS
06
07
08
0
10

33

Xk

OCZE
QCZ2F
QC30
0C31
0OC32
QC32
0C33

QC39
aC3A
OC3A
OC3E
OC3C
OCED
OCZE
QC3IF
QC40
QCc41
0oc4z2
ac4z2
0C43
ac44
QC45
aC446
0Cc4a7
oc4s
QC49
QC4A
0OC4A
OC4E
QCc4c
ac4p
OC4E
QC4F
QC=0
OCs1
ocsz2
Qocs2
OCS3
QCS4
QOCS5
QCS6
0CS7
QoCs8
OCS9
QCSA
OCSA
OCSE
OCcsc
OCSD
QOCSE
QCSF
QC&0
QCé1
0Caz2
0oCaz2

Z80 ASSEMBLER SE-7201

FQ
&A
&E
CD

99
%A
A4
EC
40
Fo
FoO
FO

91
9z
93
94
95
96
97
98

a9
8Aa
=)=
8c
8D

80
AT

a0
&0
&9
51
=7

C&

i}
A

isa

iS6

57

<1Z-013Ax

DEFE
DEFE
DEFE
DEFH
08-0OF
DEFE
DEFE
DEFH
DEFH
DEFE
DEFE
DEFE
DEFE
10-17
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFEH
18-1F
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFEH
DEFE
20-27
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
28-2F
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
30-37
DEFE
DEFE
DEFE
DEFE
DEFE
DEFEH
DEFE
DEFH
38-3F
DEFH

FAGE 47

FOH
&AH
&EH
CDH

?9H
FAH
A4H
ECH
40H
FOH
FOH
FOH

FiH
?2H
?3H
F4H
?5H
F&H
97H
78H

872H
8AH
8EH
8CH
8DH
8EH
8FH
20H

81H
82H
a3H
84H
85H
86H
87H
88H

61H
462H
&3H
&4H
&5SH
46H
47H
&8H

80H
ASH
2EH
QOH
60H
69H
S1H
S7H

C&6H

04.07.83

i
3
k
1
m
n
o
P

JTo 00N oW

(531
az2
03
Q4
o5
06
07
08
09
10
11
12
13
14
15
16
17
i8
19
20
21

22

I3
24

25

26
27
28
29
30
31
32
33

35
36
37
za
39
40
41
42
43
44
45
45
47
48
49
50

51

53
=4

=2}
57
=8
59
60

xK

0C63
0C64
OCo65
0C66
0C&7
aca8
OC6%
QCo6A
0C6A
0CaA
OC6A
QC6A
OC6A
OC6H
OC6C
0C&D
OC6E
OC&F
OC70
QC71
OC72
oc72
QC73
0C74
OC7%5
0C76
Qc77
ocz8
0c79
OC7A
0OC7A
QC7H
OC7C
QC7D
OC7E
QC7F
0cao
ocel
ocs2
ocez
ocaz
oca4
ocas
QCSs6
ocaez
ocaes
ocae
QCBA
OCBA
ocaB
ocac
[al=))
OCBE
ocar
OC?0
0Ce1
0cez2
0ce2
OCY3
AC?4

780 ASSEMELER SB-7201

o
cz
Ct
Cs
C4
SA
4%

BF
Fo
ES
ce
FoO
42
B6&
CD

73
76
BZ
D8
4E
FO
FO
FO

Ic
30
44
71
79
DA
=8
&D

7D

=B
B4
ic
32

D&

<1Z-013A%

DEFE
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

GRAFHIC

5
KTBLGS: ENT

i 50

551

iS3

i 54

20-07
DEFB
DEFH
DEFB
DEFE
DEFH
DEFB
DEFB
DEFB

08-0F
DEFH
DEFB
DEFH
DEFB
DEFH
DEFB
DEFE
DEFH

10-17
DEFE
DEFB
DEFE
DEFE
DEFB
DEFE
DEFE
DEFE

18-1F
DEFB
DEFH
DEFH
DEFB
DEFE
DEFH
DEFH
DEFH

20-27
DEFB
DEFB
DEFB
DEFB
DEFB
DEFE
DEFE
DEFE

28-2F
DEFB
DEFB
DEFB

FAGE 48

CSH
C2H
CiH
C3H
C4H
SAH
45H

BFH
FOH
ESH
C?H
FOH
42H
B&H
CDH

75H
76H
B2H
D8H
4EH
FOH
FOH
FOH

3CH
30H
44H
71H
79H
DAH
38H
&DH

7DH
SCH
SBH
B4H
1CH
32H
BOH
D&H

S3H
&FH
DEH
47H
34H
4AH
4BH
72H

37H
3EH
7FH

e as aw a cas s we s na e W we ae e e e as can as as e can wm

04.07.83

HOME

CURSOR UF
CURSOR DOWN
CURSOR RIGHT
CURSOR LEFT

el

SPARE
GRAPH BUT NULL

ALPHA
NO
#3
#:
CR

#Y
#Z
#2
#L
#1
#NUL L=
#NULL
#NULL

¥

0OC95
QL4
0OC?7
OC98
0C99
OC%A
0CoA
OCoB
QCcoC
QC9D
OC9E
QC9F
OCAC
0OCAl
OCAZ
OCAZ
OCA3
QCA4
OCAS
OCAL
OCA7
OCA8
OCA9
OCAA
OCAA
OCAA
OCAA
OCAA
0OCAA
OCAB
OCAC
OCAD
OCAE
OCAF
OCBO
OCB1
OCH2
QCH2
0CB3
OCB4
OCBS
QCH&
OCH7
oCB8
0OCH?
OCBA
OCBA
QOCHHE
OCBC
OCED
OCBE
OCEF
QCcCco
0CC1
OCC2
QCC2
OCC3
acc4
OCCS
QCCé6

Z80 ASSEMBLER SE-7201

7H
A
SE
1F
BD

D4
9E
D2
00
9C
Al
ca
B8

c8
c7
cz2
(o3}
C3
Ca
BA
DB

Fo
FO
Fo
FoO
FO
FoO
FO
FoO

FoO
SA
Fo
Fo
FoO
FO
Fo
FoO

Ci1
cz2
C3
Ca
Cs
cé
Fo
FO

FO
FOQ
FoO
Fo
FoO

386

i57

PR

KTELC

351

1Z-013A

DEFH
DEFB
DEFB
DEFB
DEFB
I0-3F
DEFH
DEFE
DEFH
DEFH
DEFB
DEFB
DEFH
DEFB
38-3F
DEFH
DEFB
DEFB
DEFH
DEFH
DEFB
DEFB
DEFH

ENT

QO-07N

DEFH
DEFH
DEFB
DEFB
DEFB
DEFB
DEFH
DEFB
08—-0F
DEFE
DEFB
DEFH
DEFH
DEFB
DEFE
DEFH
DEFH
10-17
DEFH
DEFH
DEFB
DEFH
DEFB
DEFH
DEFB
DEFB
18-1F
DEFB
DEFE
DEFB
DEFB
DEFB

FAGE 49

7EBH
3AH
SEH
1FH
BDH

D4H
FEH
DZH
OOH
9CH
AlH
CAH
BBH

C8H
C7H
CZ2H
CiH
C3H
C4aH
BAH
DBH

CONTROL CODE

FOH
FOH
FOH
FOH
FOH
FOH
FOH
FOH

FOH
SAH
FOH
FOH
FOH
FOH
FOH
FOH

CiH
C2H
C3H
C4aH
C3H
CéeH
FOH
FOH

FOH
FOH
FOH
FOH
FOH

04.07 893

#4
#o
#6
#7
#8

#YEN
#+
#-
SPACE
#0

#9

INST

DEL

CURSOR UP
CURSOR DOWN
CURSOR R1GHT
CURSOR LEFT
#?

#/

+Y E3
+Z E4 (CHECK
13

40 ES
+1 E7
e
*R
+8
+T
U
v
MW El
+X EZ2
+1 F9
+J FA
tE FB
L FC

*M FD

XX Z80 ASSEMBLER SHB-7201 1Z-013A° FAGE S0 04.07.83

01 OCC7 FO DEFEB FOH i N FE
02 OCC8 FO DEFB FOH s *0 FF
03 0OCC? FO DEFEB FOH i tP EO
Q4 OCCA 354 20-27

0% OCCA FO DEFEB FOH i tA F1
06 OCCEB FO DEFEB FOH i B F2
07 OCCC FO DEFEB FOH s tC F3
08 OCCD FoO DEFEB FOH i *D F4
09 OCCE FO DEFB FOH 5 *E FS
10 QCCF FO DEFB FOH i tF Fé&
11 OCDO FO© DEFEB FOH i t16 F7
12 OCD1 FO DEFB FOH i tH F8
13 oCcpz2 35T 28-2F

14 OCD2 FO DEFB FOH

1% OCD3 FO DEFEB FOH

14 OCD4 FO DEFEB FOH

17 OCDS FO DEFB FOH

18 OCDé& FO DEFEB FOH

19 OCD7 FO DEFB FOH

20 0OCD8 FO DEFB FOH

21 OCD? FO DEFB FOH

22 0OCDA 156 30-37

23 OCDA FO DEFEB FOH +YEN E&
24 OCDB FO DEFEB FOH

25 OCDC FoO DEFB FOH

26 QCDD FO DEFEB FOH

27 OCDE FO DEFB FOH

28 QCDF FO DEFEB FOH t. EF
29 QCEQ FO DEFB FOH

30 OCE1 187 38-3F

31 OCE1 FO DEFB FOH

32 OCE2 FO DEFB FOH

33 OCES3 FO DEFB FOH

34 OCE4 FO DEFB FOH

35 OCES FO DEFB FOH

36 QCEé& FO DEFB FOH

37 OCE7 FO DEFEB FOH

38 OCES8 FoO DEFEB FOH +/ EE
39 OCE? H

40 OCE? H EANA

41 OCE? H

42 QOCE? KTBLG: ENT

43 OCE? 180 00~07

44 OCE? BF DEFB BFH i+ SPARE
4% OCEA FO DEFB FOH 3 GRAPH BUT
46 OCEE CF DEFB CFH i NIKQ WH.
47 OCEC C9 DEFB CoH 3 ALFHA
48 OCED FoO DEFB FOH 5 NO

49 OCEE BS DEFEB BSH i MO

=0 QCEF 4D DEFB 4DH i DAKEY TEN
=1 OCFO CD DEFB CDH i CR

=2 OCF1 iS1 Q8-0F

o3 OCFi 3% DEFB 35H HA

=4 OCF2 77 DEFB 77H TA

S5 OCF3 D7 DEFB D7H WA

=& QOCF4 B3 DEFEB BIH YO

57 OCF= B7 DEFB B7H HANDAEU
=8 OCFs FO DEFEB FOH

59 OCF7 FoO DEFB FOH

&0 QCF8 FO DEFEB FOH

01
oz
O3
a4
QS
06
07
as
09
10
11
12
13
14
15
16
17
18
i9
20
21
22
23
24

25

G id KRR
=00 NO

A
A)

B G G G AL
SO ONOo DD

b
) -

43

LR S
NONO N

S0
Sl
S2
=3
o4
k]
=7-)
=4
=8
=9
&0

¥

OCF9
QCF?
OCFA
QOCFE
OCFC
QCFD
OCFE
QCFF
ODOO
oDO1
0DO1
0oDo2
ODOZ
abo4
ODOS
0Do&
0ODO7
oDho8
0oDO9
0DO9
ODOA
QODOE
ODOC
QDOD
ODOE
ODOF
D10
oD11
0OD11

oD12 3

OD13
oD14
OD1S
OD1&
oD17
oDig
D19
aD19
OD1A
OD1E
oD1C

2 OD1D

OD1E
OD1F
0OD20
ODZ21
0ODZ1
obDz22
OD23
aDz24
ODZ2ZS
aDZ2é6
QD27
OD28
0D29
aDZ9
0D29
ODZ9
0DZ9
ODZ9

780 ASSEMELER SE-7201

7C
70
41
31
39
2}
78
DD

3D
=D
&ac
=1-}
1D
33
DS
E1

46
6E
D9
48
74
43
4c
73

IF

7E
3H
7R
1E
SF
AZ

cé
cs
cz
c1
C3
c4
EE
BE

CDZDO1

382

395

[e we ae e

UMP

<1Z-013A%

10-17
DEFH
DEFH
DEFH
DEFE
DEFE
DEFE
DEFE
DEFEH

18-1F
DEFE
DEFE
DEFB
DEFE
DEFR
DEFE
DEFE
DEFH

20-27
DEFEH
DEFH
DEFE
DEFEH
DEFE
DEFE
DEFE
DEFE

28-2F
DEFEH
DEFEH
DEFE
DEFE
DEFH
DEFE
DEFEH
DEFE

30-37
DEFEH
DEFE
DEFE
DEFE
DEFE
DEFE
DEFE
DEFB

38-3F
DEFE
DEFE
DEFE
DEFEH
DEFE
DEFEH
DEFE
DEFE

PAGE 51

7CH
70H
41H
JIiH
I9H
A&H
78H
DDH

IDH
SDH
4CH
Sé6H
1DH
3IH
D=H
E1H

46H
6EH
D9H
48H
74H
43H
4CH
73H

3FH
36H
7EH
JEH
7AH
1EH
SFH
AZH

D3H
9FH
D1H
QOH
9DH
AZH
DOH
E9H

CéH
CSH
CZ2H
CiH
C3H
CaH
EBEH
EEH

MEMORY DUMP
COMMAND “D~

ENT
CALL

HEXIY

AR wan cas wE s w as e an cax ws wn ws wn ws ae e en cam an can e e e W wn e cas an can s an

a4.07.83

KA
KE
SHI
KO
HI
TE
KI
CHI

FU
MI
MU

NO
NE
RU
RE

?CLR &

?HOME @
?CURSOR UF
?CURSOR DOWN
?PCURSOR RIGHT
?CURSOR LEFT
DASH

RO

START ADE.

01
Q2
0=
a4
(=]

07
0s
09
10

12
13
i4
15
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
7

=
It

39
40
41
42
43
44
45
44
47
48
49
S0
s1
52
=3
=4
s5
=
=7
=8
59

L2

oDz2C
ODZ2F
0OD30
QD33
0D34
oD36&
0D37
oD39
OD3E
OD3E
0D41
oD42
0OD43=
D464
oD47
oD4A
OD4E
OD4D
ODA4F
0oD51
0DS54
oD57
ODSA
ODSE
oDsC
ODSF
OD&O
oD&1
0D&2
0D&3=
0D&S
0D&&
0D&8
OD&A
OD&D
OD&E
0OD71
D73
0D75
oD78
OD7A
oD7D
OD7E
oDgo
oDe3
oDgs
oDss
OD8B
opsc
OD8E
ODBE
ODSE
ODBE
OD8E
0ODA&
ODA&
0DAbL
0DA&L
ODA&L

CDALOD2
ES
CD1004
D1
I852
EER
0608
QE17
CDFAOS
CDB10O3
23

CDBY0E
CD&CO?
3A7111
oc

21
327111
oD

0D

oD

ES
EDSZ
El
281D
JEF8
3200E0
Q0
3A01EQ
FEFE
2003
CDA&OD
10C4
CDCADB
B7
28FA
CD320A
20B2
C3AD0O
21A000
19
18AB

780 ASSEMELER SE-7201

CALL
FUSH
CALL
FOF
JR
EX

DUM3: LD

LD
CALL

DUM2: CALL

INC
FUSH
LD
ADD
LD
FOF
cp
JR
LD
CALL
CALL
LD
INC
SUB

DUM1L: LD

DEFS

< 1Z-013A

FABE =2

- 4DE

AF

As (DSFXY)
A,C
(DSPXY) A
AF

20H

NC. +4

Ax 2EH
?ADCN
FRNTS

Ay (DSFXY)

DSFXY) A

noo~00n

HL

HLy DE

HL
Z,DUM1-3
AL F8H
(KEYFA),A

Ay (KEYFE)
FEH
NZ.+5
PBLNE
DumMz2
?KEY

A

Z,-4
?PBRE
NZ,DUM3
ST1

HL. 160
HL . DE
DUM3-1

+24

ORG ODA&H; ?BLNEK

04.07.83

END ADK.

DATA ER. THEN
DISFP BBYTES

CHA. PRINT RIAS
NEWLINE PRINT

SP. PRT.+ACC PRT.
DISPLAY POINT

X AXIS.=X+Creg

R

ASCII TO DSFLAY CODE

ASCII DSF FOSITION

SHIFT KEY 7
&4MSEC DELAY
STOF DISF

SPACE KEY THEN STOF
BREAE, IN 7

COMMAND IN
20%8 BYTE

40

Xk

ODA6
ODA&
ODAL
ODA&
ODA7
ODAA
ODAR
ODAD
ODBO
QODB1
ODB3
ODE4
ODBS
ODBS
ODBES
ODBS
ODBS
ODBS
ODBS
ODBS
ODBS
ODBS
ODBS
ODBZ
ODB6
ODB7
ODES8
ODES

- ODB?

ODEC
ODED
ODCO
ODC1
ODC=
ODCS
oDpcs
aoDcA
ODCE
ODCD
ODECE
QDD
ODDO
oDD2
oDD4
oDD4
OoDD4
oDD4
0DD4
ODD4
0DD4
oDD7
ODD?
ODDE
oDDC
appe
oDDC
oDpe
oDDC
oDpDe
0DDC

280 ASSEMBLER SB-7201

FZ
IZA0OZEQ
a7
3OFA
SAQZEQ

I8FA
F1
ce

FE27
Z00R
CDF302
3806
EE
3601
23
3600

JECE
180C

3A7011
FEOD1
3ECA
ce

<1Z-013Ax

FAGE 53 04.07.

V—-BLANE CHECE

BLNE: ENT
FUSH
LD
RLCA
JR
LD
RLCA
JR
FOF
RET

ENT
FUSH
FUSH
FUSH
FUSH
DSFO1: ENT
CALL
LD
LD
LD
CF
JR
CALL
JR
EX
LD
INC
LD
ENT
LD
JR

G) on an s e can

RSTAS: LD
CF
LD
RET

ORG ODBSH3 ?DSF

AF

A, (KEYPC)
NC, -4

A, (KEYPC)
C,-

AF

DISFLAY ON FOINTER

ACC = DISFLAY CODE
EXCEFT FOH

AF
BC
DE
HL

2]

?PAONT DSPLAY FOSITION

(HL) A
HL. (DSPXY)
AL

+39

NZ, DSFO4
. MANG
C»DSPO4
DEsHL
(HL) 5 +1
HL
(HL) - O

LOGICAL

LOGICAL

AL C3H
7DPCT+4

CURSL

GRAFHIC STATUS CHECE

A (KANAF)
O1H
A CAH

ORG ODDCH; ?DPCT

1ST COLUMN

2ND COLUMN

o1
02
03
04

05

o

60

} 4

oDDC
oDDC
oDpDC
obppC
oDpDC
oDbe
oDbDC
opbeC
QoDDD
ODDE
ODDF
ODEOQ
QDE1
QDE3
QDEZ
0ODE7
QODES
ODE®?
ODEA
ODEC
ODEF
QODFQ
ODF1
ODFZ2
ODF3Z
ODF &
ODF7
QDF8
ODFB
QDF8
ODF8
ODF8
ODF9
ODF&
ODFC
ODFE
QDFF
ODFF
QDFF
QODFF
ODFF
ODFF
QEQ2
QEOQS
OEOQS
QEOS
OEQ&
OEQ7
QOE0B
QOEOQA
OEOE
QEOE
JEQD
QEOQD
OEOE
OEQOF
OE11
OE13X
OE14
OElé

Z80 ASSEMELER SE-7201

FS
cs

DS

ES

47
E&FOQ
FECO
201F
AS

07

4F
0600
21AACE
09

SE

23

=
2a7111
EE

E9

ER

FE18
2825

24

C3ESOE

EE
7C
B7
28F8

~e

18F2

EE
7D
FEZ7
I003
2C
18BE?

<1Z-013A> PAGE 54 04.07. 3
;
i DISFLAY CONTROL 3
1
H ACC = CONTROL CODE
;
FUSH AF
FUSH BC
FUSH DE
FUSH HL
LD Es A
AND FOH
CF COH
JR NZ, CURSS
XOR E
RLCA
LD C,A
LD E, +0
LD HL, CTEL ; PAGE MODE1
ADD HL, EC
LD E, (HL)
INC HL
LD D, (HL)
LD HL ; (DSFXY)
EX DE,HL
JP (HL)
H
s
P
CURSD: ENT
EX DE, HL LD HLs (DSPXY?
LD AsH
CcF +24
JR Z,CURS4
INC H
CURS1: ENT
ENT
LD (DSFXY) 51
JF PRSTR
ENT
EX DE,HL LD HL; {DSFXY)
LD AsH
OR A
JR Z,CURSS
DEG H
ENT
JR CURSS
CURSR: ENT
EX DEsHL 3 LD HLs (DSPXY)
LD AsL
CF +39
IR NC, CURSZ2
INC L
JR CURS3

ENT

25

¥

OE16
QE18
QE19
QE1A
OE1C
OE1E
OE20
OE23
OER3
OERS
OEZ2S
OE2S
OE26
0E27
OEZ28
OE2A
OE2B
QEZ2D
OEZ2F
QE30
QE33
QE3S
QE38
QE3A
QE3A
QE3A
QE3D
QE3F
QE42
QE4S
OE48
OE4A
DE4D
OE4D
OESO
OES2
OES2
OESA
0ESA
OESA
QOESA
OESA
QOESD
OESE
OE&O
OE&2
OE&3
OE&D
OE&7
OE&8
OE&A
OE&6A
OE&D
OE&D
OE&D
QE&D
DE&D
QE70
OE73
QE76&

2E00
24

7c
FE19
38E1
2618
227111

1848

EB

7D

B7
2803
2D
18D2
2E27
25
F20BOE
2600
227111
18C8

217311
061B

CDD8OF
2100D0
CDD409
3E71

CDDS09

210000
18AD

CDF302
OF
3086
2E00
24
FE1B
2803
24
1895

227111

01CO03
1100D0
2128D0
CS

7280 ASSEMBELER SB-7201

CURS4:

CURSL:

CLRS:

<1Z2-013A> PAGE 55

LD Ls+0

INC H

LD AsH

CP +25

JR CsCURS1
LD Hy +24

LD (DSPXY),HL
ENT

JR SCROL
ENT

EX DE, HL

LD AsL

OR A

JR Zy+3

DEC L

JR CURS3

LD L +39
DEC H

JP P, CURSU1
LD H\ O

LD (DSPXY),HL
JR CURSS
ENT

LD HL s MANG
LD B,27
CALL ?CLER

LD HL , DOOOH
CALL #CLROB
LD As71H
CALL #CLR8
ENT

LD HLs O

JR CURS3
DEFS
CR

ENT

CALL - MANG
RRCA

JR NC, CURS2
LD LsO

INC H

CP +24

JR Z,CR1
INC H

JR CURS1
ENT

LD (DSPXY) s HL
ENT

LD BC, 03COH
LD DE, SCRN
LD HL s SCRN+40
PUSH BC

04.07. 3

LD HL. (DSPXY)

COLOR DATA
DBOOH-DFFFH CLR

DSPXY:0Q X=0,Y=0

TOP OF $CRT ADR
1 COLUMN
1000 STORE

o1
02
03
a4
05
[62°)
07
08
09
10
11
12
13
14
15
146
17
15
19
20
21
22
z3
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
=1¢]
51
52
=53
=4
=1=1
=1-]
=57
=8
59
=13

L2

OE77
QE79
OE7A
OE7B
QE7E
OES1
QE83
QESS
QOEBS&
OES8
OESB
OESC
OESE
OE91
OE?4
OE9?7
OE%A
OE%C
OERE
OEA1
OEA2
OEA4
OEA7
OEA8
OEAA
OEAA
OEAA
OEAA
OEAA
OEAC
OEAE
OEBO
OEB2
OEB4
OEBS
OEE8
OEBA
OERC
OEBE
OECQ
OEC2
OEC4
OECS
OEC8
OECA
OECA
OECA
OECA
OECA
OECA
OECC
OECD
QECE
QECF
OEDO
OEDZ2
OED4
OEDS
OED&
OED8

EDBO
C1
DS
1100D8
212808
EDBO
0628
EB
3E71
CDDDOF
El
0628
CDDBOF
011A00
117311
217411
EDBO
3600
3A7311
B7
2841
217211
35
18C3

6DOE
F8cD
OS0E
ODOE
230E
4DOE
JA0E
FBOE
380F
E1CE
EEOE
ESCE
ESOE
SACE
ESOE
ESCE

CBDC
7E
23
77
2B
€peC
EDA8
7%
BO
20F2
EB

Z80 ASSEMBLER SB-7201

w e an ae

“1Z-013A> PABE 56

LDIR
FOF
FUSH
LD
LD
LDIR
LD
EX
LD
CALL
FOF
LD
CALL
LD
LD
LD
LDIR
LD
LD
OR
JR
LD
DEC
JR

CONTROL

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

BC
DE
DE, SCRN+800H
HL , SCRN+828H

B, 40
DE,HL

Ay 71H
PDINT

HL

B, 40
?CLER
BC,26

DE s MANG
HL. s MANG+1

(HL), 0O

As (MANG)

A

Z, ?RSTR
HL, DSFXY+1
(HL)

SCROL

CODE TABLE

SCROL
CURSD
CURSU
CURSR
CURSL
HOME
CLRS
DEL
INST
ALFHA
K.ANA
?RSTR
?RSTR
CR
?RSTR
?RSTR

INST BYPASS

SET
LD
INC
tD
DEC
RES
LDD
LD
OR
JR
EX

3sH

As (HL)
HL
(HL) 5 A
HL

3sH

AsC

E

NZ, INST2
DE.HL

04.07.53

COLOR RAM SCROLL
SCROLL TOFP + 40

ONE LINE

COLOR RAM INITIAL

LAST LINE CLEAR
ROW NUMBER +1
LOGICAL MANAGEMENT

SCROLL ING
CURSOR

COLOR RAM
FROM

TO
ADR ADJ.

CHA. TRNS

BC=0 7

Q1
Q2
O3
4
O
(V7]
07
Qs
o9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
S0
st
s2
S3
s4

S5

2=}
57
=8
=9
&0

Xk Z

QOED?
OEDE
QEDD
QEDF
OEE1
OEE1
OEE1
QCEE1
0OEE1
QEE1
OEE1
OEE1
QEEZ2
OEEZ2
OEES
OEES
QOEES
OEES
OEES
QEES
QOEES
QEE&
QEE7
OEE8S
QEE®
OEEA
OEEA
QOEEA
DOOO
EQQ3
OEEA
QEEA
OEEA
QEEA
OEEE
QEEE
QEEE
QEEE
OEF1

QOEF 4
OEF 6
QOEF8
OEF8
QOEF8
QEF8
QEF9
QEFA
QEFE
QOEFD
QEFE
OEFF
QF01
QF0O4
QF 06
OF09
QF 0A
OFOC
QFQE
OFOE
OF11

ASSEMELER SE-7201

I600
CEDC
3671
1804

AF

327011

CDD40D
CAE?0D

ZEQL
18EA

ER

7C

ES
28E8
7D

E7
200D
CDF302
808
CDE10OF
2k
2600
1825

CDF302
OF

LD (HL) s O
SET 3sH

LD (HL) s 71H
JR ?RSTR

H
H
H
H
$0RG OEE1H3;ALPHA
5
A

LPHA: ENT
XOR A
ALFH1: ENT

LD (KANAF) s A

RESTORE

o wn we wn e

?RSTR: ENT

FOP
?RSTR1: ENT
FOP DE
FPOP EC
FOP AF
RET

MONITOR WORK AREA

SCRN: EQU DOOOH
KANST: EQU EQOZH
H
H
H

DEFS +4

sORG OEEEH; KANA

KANA: ENT
CALL GRSTAS

JP Z,DSPO1
LD Ay +1
JR ALPH1
H
H
DEL: ENT
EX DE, HL
LD AsH
OR L
JR Z,?RSTR
LD AsL
OR A
JR NZ, DEL Y
CALL . MANG
JR CsDEL1
CALL ?PONT
DEC HL
LD (HL) s +0
JR INST-5
DEL1: ENT

CALL -MANG
RRCA

<1Z-013A> PA E 57

-

04.07. 3

COLOR RAM

KANA STATUS FORT

NOT GRAFPH KEY

LD HL, (DSPXY)
HOME ?

LEFT SIDE ?

JP CURSL

o1
02
03
04
05
04
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
s1
52
53
s4
55
S&
57
S8
59
&0

KK

OF12
OF14
OF1&
OF17
OF18
OF19
OF1C
OF1D
OF1E
OF1F
OF20
QF22
OF23
OF24
OF25
OF27
OF28
OF29
OF2E
QF2C
OF 2E
OF30
OF33
OF 35
OF38
OF38
OF38
OF3H
QF3C
OF 3E
OF3F
OF41
OF42
QF 45
OF 4646
OF49
OF4E
OF4D
OF4E
OFSQ
OF3S1
OFS2
OFS4
OF 35
OFS6
OF58
OF39
OF3A
OFSE
OFSE
OFSE
OFSE
OFSE
OFSE
OFSE
OFSE
OFSE
OF&1
OF &4
OF &5

Z80 ASSEMBLER SE-7201

TE28
3001
07

L&

47
CDE10OF
7E

2B

77

23
CEDC
7E

2B

77
CE9C
23

23
10F1
2B
34600
CeDC
217100
3EC4
C3IEQOD

DELZ2:

INST:
CDF302
OF
2E27
7D
3001
24
CDE4OF
ES
2A7111
3002
SE4F
95
0600
aF

D1
2891
1A

E7
208D
62

&R

2B
C3CACE

() we ae we an e cae

CD3DG1
220411
44
4D

LD
JR
RLCA
SUE
LD
CALL
LD
DEC
LD
INC
SET
LD
DEC
LD
RES
INC
INC
DJINZ
DEC
LD
SET
LD
LD
JP

ENT
CALL
RRCA
LD
LD
JR
INC
CALL
PUSH
LD
JR
LD
SUE
LD
LD
FOF
JR
LD
OR
IR
LD
LD
DEC
JP

CMD.

ENT
CALL
LD
LD
LD

<1Z-013A%

g7

FAGE S8

As 40
NC, +3

L

BaA
?PPONT
A, (HL)
HL
(HL)»A
HL

35H

A, (HL)
HL
(HL),A
3sH

HL

HL
DEL2
HL
(HL) . O
3.H
HL, 71H
A C4H
?DPCT+4

- MANB

L. +39
AL

NC, +3

H

?PNT1
HL

HL,s (DSFXY)
NC, +4
AL +79

L

Bl O

CsA

DE
Z:?RSTR
As (DE)
A

NZs ?RSTR
H, D

L,E

HL
INSTZ2

PROGRAM SAVE

HEXIY
(DTADR) » HL.
E,H

C,L

- e e we

- e e

e

—. e

e

-

04.07.83

ACC=80
TRNS. BYTE
CHA. FROM ADR
TO

COLOR RAM

CHA.

NEXT

ADR. ADJUST

BLUE + WHITE
JFP CURSL

HL&DE

JUMF NEXT (BYFASS)

START ADR.

DATA ADR. BUFFER

o1
0z
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
39
40
41
4z
43
44
45
46
47
48
49
50
S1
52

a5

=
=i

55
56
57
58
59

&0

xX

oF 66
QF &9
OF&C
OF &6E
OF&F
OF72
OF 75
OF78
OF7B
QF7E
OF81
QF8z
OF85
oF88
OF8B
OF8E
OF8E
OF8F
OF70
QF91
OF92
OF94
OF 96
OF98
OF9B
OF9E
OFA1
OFA4
OFA7
OFAA
OFAD
OFAE
OFB1
OFB1
OFB1
OFB1
OFB1
OFB1
OFB1
OFB1
OFB1
OFB1
OFB1
OFB1
OFB1
QFB4
OFB4
OFB4
OFB4
OFB4
OFBS
OFB&
OFB7
OFE8
OFBY?
OFBC
OFBF
OFBF
OFCO
OFC1

‘CDA&LOZ2

CD3Do1
ED4Z2
23
220211
CDA&OZ2
Cb3D01
220611
CD0O%00
118809
DF
CD2F 01
CDhALOZ2
CDA&0Z2
21F110Q

13

1A

77

23
FEOD
20F8
3EO1
32F010
CD3&04
DA0701
Cbh7504
DAQ701
CD0O?00
114209
DF
C3ADOO

2A7111

FS
CS
DS
ES
Ci
112800
21D8cF

19
(e}=]
FZBFOF

Z80 ASSEMBLER SB-7201 <1Z-013A> PAGE 59

CALL -4DE
CALL HEXIY

SBC HL, BC
INC HL
LD (SIZE) sHL

CALL . 4DE
CALL HEXIY

LD (EXADR) s HL
CALL NL

LD DE,MSGSV
RST 3

CALL BGETL
CALL -4DE
CALL . 4DE

LD HL, NAME
SAV1: ENT

INC DE

LD Ay (DE)

LD (HL) , A

INC HL

CP ODH

JR NZ, SAV1

LD A, 01H

LD (ATRB) . A

CALL TWRI

JP Cs ?ER

CALL ?WRD

IP C:?ER

CALL NL

LD DE, MSGOK

RST 3

JP ST1

ORG OFB1H; ?PONT

COMPUTE POINT ADR . 3

L) M A ws we an ws we cer wy we e

EXIT
HL = POINT ADR. ON SCREEN
?PONT: ENT
LD HL, (DSPXY)

50RG OFB4H; ?PNT1

?PNT1: ENT

PUSH AF

PUSH BC

FUSH DE

PUSH HL

POP BC

LD DE, 0028H

LD HL, SCRN-40Q
?PNT2: ENT

ADD HL, DE

DEC B

JP F.-2

HL = SCREEN CORDINATE

04.07.83

END ADR.

BYTE SIZE

BYTE SIZE BUFFER

EXECUTE ADR.
BUFFER

SAVED FILENAME

CALL MSGX
FILENAME INPUT

NAME BUFFER

FILENAME TRANS.

END CODE

ATTRIBUE: OBJ.

WRITE ERROR
DATA

0K MESSAGE
CALL MSGX

40

N bhid R

X

OFC4
OFCé6
QOFC7
OFC8
OFC9
OFCA
OFCHE
OFCH
OFCE
OFCE
OFCE
OFCE
OFCE
OFCE
OFD1
OFD4
OFDS
OFD8
OFD8
OFD8
OFD8
OFD8
OFD8
OFD8
OFD8
OFD8
OFD8
OFD8
OFD8
QFD9
OFDB
OFDE
OFDD
OFDD
OFDE
OFDF
OFE1
OFEZ2
OFE2
OFEZ2
OFEZ2
OFEZ2
OFEZ2
OFE3
OFE4
OFES
OFEB
OFEB
OFER
QOFED
OFED
OFFO
OFF2
OFFS
OFF&
OFF8
OFFA
OFFER
OFFD
OFFD

z

ASSEMBLER SB-7201

0600
a9
D1
C1
F1
Ce

CD8805
DAQ701
114209
DF

C3AD0O

AF
1802

JEFF

77
23
10FC
co

=]
DS
ES
0101E0
1102E0

2664

CDO106
380B
CD4AOA
1A
E&20
20F1
25
20F0

C39B06

VERIFYING

<1Z-013A%

LD
ADD
POP
POP
POP
RET

COMMAND

w car wm ws e can e ae s e

?CLER:

GAP

GAPCE:

GAPCK1:

CLER
B=SIZE
HL-LOW

ENT
CALL
JP
LD
RST
JP

i

ENT
XOR
JR
ENT
LD
ENT
LD
INC
DJNZ
RET

CHECK

ENT
PUSH
PUSH
PUSH
LD
LD
ENT
LD
ENT
CALL
JR
CALL
LD
AND
JR
DEC
JR
ENT
JrP

PA E 60

B, +0
HL,EBC
DE

BC

AF

?VRFY
C,y?ER
DE, MSGOK
3

ST1

ORG OFD8H3 ?CLER

ADK.

Ay FFH

(HL) A

BC

DE

HL
BC,KEYPB
DE,CSTR

Hs 100

EDGE
C.,8AFPCES
DLY3

A, (DE)
20H

NZ, GAPCK1
H

NZ ;s GAPCKZ2

RET3

04.07.83

CALL DLY2x%3

X¥ 280 ASSEMBLER SB-7201 <1Z-013A> FAGE &1

k¥

1000
1000
1000
1000
1000
1000
1000
10FO0
10F0
10FO
10F0Q
10FO
10F1
10F1
1102
1102
1104
1104
1106
1106
1108
1108
1170
1170
1171
1171
1173
1173
118E
118E
118F
118F
1191
1191
1192
1192
1193
1193
1194
1194
1195
1195
1197
1197
1199
1199
119\
119HE
119C
119C
119D
119D
11%E
11%E
119F
119F
11A0
11A0
11A1
11A1

280 ASSEMHELER SE-7201

SP:
IEUFE:
ATRE:
NAME:
SIZE:

DTADR

EXADR

COMNT

KANAF

DSPXY

MANG:

FLASH:

FLFST

FLSST

FLSDT

STRGF:

DFRNT

TMCNT

SUMDT

CSMDT

AMPM:

TIMFG

SWRE:

TEMFW

ONTYOD

OCTV:

RATIO:

<1Z-~-013A>

(MZ-700)

ORG
ENT
ENT
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS

FAGE &2

MONITOR WORE AREA

+17

+2

04.07.63

TAFE BUFFER(128H)
ATTRIBUTE

FILE NAME

BYTE SIZE

DATA ADR

EXECUTION ADR

COMMENT

KANA FLAG

DISPLAY CO-ORDINATES

COLOUMN MANAGEMENT

FLASHING DATA

FLASSING POSITION

FLASING STATUS

CURSOR DATA

STRING FLAG

TAE COUNTER

TAPE MARK COUNTER

CHECEKE SUM DATA

FOR COMPARE SUM DATA

AMPM DATA

TIME FLAG

KEY SOUND FLAG

TEMFO WOREK

ONTYO WOREK

OCTAVE WOREK

ONFU RATIO

¥x 780 ASSEMBLER SB-7201 <1Z-013A> PAGE &3 04.07.83

01 11A3 BUFER: ENT 5 GET LINE
02 11A3 DEFS +81

03 11F4 H

04 11F4 H

0S5 11F4 H EQU TABLE I/0 PORT
046 11F4 H

07 11F4 H

08 EQOO P KEYPA EQU EQOOH

09 EO01 P KEYFB EQU EQO1H

10 EOQO2 P KEYPC EQU EQOZH

11 EOO3 P KEYPF EQU EOO3H

12 EQO2 P CSTR: EQU EQOZH

13 EOO3 P CSTPT EQU EQO3H

14 EQO4 P CONTO EQU E00O4H

15 EQOS P CONT1 EQU EOQOSH

1464 EQO& P CONT2 EQU EQO&H

17 EOO07 P CONTF EQU EQO7H

18 ECO8 P SUNDG EQU EQO8H

19 EOQO8 P TEMP: EQU EOQOBH

20 11F4 H

21 11F4 END

¥

#EREK
-4DE
?7KEY
PBRE
PCLRFF
TER
PKEY
?K.YGRP
?MLDY
PPNT1
?PRTS
?RSTR1
?TMR2
PVRFY
AMFM
BELL
Cks2
CLRS
CONT2
CSTPT
CURSZ
CURSR
DACN3Z
DLY1Z2
DSFO1
DuUM1
EDGZ2
FD2
FLKEY
GAF1
GAPCKZ2
GETLZ2
GETLE
GOTO
HL1
INST2
KEYFR
ETBL
LETNL
LPRNT
MCR2
MLD3
MLDST
MOTS
MSG
MSG1
MSGSV
MST2
MTEL
ocTV
ONTYO
FMSG1
FRNTS
PTEST
REY1
RDA
RET3
RTF4
RTF9
SCROL

Z9¢ ASSEMBLER SE-7201 <1

0BEB
02A6
Q9E3
0AZ2
OFDR
a107
0BCA
OSFE
01C7
QFE4
0920
QEES&
037F
Q588
119H
QOZE
072F
QEZA
EOO06
EQOZ
ODFF
OEQD
OBEOQ
0994
ODE?
oD8e
04613
0102
057E
078E
OFED
0818
0863
QOF3
041D
QECA
EOQO1
OBEA
0006
018F
07D4
Q20D
O2AF
06D8
0015
o896
098BB
a70C
026C
11A0
119F
Q1A8
0959
Q155
0630
O1R&
069H
0554
0574
OE&D

#CLROB
-LPT
?ADCN
7ERK1
?DACN
?FLAS
?KY1
?KYGRS
?MODE
?PNT2
?PRTT
?SAVE
?TMRD
7WRD
ASC
EGETL
CKS=
CMYOQ
CONTF
CSTR
CURS4
CURSU
DEL
DLYZ2
DSFO04
DumMz2
EDGE
FLAS1
FLPST
GAPZ
GAFCKZ
GETL3Z
GETLC
GRSTAS
HLHEX
K.ANA
KEYFC
KTBLC
LLPT
M#TEL
MCR3
MLD4
MONIT
MOT7
MSG#1
MSG?2
MSGX
MST3
NAME
ONF1
OFTBL
FRNT
FRNTS
PTRRN
REYZ2
RDDAT
RTAFPE
RTPS
RYTHM
SG

09D4
Q176
OBE?
QA48
OHECE
Q9FF
08D&
0909
073E
OF BF
0924
QOR92
0358
Q475
03ZDA
012F
0733
QOSH
EOQQ7
EQO2
OE23
QEOS
OEFB8
Q760
oDDO
OD3E
0601
Q97H
118F
a7%96
OFFD
0BSE
0822
oDD4
0410
OEEE
EQO2
OCAA
Q470
0284
Q7D7
0211
QOO0
06H7
OIFE
Q9AC
0018
Q0717
10F1
021F
029C
Q012
oooC
0180
0649
Q02A
OS0OE
0565
02C8
QOF7

#CLRB
. MANG
?HEL
?EREK2
?DINT
?FLS
?KY2
2KYSM
?MSG
?PONT
?RDD
7SWEP
?TMS1
7TWRI
ATEL
ERKEY
CKSUM
COMNT
CR
CTEL
CURSS
CURSU1
DEL1
DLY3
DSPXY
DUM3
EXADR
FLASZ2
FLSDT
GAP3
GETEY
GETLS
GETLR
HEX
HOME
KANAF
KEYPF
KTELG
LOAO
MANG
MELDY
MLDS
MOT1
MOT8
MSG#2
MSG?3
MSGX 1
MSTA
NL
ONF2
PEN
PRNT?2
PRNTT
PTSTO
RBY3
RDINF
RTP1
RTFP&
SAV1
SHORT

—-013A%

09D5
Q2F3
0577
0980
OFDD
Q9E3
08DA
QBR3
0893
OFB1
04FB8
QASC
0331
Q434
0A92
OC1E
071A
1108
OESA
OEAA
QEO2
QEOH
OFOE
0A4A
1171
0D37
1106
O%EF
1192
079C
[s1e30:]
081D
087E
Q3F9
OE4D
1170
EQOZ
OCE9
0116
1173
0030
0214
0LA4
0&4D0
O3FD
Q6E7
BA4
0044
0009
022C
018R
0967
Q0OF
Q15A
0654
Q27
0513
Q572
OF8E
0AC1

PAGE

$MCP
2HE1
?HELD
?BREZ
?DPCT
?GET
?KYS
?LOAD
?MSGX
PPRNT
?RDI
?TEMF
?TMS2
ALFH1
ATRE
BUFER
CLEAR
CONTO
CR1
CURS1
CURSD
DACN1
DELZ2
DLY4
DSWEP
DUMP
FD
FLASE
FLSST
GAPCE
GETL
GETL&
GETLU
HEXIY
IBUFE
KANST
KSL1
K. TEHLGS
LOAD
MCOR
MLD1
MLDS1
MOTZ2
MOT?
MSG#3Z
MSGE1
MSGX2
MSTOP
NLPHL
ONR3
PLOT
PRNTZ
PRTHL
FPTST1
REYTE
RET1
RTPZ2
RTP7
SAVE
SIZE

&4

O0O6H
D434
0352
0986
ODDC
OBED
0BFA
O5FQ
08A1
0935
04D8
Q2ES
0344
QEEZ2
10FO
11A3
0908
EQO4
OE&A
ODFF
ODF8
OHBEZ
QF1C
O9A9
0830
oD29
QOFF
Q9F 3
1121
QFEZ2
0003
0865
0876
013D
10F 0
EQQ3
0O9H7
0OC&A
0111
07A8
01D1
02C4
06AR
06D7
0402
0147
08A7
0700
OSFA
02465
0184
Q94C
3FHA
2170
0624
Q4D2
0519
0S6E
OFSE
1102

. LFT
2HEX
PELNE
?CLER
?DSP
?GETL
PEYSS
PLTNL
?NL
?PRT
?RSTR
?TMR1
?TMST
ALFHA
AUTOS
CkS1
CLEAR1
CONT1
CSMDT
CURS2
CURSL
DACNZ2
DLY1
DFRNT
DTADR
EDG1
FD1
FLASH
GAP
GAPCK 1
GETL1
GETLA
GETLZ
HEXJ
INST
KEYPA
KSL2
KTELS
LONG
MCR1
MLDZ2
MLDSP
MOT4
MOTOR
MSG#7
MSGOK
MST1
MSTP
NOADD
ONFU
FMSG
PRNT4
PRTHX
RATIO
RD1
RETZ2
RTP3
RTF8
SCRN
SLFT

04.07

017R
041F
0DA&
OFDB
ODES
07E&
OBFE
090E
0918
0944
OEES
0375
0308
QEE1
O7ED
0720
09DA
EQQS
1199
OE14
QE2S
QRDF
0759
1194
1104
Q407
0104
118E
077A
OFER
O7EA
0BZ2H
0B6C
O3ES
OF38
EQOO
Q9HC
QC2A
OALA
Q7AH
Q205
Q2EE
06E?
Q69F
0467
0942
0705
Qo47
03E2
azic
01AS
Q96F
03CH
11A1
04E&
0554
0532
0553
DOOO
QZDS

¥¥x 780 ASSEMELER SE-7201 <1Z-013Ax FAGE &5

SF 10FO SPHEX O3F1 SS 00A2 §TO 0070 ST1 QOAD
8T2 OOBEB START 004A STRGF 1193 SUMDT 1197 GSUNDG EO008
SVO ORAZ BSV1 OBBS SWEPO 0A&SL SWEFPO1 0A&4 SWEP2 0A7F

SWEP3 0A77 SWEF& OASF SWEP? 0OA73 SWRE 119D TEMP EQOB
TEMPW 119E TIMFG 119C TIMIN 038D TIMRD OO3F TIMST 0033
™M1 Gae75 TM2 0678 TM3 0688 TM4 0&69B TMARE 0Q65SE
TMCNT 1195 TVF1 0SB2 TVF2 O0SBB TVF3 0SCC TYRFY 0SAD
VERFY 002D VGOFF 0747 VRFY OFCEB VRNS OBCS WEY1 074D
WBYTE 0767 WRDAT 0024 WRI1 0444 WRIZ2 045E WRI3 0464
WRINF 0021 WTAF1 0494 WTAPZ2 O04AS WTAPI 04D2 WTAPE 048A
XTEMFP 0041

82

i fi

e

A. 6 Color Plotter-Printer Control Codes
A.6.1 Control codes used in the text mode

Text code ($01)
Sets the printer in the text mode.

Graphiccode ($02) Same as the BASIC MODE GR statement.
Sets the printer in the graphic mode.

Lineup ($303)ottt Same as the BASIC SKIP-1 statement.
Moves the paper one line in the reverse direction. The line counter is decremented by 1.
Pentest ($04) Same as the BASIC TEST statement.

Writes the following patterns to start ink flowing from the pens, then sets scale = 1 (40 chr/line),
color= 0.

Black Blue Green Red

Reduction scale ($09) + ($09) + (509)

Reduces the scale from 1 to 0 (80 chi/line).

Reduction cancel (§09) + (809) + ($0B)

Enlarges the scale from 0 to 1. (40 chr/line).

Line counter set ($09) + (809) + (ASCII), + (ASCII); + (ASCII), + ($0D)
....................................... Same as the BASIC PAGE statement.
Specifies the number of lines per page as indicated by 3 bytes of ASCII code. The maximum number of
lines per page is 255. Set to 66 when the power is turned on or the system is reset.

Line feed ($0A)ot Same as the BASIC SKIP 1 statement.
Moves the paper one line in the forward direction. The line counter is incremented by 1.
Magnify scale ($0B)

Enlarges the scale from 1 to 2 (26 chr/line).

Magnify cancel ($0C)

Reduces the scale from 2 to 1.

Carriage return ($0D)

Moves the carriage to the left side of the print area.

Back space (50E)

Moves the carriage one column to the left. This code is ignored when the carriage is at the left side
of the print area.

Form feed ($0F)

Moves the paper to the beginning of the next page and resets the line counter to O.

Next color (§1D)

Changes the pen to the next color.

A.6.2 Character scale

The character scale is automatically set to 1 (40 chr/line) when the power is turned on. Afterwards,
it can be changed by the control codes and commands.

® In the graphic mode, the scale can be changed in the range from 0 to 63.

® The scale is set to 1 when the mode is switched from graphic to text.

A.6.3 Graphic mode commands

A.6.3.1 Command type

In the graphic mode, the printer can be controlled by outputting the following commands to the printer.
Words in parentheses are BASIC statements which have the same functions as the graphic mode com-

mands.

Command name Format

Function

LINE TYPE Lp(p=0to 15)

Specifies the type of line (solid or dotted) and
the dot pitch. —
p=0:solid line,p=1~15: dottedline p o

ALL INITIALIZE A

Sets the printer in the text mode.

HOME (PHOME)

Lifts the pen and returns it to the origin (home
position).

INITIALIZE (HSET)| I

Sets the current pen location as the origin
(x=0,y=0).

Dx,y,...xn,yn

DRAW (—999 < x, y < 999)

(LINE)

Draws lines from the current pen location to
coordinates (x;, y;), then to coordinates
(x5, ¥,), and so forth.

RELATIVE DRAW Jax, Ay . .. AXn, Ayn

Draws lines from the current pen location to
relative coordinates (ax;, Ay,), then to relative

(RLINE) (=999 < ax, 4y < 999) coordinates (ax,, Ay,) and so forth.
Mx, y . . .
MOVE (MOVE) (=999 < x, y < 999) Lifts the pen and moves it to coordinates (x, y).
RELATIVE MOVE Rax, Ay Lifts the pen and moves it to relative coordinates
(RMOVE) (—999 <ax, ay <£999) (ax, Ay).
COLOR CHANGE _
(PCOLOR) Cn (n=0to 3) Changes the pen color to n.

SCALE SET Sn (n=0to 63) Specifies the character scale.

Specifies the direction in which characters are

(r=1to 255)

ALPHA ROTATE Qn(n=0to03) printed.
PRINT Pcicyey . ..cn(n==) Prints characters.

Xp,q,r(p=0orl) Draws an X axis when p =1 and a Y axis when
AXIS (AXIS) (q=-999 to 999) p = 0. q specifies the scale pitch and r specifies

the number of scale marks to be drawn.

A. 6. 3. 2 Command format

There are 5 types of command formats as shown below.

1. Command character only (without parameters)
" AIl , H , 'II
2. Command character plus one parameter
HLII, \CH, HSV’ “Q
3. Command character plus pairs of parameters
D,"J,"M", R

," is used to separate parameters, and a CR code is used to end the parameter list.

4. Command plus character string
P

The character string is terminated with a CR code.

5. Command plus three parameters
" X 1

*," is used to separate parameters.

199

A. 6. 3. 3 Parameter specification

1.

2.
3.
4

Leading blanks are ignored.

Any number preceded by " -— " is treated as a negative number.

If the number of digits of a number exceeds 3, only the lower 3 digits are effective.

Each parameter is ended with "," or a CR code. If other than numbers are included in a parameter,
subsequent characters are ignored until a comma or CR code is detected.

Example) D_.. —135. 21, =

r Ignored. —

A. 6. 3. 4 Abbreviated formats

1.

Any command can be followed by a one-character command without entering a CR code.
Ex) "HD100, 200" CR is effective and is the same as "H" CR " D100, 200" CR.
Any command can be followed by a command with one parameter by separating them with a

comma " ,".
Ex) "LO, S1, Q0, C1, D100, 200" CR is effective.
A command with pairs of parameters must be terminated with a CR code.

4. 6. 3. 5 Data change due to mode switching

The following data changes when the printer is switched from the graphic mode to the text mode.
® X and Y coordinates

Y is set to O and the origin is placed at the left side of the printable area.

® Direction of characters

Qis set to 0.

® Character scale

Character scale is set to 1.

® The line type setting is not affected.

200

A.7 Notes Concerning Operation

® Data recorder

e Although the data recorder of the MZ-700 is highly reliable, the read/write head will wear out after
prolonged use. Further, magnetic particles and dust will accumulate on the head, degrading read/write
performance. Therefore, the head must be cleaned periodically or replaced when it becomes worn.

To clean the head, open the cassette compartment, press the [PLAY | key, and wipe the head

and pinch roller using a cotton swab. If they are very dirty, soak the cotton swab in alcohol

When the head becomes worn, contact your dealer. Do not attempt to replace it by yourself.

1.

2.

m (Cassette tape

® Any commercially available cassette tape can
be used with the MZ-700. However, it is re-
commended that you use quality cassette

tape produced by a reliable manufacturer.

Use normal type tapes.
Avoid using C-120 type cassette tapes.

Use of C-60 or shorter cassette tapes is
recommended.
Be sure to take up any the slack in the tape

with a pencil or the like as shown at right
before loading the cassette tape: otherwise,
the tape may break or become wound round
the pinch roller.

® Protecting programs/data from accidental erasure

The data recorder of the MZ-700 is equipped
with a write protect function which operates in
the same manner as with ordinary audio cassette
tape decks.

To prevent data from being accidentally erased,
remove the record lock-out tab from the cassette

with a screwdriver or the like. This makes it
impossible to press the | RECORD | key, prevent-
ing erasure of, valuable data.

® Other

e See page 109 for commercially available cassette tape decks.

® Display unit

Slack

‘ ©)10

Slack

Remove record lock-out
tab with a screwdriver.

Tab for side A
Tab for side B

When using a display unit other than one specified for the MZ-700, the screen size must be adjusted.
See page 106.

201

202

Color plotter-printer

e Do not rotate the pen drum in the reverse direction when replacing pens.
e Be sure to remove the pens from the pen drum, replace their caps to them, and store them in the case

to prevent them from drying out when the printer is not to be used for an extended period of time.

e It takes a certain amount of time for ink on the paper to dry. (The ink is water-soluble.)
e Do not rip off the paper when the printer cover is removed. Hold down the paper holder when ripping

off the paper.

Do not touch the internal mechanism when replacing the pens. Failure to observe this warning may
result in damage to the printer.

The color plotter printer generates sound for a moment when the power is turned on. This is not
a problem.

Letters printed in the 80 character line mode may be difficult to read. In this case, use the 40 character/
line mode.

In the graphic mode, lines printed repeatedly may become blurred. This is particularly liable to occur
when a dotted line is printed repeatedly. Due to the characteristics of the ball pen, this is unavoidable.

Notes concerning software

e It takes about 3 minutes to load the BASIC interpreter.
e The reset switch on the rear panel is to used in the following cases. (See 3. 1. 1.)

To stop execution of a BASIC program during normal execution or when the program enters an infinite
loop. To return to the program, use the # command. However, the program or hardware should be
checked if the program loops.

BASIC calculation error

BASIC converts decimal values to floating point binary values before performing calculations, then
converts the binary calculation results into decimal numbers for display. This can result in a certain
amount of error.

(Example:)

PRINT 817. 3—81d. 4
6. 8098Q0 e Correct result is 6.9.

e Approximations are made during calculation of functions and exponentiation.
e The above must be considered when using IF statements.

(Example:)

10 A=1./100%100
20 IF A=1 THEN PRINT'TRUE' :GOTO 40
3¢ PRINT '"FALSE"

40 PRINT 'A=":A

50 END

RUN

FALSE

A=1

Although the practical result of the equation in line 10 is 1, this program prints FALSE because of

error due to conversion.

Notes concerning handling

Power switch
The power switch should be left untouched for at least 10 seconds after being turned on or off.
This is necessary to ensure correct operation of the computer. Do not unplug the power cable when
the power switch is on: otherwise, trouble may result.

Power cable
Avoid placing heavy objects such as desks on top of the power cable. This may damage the power
cable, possibly resulting in a serious accident. Be sure to grasp the cable by the plug when unplugging
it.

Power supply voltage
The power supply voltage is 240/220 VAC. The computer may not operate properly if the voltage
is too high or too low. Contact your dealer for assistance if you experience this problem.

Ventilation
Many vents are provided in the cabinet to prevent overheating. Place the computer in a well ventilat-
ed place, and do not cover it with a cloth. Do not place any objects on the left side of the computer,
since this is where the vents for the power supply unit are located.

Humidity and dust
Do not use the computer in a damp or dusty places.

Temperature
Do not place the computer near heaters or in places where it may be exposed to direct sunlight;
failure to observe this precaution may result in damage to the computer’s components.

Water and foreign substances
Water and other foreign substances (such as pins) entering the computer will damage it. Unplug
the power cable immediately and contact your dealer for assistance if such an accident occurs.

Shock
Avoid subjecting the computer to shock; strong shocks will damage the computer permanently.

Trouble
Stop immediately operation and contact your dealer if you note any abnormality.

Prolonged disuse
Be sure to unplug the power cable if the computer is not to be used for a prolonged period of time.

Connection of peripheral devices
Use only parts and components designated by Sharp when connecting any peripheral devices, other-
wise, the computer may be damaged.

Dirt
Wipe the cabinet with a soft cloth soaked in water or detergent when it becomes dirty. To avoid
discoloration of the cabinet, do not use volatile fluids such as benzene.

203

e Noise
It is recommended that a line filter be used when the computer is used in a place where high level
noise signals may be present in the AC power. (A line filter can be obtained from your Sharp dealer).
Move the signal cables as far as possible from the power cable and other electrical appliances.

o RF interference
Interference with TV or radio reception may occur due to the RF signal generated by the computer
if it is used near a TV or radio set. TV sets generate a strong magnetic field which may result in
incorrect operation of the computer. If this occurs, move the TV set at least 2 to 3 meters away
from the computer.

This apparatus complies with requirements of EEC directive 76/889/EEC.

204

Copying/Debugging of MZ-700 Basic Interpreter

A.Please follow the procedure below mentioned to copy the BASIC tape.
1) Power on MZ-700 (- monitor state)
2) Partial memory should be modified by the use of monitor command M (memory correction) as
follows:

*MCF00

CF00 FF—->CD
CF01 00 27
CF02 FF-00
CF03 00 —38
CF04 FF 03
CF05 00 —»CD
CF06 FF = 2A
CF07 00 - 00
CF08 FF - DA
CF09 00 = FE
CFOA FF 00
CFOB 00 - C3
CFOC FF — AD
CFOD 00 00
CFOE FF CD
CFOF 00 27
CF10 FF 00
CF11 00 — 38
CF12 FF F5
CF13 00 C3
CF14 FF CB
CF15 00 - OF

[SHIFT | + | BREAK | to be keyed in.
NOTE: The content of memory from CF00 to CF15 may not always be as above mentioned.

3) The cassette to be read (copyed from) should be set to the tape recorder.
4) Key in the monitor command J (Jump) as follows:

X JCF00 [CR]
L PLAY

NOTE: If a button of the tape recorder is still pushed no play indication will appear.

5) Confirming the “APLAY” indication above mentioned, push [PLAY | button and load the content
of BASIC tape. On this occasion, no indication like FILE NAME, etc. will be shown. When ERROR
occured, please restart from the item 1) again.

6) Set anew cassette to which the BASIC should be written into the recorder and execute [REWIND | .

7)

8)

9)

10)

11)
12)
13)
14)

15)

16)

Key in as follows:
% J1108 [CR]
The monitor will be cleared and the following indication will appear:

S-BASICEX SAVER xx (5 xx &
HIT ANY KEY?

Push any key.

1 Record Play
[STOP | button should be pushed beforehand.

Push| RECORD |button. The copy will start and the following indication will appear:

WRITING S-BASIC

On the occasion of MZ-711, item 9) should be effectuated after setting the external tape recorder
in recording state.

After the sound ‘“Pit Pit”, the copy will be terminated.

The monitor state will be recovered by pushing the rear RESET SW.

Rewind the tape and push [STOP | button.

Key in as follows:

X JCFOE [CR|
X PLAY

Push [PLAY | button of the recorder and the “VERIFY” function will be executed. When success-
ful verified, the indication of “OK!” will appear though no other indication like FILE NAME etc.
will appear. When error occured, please restart from the item 4).

Please make sure to enable the write protection of the cassette by removing the nail.

B. The following procedure is requested to modify the content of BASIC interpreter.

a)
b)

Operate just as the case for copying mentioned in item 1) to 5).
Call up the address to be modified by using the monitor command M.
Ex. 8A in 1234H should be changed to 7A.

Key in
XM 1234
1234 8A 7A [CR]
1235 8A __SHIFT | + [BREAK _

X

C. The operation from the item 6) onwards should be continued hereafter.

